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The universal approximation property is also true for the class of RBF func-
tions. For sufficiently large values of k in (4.55) the resulting expansion can
approximate arbitrarily closely any continuous function in a compact subset §
[Park 91, Park 93].
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In Chapter 3, we discussed the support vector machines (SVM) as an optimal
design methodology of a linear classifier. Let us now assume that there exists a
mapping

xER!—ayERk

from the input feature space into a k-dimensional space, where the classes can
satisfactorily be separated by a hyperplane. Then, in the framework discussed in
Section 4.12, the SVM method can be mobilized for the design of the hyperplane
classifier in the new k-dimensional space. However, there is an elegant property in
the SVM methodology, that can be exploited for the development of a more general
approach. This will also allow us for (implicit) mappings in infinite dimensional
spaces, if required.

Recall from Chapter 3 that, in the computations involved in the Wolfe dual rep-
fesentation the feature vectors participate in pairs, via the inner product operation.
Also, once the optimal hyperplane (w, wo) has been computed, classification is
performed according to whether the sign of

g(x)=w"x + wy
Ny
= Z JL,-yl-.r;‘x + wy

i=l
I5 + or —, where N is the number of support vectors. Thus, once more, only inner
products enter into the scene. If the design is to take place in the new k-dimensional
space, the only difference is that the involved vectors will be the k-dimensional
mappings of the original input feature vectors. A naive look at it would lead to
the conclusion that now the complexity is much higher, since, usually, & is much
higher than the input space dimensionality /, in order to make the classes linearly
separable. However, there is a nice surprise just waiting for us. Let us start with a
simple example. Assume that
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Then, it is a matter of simple algebra to show that

T CL T 2 .
yi yj = (xixj)
In words, the inner product of the vectors in the new (higher dimensional) space R
has been expressed as a function of the inner product of the corresponding vectors
in the original feature space. Most interesting!
Theorem. Mercer’s Theorem. Let x € R' and a mapping ¢ H
x— Px)e H
, ) 5 : : fc
where H is a Euclidean space.” Then the inner product operation has an pe
equivalent representation DI
re
> rx)d(2) = K (x.2) (4.60)
r pl
(E
where ¢,(x) is the r-component of the mapping ¢{(x) of x, and K(x,z) is a
symmetric function satisfving the following condition
f K(x.2)gx)g(z)dxdz =0 (4.61)
for any g(x), x € R such that
fg{x}2 dx < +o0 (4.62) an
The opposite is also true, i.e., for any function K (x, z) satistying (4.61) and (4.62)
there exists a space in which K (x. z) defines an inner product! Such functions
are also known as kernels and the space H as Reproducing kernel Hilbert space Sii
(RKHS). What, however, Mercer’s theorem does not disclose to us is how to find
this space. That is. we do not have a general tool to construct the mapping ¢(-) Spe
once we know the inner product of the corresponding space. Furthermore, we lack no
the means to know the dimensionality of the space. which can even be infinite. For inr
more on these issues, the mathematically inclined reader is referred to [Cour 53]. suj
3n general. it can be a Hilbert space. i.e.. a complete linear space equipped with an inner product cla

operation.
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Typical examples of kernels used in pattern recognition applications are

Polynomials
Kx,2)=@x"z+1), g>0
Radial Basis Functions

= 2
K(x,7) = exp (__ ”i_i“_)

ol

Hyperbolic Tangent

K (x, z) = tanh (ﬁx?'z + y) (4.65)

for appropriate values of 8 and ¥ so that Mercer’s conditions are satisfied. One
possibility is B = 2, y = 1. In [Shaw 04] a unified treatment of kernels is
presented focusing on their mathematical properties as well as methods for pattern
recognition and regression that have been developed around them.

Once an appropriate kernel has been adopted that implicitly defines a map-
ping into a higher dimensional space (RKHS), the Wolfe dual optimization task
(Bgs. (3.91)-(3.93)) becomes

: 1 . :
mfx sz — 5;).,-Ajy;yjif(xi,xj) (4.66)

subjectto 0 <X, <C, = ,2,....N 4.67)
D hiyi=0 (4.68)
;

and the resulting linear classifier is
Ny
assign x in wj () if g(x) = ZA;y,—K(x,—, X))+ wy > (<) 0 (4.69)
i=1
Similar arguments hold true for the v-SVM formulation.

Figure 4.22 shows the corresponding architecture. This is nothing else than a
special case of the generalized linear classifier of Figure 4.17. The number of
nodes is determined by the number of Support vectors N;. The nodes perform the
inner products between the mapping of x and the corresponding mappings of the
support vectors in the high dimensional space, via the kernel operation.

Figure 4.23 shows the resulting SVM classifier for two nonlinearly separable
classes, where the Gaussian radial basis function kernel, with 0 = 1.75 , has been
used. Dotted lines mark the margin and circled points the support vectors,
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FIGURE 4.23: Example of a nonlinear SVM classifier for the case of two
nonlinearly separable classes. The Gaussian RBF kernel was used. Dotted lines
mark the margin and circled points the support vectors.

Remarks

e Notice that if the kernel function is the RBF, then the architecture is the
same as the RBF network architecture of Figure 4.17. However, the approach
followed here is different. In Section 4.15, a mapping in a k-dimensional
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space was first performed and the centers of the RBF functions had to be
estimated. In the SVM approach, the number of nodes as well as the centers
are the result of the optimization procedure.

The hyperbolic tangent function is a sigmoid one. If it is chosen as a kernel,
the resulting architecture is a special case of a two layer perceptron. Once
more, the number of nodes is the result of the optimization procedure. This
is important. Although the SVM architecture is the same as that of a 2-layer
perceptron, the training procedure is entirely different for the two methods.
The same is true for the RBF networks.

A notable characteristic of the support vector machines is that the computa-
tional complexity is independent of the dimensionality of the kernel space,
where the input feature space is mapped. Thus, the curse of dimensionality
is bypassed. In other words, one designs in a high dimensional space without
having to adopt explicit models using a large number of parameters, as this
would be dictated by the high dimensionality of the space. This has also an
influence on the generalization properties and indeed, SVM’s tend to exhibit
good generalization performance. We will return to this issue at the end of
Chapter 5.

Another major limitation of the support vector machines is that up to now
there is not an efficient practical method for the selection of the best kernel
function. This is still an unsolved, yet challenging, research issue. Once
a kernel function has been adopted, the so-called kernel parameters (e.g.,
o for the Gaussian kernel) as well as the smoothing parameter, C, in the
cost function are selected so that the error performance of the resulting
classifier can be optimized. Indeed, this set of parameters, also known as
hyperparameters, is crucial for the generalization capabilities of the classifier
(i.e., its error performance when it is “confronted” with data outside the
training set).

To this end, a number of easily computed bounds, which relate to the
generalization performance of the classifier, have been proposed and used
for the best choice of the hyperparameters. The most common procedure
is to solve the SVM task for different sets of hyperparameters and finally
select the SVM classifier corresponding to the set optimizing the adopted
bound. See, for example, [Bart 02, Lin 02, Duan 03, Angu 03, Lee 04]. In
[Chap 02] this problem is treated in a minimax framework: maximize the
margin over the w and minimize the bound over the hyperparameters.

A different approach to the task of data-adaptive kernel tuning, with the
same goal of improving the error performance, is via information geometry
arguments [Amar 99]. The basic idea behind this approach is to introduce
a conformal mapping into the Riemannian geometry induced by the chosen
kernel function, aiming at enhancing the margin. In [Burg 99] it is pointed
out that the feature vectors, which originally lie in the /-dimensional space,
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after the mapping induced by the kernel function lie in an [-dimensional
surface, §, in the high-dimensional space. It turns out that (under some very
general assumptions) S is a Riemannian manifold with a metric that can be
expressed solely in terms of the kernel.

e Support vector machines have been applied to a number of diverse appli-
cations, ranging from handwritten digit recognition ([Cort 95]), to object
recognition ([Blan 96]), person identification ([Ben 99]), spam categoriza-
tion ([Druc 99]), channel equalization ([Seba 00]), and medical imaging
[EINa 02]. The results from these applications indicate that SVM classifiers
exhibit enhanced generalization performance, which seems to be the power
of support vector machines. An extensive comparative study concerning the
performance of SVM against sixteen other popular classifiers, using twenty
one different data sets, is given in [Meye 03]. The results verify that SVM
classifiers rank at the very top among these classifiers, although there are
cases for which other classifiers gave lower error rates.

e Besides support vector machines any other linear classifier that employs
inner products can implicitly be executed in higher dimensional spaces
by using kernels. In this way one can elegantly construct nonlinear ver-
sions of a linear algorithm. For a review on this issue see, for example,
[Mull 01, Shaw 04].

4.18 DECISION TREES

In this section we briefly review a large class of nonlinear classifiers known as
decision trees. They are multistage decision systems in which classes are sequen-
tially rejected until we reach a finally accepted class. To this end, the feature space
is split into unique regions, corresponding to the classes, in a sequential manner.
Upon the arrival of a feature vector, the searching of the region to which the fea-
ture vector will be assigned is achieved via a sequence of decisions along a path of
nodes of an appropriately constructed free. Such schemes offer advantages when
a large number of classes is involved. The most popular among the decision trees
are those that split the space into hyperrectangles with sides parallel to the axes.
The sequence of decisions is applied to individual features, and the questions to
be answered are of the form “is feature x; < «?” where « is a threshold value.
Such trees are known as ordinary binary classification trees (OBCTs). Other types
of trees are also possible that split the space into convex polyhedral cells or into
pieces of spheres.

The basic idea behind an OBCT is demonstrated via the simplified example
of Figure 4.24. By a successive sequential splitting of the space we have created
regions corresponding to the various classes.
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