IN 5520 Weekly exercises on Support Vector Machines.

Exercise 1.

Show that the criterion

$$y_i(w^T x_i + w_0) \ge 1, \quad i = 1, 2, \dots N$$

corresponds to correct classification for all N samples in a binary classification problem with classes -1 and 1.

Exercise 2.

Given a binary data set:

	1	9		8	5
Class – 1:	5	5	Class +1:	13	1
	1	1		13	9

Plot the points in a plot. Sketch the support vectors and the decision boundary for a linear SVM classifier with maximum margin for this data set.

Exercise 3.

Given the binary classification problem:

					٩
Class -1:	2	2		6	2
	3	3		7	3
	4	4		8	4
	5	5		9	5
	4	6	Class +1:	8	6
	3	7		7	7
	4	8		7	8
	5	9		7	9
	6	10		8	10

- a) Sketch the point in a scatterplot.
- b) In the plot, sketch the mean values and the decision boundary you would get with a Gaussian classifier with Σ = σ I.
- c) What is the error rate of the Gaussian classifier on the training data set?
- d) Sketch on the plot the decision boundary you would get using a SVM with linear kernel and a high cost of misclassifying training data. Indicate the support vectors and the decision boundary on the plot.
- e) What is the error rate of the linear SVM on the training data set?

Exercise 4.

Download the two datasets mynormaldistdataset.mat and mybananadataset.mat from undervisningsmateriale/week9.

You can use a library for SVM e.g. symtrain and symclassify in Matlab

Familiarize you with the data sets by studying scatterplots.

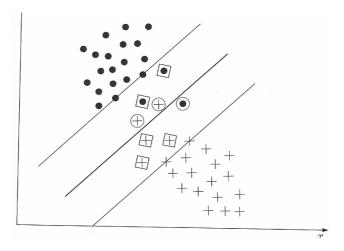
Load mynormaldistdataset.mat. Stick with the linear SVM, but change the C-parameter ('BoxConstraint' in symtrain).

Rerun the experiments a couple of times, and visualize the data using 'ShowPlot'. How does the support vectors and the boundary change with the parameter?

Try to remove some of the non-support-vectors and rerun - does the solution change?

Load mybananadataset.mat. Try various values values of the C-parameter with a linear SVM. Can the linear SVM classifier make a good separation of the feature space?

Change kernel to a RBF (radial basis function), and rerun. Try changing the sigma-parameter ('rbf_sigma' in symtrain). Make sure you know why we now get a non-linear decision boundaries.


Implement a grid search of the C- and sigma-parameters based on 10-fold crossvalidation of the training data (the A-dataset). Find the best values of C and sigma, retrain on the entire A-data set, and then test on the B-data set. Does the average 10-fold crossvalidation estimate of the overall classification error match the result we get when testing on the independent 'B'-dataset?

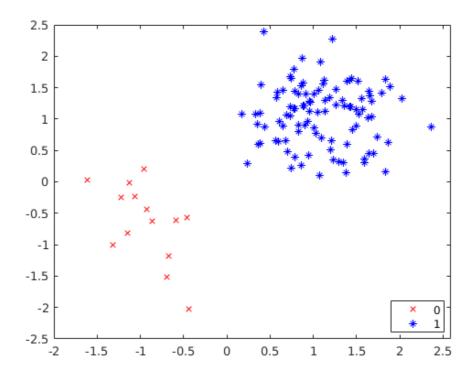
Use the parameter range listed in the lecture foils.

Exercise 5: Support vector machine classifiers (from 2017 exam)

a) Consider a linear SVM with decision boundary $g(x) = w^T x + w_0$. In SVM classification, explain why it is useful to assign class labels -1 and 1 for a binary classification problem.

- b) The basic SVM optimization problem is to minimize $J = \frac{1}{2} ||w||^2$ What are the additional constraints for this optimization problem? Ideally, you should answer both by math and explain what this expression means.
- c) Explain how slack variables ξ_i are used to solve a non-separable case like the one below:

- d) Discuss how likely a Gaussian classifier and an SVM classifier are to overfit to the training data.
- e) Explain how an SVM can be used for a classification problem with M classes.
- f) Explain briefly how SVM parameters should be determined


Exercise 6 (from 2018 Exam) : Support vector machines

a) The basic optimization problem for a support vector machine classifier is:

minimize $J(w) = \frac{1}{2} ||w||^2$ subject to $y_i(w^T x_i + w_0) \ge 1$, i = 1, 2, ..., N

What is the total margin for this problem?

- b) Support vector machines are fundamentally different from Gaussian classifiers in terms of how the decision boundary is found explain why.
- c) Support vector machine classifiers can also be explained based on convex hulls. Explain the relationship between the convex hull of two regions and the hyperplane with maximum margin.
- d) Given below is a scatter plot of a binary classification problem. Sketch the convex hulls on the figure and use this to find an approximate hyperplane.

e) In the general case the optimization problem is given as:

$$\begin{split} & \max_{\lambda} \left(\sum_{i=1}^{N} \lambda_{i} - \frac{1}{2} \sum_{i,j} \lambda_{i} \lambda_{j} y_{i} y_{j} x_{i}^{T} x_{j} \right) \\ & \text{subject to} \quad \sum_{i=1}^{N} \lambda_{i} y_{i} = 0 \text{ and } 0 \leq \lambda_{i} \leq C \quad \forall i \end{split}$$

Explain briefly which terms in the equation that can be computed using kernels in a high-dimensional space, and also explain what the kernels measure.