Week 3

I will go through the weekly exercises at 14:15

Make a simple image, to see how Hough works

How does the image look in Hough-space

First look at the two peaks in the middle

First lets look at (0,4). What line does this correspond to?
We have the normal representation of a line
$x \cos \theta+y \sin \theta=\rho$
Hough transform of image 1
This would be a line perpendicular to the vector $x^{*} \cos (0)+y^{*} \sin (0)=4$

$$
x=4
$$

First look at the two peaks in the middle

First lets look at $(0,4)$. What line does this correspond to?
We have the normal representation of a line $x \cos \theta+y \sin \theta=\rho$

This would be a line perpendicular to the vector $x^{*} \cos (0)+y^{*} \sin (0)=4$

$$
x=4
$$

Remember that Matlab uses lefthandsystem and origo is in (1,1)

First look at the two peaks in the middle

First lets look at (0,4). What line does this correspond to?
We have the normal representation of a line $x \cos \theta+y \sin \theta=\rho$

This would be a line perpendicular to the vector $x^{*} \cos (0)+y^{*} \sin (0)=4$

$$
x=4
$$

Remember that Matlab uses lefthandsystem

First look at the two peaks in the middle

What line does this correspond to?
We have the normal representation of a line $x \cos \theta+y \sin \theta=\rho$

Next lets look at $(-45,0)$
This would be a line perpendicular to the line $x^{*} \cos (-45)+y^{*} \sin (-45)=0$

$$
y=-x
$$

Remember that Matlab uses lefthandsystem

The last line is the horizontal line

Original image

Hough transform of image 1

The last line

Has two peaks $(-90,-199)$ and $(90,199)$

Hough transform of image $1 \equiv \mathbb{R} \mid Q$ 分

Hough transform of image 1
 θ (degrees)

The last line

Has two peaks $(-90,-199)$ and $(90,199)$

Load image and find gradient

```
% Load and show the corridor image
img=imread('corridor.png');
img=double(rgb2gray(img));
figure(), imshow (img, [])
title('Original image');
% Lets filter the original image with a
% Adjusting the threshold will affect tr
% detect.
thresh = 20;
img_edge = edge(img, 'Sobel', thresh);
figure(), imshow(img_edge, [])
title('Sobel magnitude');
```


Compute Hough

\% Compute the Hough transform for the edge image [H, theta,rho] = hough (img_edge);
\% Display the accumulator matrix
figure (15) ;clf
imagesc (theta, rho, H) ;
colormap hot
colorbar
caxis([0 200])
xlabel('\theta (degrees)')
ylabel('\rho (pixels from center)')
title('Hough transform of image 1')

We want to show the top 5 best candidates for lines

Plot the lines we found

Exercise - Hough with circles

A circle in the $x y$-plane is given by

$$
\left(x-x_{c}\right)^{2}+\left(y-y_{c}\right)^{2}=r^{2}
$$

So we have a 3D parameter space. What size, what

A simple 3D accumulation procedure:

set all $A\left[x_{c}, y_{c} r\right]=0$;
for every (x, y) where $g(x, y)>T$ for all x_{c} for all y_{c}

$$
\begin{aligned}
& \mathrm{r}=\operatorname{sqrt}\left(\left(\mathrm{x}-\mathrm{x}_{\mathrm{c}}\right)^{2}+\left(\mathrm{y}-\mathrm{y}_{\mathrm{c}}\right)^{2}\right) ; \\
& \mathrm{A}\left[\mathrm{x}_{\mathrm{c}}, \mathrm{y}_{\mathrm{c}}, \mathrm{r}\right]=\mathrm{A}\left[\mathrm{x}_{c^{\prime}} y_{c}, r\right]+1 ;
\end{aligned}
$$

A circle in the $x y$-plane is given by

$$
\left(x-x_{c}\right)^{2}+\left(y-y_{c}\right)^{2}=r^{2}
$$

So we have a 3D parameter space. What size, what

A simple 3D accumulation procedure:

set all $A\left[x_{c}, y_{c} r\right]=0$;
for every (x, y) where $g(x, y)>T$ for all x_{c} for all y_{c}

$$
\begin{aligned}
& \mathrm{r}=\operatorname{sqrt}\left(\left(\mathrm{x}-\mathrm{x}_{\mathrm{c}}\right)^{2}+\left(\mathrm{y}-\mathrm{y}_{\mathrm{c}}\right)^{2}\right) ; \\
& \mathrm{A}\left[\mathrm{x}_{\mathrm{c}}, y_{c}, r\right]=A\left[x_{c,} y_{c}, r\right]+1 ;
\end{aligned}
$$

A circle in the $x y$-plane is given by

$$
\left(x-x_{c}\right)^{2}+\left(y-y_{c}\right)^{2}=r^{2}
$$

So we have a 3D parameter space. What size, what

A simple 3D accumulation procedure:

set all $A\left[x_{c}, y_{c} r\right]=0$;
for every (x, y) where $g(x, y)>T$ for all x_{c} for all y_{c}

$$
\begin{aligned}
& \mathrm{r}=\operatorname{sqrt}\left(\left(\mathrm{x}-\mathrm{x}_{\mathrm{c}}\right)^{2}+\left(\mathrm{y}-\mathrm{y}_{\mathrm{c}}\right)^{2}\right) ; \\
& \mathrm{A}\left[\mathrm{x}_{\mathrm{c}}, y_{c}, r\right]=A\left[x_{c,} y_{c}, r\right]+1 ;
\end{aligned}
$$

A circle in the $x y$-plane is given by

$$
\left(x-x_{c}\right)^{2}+\left(y-y_{c}\right)^{2}=r^{2}
$$

So we have a 3D parameter space. What size, what

A simple 3D accumulation procedure:

set all $A\left[x_{c}, y_{c} r\right]=0$;
for every (x, y) where $g(x, y)>T$ for all x_{c} for all y_{c}

$$
\begin{aligned}
& \mathrm{r}=\operatorname{sqrt}\left(\left(\mathrm{x}-\mathrm{x}_{\mathrm{c}}\right)^{2}+\left(\mathrm{y}-\mathrm{y}_{\mathrm{c}}\right)^{2}\right) ; \\
& \mathrm{A}\left[\mathrm{x}_{\mathrm{c}}, \mathrm{y}_{\mathrm{c}}, \mathrm{r}\right]=\mathrm{A}\left[\mathrm{x}_{c^{\prime}} \mathrm{y}_{\mathrm{c}} \mathrm{r}\right]+1 ;
\end{aligned}
$$

We end up with a Hough image

Here we can clearly see the 6 different centers for the coins. This is the accumulator matrix for radius 22 (which got the highest peak)

```
|[maxval,radius] = max (max (max (A)));
%gives 22 radius
number_of_circles = 6;
peaks = houghpeaks(A(:,:,radius),number_of_circles)
```


Finally we just plot the circles of $\mathrm{r}=22$ with the

 centres we found
Fast Hough

while no line is found

Sample two points in where $T(x, y)>0$ Find the line between the two points Add to the accumulator matrix A
line is found when a point in $A>$ threshold

Original image

Fast Hough

\qquad
while no line is found
Sample two points in where $T(x, y)>0$
Find the line between the two points
Add to the accumulator matrix A
line is found when a point in $A>$ threshold

intercept

Fast Hough

while no line is found

Sample two points in where $T(x, y)>0$ Find the line between the two points Add to the accumulator matrix A
line is found when a point in $A>$ threshold

Image with line found by fast hough

