Week 3

I will go through the weekly exercises at 14:15

Make a simple image, to see how Hough works

```
% Trying to understand the Hough transform
d=300;
img=eye(d); %make a diagonal matrix
img(1:d,5)= 1; % add a vertical line
img(200,1:d)=1; % add a horizontal line
u = rand(d); %matrix elements ~ uniform(1)
noise = u>0.97;% only use a portion to make noise
img = (img + noise)>0; % add noise and img together
figure(),imshow(img,[])
title('Original image');
```


How does the image look in Hough-space

First lets look at (0,4). What line does this correspond to?

We have the normal representation of a line

This would be a line perpendicular to the vector $x^*cos(0) + y^*sin(0) = 4$ x = 4

First lets look at (0,4). What line does this correspond to? We have the normal representation of a line

 $x\cos\theta + y\sin\theta = \rho$

This would be a line perpendicular to the vector $x^*\cos(0) + y^*\sin(0) = 4$ x = 4

Remember that Matlab uses lefthandsystem and origo is in (1,1)

First lets look at (0,4). What line does this correspond to?

We have the normal representation of a line $x \cos \theta + y \sin \theta = \rho$

This would be a line perpendicular to the vector $x^*cos(0) + y^*sin(0) = 4$

Remember that Matlab uses lefthandsystem

What line does this correspond to?

We have the normal representation of a line $x \cos \theta + y \sin \theta = \rho$

Next lets look at (-45,0) This would be a line perpendicular to the line $x^*cos(-45) + y^*sin(-45) = 0$

Remember that Matlab uses lefthandsystem

The last line is the horizontal line

Original image

The last line

Has two peaks (-90,-199) and (90,199)

The last line

Has two peaks (-90,-199) and (90,199)

Load image and find gradient

```
% Load and show the corridor image
img=imread('corridor.png');
img=double(rgb2gray(img));
figure(),imshow(img,[])
title('Original image');
```

% Lets filter the original image with a % Adjusting the threshold will affect th % detect. thresh = 20; img_edge = edge(img, 'Sobel', thresh); figure(),imshow(img edge,[])

title('Sobel magnitude');

We want to show the top 5 best candidates for lines

use matlabs inbuilt function houghpeaks(H,numpeaks)

Plot the lines we found

Exercise - Hough with circles

We have an image consisting of 6 coins, they all have the same radius

Canny edge detector

$$(x-x_c)^2 + (y-y_c)^2 = r^2$$

So we have a 3D parameter space. What size, what

```
set all A[x<sub>c</sub>,y<sub>c</sub>,r]=0;
for every (x,y) where g(x,y)>T
for all x<sub>c</sub>
for all y<sub>c</sub>
r = sqrt((x-x_c)^2+(y-y_c)^2);
A[x_c,y_c,r] = A[x_c,y_c,r]+1;
```


$$(x-x_c)^2 + (y-y_c)^2 = r^2$$

So we have a 3D parameter space. What size, what

```
set all A[x<sub>c</sub>,y<sub>c</sub>,r]=0;
for every (x,y) where g(x,y)>T
for all x<sub>c</sub>
for all y<sub>c</sub>
r = sqrt((x-x_c)^2+(y-y_c)^2);
A[x_c,y_c,r] = A[x_c,y_c,r]+1;
```


$$(x - x_c)^2 + (y - y_c)^2 = r^2$$

So we have a 3D parameter space. What size, what

```
set all A[x<sub>c</sub>,y<sub>c</sub>,r]=0;
for every (x,y) where g(x,y)>T
for all x<sub>c</sub>
for all y<sub>c</sub>
r = sqrt((x-x_c)^2+(y-y_c)^2);
A[x_c,y_c,r] = A[x_c,y_c,r]+1;
```


$$(x - x_c)^2 + (y - y_c)^2 = r^2$$

So we have a 3D parameter space. What size, what

```
set all A[x<sub>c</sub>,y<sub>c</sub>,r]=0;
for every (x,y) where g(x,y)>T
for all x<sub>c</sub>
for all y<sub>c</sub>
r = sqrt((x-x_c)^2+(y-y_c)^2);
A[x_c,y_c,r] = A[x_c,y_c,r]+1;
```


We end up with a Hough image

Here we can clearly see the 6 different centers for the coins. This is the accumulator matrix for radius 22 (which got the highest peak)

```
[maxval,radius] = max(max(max(A)));
%gives 22 radius
number_of_circles = 6;
peaks = houghpeaks(A(:,:,radius),number of circles)
```

Finally we just plot the circles of r=22 with the centres we found

figure, imshow(ig,[])
viscircles(peaks,repmat(radius,number_of_circles,1));

Fast Hough

while no line is found

Sample two points in where T(x,y)>0 Find the line between the two points Add to the accumulator matrix A

line is found when a point in A>threshold

Fast Hough

while no line is found

Sample two points in where T(x,y)>0 Find the line between the two points Add to the accumulator matrix A

line is found when a point in A>threshold

Fast Hough

while no line is found

Sample two points in where T(x,y)>0 Find the line between the two points Add to the accumulator matrix A

line is found when a point in A>threshold

Image with line found by fast hough