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INF 5300, spring 2008: 

Object shape descriptors 
 

Area, perimeter, compactness, and spatial moments 
 
 
 
Assuming that we have a segmented and labeled image, i.e, each object that is to be described has 
been identified. How do we then obtain a numerical description of the geometrical shape of each 
object, so that a later classification stage may distinguish between different classes of object shapes, 
without knowing in advance what characteristic shape features that are present in the different 
objects that are present in this particular set of images? 
 
This seems to be a difficult problem, and solutions may be divided into two separate branches:  
 One is the strictly mathematical category, using e.g. orthogonal spatial moments to obtain an 

(almost) infinite sequence of features that is uniquely determined by the object, and that conversely 
determines the object.  
 The other approach is based on finding a quick and simple solution that works, and has resulted in 

a lot of useful, application-dependent heuristics. 
 
There is no generally accepted methodology for shape description, but it is reasonable to state that 
the location and direction of high curvature in the outer boundary of the object carries essential 
information. 
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1 Basic region descriptors 
 
If we let A be the area and P be the perimeter, i.e., the length of the outer contour of a planar object, 
the circularity is defined by C = 4πA/P2. In the continuous image domain C is 1 for a perfect circle 
and between 0 and 1 for all other shapes. Even in discretized images, these three parameters are 
useful features to describe the shape of a 2D object. 

1.1 Area and perimeter  
The very simplest parameter of a region or an object in an image is its area. Generally, the area is 
defined as 
 
 
where I(x,y) = 1 if the pixel is within the object, and 0 otherwise. In digital images, integrals are 
approximated by summations, so 
 
 
 
Where ΔA is the area of one pixel, so that if ΔA = 1, then the area is simply measured in pixels. 
The area will obviously change if we change the scale of the image, although the change is not 
perfectly linear, because of the discretization of the image. Intuitively, the area should be invariant to 
rotation of the object. However, small errors will occur when applying a rotation transformation 
owing to the discretization of pixels in the image. 
 
Estimating the perimeter of an object in a digital image is a problem, since the length of the original 
contour may be considerably different from the length of the digital contour. It is impossible to 
reconstruct a “true” continuous contour from discrete data, because many possible contours, having 
different lengths, correspond to a particular discrete realization. Therefore, some reasonable 
assumptions must be made. Separate length estimators exist for straight line segments and circular 
arcs, and at least one estimator seems to be accurate for both.  Ideally, one would like to achieve a 
precise, efficient and simultaneous computation of object area and object perimeter. 
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1.1.1 Bit quads 
 
Matching each small region in a binary image with some pixel patterns and counting the number of 
matches for each pattern, the object area and perimeter may be formulated as weighted sums of the 
different counts. Let n{Q} be the number of matches between the image pixels and the pattern Q.  
By this simple definition, the area and perimeter of a 4-connected object is given by 

 
 
 
 

 
A set of 2 x 2 pixel patterns called Bit Quads, given to the right, handle 8-connected images.  
Gray (1971) computed the area and the perimeter of the object as 
 

 
 
 
 

 
These formulas may be in considerable error compared to the true values for continuous objects  
that have been discretized. More accurate formulas were given by Pratt (1991) from a note by Duda : 
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1.1.2 Chain codes 
 
Chain coding is a way of representing a binary object. Chain codes are formed by following the 
boundary in a given direction (e.g. clockwise) with 4- neighbors or 8-neighbors. The 8-directional 
Freeman chain coding illustrated to the right uses a 3-bit code 0 ≤ c ≤ 7 for each boundary pixel,  
so that the number c indicates the direction to the next boundary pixel, as shown in the figure.  
A code is based on a starting point, often the upper leftmost point of the object. 
 
“Mid-crack” chain coding do not use the center of boundary pixels, but rather the mid-points of  
the sides of the square pixels, as shown in the figure to the right. 
 
Freeman (1970) computed the area AF and perimeter PF of the chain by the formula to the right, 
where N is the length of the chain, cix and ciy are the x and y components of the ith chain element  
ci (cix, ciy = {1, 0, -1} indicate the change of the x- and y-coordinates), yi-1 is the y-coordinate of the 
start point of . nE is the number of even chain elements and nO the number of odd chain elements. 
An even chain element indicates a vertical or horizontal connection between two boundary pixels, 
having length 1, while an odd chain element indicates a diagonal connection, which has length √2.  
 
Vossepoel and Smeulders (1982) improved Freeman’s method in estimating lengths of straight 
lines by using a corner count nC, defined as the number of occurrences of consecutive unequal 
chain elements in the Freeman chain code string. The length is given by PVS to the right, where  
the weights were found by a least-square fitting for all straight lines with nE + nO = 1000. 
 
The methods based on the chain coding compute the perimeter as the length of the chain, and often  
give an overestimated result. Kulpa (1977) derived a compensation factor for computing the length  
of straight lines. With this factor, the perimeter is given by PK to the right, where the factor is  
approximately 0.948. Kulpa found that this compensation also gave good results for most of the  
blob-like objects met in practice. 
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1.1.3 Area from contour 
 
As we have seen, the area of a binary object may be obtained either by counting the number of 
pixels within the object, as a weighted sum of bit-quad pattern matches. From calculus we know 
that the surface integral over a region S having a contour C is given by Green’s theorem. Thus: 
 
 
 
A pseudo-code for this integration in a discrete image may look like this: 
 
 s := 0.0; 
 n := n + 1; 
 pkt[n].x := pkt[1].x; 
 pkt[n].y := pkt[1].y; 
 for i:=2 step 1 until n do 
 begin 
  dy := pkt[i].y - pkt[i-1].y 
  s := s + (pkt[i].x + pkt[i-1].x)/2 * dy; 
 end; 
 area := if (s > 0) then s else -s; 
 
But instead of performing the summation over absolutely every object contour pixel, an 
approximate area may be obtained from the (x,y)-coordinates of N polygon vertices: 
  
 
 
 
where the sign of the sum reflects whether we have followed the object contour in the clockwise or 
anti-clockwise direction. 
 
Obviously, the precision of this approximation depends entirely on how well the polygonization of 
the discretized contour approximates the contour. 
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1.1.4 Recursive and sequential polygonization of boundary 
 
We may restrict the polygonization to obtaining a subset of the original set of boundary points, in 
such a way that the polygon line segments do not deviate more than a certain amount from the curve 
formed by a sequence of line segments joining the original boundary points. 
 
The original recursive boundary splitting algorithm of Douglas and Peucker (1973) goes as follows: 
Draw a straight line segment between the pair of contour points that have the greatest internal 
distance. These two points are the initial breakpoints. 
 For each intermediate point: Compute the point-to-line distance, and find the point with the 

greatest distance from the line. 
If this distance is greater than a given threshold, we have a new breakpoint between the two previous 
ones. The previous line segment is replaced by two, and the bullet-point above is repeated for each 
of them. The procedure is repeated until all contour points are within the threshold distance from a 
corresponding line segment. The resulting ordered set of breakpoints is then the set of vertices of a 
polygon approximating the original contour. 
 
This algorithm, or variations on it, is probably the most frequently used polygonization method. 
Since it is recursive, the Euclidian distance from each boundary point to a new boundary 
approximating line segment has to be computed several times, so the procedure is fairly slow.  
 
The sequential polygonization method of Wall and Danielsson (1984) may start any contour point. 
We then step from point to point through the ordered sequence of contour points, and outputs the 
previous point as a new breakpoint if the area deviation A per unit length s of the approximating line 
segment exceeds a pre-specified tolerance, TWD. 
 
 Using the previous breakpoint as the current origin, the area between the contour and the 

approximating line segment is accumulated by the equation to the right: 
 If |Ai  /si < T, i is incremented and (Ai, si) is recomputed. 
 Otherwise, the previous point is stored as a new breakpoint, and the origin is moved. 
 
This method is purely sequential and very fast. It can also be used for polygonization of 1D curves. 
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1.1.5 A comparison of methods 
 
Yang et al. (1994) tested the precision of the various methods by estimating the areas and 
perimeters of circles having an integer radius R from 5 to 70 pixels. Binary test images were 
generated by giving intensity values 
 
 
The relative errors were defined as 
 
 
where x is the true value (A = πR2 and P = 2πR). 
 
From the top panel to the right we see that the area estimator of Duda is slightly better than that of 
Gray. The mid-crack method gave a result very similar to that of Gray. The Freeman method 
underestimated the area, giving a relative error similar to that of the Duda method if we assume 
that the radius is R-0.5. 
 
From the middle panel we see that Kulpa’s perimeter is more accurate than Freeman’s perimeter. 
Gray’s perimeter gave a large overestimation. The Duda and mid-crack perimeters were similar to 
that of the Freeman method if we assume that the radius is R+0.5. 
 
Combining the estimators, the circularities are shown in the lower panel. Kulpa’s perimeter and 
Gray’s area gave the best result, close to but slightly larger than the true value of 1 for this test 
object. It is better than combining Kulpa’s perimeter with Duda’s area, although Duda’s area is 
better than Gray’s area. This is because Kulpa’s perimeter and Gray’s area are both slightly 
underestimated. Other combinations do not give good results, e.g. the mid-crack method. 
 
We note that the errors and the variability of the errors are largest when the value of R is small. We 
also note that the best results using two parameters (Gray’s area and Kulpa’s perimeter) that cannot 
be computed simultaneously. But Gray’s area can be computed using a discrete Green’s theorem, 
suggesting that the two estimators can be computed simultaneously during contour following. 
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1.2 Euler number – a topological feature 
Topological shape features are a group of integer features that are invariant to scaling, rotation and 
even warping of the image. Warping can be visualized as the stretching of a rubber sheet 
containing the image of the object, to produce a spatially distorted object. Mappings that require 
cutting or pasting parts of the object are not allowed. Metric distances are clearly not topological 
features, nor features based on measuring angles.  
 
However, connectivity is a topological feature, so the number of connected components in an 
image and the number of holes in objects are both topological features. 
 
Bit quad counting provides a simple tool to determine the Euler number of a binary image.  
Under the assumption of four- and eight-connectivity, respectively, the Euler number is given by 

 
 
 
 
 
 

It should be noted that while it is possible to compute the Euler number E of an image by such 
local neighborhood computations, neither the number of components C nor the number of holes H 
that make up E = C-H can be computed separately by local neighborhood computations. 
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2 Statistical moments 
 
The general form of a moment of order (p+q), evaluated over the complete image plane ξ is: 
 
 
 
 
Where the weighting kernel or basis function is ψpq. 
 
This produces a weighted description of the image f(x,y) integrated over the image plane ξ. 
 
The basis functions may have a range of useful properties that are passed onto the moments, 
producing descriptions which can be invariant under rotation, scale, translation and orientation.  
To apply this to digital images, the equation above needs to be expressed in discrete form. 
 
For simplicity we assume that ξ is divided into square pixels of dimension 1 × 1,  
with constant intensity I over each square pixel. The value of I is usually non-negative, and 
quantized to integer values from 0 to G-1, where G is the number of graylevels in the image. 
 
So if Px,y is a discrete pixel value then: 
 
 
where ΔA is the sample or pixel area equal to one.  
 
Thus, 
 
 
 
The choice of basis function depends on the application and on any desired invariant properties. 
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3 Non-orthogonal moments 
 
The continuous two-dimensional (p + q)-th order Cartesian moment is defined as: 
 
 
 
 
It is assumed that f(x, y) is a piecewise continuous, bounded function  
and that it can have non-zero values only in the finite region of the xy plane.  
 
Then, moments of all orders exist and the uniqueness theorem holds: 
 
The moment sequence mpq with basis xpyq is uniquely defined by f(x, y);  
and f(x, y) is uniquely defined bythe moment sequence mpq. 
 
 
Thus, the original image can be described and reconstructed,  
provided that sufficiently high order moments are used. 
 
The discrete version of the Cartesian moment for an image consisting of pixels Pxy,  
replacing the integrals with summations, is: 
 
 
 
mpq is a two dimensional Cartesian moment, where M and N are the image dimensions  
and the monomial product xpyq is the basis function. 
 
The figure to the right illustrates the first eight of these monomials for -1 < x < 1. We notice that for 
the positive X-axis, these monomials are highly correlated, which implies that we are going to need 
more moments to describe an object than if the basis functions were uncorrelated.  
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3.1 Low order Cartesian moments 
The zero order moment m00 is defined as the total mass (or power) of the image.  
 
 
 
 
If this is applied to a binary M x N image of an object, then this is simply a count  
of the number of pixels comprising the object, giving its area in pixels. 
 
The two first order moments are used to find the Centre Of Mass (COM) of an image.  
 
 
 
 
 
 
 
 
 
 
If this is applied to a binary image, the expression is the same, but the computation  
is simpler, since the values of f(x,y) is binary: 0 or 1.  
 
 
We will shortly see that these coordinates of the center of mass are useful to compute  
the central moments of an image. 
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3.2 Central moments  
The 2D discrete central moment of an object is defined by a summation  
of the pixel values within a M ·N area covering the object: 
 
  
 
 
 
 
 
This is essentially a translated Cartesian moment, i.e., it corresponds to computing ordinary 
Cartesian moments after translating the object so that its center of mass coincides with the origin 
of the coordinate system.  
 
This means that the central moments are invariant under translation.  
 
However, central moments are not scaling or rotation invariant. 
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3.3 Computing central moments from ordinary moments 
The 2D central moments μpq can easily be computed from the ordinary moments mpq. 
 
A translation of an image f(x,y) by (Δx, Δy) in the (x,y)-direction gives a new image  
     
 
If we assume that we translate by an amount equal to the coordinates of the centre of mass; 
Δx = m10/m00 and Δy = m01/m00, then the new moments of order p+q ≤ 3 are given by:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The general 3D central moments μpqr are generally expressed by the mpqr moments: 
 
 
 
 
Where D = (p + q r), d = (s + t + u), and the binomial coefficients are given by 
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3.4 Second order central moments - moments of inertia 
The two second order central moments of a 2D object are defined by 
 
 
 
 
 
 
 
 
 
 
and correspond to the “moments of inertia” relative to the coordinate directions,   
while the “cross moment of inertia” is given by 
 
 
 
 
 
The physical interpretation of a moment of inertia I of an object around a given axis is related to the 
kinetic energy in a rotational motion of the object around that particular axis. When a rigid body 
rotates about a fixed axis, the speed at a perpendicular distance r from the axis is v= r ω, where ω is 
the angular speed of the body. Now the rotational kinetic energy of the body is given by: 
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3.4.1 The parallel-axis theorem 
 
A 2D or 3D object does not have just one moment of inertia. It has infinitely many, as there are 
an infinite number of axes about which it might rotate. But there is a simple relationship 
between the moment of inertia Ic of an object of mass M about an axis through its center of 
mass and the moment of inertia Ip about any other axis parallel to the original one but displaced 
from it by a distance d. This relationship is called the “parallel-axis theorem”, and simply states 
that 
 
    Ip = Ic + Md2 
 
To prove this, consider the figure to the right: We have 
 
 
 
The moment of inertia about the Z-axis is given by 
 
 
 
 
 
 
 
But since the Zc-axis is placed in the center of mass, the mean value of y is zero, so 
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3.4.2 Moments of inertia of some regular 2D objects in the continuous case 

3.4.2.1 A rectangular object 
 
Given a homogeneous (binary) rectangular object of size 2a · 2b, the moment 
of inertia around the y-axis is found by integrating the product of the length y 
of the black line and its distance x from the Y-axis. Since we have symmetry 
around the x-axis, the inertial moment is twice the integral above the X-axis: 
 
 
 
 
Similarly, the moment of inertia around the X-axis is: 
 
 
 
 
Obviously, if the size of the rectangle is given as a · b, the moments are  a3b/12 and ab3/12, 
respectively. 

3.4.2.2 A square object 
 
For a homogeneous (binary) square object of size 2a · 2a, the moments of inertia around  
the X- and Y-axes are equal:  
 
 
 
And if the size of the square is given as a · a, the moments are: 
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3.4.2.3 An elliptical object 
 
For a homogeneous (binary) ellipse where the perimeter is given by 
 
 
 
we see that 
 
 
So the largest moment of inertia, that around the Y-axis, is found by 
integrating the product of the length y of the black line and its distance x 
from the Y-axis. Since we have symmetry around the x-axis, the inertial 
moment is twice the integral above the X-axis: 
 
 
 
 
 
 
 
 
 
Similarly, the smallest moment of inertia of the ellipse is given by 
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3.4.2.4 A circular object 
 
For a homogeneous (binary) circular object where the perimeter is given by 
 
 
 
 
 
We see that the moments of inertia around the X- and Y-axes are now equal: 
 
 
 
 
 
 
 
 
 
 
  
 
Obviously, we could arrive at the same expression from the moment of inertia of the elliptical object, 
setting a = b = R. 
 
In fact, this is the moment of inertia of a binary circular object around any

 

 axis that lies in the XY-
plane and that passes through the centre of the object.  

 
 
 

22

22

xRy

Ryx

−±=⇒

=+

( )

4
4

1
4

2222

222
0220

4228
2

sin
8

2
8

2

2

RR

R
xRxRRxx

dxxRxII

R

R

R

R

πππ
=














 +=















+−−=

−==

−

−

−
∫

X 

Y 

y 

x 

R 



Object shape descriptors 

© Fritz Albregtsen, Department of Informatics, University of Oslo, 2008        
 19 

3.4.2.5 A triangular object 
 
Consider the homogeneous (binary) right angled triangle of size a · b 
to the right. The coordinates of its center of mass are given by 
 
 
 
 
 
 
 
 
 
 
Computing ordinary second order moments of this triangle, we find: 

 
 
 

 
And we know how to compute central moments from ordinary moments: 
 
 
 
Where 
 
 
 
Thus, the moments of inertia of this triangular object around the x- and y-axis through its center of mass are given by 
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3.5 Perpendicular-axis theorem 
Let us consider a homogeneous 2D object in the XY-plane, and let the origin O of the 
coordinate system be located at any point within or outside the object. Let IX and IY be 
the moments of inertia about the X- and Y-axes and let IZ be the moment of inertia about 
the Z-axis through O perpendicular to the XY-plane. 
 
Considering an arbitrary point P within the object, we realize that the moment of inertia 
of this 2D object around the Z-axis is given by 
 
 
 
 
Noting that the moments of inertia relative to the X- and Y-axes are 
 
 
 
We realize that there is a very simple relation between the two orthogonal moments of inertia in 
the plane and the moment of inertia around an axis perpendicular to the plane through the crossing 
of the two orthogonal axes, namely 
 
 
This is known as the “perpendicular-axis theorem”. For 3D objects it is only valid for thin plates in 
the XY-plane. Note that the origin of the coordinate system does not have to coincide with the 
center of mass of the object. 
 
For a square object with side L, the moments of inertia around the X- and Y-axis passing through 
the center of the object are equal, IX = IY = L4/12. Thus, the moment of inertia around the Z-axis 
passing through the center of the object is IZ = L4/6. Obviously, the moment of inertia around the 
Z-axis must be independent of a rotation of the X- and Y-axis in the object plane. Therefore, we 
may conclude that the moment of inertia about ANY axis in the plane that passes through the 
center of a square is L4/12. 
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3.6 The radius of gyration 
The radius of gyration K of an object is defined as the radius of a circle where we could 
concentrate all the mass of an object without altering the moment of inertia about its center of 
mass. So for an arbitrary object having a mass μ00 and a moment of inertia around the Z-axis, we 
may write 
 
 
 
 
 
Obviously, this feature is invariant to rotation. It is a very useful quantity because it can be 
determined, for homogeneous objects, entirely by their geometry. Thus, the squared radius of 
gyration may be tabulated for simple object shapes, helping us compute the moments of inertia: 
 
 
 
 
Rectangle:  K2 = b2/3                                                      K2 = (a2+b2)/3 
 
 
 
 
Circular disk: K2 = R2/4                                                                                        K2 = R2/2 
 
 
 
 
Ellipse:           K2 = b2/4                                                                                       K2 = (a2+b2)/4 
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3.6.1.1 Examples: Three cylindrical objects 
 
For a thin-walled hollow cylinder of radius R and height h, having a mass M = 2πRh, the moment 
of inertia around its symmetry axis will be 
 
 
 
 
Given a homogeneous cylindrical object of radius R and height h, the moment of inertia around its 
symmetry axis is found by integrating the product of the mass of a thin-walled hollow cylinder 
times the square of its radius, from the z-axis out to the radius R of the cylinder.  
Utilizing the fact that the mass of this cylinder is M = πR2 h, we get: 
 
 
 
 
 
 
If the cylinder is hollow, with an inner radius R1 and an outer radius R2, its mass M and its moment 
of inertia around the symmetry axis are given by  
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3.6.1.2 From solid cylinder to solid sphere 
 
We have seen that the moment of inertia of a disk or radius r and mass dm around its symmetry axis 
is r2dm/2. 
 
If we divide a sphere into thin disks, the radius of the disk at a distance x from the center of the 
sphere is  
 
 
Its mass is proportional to its area 
 
 
 
So the moment of inertia of a thin slice of a sphere is 
 
 
 
 
Integrating this expression from x = 0 to x = R gives the moment of inertia of the right hand hemisphere. 
The total moment of inertia of the whole sphere is just twice this: 
 
 
 
 
Now the mass of a homogeneous sphere of unit mass density is 
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3.6.1.3 Radii of gyration of some homogenous solid objects 
 
 
 
 
Solid parallelepiped:                                          K2 = (a2+b2) / 3 
 
 
 
 
 
 
Solid cylinder:                              K2 = R2 / 2 
 
 
 
 
 
 
Solid cylinder:              K2 = R2/4 + L2 / 12 
 
 
 
 
 
 
 
Solid sphere:      K2 = 2 R2 / 5 
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3.6.2 Estimating object orientation from inertial moments 
 
The orientation of an object is defined as the angle, relative to the X-axis, of an axis through the 
centre of mass of the object that gives the lowest moment of inertia of the object relative to that axis. 
 
Let us assume that we have a 2D object f(x,y), and that the Cartesian X,Y-coordinates have their 
origin in the centre of mass of the object. We further assume that the object has a unique 
orientation, i.e., that there exists a rotated coordinate system (α,β), such that if we 
compute the moment of inertia of the object around the α-axis, this will be the smallest 
possible moment of inertia for this particular object. In order to find the orientation θ of 
this α axis relative to the X-axis, we have to minimize the second order central moment 
of the object around the α-axis: 
 
 
 
where the rotated coordinates are given by 
 
 
 
Then we get the second order central moment of the object around the α-axis,  
expressed in terms of x, y, and the orientation angle θ of the object: 
 
 
 
 
Since we are looking for the minimum value of this moment of inertia, we take the derivative of 
this expression with respect to the angle θ, set the derivative equal to zero, and see if we can find  
a simple expression for θ : 
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So the object orientation is quite easily obtained from the three central moments of inertia: 
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3.7 The best fitting object ellipse 
The object ellipse is defined as the ellipse whose least and greatest moments of inertia equal 
those of the object. This is regarded as the ellipse that fits best to the object. Its size and 
eccentricity is invariant to orientation.  
 
The semimajor and semiminor axes of this ellipse are given by  
 
 
 
 
 
 
While the numerical eccentricity of the best fit ellipse is given by 
 
 
 
 
 
Notice that the numerical eccentricity is a bounded measure; it is 0 for a perfectly circular object, 
and goes asymptotically towards 1 the more elongated the object is; ( 0 ≤ ε < 1). 
This is very different from the simplified ∞“eccentricity of the bounding box”; (1 ≤ e=a/b < ∞). 
 
We also notice that all three orientation invariant object features above are computed from the 
three second order central moments of a 2D object (moments of inertia) and the total mass of the 
object, no matter whether it is a gray scale or binary object. 
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3.8 The bounding rectangles of an object  
There are two kinds of bounding rectangles that we may place around a 2D object; the “image-
oriented” and the “object-oriented” bounding rectangle. For 3D objects, this extends to 
“bounding-boxes”, although the term “box” is also often used in 2D images. We will illustrate 
these two concepts for a simple elliptical object to show that the size, shape, and orientation of 
the two types of bounding rectangle may be very different. 
 
The “image-oriented” bounding rectangle is the smallest rectangle having sides that are parallel 
to the edges of the image that can be placed around the object. It is found by simply searching 
through the object (or rather its perimeter) for the minimum and maximum value of its X- and 
Y- coordinates. So it is simply represented by the coordinates of two opposite corners: e.g. 
(xmin,ymin) and (xmax, ymax), as illustrated in the figure to the right. Evidently, the size and 
elongation of this bounding box depends on the orientation of the object. 
 
The “object-oriented” bounding rectangle is the smallest rectangle having its longest side 
parallel to the orientation of the object that can be placed around the object. If we have 
estimated the orientation θ of the object (see previous section), we may perform a 
transformation of all pixels along the perimeter of the object from the X,Y-coordinates of the 
image to a rotated Cartesian coordinate system α,β by 
 
 
 
 
 
Then we search for the minimum and maximum value of it’s α and β coordinates.  
So the “object oriented” bounding rectangle is simply represented by the coordinates of two 
opposite corners in the α,β-domain: e.g. (αmin,βmin) and (αmax, βmax), as illustrated in the figure 
to the right. Obviously, the size and shape of this bounding box is invariant to rotation. 
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3.9 Scaling invariant central moments 
If we transform an image by changing the scale of the image f(x,y) by α in the X-direction and β in 
the Y-direction, we get a new image f’(x,y) = f(x/α,y/β).  
 
The relation between a central moment μpq in the original image and the corresponding central 
moment μ’pq in the transformed image is 
 
 
 
For β = α we have  
 
 
 
Thus, we get scaling invariant central moments by a simple normalization of the central moments: 
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3.10 Symmetry, skewness and kurtosis 
A measure of asymmetry in an image is given by its skewness. The skewness is a statistical measure 
of a distribution's degree of deviation from symmetry about the mean. The degree of skewness in the 
x and y direction can be determined by the two third order central moments, μ30 and μ03, respectively  
 
Here symmetry is being detected about the center of mass of the image, hence the use of the central 
moments. In order to compare symmetry properties of objects regardless of scale, the first seven 
scale-normalised central moments (η11, η20,  η02,  η21,  η12,  η30,  η03) may be used.  
 
 Objects that are either symmetric about the x or y axes will produce η11 = 0.  
 Objects with a strict symmetry about the y axis will give η12 = 0 and η30 = 0.  
 Objects with a strict symmetry about the x axis will give η21 = 0 and η03 = 0.  
 
 For shapes symmetric about the x axis, ηpq = 0 for all p = 0, 2, 4, ... ; q = 1, 3, 5, … 
 
 
The sign of the first seven scale normalised central moments (η11, η20,  η02,  η21,  η12,  η30,  η03)  may 
be tabulated for three different types of simple symmetry; symmetry about the Y-axis, symmetry 
about the X-axis, and symmetry about both the X- and Y-axis; exemplified by the printed capital 
characters M, C and O: 
 

Character η11 η20 η02 η21 η12 η30 η03 
M 0 + + - 0 0 - 
C 0 + + 0 + + 0 
O 0 + + 0 0 0 0 
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3.10.1 Skewness 
Skewness is the degree of asymmetry, or departure from symmetry, of a distribution. 
If the frequency curve of a distribution has a longer tail to the right of the central maximum than to 
the left, the distribution is said to be skewed to the right, or to have a positive skewness. If the 
reverse is true, it is said to be skewed to the left, or to have a negative skewness. 
 
An important measure of skewness uses the third moment about the mean expressed in 
dimensionless form, given by 
 
 
 
 
 
 
 
For perfectly symmetrical distributions, a3 is zero. 
 
For skewed distributions, the mean and the median tend to lie on the same side of the mode as the 
longer tail. Thus, a simple measure of the asymmetry is the differences (mean – mode), which can 
be made dimensionless if divided by a measure of dispersion, such as the standard deviation 
(Pearson’s first coefficient of skewness). An alternative is to use the median instead of the mode 
(Pearson’s second coefficient of skewness). 
 
It may be tempting to test for symmetry and skewness using the two 1D projection histograms of a 
2D binary object. Similarity measures based on comparison of cumulative projection histograms 
may be useful at various stages of OCR systems. But as illustrated by the figure to the right, a 1D 
projection histogram may appear almost symmetric, even though the projection is not performed in 
the direction of the orientation of the 2D object. It is also obvious that if a e.g. S-shaped, point-
symmetric object is projected in the directions of its principal axes, the 1D projection histograms 
will be consistent with axial symmetry, although that does not exist. 
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3.10.2 Kurtosis  
If the object is symmetric around an axis having a certain orientation, it may be of interest to 
quantify the distribution of the distance of the object elements from the symmetry axis, compared 
to the normal distribution of the same variance. This may be done using the statistical kurtosis.  
 
Kurtosis is defined by the fourth moment normalized by the square of the variance. The constant 3 
is subtracted in order to make the kurtosis of the normal distribution equal to zero. Higher kurtosis 
means that more of the variance is due to infrequent extreme x-values.  
 
Kurtosis is being detected about the center of mass of the image, so we use of the central moments. 
First the orientation of the object is found and the object is rotated, so that its principal axis 
coincides with the Y-axis of the coordinate system. Then, the kurtosis is given by: 
 
 
 
 
 
 
We may project a 2D binary object onto its principal axes. Assuming that the resulting 1D 
projection histograms are considered to be unimodal and symmetric, we may use the kurtosis of 
the distributions to distinguish between different shapes, since the kurtosis of parametric 
distributions are well known: 
 
 Uniform  (U), kurtosis = -1.2 
 Semicircular (W), kurtosis = -1 
 Raised Cosine (C), kurtosis = -0,6 
 Normal (N), kurtosis = 0 
 Logistic (L), kurtosis = 1.2 
 Hyperbolic secant, (S), kurtosis = 2 
 Laplace (D), kurtosis = 3 
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3.11 Hu’s invariant set of moments 
Hu ( 1962) described two different methods for producing rotation invariant moments.  
 
The first requires finding the principal axes of the object, and then computing the scale normalized 
central moments of a rotated object. However, this method can break down when images do not 
have unique principal axes. Such images are described as being rotationally symmetric. 
 
The second method described by Hu utilizes nonlinear combinations of scale normalized central 
moments that are useful for scale, position, and rotation invariant pattern identification. A set of 
seven such invariants is often used. 
 
For second order moments (p+q=2), two invariants are used: 
 
φ1 =  η20 + η02   φ2 =  (η20 - η02)2 + 4η11

2   
 
For third order moments, (p+q=3), the invariants are: 
 
φ3 =  (η30 - 3η12)2 + (3η21 -  η03)2  
 
φ4 =  (η30 + η12)2 + (η21 + η03)2  
 
φ5 =  (η30 - 3η12)(η30 + η12)[(η30 + η12)2 - 3(η21 +  η03)2]  + (3η21 - η03)(η21 + η03)[3(η30 + η12)2 - (η21 +  η03)2] 
 
φ6 =  (η20 - η02)[(η30 + η12)2 - (η21 +  η03)2] + 4η11(η30 + η12)(η21 +  η03) 
 
φ7 =  (3η21 - η03) (η30 + η12)[(η30 + η12)2 - 3(η21 +  η03)2] - (η30 - 3η12)(η21 + η03)[3(η30 + η12)2 - (η21 +  η03)2] 
 
φ7 is skew invariant, and may help distinguish between mirror images. 
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Using 
 
a = (η30 - 3η12),   b = (3η21 -  η03),   c = (η30 + η12),   and   d = (η21 + η03) 
 
we may simplify the five last invariants of the set: 
 
φ3 =  a2 + b2  
 
φ4 =  c2 + d2  
 
φ5 =  ac[c2 - 3d2] + bd[3c2 - d2] 
 
φ6 =  (η20 - η02)[c2 - d2] + 4η11cd 
 
φ7 =  bc[c2 - 3d2] - ad[3c2 - d2] 
 
These moments are of finite order, therefore, unlike the central moments they do not  comprise a 
complete set of image descriptors. However, higher order invariants can be derived.  
 
It should be noted that this method also breaks down, as with the method based on the  principal axis 
for images which are rotationally symmetric as the seven invariant moments will be zero. 
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3.12 The Hu moments for simple symmetric 2D objects 
The simplest elongated and symmetric objects are binary rectangles and ellipses. 
 
In the continuous case, the two moments of inertia of a binary rectangular object of size 2a by 2b,  
having its major axis in the direction of the X-axis are given by  
 
 
 
The size of this object is 4ab, and the scale and position invariant moments η20 and η02 are 
 
 
 
 
As we have seen, the four scale normalized moments (η11, η21,  η12,  η30,  η03) are all zero for an  
object that is symmetric about both the X- and Y-axis. So the two first Hu moments are  
 
 
 
and the remaining five Hu moments are all zero. 
 
 
Similarly, the two moments of inertia of a binary elliptic object with semi-axes a and b,  
having its major axis in the direction of the X-axis are given by  
 
 
 
The size of this object is πab, and the scale and position invariant moments η20 and η02 are 
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Again, the four scale normalized moments (η11, η21,  η12,  η30,  η03) are all zero for such a symmetric 
object, and the two first Hu moments are simply 
 
 
 
 
while the remaining five Hu moments are all zero.  
 
Thus, only the two second-order Hu moments (φ1, φ2) are useful for these simple objects. 
In the logarithmic plots to the right, the first two Hu moments have been plotted versus a/b for 10 
values of a/b: a = b, a = 2b, …, a = 512b. We notice that even in the continuous case it may be hard 
to distinguish between an ellipse and its bounding rectangle using these two moments. 
 
In fact, the relative difference in the first Hu moments of an ellipse and its object oriented bounding 
rectangle is constant, 4.5%, regardless of the size and eccentricity of the ellipse. 
 
Similarly, the relative difference in the second Hu moments of an ellipse and its object oriented  
bounding rectangle is also constant for all ellipses, 8.8%, except when the ellipse degenerates to a 
circle, for which φ2 = 0, both for the circle and its bounding square. 
 
Since the Hu moments are scale invariant, they are unaltered if we shrink the object oriented 
bounding rectangle of an ellipse so that the rectangle has the same area as the ellipse, maintaining 
the a/b ratio. Thus, the relative differences given above are also true when comparing an ellipse with 
a same-area rectangle having the same a/b ratio, regardless of the size and eccentricity of the ellipse. 
 
 
 
 
 
 
 

22

21 4
1,

4
1







 −






=






 +=

a
b

b
a

a
b

b
a

π
φ

π
φ

Hu's first moment versus a/b

0,1

1

10

100

1 10 100 1000

a/b

H
u'

s 
fir

st
 m

om
en

t

ellipse
rectangle

Hu's second moment versus a/b

0,01

0,1

1

10

100

1000

10000

1 10 100 1000

a/b

Hu
's

 s
ec

on
d 

m
om

en
t

ellipse
rectangle



Object shape descriptors 

© Fritz Albregtsen, Department of Informatics, University of Oslo, 2008        
 37 

3.13 Relation to compactness for simple objects 

Haralick and Shapiro (1993) defines ”Roundness or compactness γ = P2/(4πA). For a disc, γ is 
minimum and equals 1. In the digital domain it takes its smallest value not for a circle but for a 
digital octagon or diamond, depending on whether 8-connectivity or 4-connectivity is used in 
calculating the perimeter.”  
 
This compactness measure γ attains a high value for objects where the square of the length of its 
perimeter is large as compared to its area. This happens for both complex objects, and for very 
elongated simple objects, like rectangles and ellipses where the a/b ratio is high. 
For ellipses and rectangles, the compactness measure in the continuous case is given by: 
 
 
 
as illustrated in the linear plot to the right of the compactness measure as a function of the a/b ratio. 
 
We notice that for ellipses, the first Hu moment is a simple linear function of its compactness 
measure, given by φ1 = γ/π, while for rectangles the relationship is a little more complicated, but still 
approximately linear: φ1 = γ (π/12)(a2+b2)/(a+b)2, as illustrated in the linear plot to the right.  
Thus, using both the compactness measure and the first Hu moment to characterize ellipses or 
rectangles seems redundant, regardless of their size and elongation. 
 
For ellipses and their object oriented bounding rectangles, the relationships between the second Hu 
moment and the compactness measure are nonlinear and depend on the a/b ratio. For an ellipse, φ2 = 
γ (1/4π2ab)(a2-b2)2/(a2+b2), and for the object oriented bounding rectangle the relationship is: φ2 = γ 
(π/144)(a/b -1)(1- b/a), as illustrated in the linear plot below. 
Thus, the second Hu moment seems to be a more valuable feature than the first Hu moment if the 
compactness measure is also used to characterize ellipses and rectangles.  
 
We also note that if the object deviates from the simple symmetry of ellipses and rectangles, the 
second Hu moment is also sensitive to asymmetry, while this is not the case for the first Hu moment. 
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3.14 Affine invariants 
Flusser and Suk (1993) give set of four moments are invariant under general affine transforms: 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Flusser (2000) has given an excellent overview of the independence of rotation moment invariants. 
 

3.15 Fast computation of moments 
A huge effort has been put into finding effective algorithms for moment calculations. A review is 
given by Yang and Albregtsen (1996). An often used algorithm for fast, but not exact computation of 
moments is given Li and Chen (1991). Faster and exact algorithms are given by Yang and 
Albregtsen (1996) and Yang, Albregtsen, and Taxt (1997). 
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3.16 Contrast invariants 
A change in contrast gives a new intensity distribution f′(x, y) = cf(x, y).  
The transformed moments are then 
 
 
 
Abo-Zaid et al. (1988) have defined a normalization that cancels both scaling and contrast. 
The normalization is given by 
 
 
 
 
 
If we use µ′00 = cα2µ00, µ′02 = cα4µ02, and µ20 = cα4µ20, 
we easily see that η′pq is invariant to both scale and contrast. 
 
This normalization also reduces the dynamic range of the moment features, so that  
we may use higher order moments without having to resort to logarithmic representation.  
 
Abo-Zaid’s normalization cancels the effect of changes in contrast, but not the effect of changes in 
intensity:  
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4 Orthogonal moments 
 
We have seen that non-orthogonal moments, e.g. the Cartesian moments using a monomial basis set 
xpyq, increase rapidly in range as the order increases. Thus, we get highly correlated descriptions, 
while important differences in objects may be contained within small differences between moments. 
The net result is that one will need very high numerical precision if moments of high order are used. 
 
Moments produced using orthogonal basis sets have the advantage of needing lower precision to 
represent differences to the same accuracy as the monomial basis. The orthogonality condition also 
simplifies the reconstruction of the original function from the generated moments.  
 
Orthogonality means mutually perpendicular: two functions ym and yn are orthogonal over an 
interval a ≤ x ≤ b if and only if: 
 
 
 
 
 
Here we are primarily interested in discrete images, so the integrals within the moment descriptors 
are replaced by summations. 
 
Three such (well established) orthogonal moments are Legendre, Chebyshev and Zernike.  
Others are Laguerre, Gegenbauer, Jacobi, Hermite, etc. 
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4.1 Legendre moments 
The discrete Legendre moments of order (m+n) of an image function f(x,y) are defined by 
 
 
 
Lm and Ln are the Legendre polynomials of order m and n, respectively, and f(x,y) is the discrete 
image function, defined over the interval [-1,1]. 
 
The Legendre polynomial of order n is defined as: 

 
 
 
 

So the first Legendre polynomials and their general recursive relation is given by: 
 
 
 
 
 
 
 
 
 
 
as illustrated in the figure to the right. It is worth noting that this set of moments is not correlated,  
as compared to the set of monomials xp used for the non-orthogonal Cartesian moments. 
 
The Legendre polynomials are a complete orthogonal basis set defined over the interval [-1,1]. 
For orthogonality to exist in the computed moments, the image function has to be defined over the 
same interval as the basis set. This is achieved by a linear mapping of the shape that is to be 
analyzed onto this interval. 
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4.2 Chebyshev moments 
The discrete Chebyshev moments of order (m+n) of an image function f(x,y) are defined by 
 
 
 
 
Tm and Tn are the Chebyshev polynomials of order m and n, respectively, and f(x,y) is the discrete 
image function, defined over the interval [-1,1]. 
 
The definition of the Chebyshev polynomials, the first few polynomials,  
and their recurrrence relation are given by  
 
 
 
 
 
 
 
 
 
 
 
The first polynomials are illustrated in the figure to the right. 
We notice that the shape of the Chebyshev polynomials is similar to the Legendre  
polynomials in the central part of the range, while their central and peripheral weights are different.  
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4.3 Zernike moments 
The complex Zernike moments are projections of the input image onto the space spanned 
by the orthogonal V-functions 
 
 
where the orthogonal polynomial Rmn(x,y)  is given by 
 
 
 
 
 
Substituting k=(m-2s):  
 
 
 
 
 
The Zernike moments can be calculated from central Cartesian moments, removing the 
need for polar mapping, and also removing the dependence on trigonometric functions: 
 
 
 
 
The object has to be mapped onto the unit disc, either so that the unit circle is within the 
square area of interest (losing cormner information), or such that the square area of 
interest is within the unit circle (ensuring that all object pixels are included). 
 
The illustrations to the right (from Trier et al., 1996) displays the contributions to Zernike 
moments of orders up to 13 (top), and the images reconstructed from Zernike moments 
up to order 13 (bottom), showing that only a few moments are needed in order to 
distinguish between the two symbols. 
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