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Many are called, but few are chosen. Feature
selection and error estimation in high
dimensional spaces
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Summary We address the problems of feature selection and error estimation when
the number of possible feature candidates is large and the number of training samples
is limited. A Monte Carlo study has been performed to illustrate the problems when
using stepwise feature selection and discriminant analysis. The simulations demon-
strate that in order to find the correct features, the necessary ratio of number of
training samples to feature candidates is not a constant. It depends on the number
of feature candidates, training samples and the Mahalanobis distance between the
classes. Moreover, the leave-one-out error estimate may be a highly biased error esti-
mate when feature selection is performed on the same data as the error estimation.
It may even indicate complete separation of the classes, while no real difference
between the classes exists. However, if feature selection and leave-one-out error es-
timation are performed in one process, an unbiased error estimate is achieved, but
with high variance. The holdout error estimate gives a reliable estimate with low
variance, depending on the size of the test set.
© 2003 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

In many applications of pattern recognition, the de-
signer finds that the number of possible features,
which could be included in the analysis is surpris-
ingly high. Normally, a substantial part of the fea-
ture candidates are only noise or are correlated to
the other features, meaning that they contain no
additional information about the classes. If such
features are included in a classifier the classifica-
tion performance can easily be degraded.
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In medical applications the data set is often lim-
ited. Evaluating many features on a small set of
data is a challenging problem which has not yet
been solved. In this paper some pitfalls in feature
selection and error estimation in discriminant anal-
ysis on limited data sets will be discussed. It is well
known that the number of training samples affects
the feature selection and the error estimation, but
the effect of the number of feature candidates is
not discussed in the pattern recognition literature.
We present simulation results demonstrating how

the number of feature candidates, sample size and
the Mahalanobis distance influence the number of
correct selected features and the different error
rate estimates.
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Section 2 describes common feature selection
methods and in Section 3 is the optimal error rate
and some error estimates described. In Section 4
the simulation study is presented and in Section 5
the results are given. Section 6 contains a discus-
sion of the results.

2. Feature selection

The goal of the feature selection is to find the sub-
set of features which best characterizes the differ-
ences between groups and which is similar within
the groups bymaximizing the ratio of between-class
variance to that of within-class variance. In pat-
tern recognition literature there is a large amount
of papers addressing the problem of feature se-
lection [1,2]. Some of the methods are mentioned
below.
For a given quality criterion, exhaustive search

(testing all possible combinations of d out of D can-
didates) finds the optimal feature set. However,
the number of possible sets grows exponentially
with the number of feature candidates, particu-
larly if we do not know a priori the maximum num-
ber (m) of feature to select: N = ∑m

d = 1
D!

(D−d)!d! .
Thus, the method is impractical even for a mod-
erate number of features. A suboptimal approach
is the selection of the best single features ac-
cording to some quality criterion. However, the
individually best features are often correlated and
thus may give a clearly suboptimal discrimination
[3—5]. Sequential forward or backward and step-
wise forward—backward selection are other subop-
timal approaches [5]. Sequential forward selection
[6] adds one new feature to the current set of se-
lected features in each step. Sequential backward
selection [7] starts with all the possible features
and discards one at the time. The main drawback
with forward and backward selection is that when
a feature is selected or removed this decision can
not be changed. This is called the nesting problem.
Stepwise forward—backward selection [8] com-
bines a forward and backward selection strategy,
and thus overcomes the nesting problem. Stepwise
forward—backward selection is a special case of
‘plus l-take away r’, where a given number of fea-
tures (l) are included and another given number of
features (r) are excluded in each step. A more re-
cently developed suboptimal method is the Floating
Searchmethod where the number of features added
and removed is allowed to change in each step
[2,9,10].
Moreover, an optimal algorithm does not neces-

sary finds the ‘best’ subset. It does select the op-
timal feature subset for the particular data set,

which has been used in the training process, but
how well this feature set will work on new data is
uncertain. Like optimal search, advanced subopti-
mal feature selection methods with a high degree
of freedom, have a higher risk of overfitting than
more simple methods, when the data set is limited.
By overfitting we mean that we select a subset of
features which separates well the classes included
in the training data, but it does not differentiate
new cases.
In this study, we have used stepwise forward se-

lection (plus 1 take away 1) which is a commonly
use method and which is easily available in statis-
tical packages such as SAS, SPSS and BMDP.

3. Error estimation

An important part of designing a pattern recogni-
tion system is to evaluate how the classifier will
perform on future samples. The optimal error rate
(Pe

O), also called the Bayes optimal error rate, is
the probability of misclassifying a new observation,
when the optimal classification rule is used [11].
Since we do not normally know this optimal classi-
fication rule, we only get estimates of the optimal
error rate. The true error rate (Pe

T) is in this paper
defined as the Bayes error using the selected fea-
ture set.
There are several methods of error estimation

like resubstitution, leave-one-out and holdout. For
the resubstitution method [12], the classifier is
designed and the error rate of the classifier is es-
timated using the same data. In the leave-one-out
method [13], one sample is omitted from the
dataset of n samples, and the n−1 samples are used
to design a classifier, which again is used to classify
the omitted sample. This procedure is repeated
until all the samples have been classified once. For
the holdout method, the samples are divided into
two mutually exclusive groups (training data and
test data). A classification rule is designed using
the training data, and the samples in the test data
are used to estimate the error rate of the classifier.
Several authors have shown that the resubstitu-

tion error estimate is optimistically biased [13—17].
It is also shown that the leave-one-out error esti-
mate is less biased than the resubstitution method,
but more variable [18,19]. The holdout method
gives slightly pessimistically biased error rates, and
it has desirable stability properties [20].
The leave-one-out error estimate can be applied

in two different ways. The first approach is to first
perform feature selection using all data and af-
terwards perform leave-one-out to estimate the
error, here denoted PL, using the same data. The
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second approach is to perform feature selection and
leave-one-out error estimation in one step. Then
one sample is omitted from the data set, feature
selection is performed and a classifier is designed
and the omitted sample is classified. This proce-
dure is repeated until all samples are classified.
The estimate is denoted PL2.

4. Study design

A Monte Carlo study was undertaken to evaluate the
feature selection and error estimation under differ-
ent conditions. We have analyzed how the number
of features in the classification rule (d), the num-
ber of feature candidates (D) and the number of
samples (n) influence the stepwise feature selec-
tion and different error estimates.
Data were generated from two 200 dimensional

normal distributions regarded as class one and two.
The class means were µ1 = (0, . . . , 0) and µ2=(µ1

′,
. . . ,µr

′, 0, . . . , 0),µj
′ = (δ/

√
r), r= 5 being the num-

ber of features separating the classes and δ2 being
the Mahalanobis distance between the classes. The
data sets consisted of an equal number of obser-
vations from each class. The number of samples in
training and test sets are denoted nTr and nTe, re-
spectively, and the total number of samples avail-
able is denoted n.
A forward—backward stepwise feature selection

method [21] (plus 1 take away 1) was used with
α-to-enter equal to α-to-stay equal to 0.2 [22]. The
first f features selected by the method were in-
cluded in the classifier.
We used a Bayesian minimum error classifier

[23], assuming Gaussian distributed probability
density functions with common covariance matrix
and equal apriori class probabilities. The covari-
ance matrix is equal to the identity matrix. The
Bayesian classification rule then becomes a linear
discriminant function,

D(xi) = [xi − (x̄1 − x̄2)/2]′S−1(x̄1 − x̄2)

where x̄1, x̄2 and S are unbiased estimates of the
distribution parameters using training samples.

Pe
i is the number of classification errors divided

by the number of samples classified for a given
data set. For each set of parameters, 100 data
sets were generated and the expected mean error
rate and variance were estimated for i equal to
the leave-one-out method (L) and the holdout (H).
More details of the design of the simulations are
given in the Appendix A.

5. Experimental results

The Mahalanobis distance between the classes is
an important factor when performing feature se-
lection and error estimation. When the classes are
well separated, less samples are needed in order to
both find the features which separate the classes
and to obtain a good estimate of the error rate. Con-
sequently, the most difficult situation to analyze is
when there is only a small or no difference between
the classes. Normally, the analyst does not know
the Mahalanobis distance between the classes, and
therefore, the worst case is important to consider.

5.1. Feature selection

Stepwise forward—backward feature selection was
used on the simulated data in order to analyze how
the number of feature candidate, training sample
size andMahalanobis distance influence on the num-
ber of correct selected features.
The simulations show that the number of cor-

rectly selected features increase when the Ma-
halanobis distance between the classes increase,
the number of samples increase and the number
of feature candidate decrease, as shown in Figs. 1
and 2. Normally we do not know the Mahalanobis
distance between the classes, so we need to an-
alyze the number of training samples (nTr) and
feature candidates (D) and their relation.
Fig. 3 shows the average number of correctly se-

lected features as a function of the number of train-
ing samples for three different values of the number
of feature candidates. In Fig. 4, the average num-
ber of correctly selected features for four differ-
ent values of the ratio nTr/D is shown. We observe
that:

• if the number of samples is low (less than 200),
the number of feature candidates is of great im-
portance, in order to select the correct features.

• When the number of training samples increase,
the number of correctly selected features
increase.

• For a given number of training samples, it is bene-
ficial to have a low number of feature candidates.

• The optimal ratio nTr/D depends on the Maha-
lanobis distance, the number of training samples
and feature candidates. Hence, recommending
an optimal ratio is not advisable.

In order to see what happens if the number of
feature candidates is greater than 200, an addi-
tional study was performed. Using the samemethod
and variables as described in Section 4, 100 simula-
tions with 500 feature candidates were performed.
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Fig. 1 Number of correctly selected features using different number of training samples and feature candidates
when selecting five features out of 200 and the Mahalanobis distance is 1.

Fig. 5 shows that interpolation of the results as
shown in Figs. 1 and 2, gives a good indication of F̂.
When analyzing 500 feature candidates on a train-
ing set of 500 samples, the number of correctly se-
lected features was still five. Fig. 6 shows the rela-
tion between feature candidates and training sam-
ples in order to select a minimum of four correct
features. On the diagonal of the figure the num-

Fig. 2 Number of correctly selected features using different number of training samples and feature candidates
when selecting five features out of 200 and the Mahalanobis distance is 4.

ber of samples equals the number of feature can-
didates. Below the diagonal the number of sam-
ples is greater than the number of feature can-
didates. The figure shows that when the classes
are overlapping and the number of samples is less
than 400, the ratio nTr/D differs between 1 and
10 and the ratio decrease when the sample size
increase.
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Fig. 3 The average number of correctly selected fea-
tures, F̂, when selecting five features and the Maha-
lanobis distance is 1. F̂ as a function of training samples
for three different numbers of feature candidates.

5.2. Performance estimation

The bias of the resubstitution error estimate intro-
duced by estimating the parameters of the classifier
and the error rate on the same data set, is avoided
in the leave-one-out, since the sample to be tested
is not included in the training process. However, if
all data are first used in the feature selection pro-
cess and then the same data are used in error esti-
mation using, e.g. the leave-one-out method (P̂L

e),
a bias is introduced. To avoid this bias feature se-
lection and leave-one-out error estimation can be
performed in one process (P̂L2

e ). We have analyzed
the bias and variance of these two variants of the
leave-one-out error estimate and of the holdout er-
ror estimate.

Fig. 4 The average number of correctly selected fea-
tures, F̂, when selecting five features and the Maha-
lanobis distance is 1. F̂ as a function of constant ratio.

Fig. 7 shows the bias and variance of the two
leave-one-out error estimates when there is no dif-
ference between the classes and we select 5 out
of 200 feature candidates. The simulations show
that when the number of samples is low (less than
200), the P̂L

e estimate tends to give a highly op-
timistic error estimate. Moreover, when analyzing
many features on a small data set, the P̂L

e estimate
can indicate complete separation of the classes,
while no real difference between the classes ex-
ists. As the number of samples increases, the P̂L

e
approaches the true error. The number of samples
necessary to get a good estimate of the true er-
ror depends on the Mahalanobis distance between
the classes and the number of feature candidates.
However, the simulation results show that if the
number of training samples is greater than 200,
the bias of the leave-one-out estimate is greatly
reduced.
Performing feature selection and leave-one-out

error estimation in one process results in an almost
unbiased estimate of the true error, but the P̂L2

e es-
timate has a high variance, see Fig. 7. When the
number of samples is less than 200, the P̂L2

e gives a
clearly better estimate of the true error than P̂L

e.
The bias and variance of the holdout error estimate
(P̂H

e ) were analyzed under the same conditions as
the leave-one-out estimates, see Fig. 8. The hold-
out error estimate is also an unbiased estimate of
the true error, but with some variance.
The bias of the three error estimate as a func-

tion of the number of feature candidates are shown
in Fig. 9. The figure shows how the bias of the
P̂L
e error estimate increase with increasing number

of feature candidates, while the two other esti-
mates are not affected. Fig. 10 shows the bias of the
P̂L
e estimate as a function of Mahalanobis distance

and number of training samples. The figure shows
how the bias of the P̂L

e estimate increases when the
Mahalanobis distance decreases, towards the case
shown in Fig. 7 (P̂L

e for δ2 = 0). We note that for a
small number of training samples (less than 200),
this leave-one-out error estimate has a significant
bias, even for high class distances.

6. Discussion

Our experiments are intendent to show the poten-
tial pitfalls of using feature selection on relative
small data sets in a high dimensional space. We
have analyzed how the number of feature candi-
dates and training samples influence the number
of correctly selected features and different error
estimates. Monte Carlo simulations have been per-
formed in order to illustrate the problems.
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Fig. 5 The average number of correctly selected features as a function of training samples and feature candidates,
when the Mahalanobis distance is 1.

The simulations show that few of the correct fea-
tures are found when the number of samples is low
(less than 100). To find most of the correct features
the ratio nTr/D (number of training samples/number
of feature candidates) differs between 1 and 10,
depending on the Mahalanobis distance, the num-
ber of feature candidates and the number of train-
ing samples. Hence, to give a recommended gen-
eral ratio nTr/D is not possible. However, Figs. 5 and
6 could be used to indicate if the given number of
samples and feature candidates used in a stepwise
feature selection is likely to find the features which
separates the classes.

Fig. 6 The relation between feature candidates and
training samples necessary to select a minimum of four
correct features. The nTr/D ratio is shown in brackets.

This result corresponds only partially to previous
work by Rencher and Larson [24]. They state that
when the number of feature candidates exceeds the
degrees of freedom for error [D> (nTr−1)] in step-
wise discriminant analysis, spurious subsets and in-
clusion of too many features can occur. Rutter et al.
[20] found that when the ratio of sample size to
number of feature candidates was less than 2.5, few
correct features were selected, while if the ratio
was 5 or more, most of the discriminative features
were found.
Moreover, the simulation results demonstrate

the effect of performing feature selection before

Fig. 7 Bias and variance of the leave-one-out error
estimates when the Mahalanobis distance between the
classes is zero.
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Fig. 8 Bias and variance of the holdout error estimates
when the Mahalanobis distance between the classes is
zero.

Fig. 9 Bias of error estimates as a function of the num-
ber of feature candidates analyzed.

Fig. 10 Bias of the P̂L
e error estimate as a function of

the Mahalanobis distance between the classes and the
number of samples, when selecting 5 out of 200 feature
candidates.

leave-one-out error estimation on the same data.
If the classes are overlapping, the number of train-
ing samples is small (less than 200) and the num-
ber of feature candidates are high, the common
approach of performing feature selection before
leave-one-out error estimation on the same data
(P̂L

e) results in a highly biased error estimate of
the true error. Performing feature selection and
leave-one-out error estimation in one process (P̂L2

e )
gives an unbiased error estimate, but with high
variance. The holdout error estimate is also an
unbiased estimate, but with less variance than P̂L2

e .
When performing a proper leave-one-out, fea-

ture selection is performed within each cycle of the
leave-one-out procedure. Thus, if we are selecting
d out of D features in this manner, up to nTr differ-
ent feature sets of dimension d may be selected.
The correct classification rate given is a result of
nTr different classifiers. Hence, two questions arise:
which features should be used in the classification
system for future data, and which performance es-
timate should be used to give a realistic estimate of
the training data? One solution to the first question
is to select the most frequently selected features,
as suggested by [25]. Another possibility is to weight
the most frequently selected features by their rank.
A solution to the second question is to rerun the
leave-one-out procedure using only the d selected
features. Moreover, the simulations showed that if
we use the proper leave-one-out estimate, it suf-
fers of high variance. To reduce the variance one
could use an n-fold crossvalidation, meaning that
we leave n samples out instead of one in the fea-
ture selection and error estimation process.
The following conclusions can be drawn based on

the simulation results:

• Perform feature selection and error estimation
on separate data (P̂L2

e , P̂H
e ), for small sample sizes

(nTr < 200).
• The number of feature candidates is critical when
the number of training samples are small.

• In order to find the correct features the nTr/D
ratio differs depending on the number of training
samples, feature candidates and the Mahalanobis
distance.

A method often used to eliminate feature candi-
dates is to discard one of a pair of highly correlated
features. However, this is a multiple comparison
test, comparable to the tests performed in the fea-
ture selection process. So, the number of feature
candidates analyzed will actually not be reduced.
If the nTr/D ratio is low for a given sample size, one
should either increase the sample size or reduce the
number of feature candidates using non-statistical
methods.
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In a previous work [26] the bias and variance of
different error estimates have been analyzed when
applying different feature selection methods. The
study showed that using Floating Search feature se-
lection gave the same result as presented here.
Some of the results from this study are included
here.
Some of the results presented here may be well

known in statistical circles, but it is still quite com-
mon to see application papers where a small num-
ber of training samples and/or a large number of
feature candidates render the conclusion of the in-
vestigation doubtful at best. Statements about the
unbiased nature of the leave-one-out error esti-
mate are quite frequent, although it is seldom clar-
ified whether the feature selection and the error
estimation are performed on the same data (P̂L

e) or
not (P̂L2

e ). Finally, comparison between competing
classifiers, feature selection methods and so on are
often done without regarding the heightened vari-
ance that accompanies the proper unbiased error
estimate, particularly for small sample sizes. The
key results of this study are the importance of the
number of feature candidates and that the proper
nTr/D ratio in order to select the correct features
is not a constant, but depends on the number of
training samples, feature candidates and the Maha-
lanobis distance, when stepwise feature selection
is performed.

Acknowledgements

This work was supported by the Norwegian Research
Council (NFR).

Appendix A. Monte Carlo simulations

Samples were generated from two 200 dimensional
normal distributions regarded as class one and two.
The class means were µ1 = (0, . . . , 0) and µ2=(µ1

′,
. . . , µr

′, 0, . . . , 0), µr
′ = (δ/

√
r), r being the num-

ber of features separating the classes and δ2 being
the Mahalanobis distance between the classes. We
used r= 5 and a common covariance matrix equal
to the identity matrix. The data sets consisted of
an equal number of observations from each class,
n1 = n2. The number of samples in training and test
sets are denoted nTr and nTe, respectively, and the
total number of samples available is denotedN. Five
parameters were varied: nTr, nTe, D, δ2. The values
of each parameter tested are given in Table A.1.

Pe
i is the number of classification errors di-

vided by the number of samples classified for a
given data set. For each set of parameters, 100

Table A.1 Values of the different parameters tested

Symbol Design variable Values

nTr Number of training
samples

20, 50, 100, 200,
500, 1000

nTe Number of test
samples

20, 100, 200;
1000

D Number of feature
candidates

10, 50, 200

δ2 Mahalanobis distance 0, 1, 4

data sets were generated and the expected er-
ror rate and variance were estimated for i equal
to the leave-one-out method (L) and the holdout
(H). P̂i

e = 1/k
∑k

x = 1 Pi
e,x and V̂AR{Pi

e} = 1/(k − 1)∑k
x = 1(P

i
e,x − P̂i

e)
2. When the feature selection

method failed to select any features, no classifica-
tion was performed. Consequently, for some situa-
tions the number of simulations (k) were less than
100. This occurred, e.g. when trying to select five
out of ten features when the Mahalanobis distance
is 0. The expected number of correctly selected
features was estimated by the mean number of
correctly selected features of the k simulations,
and is denoted F̂ .
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