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Preface

We are delighted to present the proceedings of the Fourth IN5550 Teaching Work-
shop on Neural Natural Language Processing (WNNLP 2022). Spurred by great
advancements in neural approaches to NLP, this is the fourth in a series of success-
ful annual workshops, each showcasing some of the best efforts madeby the Oslo
MSc students in Language Technology completing the IN5550 class—all tackling
modern NLP research tasks. We are thankful to the Department of Informatics
for hosting the workshop, but we are also thankful to Norwegian internet service
providers.

The workshop received sixteen submissions (by 24 authors), of which all have
been accepted for publication as part of the WNNLP 2022 proceedings (this
volume).

This programme would not have been possible without the assistance of all our
reviewers, whose careful and constructive feedback has been an important element
in finalising the individual contributions. To encourage the spirit of good peer
review, we have made the decision to include an Outstanding Reviewer award
in this workshop, in addition to the traditional Best Paper award. Further, to
emphasise the ties this workshop has had to the IN5550 class, we have also made
the decision to include an Outstanding Coursework award.

The Programme Committee has selected the paper Neural Machine Transla-
tion for Restaurant Reviews, by William Ho, for the WNNLP 2022 Best Paper
award, reflecting a combination of thoughtful engineering, in-depth experimenta-
tion, and solid analysis.

Among the pool of wonderful WNNLP 2022 reviewers, the Programme Com-
mittee finds that one deserves a special mention, for providing especially detailed
and constructive feedback to their peers. The recipient of the WNNLP 2022
Outstanding Reviewer award is Marie Fleisje.

And finally, while the coursework that led to this workshop may seem like a
distant memory, we award the Outstanding Coursework awards to Tellef Seier-
stad. Congratulations to all award recipients (and runners-up)!

And, last - but not the least - warmest thanks to all participants of this
workshop, who spent many a sleepless nights working on the projects that are
certain to make WNNLP 2022 an exciting and stimulating event!

Lilja Øvrelid
WNNLP 2022 General Chair
Oslo; June 09, 2022
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Exploring the Effect of Hyper-parameter Tuning and Variation of Tag
Schemes for Targeted Sentiment Analysis
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Annika Willoch Olstad
annikaol@ifi.uio.no

Alexandra Wittemann
alexankw@ifi.uio.no

Abstract

In this paper, we explore how the use of vari-
ous tag schemes affects the performance of a
targeted sentiment analysis (TSA) model. Uti-
lizing hyper-parameter tuning we first identify
which values of the tuning of hyper-parameters
improve the given baseline (BiLSTM) model
the most, before applying the best model to
data sets with various BIO-tag schemes. The
result is an improved TSA-model, where the
performance is clearly dependent on the choice
of BIO-tags. In addition, we provide a short
error analysis along with a discussion of our
findings.

1 Introduction

Whereas the sentiment analysis (SA) task consists
of identifying opinions and feelings in textual data
(Pang et al., 2008), targeted sentiment analysis aims
to detect both a target entity towards which a senti-
ment is expressed, and the polarity of this sentiment
(Mitchell et al., 2013). The system performing TSA
must thus complete two tasks:

1. Detect targeted text spans in the data.

2. Identify the polarities of sentiment expressed
towards the detected entities from step 1. The
polarity can be either negative or positive.

Table 1 displays an example sentence from the
NoReCfine train set. This illustrates how several
sentiments can be expressed in the same sentence,
with the opinions having various targets. TSA cap-
tures these differences in sentiment, as opposed
to more general SA approaches which would not
provide such fine-grained analysis. Being able to
more precisely identify the sentiment expressed in
text is thus a motivation for the use of TSA.

(1) Uten
Without

Susanne
Susanne

Sundfør
Sundfør

hadde
had

ikke
not

dette
this

vært
been

all
all

verdens
world’s

låt
track

.

.

Token Gold label
Uten O
Susanne B-targ-Positive
Sundfør I-targ-Positive
hadde O
ikke O
dette O
vært O
all O
verdens O
låt B-targ-Negative
. O

Table 1: Example sentence from NoReCfine train set.
See section 3.1 for explanation of tags.

‘Without Susanne Sundfør the track would not be
all that great .’

In this work, we compare the performance of a
baseline model1, provided by the lecturers of the
IN5550 course at the University of Oslo, to the re-
sults obtained by tuning its hyper-parameters. The
baseline model is a Bidirectional LSTM (BiLSTM)
and is further described in section 3.2. Furthermore,
we experiment with various tag schemes (see sec-
tion 3.1), to determine whether the choice of tags
affects the performance of our model.2 Finally, we
perform an error analysis, aiming to identify cen-
tral errors of the models, which in turn will allow
for improvement of the models in future work.

2 Data

In this paper, we make use of the NoReCfine data set,
which is annotated with a BIO-format for the use

1Available here: https://github.uio.no/
in5550/2022/tree/main/exam/targeted_sa

2The code for this paper is available here: https://
github.uio.no/annikaol/IN5550-exam
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Train Dev. Test Total
Sentences 8634 1531 1272 11437
Targets 5044 877 735 6656

Table 2: Distribution of sentences and targets as number
of examples in the NoReCfine data set (based on Øvrelid
et al. (2020) and the numbers provided in the exam
assignment text3).

Figure 1: Distribution of labels in the full NoReCfine
dataset. O is by far most common. Positive labels occur
roughly twice as frequently as negative labels.

of fine-grained sentiment analysis (Øvrelid et al.,
2020). It thus contains annotations of both the
polarity and target of sentiment, as illustrated in
table 1. The translation of this sentence is given
in example 1. The distribution of sentences and
targets across the three data splits (train, dev and
test), as reported by the exam assignment text 3, is
repeated in table 2.

The data is provided to us in conll-format
through the GitHub repository of the IN5550
course. 4

3 Tag schemes and Architectures

3.1 Tag schemes
The NLP society recognizes several different tag
schemes for named entity tasks. They differ in
complexity and ability, and thus reveal themselves
as ideal for various named entity tasks (Alsham-
mari and Alanazi, 2021). In this paper, we will

3Available here: https://github.uio.no/
in5550/2022/blob/main/exam/targeted_sa/
5550_TSA.pdf

4Available here: https://github.uio.no/
in5550/2022/tree/main/exam/targeted_sa/
data

address and train our model with four different tag
schemes.

The provided dataset has a total of 5 labels
(B-targ-Positive, I-targ-Positive, B-targ-Negative,
I-targ-Negative, O) as seen in table 1, this coincides
with the popular IOB tag scheme, also referred to
as BIO. Alongside this we will also consider the
simple IO scheme which assigns only an Inside
or Outside label to a token, and the more complex
BIOL and BIOUL schemes where the labels
correspond to respectively Beginning, Inside,
Outside, Unique and Last. The U and L labels are
assigned to respectively a single-token unit and the
last token in a named entity.

The main difference between the BIO, BIOL
and BIOUL schemes and the IO, is that the IO
scheme is unable to recognize consecutive entities.
So even though the IO outperforms most other tag
schemes (including BIO, BIOL and BIOUL) in
terms of metrics, Alshammari and Alanazi (2021)
claims it’s not fair to compare it to the others due
to the skewness in ability.

We want to explore not only the measureable
difference, but also the qualitative variation within
and between the different tag schemes with
differently tuned models and will thus also include
the IO scheme in our experiments.

3.2 BiLSTM models
The LSTMs, long short-term memory models, as
introduced by Hochreiter and Schmidhuber (1997)
aimed to solve the vanishing gradient problem
seen with RNNs (Pascanu et al., 2013), where
the gradient in gradient based learning methods
gets so small that the weights do not update and
the training stops as the model is unable to learn
correlation between events that occur over time
because the information fades or vanishes.

The benefit of applying the LSTM architecture
is the controlled gating mechanism which allows to
regulate the flow of information into and out of the
cell, where gradients can proceed even unchanged
into the next state. There are three gates in the
LSTM architecture that each handle the informa-
tion passed from one step to the next; the forget-,
input- and output gate.

2



Figure 2: Bidirectional LSTM architecture based on the
one proposed in Huang et al. (2015).

When passed through the forget gate the
information is controlled in terms of deciding on
how much of the previous memory should be kept,
and what can be ignored (or forgotten). The input
gate decides what relevant information can be
added from the current step, and the output gate
finalizes the next hidden state.

A bidirectional LSTM (BiLSTM), whose archi-
tecture is illustrated in figure 2, consists of two
LSTMs where one handles the forward phase and
one handles the backwards phase. The baseline
model for this project is a simple BiLSTM with one
hidden layer. The benefit of using a bidirectional
over a unidirectional LSTM is that each compo-
nent processes information going both forward and
backwards, thus producing a more fitting predic-
tion.

So even though BiLSTMs can be computation-
ally expensive to train (Goldberg, 2017), they have
proven to perform especially well with sequence
classifying tasks like this one.

4 Evaluation

For this specific task we will benefit from relying
mostly on proportional F1-score in the evaluation
for the most fair and balanced measure of perfor-
mance. This assumes a measure of precision and
recall as well. Proportional F1-score, as opposed
to binary F1-score, paints a better picture of how
large a part of the predicted entities coincide with
the gold entities while binary F1-score tell us only
whether there is overlap between the predicted
entities and the gold entities, or not.

The main argument for using such metrics
instead of accuracy is the large class imbalance of
this dataset, see figure 1. Using accuracy as main
form of evaluation would disturb the impression
of performance a lot due to the large number of
Outside labels in the dataset. Thus if most Outside
labels are assigned correctly, the accuracy would
be artificially high, even if all the other labels are
assigned incorrectly.

As for the models, we will run each model five
times to calculate average performance. We use
proportional F1-score to select the best model as it
is a stricter measure than binary F1-score. However
we calculate and report both for a more nuanced
analysis.

5 Experiments

Initially, we run the baseline model with its pro-
vided default hyper-parameters. This model has
one hidden layer with a dimension of 100. It is
trained with a learning rate of 0.01 and batch size
of 50 for 50 epochs. Dropout is set to 0.01 and the
embeddings are not tuned. The embeddings used
for the training task are embeddings number 58
from the NLPL word embeddings repository5. The
embeddings have been trained on the Norwegian-
Bokmaal CoNLL17 corpus using the Word2Vec
Continuous Skipgram algorithm, a window size
of 10 and a dimension of 100. The vocabulary is
non-lemmatized and contains approximately 1.18
million word types.

We tune the baseline model with the goal of
finding a combination of hyper-parameter values
that yields better results than the baseline. This
tuning process consists of two parts. In the first
round, we tune the size of the hidden layer, the
number of hidden layers, learning rate and number
of epochs. We keep the parameters values yielding
the best results from this round. These are used in
the second part of tuning, where batch size is tuned
together with the option of training the embeddings
or keeping them frozen. We again keep the best
settings, and these define our best model with the
standard BIO tag scheme.

Last, we investigate the effect of the alternative
tag schemes BIOUL, BIOL and IO. In these exper-
iments, we use the settings yielding the best results
for the BIO tag scheme. Our hypothesis is that the
simple IO tag scheme will outperform the others

5http://vectors.nlpl.eu/repository/#
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because its low number of tags (3) makes it more
likely for the model to choose the correct tag by
chance. Correspondingly, one can expect BIOUL
to perform more poorly due to its high number of
unique tags (9). Note, however, that this is partly
due to the metrics we use. A metric only counting
exact entity-level matches as correct might benefit
from the more fine-grained information contained
in the BIOUL labeling scheme.

In all experiments, every combination of param-
eter values is run 5 times. The results for both
evaluation metrics are averaged across these runs.
Standard deviation is computed and reported for
the best model. The baseline model and the tuned
models with different tag schemes are evaluated on
the held-out test set for comparison.

6 Results

The following subsections report, and briefly dis-
cuss, the results of the experiments described in
section 5. The results are presented in tables, ac-
cording to the evaluation measures from section 4.
A further analysis and discussion of the results is
provided in section 7.

6.1 First round of tuning
For the first round of tuning, we tuned the following
parameters:

• Epochs: the number of epochs the model run.

• Hidden dim.: the number of hidden dimen-
sions.

• LR: the learning rate.

• Layers: the number of layers.

The other parameters are the same as for the
baseline model.

The performance of each model in this first
round of hyper-parameter tuning is presented in
table 3. The columns Binary F1 and Prop. F1 re-
port the binary F1-score and proportional F1-score
respectively. Considering the best proportional F1-
scores for each value of epochs, we observe that
configuring hidden dimensions to at least 50 and
using only one hidden layer is favorable. The pa-
rameters yielding the best proportional F1-score
(0.250) has the following values:

Epochs = 30
Hidden dim. = 75
LR = 0.001

Layers = 1

These are the hyper-parameter values used for
further tuning.

6.2 Second round of tuning
In the second round of hyper-parameter tuning we
use the best model from section 6.1 to tune the
following parameters:

• Batch: the batch size.

• Train emb.: 1 or 0, respectively indicating
whether we train the embeddings or not.

Similarly as in section 6.1, we report both the
binary and proportional F1-score for each adjust-
ment. The results are presented in table 4. We
observe that the model yielding the best propor-
tional F1-score (0.2614) has the following adjusted
parameter values:

Batch = 10

Train emb. = 0

6.3 Experiments with tag schemes
As seen in table 5, the model using the IO tag
scheme clearly outperforms the others with respect
to proportional F1, yielding an average score of
0.285 (standard deviation 0.00918) on the dev set
and 0.287 (standard deviation 0.0169) on the test
set. Considering the test set, this is an improvement
of 0.038 compared to the baseline. For the BIO
model, where the tag scheme is the same as in the
baseline, the increase in proportional F1 on the test
set is 0.015.

For binary F1, the baseline model and the BIOL
model have the best scores on dev and test respec-
tively. The IO model is not far behind with an aver-
age binary F1 of 0.425 (standard deviation 0.00808)
on dev and 0.403 (standard deviation 0.0157) on
test. In general, we observe the tendency that the
F1-scores of a model decrease as the number of
unique tags in its tagset increases. This is most
prominent for proportional F1.

An example of predicted labels with various tag
schemes is provided in table 6. The translation is
available in example 2.

(2) «
«

Det
Det

store
store

spranget
spranget

»
»

er
is

en
a

spenstig
resilient

nyvinning
innovation

:
:

‘« Det store spranget » is a refreshing new series :’
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Performance
Epochs Hidden dim. LR Layers Binary F1 Prop. F1

15 25 0.001 1 0.407 0.235
2 0.434 0.235

0.01 1 0.408 0.233
2 0.428 0.212

50 0.001 1 0.425 0.244
2 0.453 0.229

0.01 1 0.419 0.246
2 0.436 0.223

75 0.001 1 0.433 0.243
2 0.447 0.214

0.01 1 0.422 0.245
2 0.436 0.218

30 25 0.001 1 0.401 0.229
2 0.427 0.238

0.01 1 0.411 0.246
2 0.418 0.224

50 0.001 1 0.420 0.234
2 0.443 0.224

0.01 1 0.425 0.245
2 0.429 0.224

75 0.001 1 0.431 0.250
2 0.440 0.240

0.01 1 0.421 0.247
2 0.441 0.240

50 25 0.001 1 0.408 0.239
2 0.426 0.241

0.01 1 0.392 0.227
2 0.415 0.218

50 0.001 1 0.419 0.248
2 0.432 0.234

0.01 1 0.411 0.239
2 0.415 0.223

75 0.001 1 0.416 0.245
2 0.442 0.240

0.01 1 0.426 0.247
2 0.437 0.241

Table 3: Binary and proportional F1-scores on development set for first round of hyper-parameter tuning.
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Figure 3: Proportional distribution of predictions with
respect to polarity. For each gold polarity on the y-axis,
the x-axis shows the frequency by which it is classified
as Positive, Outside and Negative. Purple indicates
a low frequency, while yellow corresponds to a high
frequency.

Performance
Batch Train emb. Binary F1 Prop. F1

10 0 0.4226 0.2614
1 0.4138 0.2522

25 0 0.4242 0.2472
1 0.4166 0.2506

50 0 0.4232 0.2450
1 0.4236 0.2460

Table 4: Binary and proportional F1-scores on develop-
ment set for second round of hyper-parameter tuning.

Performance
Binary F1 Prop. F1

Model Dev Test Dev Test
Baseline 0.434 0.395 0.255 0.249
IO 0.425 0.403 0.285 0.287
BIO 0.423 0.403 0.261 0.264
BIOL 0.414 0.408 0.243 0.245
BIOUL 0.414 0.404 0.243 0.241

Table 5: Binary and proportional F1-scores on dev and
test set for different tag schemes.

7 Discussion and Error Analysis

As found by Alshammari and Alanazi (2021), the
model using the IO tag scheme obtains the best
result. Contrary to Ratinov and Roth (2009), we
observe that the BIOUL model yield worse results
than the BIO model. We note, however, that both
these papers experiment with these tag sets in the
context of named entity recognition. In this paper,
our targets are not necessarily named entities, and
their labels contain an additional tag describing
polarity.

In figure 3, we have kept the O label and merged
all other labels into the two main categories ’Pos’
and ’Neg’, referring to their polarity. This illus-
trates the frequency by which each category is clas-
sified correctly, and how frequently it is misclassi-
fied as one of the other categories. We normalize
the counts by the number of occurrences of each
gold label. We observe that all five models in par-
ticular tend to struggle with labeling gold negative
tokens correctly. The proportion of correctly classi-
fied tokens with negative polarity ranges from 0.1
to 0.14. For positive polarity, the corresponding
numbers vary from 0.29 to 0.35. According to our

6



Token Gold label (original) BIO IO BIOL BIOUL
« B-targ-Positive O I-targ-Positive O O
Det I-targ-Positive O O O O
store I-targ-Positive I-targ-Positive I-targ-Positive O I-targ-Negative
spranget I-targ-Positive I-targ-Positive I-targ-Positive B-targ-positive L-targ-Negative
» I-targ-Positive I-targ-Positive O L-targ-Positive O
er O O O O O
en O O O O O
spenstig O O O O O
nyvinning B-targ-Positive O O O O
: O O O O O

Table 6: Example sentence from NoReCfine test set, with gold labels from the original data set (BIO-format). Correct
predictions are marked with green.

interpretation, this is a result of the class imbalance
between positive and negative labels in the dataset,
see figure 1. We believe that the models become
better at identifying positive labels because there
are more positive examples to learn from.

We note that gold positive labels are rarely pre-
dicted as negative, i.e. in the cases of misclassi-
fication, the predicted label is most frequently O.
While this is also the case for gold negative labels,
we observe that a large proportion of the wrong
predictions belong to the positive class. Negative
labels are more likely to be wrongly predicted as
positive than be predicted correctly.

Furthermore, our results show that all models to
a high degree label non-target labels (O) correctly.
This suggests that the models are very good at clas-
sifying O. As previously noted, however, O is by
far the most frequent label in the dataset (see figure
1), so these results are not surprising.

Figure 3 also highlights some differences be-
tween the five models. We observe that IO is supe-
rior to the others with respect to recall for positive
labels. When it comes to negative labels, BIO
shows the highest recall. The negative label recall
for BIOUL is unfortunately not better than in the
baseline.

8 Conclusion

In this work, we have shown that the choice of tag
scheme in targeted sentiment analysis has an im-
pact on the performance of the system. The best
result was obtained using the IO tag scheme. How-
ever, as discussed in section 3.1 this tag scheme has
certain weaknesses, and which tag set to choose
depends on the task to be carried out. In addition,
we have improved our baseline BiLSTM model by

adjusting various hyper-parameters. Finally, we
also provided a brief discussion and error analysis
in section 7.

9 Future work

For future work, we suggest several modifications
to improve our models:

Data Verification The adjustment of the original
data set to other tag schemes like IO, BIOL
and BIOUL is done automatically by our own
script. We have looked through several sam-
ples in all converted data sets to verify that
it works as expected. However, as these data
sets contain many sentences, we were not able
to consider each and everyone. To ensure the
quality of the data, future work should seek
to verify that all tags are indeed correctly an-
notated. In addition, one should count the
number of consecutive entities in the dataset
in order to see how much information is lost
when applying the IO tag scheme.

Conditional Random Fields Modifying the
BiLSTM-model to include Conditional
Random Fields may improve the overall
architecture resulting in improvements.

BERT The use of language models like BERT
have in other NLP applications lead to im-
proved performance and promising results.
Thus, it should be considered used in this ap-
plication as well.

Tag schemes Though we experimented with sev-
eral tag schemes, we believe that even further
exploring of other constellations of tags may
lead to better results. For instance, the BIOU

7



tag scheme was not included in the experi-
ments of this paper, but may be considered in
future work.

More tuning Similarly to the tag schemes, the
hyper-parameter tuning can also be expanded
to include even more hyper-parameters. For
instance, it may be relevant to tune the
dropout-parameter. We did however not ex-
periment with this, as it caused us inexplicable
problems we were not able to solve.
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Abstract

Sentiment analysis is a traditional task in natu-
ral language processing, which aims at mining
opinions or sentiments from these texts. With
the success of neural network methods in vari-
ous domains, researchers now has shifted their
attention to a more fine-grained task called Tar-
geted Sentiment Analysis (TSA), which clas-
sifies sentiments at target level. In this pa-
per, we explore multiple ways of handling a
TSA task by varying label encoding, learn-
ing procedures (Joint or Pipeline) and model
structures ( LSTM, GRU and transformer). To
evaluate our method, we use both binary met-
rics and proportional metrics to compare our
method with the baseline model provided by
the course. Our best model improves the base-
line by 0.047 in terms of binary F1 and 0.058
in terms of proportional F1. The code is in
https://github.uio.no/qinghuax/exam.

1 Introduction

With the rapid growth of social media on the Web,
text data such as reviews, forum discussions, blogs,
micro-blogs, Twitter etc. We are now faced with
an unprecedented huge volume of opinionated data
recorded in digital forms. Opinions are central to al-
most all human activities and are key influencers of
our behaviors.Identifying and classifying opinions
from massive text data is challenging yet highly
rewarding[8].

Sentiment analysis or opinion mining is the
computational study of people’s opinions, senti-
ments, emotions, appraisals, and attitudes towards
entities such as products, services, organizations,
individuals, issues, events, topics, and their at-
tributes [7]. Target level sentiment analysis is a
more fine-grained sentiment analysis task, which
aims at identifying sentiment polarity towards a
specific target in its context. For example,given
a review ”great food but the service was dread-

ful”,the polarity towards food and service would
be positive and negative respectively[9].

Various methods has been proposed to address
target-level sentiment analysis task. The typical
way is to train a machine learning model by su-
pervised learning. Among these models, there are
mainly two different types. One is to build the ma-
chine learning model on manually created features.
The other type replace traditional machine learning
models with neural networks to perform end-to-end
feature extraction without any prior knowledge[9].
Neural models have shown great improvement in
terms of accuracy and efficiency.

More recently,pretrained neural language mod-
els, such as Elmo[12], OpenAI GPT[13] and
Bert[2] have shown their effectiveness in allevi-
ating the effort of feature engineering. There-
fore Sun et al. proposed a novel deep learning
model,successfully utilizing Bert in target-level
sentiment classification task and achieved the state-
of-art results. We argue the key to the success
of these models lies in the introduction of large
amount of unsupervised data.

In this paper, we do not aim to surpass the state-
of-art in TSA. Therefore, we only explore several
options of performing this task and compare the
experiments results with the baseline provided by
the course. We explore in the following three direc-
tions:

• Label encoding. The original dataset provided
by the course is encoded as combined BIO
labels, containing information of target and
sentiment at the same time. In this paper, we
plan to explore other label encoding, such as
combined BIOUL label encoding and split
labels (both BIO and BIOUL).

• Learning procedure. In this paper, we con-
sider two common types of learning proce-
dure: joint learning and pipeline learning. In
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our context, joint learning denotes a learning
procedure that train a single model for the pre-
diction of both targets and sentiments at the
same time. On the other hand pipeline learn-
ing denotes learning procedures that learns
how to perform target classification first and
then learns to perform sentiment classifica-
tion.

• Model structure. Text data is inherently in se-
quence form. In this report, we explore three
different sequential neural network model
structures, namely Gated Recurrent Networks
(GRU) [1], Long Short Term Memory Net-
works (LSTM) [5] and transformers [16].

We will elaborate on methods and experiments
of our work. In Section 2 we introduce related
works in the targeted sentiment analysis field. We
demonstrate details about the changes we made
towards the baseline code in Section 3. In Section
4 and Section 5, we demonstrate the experiment
design and analysis.

2 Related work

Target level sentiment analysis is a branch of senti-
ment analysis,which aims at identifying sentiment
polarity towards certain target based on its context.
Early works use rule based methods for target level
sentiment classification,such as [3][10].Nasukawa
et al. first perform dependency parsing on sen-
tences, then they use predefined rules to deter-
mine the sentiment about targets [10]. Jiang et
al. further improve this method by introducing
target-dependent rules regarding sentences’ gram-
mar structure[6]

Later,various neural networks has been proposed
to better represent context and target.TD-LSTM us-
ing two LSTM networks to model the left and right
contexts of target words. The concatenation of last
hidden states of these two LSTM are used for the fi-
nal prediction. [15]. Recently, more researches has
been focused on modeling the relationship between
context and target using attention mechanism.Ma
et al model the context and target words with two
separate LSTMs [9]. They further use the hidden
states generated from sentences to calculate atten-
tions to target targets by a pooling operation, and
vice versa. Hence their Interactive Attention Net-
work (IAN) can attend to both the important parts
in sentences and targets. Huang et al. use Atten-
tion over Attention module to better capture inter-

actions among word-pairs between sentences and
targets,overcoming the defects brought by pooling
module in IAN [9].

Another line of research on target level sentiment
analysis using neural network methods focuses on
the employment of transfer learning techniques.
Sun et al. successfully introduce Bert into tar-
get level sentiment classification task and achieved
state-of-art results. They convert target level senti-
ment classification task into a sentence-pair classifi-
cation problem which can be directly addressed by
Bert models.[14] He et al. [4] pretrain their model
on document level dataset,and then fine-tune it on
target level sentiment classification tasks. Transfer
learning techniques like this greatly enrich the orig-
inal datasets which is too small for complicated
neural network model to train.

3 Methodology

In this report, we build our model based on the
baseline code provided by course IN5550. In this
section, we will briefly introduce the structure of
baseline code in Section 3.1. In Section 3.2, Sec-
tion 3.3, and Section 3.4 we presents the changes
we made on label encoding, learning procedure and
model structure respectively.

3.1 Baseline

Figure 1: Model structure of baseline

The baseline provided in course IN9550 is a sim-
ple LSTM-based classification model. We do not
use the baseline code directly. We re-code the base-
line ourselves to make it fit in our code base, but
we did not change any configurations of the model
structure. Figure 1 shows the structure of base-
line code. We first feed the input text into a word
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embedding layer, transforming raw text into word
embedding vectors. These vectors are then fed into
a dropout layer to prevent over-fitting. An LSTM
layer is used to capture the sequential information
from the text. Finally, the last layer is a BIO label
classifier, which transforms the output vectors into
the label space likelihood vectors. BIO encoding
labels words as three categories, namely B (begin
of target), I(Inside the target) and O (others). Sen-
timents for each target is binary: positive or nega-
tive. So this classification is a 5 class classification,
where labels are: B-targ-Positive, B-targ-Negative,
I-targ-Positive, I-targ-Negative and O.

3.2 Different label encoding

Figure 2: Model structure for using BIOUL label encod-
ing

The first change we explore is label encoding.
The baseline code uses BIO encoding. We explore
another encoding called BIOUL. BIOUL encoding
is an extension of BIO encoding. Besides begin-
ning of target (B), inside the target (I) and others
(O), BIOUL encoding introduce two more tags:
unit target (U, targets whose length is 1) and last of
target (L).

Figure 2 shows the new model with BIOUL label
classifier. Instead of a 5-class classifier, it is now a
9-class classifier, whose labels are: B-targ-poistive,
B-targ-negative, I-targ-positive, I-targ-negative, U-
target-positive, U-target-negative, L-targ-positive,
L-targ-negative and O.

3.3 Different learning procedure

Regarding learning procedure, we explore two dif-
ferent types: joint and pipeline learning. We are

Figure 3: Model structuring for joint learning

aware that the baseline code is in joint learning fash-
ion already, given that it uses a combined label that
integrates both sentiments and targets. Predictions
on this label allows us to improve the capability
of sentiment prediction and target prediction at the
same time. In this paper, however, we explore an-
other method of joint learning by separating the
sentiment and target labels and build separate mod-
els for each of them. Figure 3 illustrate the model
structure of joint learning procedure. The word
embedding layer is shared by both target and sen-
timent prediction model. Regarding other layers,
these two models has their own set of parameters,
including dropout layer, LSTM layer and final clas-
sifier layer. We train these two models at the same
time in a multi-task learning fashion.

Figure 4: Model structure for pipeline learning

As for pipeline learning, we build also two sep-
arate models for targets and sentiments prediction
as in Figure 4. But different from joint learning,
we use the output of target prediction as an input
of sentiment prediction in pipeline learning.

For both joint and pipeline learning, we employ
the same BIO labeling encoding. Target classifier
is 3-class classifier, with labels of : B-targ, I-targ
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and O. Sentiment classifier is a binary classifier,
with labels of : positive and negative.

3.4 Different model structure

Another exploration in this paper is to vary the se-
quential model structures. In the baseline code,
LSTM is used to capture the sequence character-
istics. We experiment with two other sequence
models: GRU [1] and transformer [16].

Figure 5: Model structure for using GRU

Figure 5 depicts our model with GRU as se-
quence model. GRU is an extension of LSTM
model. Both LSTM and GRU are based on gating
mechanism to combat the problem of vanishing
gradient. However, these two models are different
in several aspects:

• LSTM has three gates, namely input gate, for-
get gate and output gate, while GRU only has
update and reset gate.

• GRU does not possess any internal memory,
unlike LSTM which calculates a candidate
vector for this purpose.

• The reset gate of GRU is applied on previous
hidden state directly instead of calculating a
candidate value.

In Figure 6, we can see that a transformer en-
coder (Multi-head Attention Module) consists of
five layers: positional encoding layer, attention
layer, residual layer, feed-forward layer and an-
other residual layer. Let U be the text embedding
vectors. Multi-head Attention Module takes U ′ as
the input and uses positional encoding to incorpo-
rate position information as shown in Equation 1.

Figure 6: Architecture of Attention Mechanism

U ′ = U ′ + position encoding(U ′) (1)

We duplicate this vector into three and perform
linear transform on these three l: Uk, Uv and Uq.
Uk and Uv are for calculating the attention weight
for each vector. With this weight, we then calcu-
lated a weighted sum of Uq. Equation 2 shows the
calculation of attention.

attention weight = UqU
T
k (2)

Uattention = attention weightUT
v (3)

Then a residual connection between the input vec-
tors and the output of multi-head attention is built,
as shown in Equation 4.

Uattention = normalize(U ′ + Uattention) (4)

Feed-forward Module takes the output of attention
module as its input and feeds it into a feed forward
network (Equation 5).

U = WattentionUattention + battention (5)

Ufeed = relu(U) (6)

Then a residual connection between the attention
output and the feed-forward output is built (Equa-
tion 7.

Uout = normalize(Uattention + Ufeed) (7)
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Figure 7: Model structure for using transformer

Figure 7 shows our model with transformer as
the sequence model. With transformers, we can
take advantage of attention mechanism for captur-
ing context information. The original transformer
model consists of two component: encoder and
decoder. In this paper, we only utilize the encoder
to incorporate context information into the token
vectors.

4 Experiment Design

In this section, we presents our design of experi-
ments. In Section 4.1, we propose three research
questions to evaluate the changes we make to the
baseline code. Section 4.3 demonstrate the evalua-
tion metrics we use in our experiments. We show
the parameters and execution environment.

4.1 Research Questions
In this paper, we propose three research questions
as follows:

• RQ1: Is using BIOUL label encoding effec-
tive in TSA compared to BIO label encoding?

• RQ2: Is joint learning effective in TSA com-
pared to pipeline learning?

• RQ3: Is GRU or transformer effective in TSA
compared to LSTM?

With RQ1, we plan to evaluate the effectiveness
of using BIOUL label encoding. We compare the
experiment results with BIO label, while keep the
model structure unchanged. With RQ2, we evalu-
ate to effectiveness of joint learning. We split the
combined BIO label (combining both targets and
sentiments) into targets labels and sentiments la-
bels. We then perform joint learning and pipeline

learning and compare the results. With RQ3, we
aim to evaluate the effectiveness of different neural
sequence models. We compare the results of base-
line with GRU-based model and transformer-based
model.

4.2 Dataset

Train Dev. Test Total Avg.len
Sents 8634 1531 1272 11437 16.8

Targets 5044 877 735 6656 2.0

Table 3: Number of samples in the dataset

In this paper, we use the dataset named
NoReCfine, which is provided by the course. This
is a fine-grained Norwegian sentiment analysis
dataset. To facilitate researching, this dataset has
been annotated with polar expressions and targets.
The text are from a corpus of professionally au-
thored reviews in various domains, such as liter-
ature, games,music, products, and movies. We
present the number of samples in Table 3.

4.3 Evaluation Metrics
We follow the instructions given by IN5550 and
evaluate our method with two types of metrics:
binary metrics and proportional metrics. Binary
metric counts any overlap of predicted and gold
span as correct, while proportional precision de-
notes the ratio of the overlap with predicted span
and proportional recall denotes the ratio of the over-
lap with gold span, which reduce to token-level F1.
Proportional metric is more strict than binary met-
ric.

4.4 Parameters and execution environment
This project is coded with Pytorch library [11]. We
run all of our experiments on one node of SAGA
cluster. This node use HPE 16GB (12 x 16GB per
node) Dual Rank x8 DDR4-2666 CAS-19-19-19.

Hyperparameter tuning is not the focus of this
paper. Therefore for most experiments, we follow
the hyperparameter settings of the baseline code,
only varying the parameters that we want to com-
pare. Also, we use a much smaller learning rate
(2e-5) with transformer model, in case the learning
rate is too large for it to learn.

5 Experiment Analysis

In this section, we presents the experiment results
of RQ1-RQ3.
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Setup Label Procedure Model Lr N H Others
baseline BIO joint LSTM 0.01 50 100 bidirectional;1 layer
Label BIOUL joint LSTM 0.01 50 100 bidirectional;1 layer

Procedure
BIO joint LSTM 0.01 50 100 split labels
BIO pipeline LSTM 0.01 50 100 split labels

Model
BIO joint GRU 0.01 50 100 -
BIO joint transformer 2e-3 50 100 dmodel=100; head=1

Table 1: Parameters in different experiment setups.Lr, N and H denote learning rate, batch size and hidden dimension
respectively.

Binary Proportional
Setup Precision Recall F1 Precision Recall F1

Baseline 0.436 0.251 0.319 0.315 0.139 0.193
BIOUL label 0.415 0.254 0.315 0.301 0.194 0.236
Joint learning 0.432 0.336 0.378 0.313 0.210 0.250

Pipeline Learning 0.399 0.349 0.372 0.267 0.235 0.250
GRU model 0.436 0.315 0.366 0.326 0.218 0.261

Transformer model 0.326 0.321 0.324 0.159 0.104 0.126

Table 2: Experiment results

5.1 Result and Analysis for RQ1

RQ1 evaluates the effectiveness of label encoding.
We experiment with BIOUL label. The second
row of Table 2 shows the result of using BIOUL
label. We can observe that BIOUL label does not
improve the binary metric very much (only binary
recall by 0.003). However, proportional recall and
f1 are improved by 0.055 and 0.043 respectively.
This results show that BIOUL label performs better
with proportional metrics, which means it is good
at identifying the boundary of target spans.

5.2 Result and Analysis for RQ2

RQ2 evaluates the effectiveness of learning proce-
dure. We experiment with both joint and pipeline
learning procedure. We can observe from Table
2 joint learning (modified from the baseline code)
improves the baseline with both binary f1 (0.059)
and proportional f1 (0.057). Pipeline learning also
improves the baseline, but the binary f1 is lower
than joint learning (0.006). This result shows that
pipeline performs slightly worse than joint learn-
ing. Pipeline learning predicts targets first and use
predicted targets to further predict sentiment. We
argue that this can induce cascading errors if the
target prediction is not accurate enough, which can
lead to worse performance.

5.3 Result and Analysis for RQ3

RQ3 evaluates the effectiveness of model struc-
tures. In Table 2, we can observe that GRU model
has the best performance on binary precision, pro-
portional precision and proportional f1. This shows
that GRU has a better performance than LSTM in
this code. The reason for this improve is because
GRU has few gates than LSTM and fewer param-
eters. In this TSA task, we do not have a large
amount of data. Therefore, our model benefits from
a simpler model, i.e. GRU model. However, trans-
former model surprisingly has bad performance.
The result for proportional f1 is even lower than the
baseline code. We think this poor performance is
because transformer is more complicated in terms
of parameter number, which can have better perfor-
mance with large amount of data. Also, transformer
might need more hyperparameter tuning for it work
well, which is not in the scope of this paper.

6 Conclusion and future work

In this paper, we make various changes to the base-
line code to handle the TSA task. We varied the
label encoding, learning procedure and model struc-
ture in our experiments. Experiment results show
that BIOUL label encoding, joint learning, GRU
and Transformer are effective in TSA task. We
plan to investigate more in this field, including us-
ing contextualized embeddings such as Elmo and
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Bert, performing hyperparameter tuning to search
better hyperparameter settings, etc.
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Abstract

This paper analyses and compares the results
on targeted sentiment analysis for Norwegian
from different model architectures. These re-
sults show that there is a significant differ-
ence between the types of errors GRUs and
transformer models get for this task. This re-
search also found that a multi-lingual model
performed better than the mono-lingual Nor-
BERT for targeted sentiment analysis on the
data set NoReCfine.

1 Introduction

The task this paper deals with is targeted sentiment
analysis (TSA), which aims not only to find the
sentiment in a given text, but also the target of
that sentiment. Sentiment analysis is a field within
natural language processing (NLP) that attempts
to determine the sentiment of a text, where senti-
ment is a positive or negative evaluation expressed
through language (Taboada, 2016). Where stan-
dard sentiment analysis outputs one sentiment for
the whole input, TSA is a form of token labeling,
like named entity recognition (NER), where each
token is assigned a label showing whether it is part
of an entity or not.

In this paper, we experiment on several model ar-
chitectures and hyperparameters to find out which
performs best for the specific task of TSA for Nor-
wegian. Furthermore we attempt to compare the
results between different models to see what the
difference in performance consists of, and what
strengths and weaknesses different models have for
this task, which means that the most extensive part
of this paper will be the error analysis.

2 Data set

The data set used is NoReCfine, which is a data set
for fine-grained sentiment analysis in Norwegian
(Øvrelid et al., 2020). NoReCfineis annotated with
respect to polar expressions, targets and holders

of opinion. For this paper, a specifically curated
version of NoReCfinewith only the targets and their
sentiment is used. Fine-grained in this case means
that the data is annotated on the token level using
the BIO format, not that the sentiment can take sev-
eral values, as seen in Munikar et al. (2019). This
means that the data set has in total five different
labels: O, B-pos, I-pos, B-neg and I-neg.

3 Experimentation

3.1 Baseline

For the baseline model a bidirectional gated recur-
rent unit (GRU) with static embeddings was used.
The embeddings used were case-preserved and not
lemmatized Gensim CBoW embeddings for Nor-
wegian1. During training of this baseline model,
the embeddings were trained along with the GRU,
albeit with a significantly lower learning rate, a
factor of 50 to 200 lower than the GRU.

Then the baseline model was extended with a
conditional random field (CRF), which has been
shown to produce good results on bidirectional
LSTMs (Huang et al., 2015) and transformers
(Chernyavskiy et al., 2021). Extending the baseline
model with a CRF did not give better results in this
case, but further tuning of that model might have
been necessary to increase the scores.

3.2 Transformer models

When it comes to models used for the experimenta-
tion, the main focus has been transformer models
using contextual embeddings, since that has been
the state of the art since Devlin et al. (2019) in-
troduced BERT (Chernyavskiy et al., 2021). The
architectures that were tried during the experimen-
tation were BERT and RoBERTa (Robustly Op-
timized BERT Approach). The specific models
used were NorBERT, NorBERT2, XLM-RoBERTa,
XLM-RoBERTA-large and an XLM-RoBERTA-

1http://vectors.nlpl.eu/repository/20/92.zip
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large model fine-tuned for named entity recogni-
tion (NER) on the the English part of the CoNLL -
2003 data set (Sang and De Meulder, 2003).

NorBERT was first presented in 2021 by Kutu-
zov et al. and is trained from scratch for Norwegian.
NorBERT 2 was released a year later and is trained
on a much larger corpus. XLM-RoBERTa (XLM-
R) is a cross-lingual model introduced by Conneau
et al. (2020) that has shown good results, even out-
performing monolingual BERT models in some
cases. The experimentation on these models were
partly intended to see whether the cross-lingual
model could outperform NorBERT for the specific
task of targeted sentiment analysis. Since targeted
sentiment analysis has some similarities with NER,
an XLM-R model already fine-tuned for NER was
also tested. Using models already trained for NER
in TSA has also been suggested by Rønningstad
(2020).

3.3 Labeling scheme

NoReCfineis annotated using BIO-labels, and this
has been the labeling schema used for most of
the experimentation. However, both IO-labels and
BILOU-labels have also been tried. IO-labeling
means that the only thing that is annotated is
whether a token is part of an entity or not, and
gives no information about the position of the token
within the entity. Thus, IO-labeling loses some in-
formation present in the original annotations, such
as a B - B - I - sequence, which indicates two sep-
arate entities, would become I - I - I, with no way
to infer that there is actually two entities within
the sequence. Nonetheless, it was found that the
validation set contains very few entities where IO-
labeling would lead to such ambiguity, so that was
tried as well.

The BILOU-scheme has in addition to the BIO-
labels a "Last label" (L) for tokens that end an
entity, and a "Unit label" (U) for entities consisting
of a single token. This BILOU-scheme has not
been conclusively shown to give better results than
the more widely used BIO-scheme (Chernyavskiy
et al., 2021; Cho et al., 2013), but it can be use-
ful to get more fine-grained information for er-
ror analysis, e.g. by making it possible to anal-
yse whether single-token entities are easier to pre-
dict than longer entities. The BILOU-scheme was
tested during the experimentation, but the perfor-
mance fell significantly and no further analysis was
done on the BILOU-scheme.

4 Results

The evaluation metrics used in this paper will be
binary f1-score and proportional f1-score. The
binary score counts any overlapping predicted and
gold spans as correct, whereas the proportional
score uses the ratio of overlap between the gold
and predicted spans. That means the proportional
score is the stricter of the two. Proportional f1 score
was the metric used for hyperparameter optimizing.

search space XLM
param min max large base BERT

lr 1e-6 1e-4 1.4e-5 6.4e-5 3.8e-5
wd 1e-12 1e-1 7.1e-6 3.6e-7 1.0e-8
eps 1e-10 1e-6 3.9e-9 1.6e-7 1.3e-9
warm 0.0 0.5 0.137 0.266 0.025
seed 1 42 6 42 24
h drop 0.0 0.25 0.221 0.185 0.097
c drop 0.1 0.3 0.226 0.253 0.248
sched pol cos const
best 0.381 0.365 0.317

Table 1: Hyperparameter search space and their results.
This was a randomized hyperparameter search running
100 different configurations using the Optuna Frame-
work2. The hyperparameters that were optimized, in
order of appearance in the table, were learning rate,
weight decay, epsilon for the Adam optimizer, warm-up
ratio, the seed (only for reproducibility), the dropout in
the transformer models’ hidden layers and the dropout
for the input of the transformer model to the final clas-
sifier layer. In addition, the scheduler for the optimizer
was one of linear, polynomial, cosine and constant with
warm-up. The models used in the search were standard
versions of XLM-R large, XLM-R base and NorBERT2.

As can be seen in Table 1, the optimized large
XLM-R model gets a higher proportional f1 score
with a notably lower learning rate, especially com-
pared to the XLM-R base model. The NorBERT
model did not achieve the same scores as the cross-
lingual model, and this is also the case in the results
below.

It is interesting to see in Table 2 that the mono-
lingual Norwegian models performed worse than
the cross-lingual models with regards to the pro-
portional F1 score, while being on par with them
when looking at the binary scores.

The best model trained and tested on the IO
scheme originally got an f1 score of 0.452. How-
ever, it would be somewhat misleading to use that

2https://optuna.readthedocs.io/en/stable/
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Model Labels Bin F1 Prop F1

GRU BIO 0.551 0.384
GRU-CRF BIO 0.497 0.370
XLM-R BIO 0.543 0.394
XLM-R-large BIO 0.501 0.399
XLM-R BILOU 0.463 0.312
XLM-R-large IO 0.516 0.382
XLM-R-conll3 BIO 0.575 0.430
NorBERT 2 BIO 0.529 0.215
NorBERT 1 BIO 0.502 0.232
NB-BERT large BIO 0.564 0.271
M-BERT BIO 0.486 0.247

Table 2: Results (binary and proportional f1 score) on
the test set for different model configurations and label
schemes

score in the table since after converting the pre-
dictions back from the IO to the BIO scheme and
testing on the original data, the proportional f1
score fell by 7 % to 0.382. The BILOU scheme did
not lead to good results either, but it may be that
using that labeling scheme would require changing
the hyperparameters, noting that no hyperparame-
ter search were made specifically for the BILOU
scheme.

The model already fine-tuned for NER on the
Conll-3 data set performed best. That could mean
that even though the classification head is changed
for the TSA task, the pretrained RoBERTa model
itself retains some knowledge of NER that is useful
for TSA as well.

Even though the transformer models slightly im-
prove the score, it is also noticeable how well the
baseline GRU and GRU with CRF trained on static
embeddings perform compared to the much larger
transformer models. These simpler models can be
trained on a laptop and do not require access to a
GPU cluster to be able to do experiments.

5 Error analysis

Much of this paper will deal with error analysis, go-
ing through what the model classified correctly and
what it classified errantly. The best models were
trained on the large version of the cross-lingual lan-
guage model XLM-R (Conneau et al., 2020). The
best of these two was also fine-tuned for named
entity recognition (NER) on the the English part
of the CoNLL - 2003 data set (Sang and De Meul-
der, 2003). The analysis below will mostly focus

on XLM-R-large fine-tuned for NER, and unless
specified otherwise, the tables will describe results
from that model.

5.1 Quantitative error analysis
The error analysis will start at a quantitative level,
and then delve into more qualitative analysis later.
Overall, there were 876 entities in the evaluation
set, and 663 entities were predicted for XLM-R,
609 for the GRU and 791 for NorBERT 2.

Sentiment XLM-R GRU BERT gold

Negative 186 89 175 256
Positive 477 520 616 620
POS ratio 0.72 0.85 0.78 0.71

Table 3: Number of predicted and gold entity types as
well as the ratio of positive entities for models XLM-R-
large-conll3, the baseline GRU and NorBERT 2.

The distribution of negative and positive entities
was nearly equal for the predicted and true entities
in XLM-R, but not for the other models as shown
in Table 3. The GRU seems to be a lot more af-
fected by the label imbalance in the data set, and
leans severely towards positive labels, with only
15% of its predictions as negative. NorBERT is
also skewed towards positive sentiment, but not as
heavily as the GRU.

However, when it comes to the actual scores,
they are higher for positive entities predicted by the
XLM-R model as well, as can be seen in Table 4
below.

Entity precision recall f1-score

Negative 0.31 0.23 0.26
Positive 0.40 0.30 0.34
micro avg 0.37 0.28 0.32
macro avg 0.35 0.27 0.30
weighted avg 0.37 0.28 0.32

Table 4: Metrics for the two entity types and aggre-
gated metrics computed using the seqeval library3 for
the XLM-R-large-conll3 predictions.

In the entity-level classification report for the
predictions on the validation set in Table 4, one
can see that the positive targets have both higher
precision and recall than the negative targets. This
can be attributed to the discrepancy in target distri-
bution in the training set, given that the model was

3https://github.com/chakki-works/seqeval
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trained on 1558 negative targets and 3486 positive
targets. Even though that distribution is the same in
the evaluation data set, it still means that the model
has had less examples to learn to distinguish the
negative targets in the text.

The picture is similar when you look at it at
the token level as in Table 5. There is a clear dif-
ference between the positive and negative tokens,
but also between tokens beginning entities and to-
kens that are only part of the entity. The I-labels
have lower precision but the same or higher recall
than the B-labels. This could be because an I-label
has to come after a B-label, which means that the
classifier has some information that can make it
more likely to predict an I-label. It is worth not-
ing here that the scores are a bit higher than for
the entity-level scores because parts of an entity
could be classified correctly, but not all of it, which
would increase the token-level score here but not
the entity-level score. Micro average f1 score here
is the same as the proportional f1 score.

token label precision recall f1-score

B-Pos 0.59 0.37 0.45
I-Pos 0.53 0.47 0.49
B-Neg 0.45 0.26 0.33
I-Neg 0.37 0.26 0.31
micro avg 0.52 0.37 0.43

Table 5: Token-level metrics with micro average for
XLM-R-large-conll3 predictions.

When considering just the extracted entity spans,
and not their polarity, the performance increases
slightly. The f1-score goes from 0.32 to 0.37 on
the entity-level metrics as shown in Table 6.

entity prec recall f1-score

XLM-R spans 0.431 0.321 0.368
XLM-R targets 0.373 0.282 0.321
GRU targets 0.384 0.267 0.315
NorBERT 2 targets 0.307 0.277 0.291

Table 6: Entity-level metrics for different models as
well as only entity spans without sentiment for XLM-R-
large-conll3.

On the token-level, shown in Table 7, scores are
increased even further, but still only 6% past the
scores that include sentiment as well.

The above analysis suggests that the hardest part
for the classifier is to extract the correct spans. The

token label precision recall f1-score

B-target 0.63 0.38 0.48
I-target 0.55 0.46 0.50
micro avg 0.59 0.42 0.49

Table 7: Token-level metrics with only target spans, not
sentiment, for XLM-R-large-conll3.

sentiment analysis itself is arguably easier, because
once an entity is extracted, the binary sentiment
analysis only needs to find the most probable senti-
ment. This might indicate that a pipeline approach,
where focus can be put on the entity extraction first,
and then the sentiment extraction might be a good
approach, as was indeed found to be the case by
(Pereira et al., 2021). However, Li et al. (2019)
suggest that for sub-tasks with a strong coupling,
like extracting entities and their sentiment, a more
integrated model is usually more efficient than a
pipeline model.

When predicting the entity spans and the senti-
ment jointly, the label space increases from 3 to 5
compared to just extracting the entity, using BIO
labels. In general, no matter the label scheme used,
the joint model for TSA increases the label space
by a factor of 2, minus 1 because the outside label
stays the same.

The statistics also show that the classifier pre-
dicts shorter entities than what’s actually present in
the training set and the validation set. The follow-
ing Table 8 shows some statistics for the number of
tokens in each entity for the training and validation
set, as well as for the predicted true positives. The
most interesting part here is that the GRU is a lot
better at predicting long entities, and the GRU’s en-
tity length distribution is similar to the training and
validation data, except for some very long outliers.

5.2 Error types

From here the focus will be on what kind of errors
are occurring in the predictions. For this job, we
have used the Python library NER Error Analyzer4,
which gives decent overall statistics as well as good
visual output for sentence and entity-level error
analysis.

In the general error type summary in Table 9 it
is interesting to see that the GRU is in the middle
and performs better than NorBERT but worse than
XLM-R when it comes to false negatives/positives.

4https://github.com/ciaochiaociao/ner_error_analysis
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Stat Train Val XLM GRU BERT

count 5044 870 247 234 243
mean 1.97 1.96 1.45 1.92 1.39
std 1.89 1.80 1.05 1.49 0.94
min 1 1 1 1 1
25% 1 1 1 1 1
50% 1 1 1 1 1
75% 2 2 1 2 1
max 35 15 11 8 7

Table 8: Statistics for entity lengths among the train
data, validation data and predicted true positives for
XLM-R-large-conll3, the baseline GRU and NorBERT
2

Error type XLM-R GRU NorBERT

false_error 662 715 793
type_error 50 80 57
span_error 129 61 124

Table 9: An overview of different error types for three
chosen model predictions. False_error means false nega-
tives/positives, type_error means that the sentiment was
changed and span error means that there was some but
not total overlap between predicted and gold span.

It is also clear that the transformer models are bet-
ter at getting the correct sentiment for a given entity
span. However, the GRU is a lot better at getting
the correct span, with less than half the number
of span errors as the other models. This could
mean that the GRU retains more positional infor-
mation than the transformer models, whereas the
contextual embeddings are better than the static em-
beddings when it comes to the sentiment analysis
itself. A more detailed summary of the different
types of errors is shown in Table 10, sorted by most
common to least common.

Some of the error types are self-explaining, like
the false negatives/positives, but others might re-
quire some explanation. Diminished means that
some tokens with a label other than ’O’ in the gold
data, were classified as ’O’, either on the right or
left side of the entity, or both. Crossing means that
the predicted entity is shifted to one direction com-
pared to the true entity. An illegal tag sequence is
an I-label that occurs after a label of another entity
type or after an outside label, including I-labels at
the start of a sentence. Examples of these error
types will come in the qualitative analysis section
below. In Table 10 we can also see that diminishing

Error type XLM GRU BERT

False Negative-POS 302 332 299
False Positive-POS 150 182 265
False Negative-NEG 142 168 147
Illegal tag sequence 130 103 138
False Positive-NEG 68 33 82
NEG -> POS 21 55 36
Right Diminished 38 20 52
POS -> NEG 22 20 16
Left Diminished 16 26 12
Right Expansion 15 1 21
Right Left Diminished 14 7 14
Left Expansion 9 11 10
Right Crossed 14 0 9
Left Crossed 15 1 6
Right Left Expansion 5 0 0
POS -> NEG|POS 2 1 0

Table 10: Number of occurrences of different error types
for each model: XLM-R-large-conll3, the baseline GRU
and NorBERT 2

occurs more often than expansion.
As noted above, the GRU has fewer span er-

rors, especially fewer right reductions and right ex-
pansions, but more left reductions and expansions.
Also worth noting is how many gold negatives the
GRU turns to positives compared to the other mod-
els, as the GRU was more affected than the others
by the label imbalance. The GRU also has fewer
illegal tag sequences than the transformer models.

5.3 Qualitative error analysis
5.3.1 Examples
In the examples below, red means wrongly pre-
dicted entity and yellow means true entity that was
not predicted correctly. Green means a correctly
predicted entity. These examples come from the
predictions of the XLM-R-large-conll3 model.

1. Det starter mørkt og intenst med [[«]Pos
[Gosh »]Pos før]Pos det går videre til den
dypeste , delikate [house]Pos i [« [Sleep
Sound »]Pos til en skitten]Pos , men fengende
[drum’n’bass]Pos i [« SeeSaw »]Pos.

2. Det [repetitive]Pos er [albumets]Pos store
styrke , på [« Evil »]Pos , [« Surrender »]Pos
og nevnte [« I need something new »]Pos.

3. [[Resten]Pos av gjengen]Pos , [Viggo Krüger
på gitar]Pos , [Roar Ruus Finsås på bass]Pos
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, [Tor Harald Rødseth bak tangentene]Pos og
[trommis Martin Smith-Sivertsen]Pos leverer
solid og stødig uten å overdrevent briljere.

4. [Diskanten]Pos var finkornet , og selv
om [de]Neg ikke var like nøytrale som
[Momentum-modellen]Pos opplevde vi
[bassen]Pos som detaljert nok - til tross for at
[de]Pos ga oss en høyere grad av morofaktor.

5. Men selv om [[låtmaterialet]Pos]Neg kan
fremstå noe forvirrende , er det ingen tvil om
at Øyakonsertens eneste gåsehud-øyeblikk , [«
[Alias]Pos »]Pos , er en fabelaktig låt , spe-
sielt når [Fridéns]Pos nesten growlende vokal
over den hakkete riffingen og det nydelige
[midtpartiet]Pos glir sømløst inn i hverandre.

6. Det morsomste er at [den]Pos [ikke]Pos har
et eneste dødpunkt.

5.3.2 Translations:
1. It starts dark and intense with [[«]Pos [Gosh

»]Pos before ]Pos it continues to the deepest,
delicate [house]Pos in [« [Sleep Sound »]Pos
to a dirty]Pos , but catchy [drum’n’bass]Pos
in [« SeeSaw »]Pos.

2. The [repetitive]Pos is [the album’s]Pos great
strength, on [« Evil »]Pos , [« Surrender
»]Pos and mentioned [« I need something new
»]Pos.

3. [[The rest]Pos of the group]Pos , [Viggo
Krüger on guitar]Pos , [Roar Ruus Finsås
on bass]Pos , [Tor Harald Rødseth behind
the keys]Pos and [drummer Martin Smith-
Sivertsen]Pos deliver a solid performance
without excelling.

4. [The treble]Pos was fine-grained , and even
though [they]Neg were not as neutral as
the [Momentum model]Pos we experienced
[the bass]Pos as detailed enough, despite
[them]Pos giving us a higher degree of fun.

5. But even though [[the song material]Pos]Neg
can seem somewhat confusing , there is no
doubt that The Øya Concert’s only goose-
bump moment , [« [Alias]Pos »]Pos , is a
fabulous song, especially when [Fridén’s]Pos
almost growling vocals over the choppy riff-
ing and the beautiful [middle part]Pos glide
seamlessly into each other.

6. The most fun part is that [it]Pos does [not]Pos
have a single dead center.

5.3.3 Sentence analysis
The first error in [1] can be a bit hard to read, but the
yellow brackets cover "[« Gosh »]", which means
that "« Gosh »" is the correct entity. There are
two sets of red brackets, which means that "«"
was predicted as a separate entity, and then the
rest as another entity, simply because both of the
tokens "«" and "Gosh" were assigned B-labels by
the model. The rest of the errors are mostly false
negatives, except for "« Sleep Sound »" which was
predicted as "Sleep sound » til en skitten" ("Sleep
Sound » to a dirty"), an example of a right cross
error. In this case the predicted entity is not a phrase
by itself, one of several such errors which will be
described further below.

In general, the model was not very good at un-
derstanding that if one quotation mark is part of
the entity, then the other quotation mark is as well.
Chernyavskiy et al. (2021) describe this lack of
consistency for sequential tag predictions as a com-
mon problem for all transformer-based models, and
thus they are not able to learn the general rule for
punctuation and quotes.

In [2] there is one false positive and some false
negatives. We can see that the model predicts the
noun "albumets" ("the album’s") as an entity, and
not the adjective "repetitive", which was the gold
entity, but it got the sentiment right. As we can see
in both [2] and [3], the enumeration of different
names, each split into an entity, is hard to predict
and are all false negatives in these examples.

The first error in [3] is an example of a recurring
error; An entity which is a noun phrase contain-
ing several words is only partly predicted by the
model, like here where only "Resten" ("The rest")
is predicted from the true entity "Resten av gjen-
gen" ("The rest of the group"). This error also goes
the other way in some cases, like when "Pixars
store film om følelser" ("Pixar’s big movie about
feelings") is predicted from the true entity "Pixars
store film" ("Pixar’s big movie"), but the predicted
entity is more often diminished than expanded.

A further issue with a significant amount of the
predicted entities, like when quotation marks are
missing, is that they are not correct noun phrases
at all. Examples of such predictions are "album
med" ("Album with") instead of "album" and "de
tre" ("the three") instead of "tre historiene" ("three
histories). The last one should arguably be "De tre
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historiene" ("The three histories") to be a complete
noun phrase, but that is besides the point. An in-
teresting approach to this problem could be to use
a model that’s trained on syntactic parsing, specif-
ically constituency parsing, and fine-tune that on
this data set. Another possibility could be to use
the output from a constituency parser as input to
the TSA model, and train all of it end-to-end. That
could help to predict only entities that are complete,
correct phrases.

In [4] we see one correct prediction "Diskanten"
("The treble") among a lot of false negatives. In
general, the model predicted fewer entities in to-
tal than the amount present in the validation set.
The model also has a tendency to predict nouns
that start a sentence as an entity at a comparatively
higher rate than other nouns. In addition to that,
it seems like most predictions occur at the start of
the sentence, whereas the gold entities are spread
throughout the whole sentence. In [5] we also see
an example of a NEG -> POS error, the only type
error among these examples. It is hard to say how
much weight the model gives to the positive words
occurring later in the sentence compared to what
describes "låtmaterialet" ("the song material") di-
rectly, i.e. "kan fremstå noe forvirrende" ("can
seem somewhat confusing"). However, this de-
scription does not carry very strong sentiment, and
might have been drowned out by the strong posi-
tive adjectives later on in the sentence, even though
those in reality describe something else.

In [6] there is an off-by-one error, which is some-
what strange since "ikke" ("not") is never an entity
by itself and is only part of two entities in the train-
ing set. This could mean that "ikke" ("not"), being
a negator but not an entity by itself, is still seen as
important by the model and given a lot of attention
since it may flip the sentiment predictions.

5.3.4 Analysis of predicted entities
When it comes to entities the models did not man-
age to predict, "jobben min" ("my job") and "Dette"
("This") come out on top. The five times "jobben
min" was not predicted was in practice just three
times, since the last of the following sentences was
repeated three times.

1. Som regel trenger jeg ikke denne koppen for å
minne meg på at jeg elsker [jobben min]Pos.

2. Noen ganger hater jeg [jobben min]Neg.

3. Jeg elsker [[jobben]Pos min]Pos.

Given what we saw earlier about first words in a
sentence being easier to predict for the classifier, it
could be that the classifier finds it easier to classify
phrases that are the subject of the sentence, possibly
with a describing adjective as well. Detecting an
entity based on being the object of a verb may be
harder. In [3] we also see again that the model
predicts shorter entities than the gold entities, often
just including the noun and not the entire phrase.

Looking statistically at the entities’ textual rep-
resentation, there are in total 646 different entities
in the validation set. 464 of them i.e. 72 % have
no true predictions. 37 of the entities with no pre-
dictions occur more than once in the validation set.
On the precision side of the entities, 182 of the 505
entities predicted were true positives, i.e. 36 %,
while 323 (64%) of the predicted entities were not
correct gold entities.

What we can see in Table 11 is that especially the
transformer models predict words starting with an
uppercase letter more often than lowercase words.
It seems like those words are easiest to get right,
like e.g. "Grafikken" ("The graphics") and "Sist-
nevne" ("The latter"), which have perfect recall
and precision on all models, while a more com-
mon word like "hun" ("she") has very low recall
overall, and 0 for NorBERT. The same goes for
"de" ("they") and many of the pronouns that do not
start a sentence, whereas "Hun" ("She") and "De"
("They") with upper-cased first letter score a lot
better, with recall and precision mostly in the range
60 to 100 %. When they do not start the sentence,
these pronouns are probably used a lot without be-
ing part of an entity, whereas when a pronoun starts
a sentence it is more often the subject, which has
a higher chance of being an entity. On the other
hand the lowercase word "filmen" ("the film") has
somewhat higher precision than "Filmen" ("The
film") for XLM-R and the GRU, but it still has a
lot lower recall, indicating that an uppercase first
letter is seen a strong feature by the models.

The determiners also seem pretty hard for the
models, with very low recall for "Det", "det",
"Dette" and "dette" ("That", "that", "This" and
"this"). These words are so common that it is prob-
ably hard to understand exactly where they are an
entity for targeted sentiment and where they are not,
whereas less common words like "konserten" ("the
concert") "Diskanten" ("The treble"), "musikken"
("the music"), "Sistnevnte" ("The latter") and "Kon-
sollen" ("The console") all have very high precision
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XLM-R GRU BERT
Entity TP P TP P TP P GP

Den 9 14 4 8 8 13 13
Han 9 11 7 9 7 11 11
filmen 7 7 8 12 5 9 16
Filmen 7 8 3 6 7 7 8
de 1 5 2 3 5 14 14
han 4 7 1 1 4 5 12
den 4 7 0 1 4 5 12
Hun 3 5 3 5 3 4 5
De 3 5 2 3 3 8 3
film 2 3 3 5 2 3 7
Grafikken 3 3 3 3 3 3 3
Hot Chip 2 3 3 3 2 2 4
hun 1 2 2 4 0 0 6
musikken 2 2 2 2 2 2 3
Det 1 6 0 0 0 3 4
det 0 3 0 0 0 3 2
Dette 0 1 0 0 0 1 4
dette 0 1 0 0 0 0 2
Jeppe 2 3 1 2 1 2 3
Sistnevnte 2 2 2 2 2 2 2
Konsollen 2 2 1 1 2 2 2
Metallica 2 4 0 1 1 1 3
konserten 2 2 0 0 2 2 4
Diskanten 2 2 0 1 2 2 2
dem 2 2 0 0 2 2 3
konsollen 1 2 1 4 0 1 2
, 0 2 0 0 0 14 0
. 0 3 0 0 0 5 0
« 0 1 0 2 0 3 0
» 0 0 0 3 0 2 0
« 0 1 0 0 0 1 0

Table 11: The entities with most predicted occurrences
among the models XLM-R-large-conll3, the GRU and
NorBERT 2. TP means true positives, P means predicted
and GP means gold positives. The table is ordered by
the sum of each row, except for the quotation marks,
which are put at the bottom.

and quite high recall. Another point is that all of
these are definite noun phrases, and when they are
mentioned in a review, it is usually because one is
describing them in some way, which could include
sentiment. The mentioned words actually score
better than many of the names, like "Metallica",
"Jeppe" and "Hot Chip".

It also seems like the precision for the entities in
the table is better than the recall, which is in line
with the overall precision being higher than the re-

call. The number of predictions is usually lower
or equal to the number of gold entities. Quotation
marks has been mentioned earlier in the paper as
something transformer models do not deal with
very well, and that is especially notable with Nor-
BERT, which predicted 14 commas to be an entity
as well as 5 periods. The GRU and XLM-R also
made some such predictions, but not as many.

6 Conclusion

These experiments found that the cross-lingual
model XLM-R-large, trained on English NER per-
forms best for the Norwegian TSA task on the
NoReCfinedata set, outperforming NorBERT and
the baseline GRU. However, the simpler GRU was
not too much shy of the transformer models and
performed relatively well on the span extraction,
while lacking more in the sentiment analysis part.

When it comes to these models’ predictions, they
consistently predict shorter entities than the gold
entities, and tend to predict the first word of a sen-
tence as an entity at a higher rate than is the case
for the gold data. Words that occur seldom are also
easier to predict for the tested models than words
that occur often. The transformer models are also
bad at understanding punctuation rules, which is
reflected in their predictions.

7 Future work

As mentioned earlier, it would be very interesting
to see if using a model trained on constituency pars-
ing, or even parsing the constituents of the text as
a sub-task before doing the TSA, would increase
the performance. Having parsed the constituents
would also enable one to do even more interest-
ing error analysis on what kind of constituents the
models manage to predict correctly or not. For the
cross-lingual models it would also be very inter-
esting to see how much they can generalize across
languages for the TSA task, e.g. by training it on
an English data set and testing it on NoReCfine.
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IN5550 - Final Exam
Neural Machine Translation

Henrik Syversen Johansen

Abstract
This paper focuses on low-resource translation
from Norwegian to English, with an empha-
sis on the importance of model and training
parameter tuning in such a setting.

1 Introduction
One of the most researched fields in natural language
processing these days is neural machine translation.
State of the art approaches to neural machine trans-
lation, like transformer based architectures (Vaswani
et al., 2017), often take large amounts of data to train.
The lack of parallel language data in smaller languages
can thus serve as a bottleneck for the performance of
translation models that include those languages.

In this paper, rather than focusing on architectural, or
data oriented solutions to the bottleneck problem as in
other work (Chen et al., 2019; Chaudhary et al., 2019),
I focus on the importance of parameter tuning.

2 Background
2.1 Sequence to Sequence Translation
The general approach to neural machine translation is
to employ a sequence to sequence neural architecture.
That is, a neural network architecture that takes as inputs
a sequence and also outputs a sequnce. While most net-
work architectures can be persuaded to fit this definition
in principle, the most commonly used are: Recurrent
neural networks of varying types, convolutional neural
networks and Transformers (Vaswani et al., 2017).

Transformers are particularly interesting as they serve
as the backbone of several of the current state of the
art natural language processing architectures such as
GPT-3 (Brown et al., 2020). In this paper, a transformer
based architecture is used.

2.2 Generating Translations
When generating translations using a transformer based
sequence to sequence model, there are several ap-
proaches. In this paper two will be considered, both
of which are autoregressive, meaning the model itera-
tively generates outputs based on the models previous
output. The difference between the two appraoches lies
in how the next output is determined.

The first approach is termed Greedy Search and simply
selects the most likely token at any given point. The
second approach is called Beam Search and is more
complex. It keeps track of the n most likely sequences
generated, and selects the most likely sequence among
them as a whole at the end of generation. This n is
referred to as the “beam width”. The latter approach
usually gives better results, but also takes longer to
compute.

2.3 BPE Tokenization

When encoding language information as quantifiable nu-
meric data that is appropriate for use in neural networks
there are different availble approches. A very rudimen-
tary approach simply maps each different word in the
corpus to a unique number. The downside to this is
that unless you are comfortable with a large vocabulary
size, which in turn usually means a massive embedding
layer, you are bound to see a decent number of words
not represented by models the vocabulary.

An alternative approach, BPE tokenization (Sennrich
et al., 2015), instead iteratively grows a set of subwords
of increasing length until a defined vocabulary size is
reached. The subwords added at each iteration are de-
termined by frequency of occurence. When tokenizing,
the algorithm splits words according to their largest sub-
word components, thus making it able to represent more
words with a smaller vocabulary.

2.4 BLEU metrics

Measuring the quality of a translation is not a solved
problem. A given sentence in one language may very
well have several valid translations in another; or no
precise translations at all. The ideal way to measure
the quality of translations, would be to ask bilingual
speakers what they think, and then average their opinion
in some way. While this may be a good way to quality
test a model that is about to be used in some production
pipeline, it is much to time consuming when develop-
ing the model. Instead a metric called BLEU score is
often used (Papineni et al., 2002). BLEU scores have
been shown to roughly correspond to scores given by
humans, and thus serves as a good automatic metric for
measuring the quality of machine translations.
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3 Datasets
In short, data from four sources is used. The first con-
sists of sentence pairs from two publicly availble sub-
corpora. One being the bilingual English-Norwegian
parallel corpus from the Office of the Auditor General
website. And the other being from the Public Bokmål-
English Parallel Corpus. Together these two corpora
comprise our first dataset, which consists of high qual-
ity translation, but mostly of offical language, rather
than everyday speech. This dataset is referred to as the
Government dataset.

The second dataset used is openly sourced movie and
TV subtitles from opensubtitles. The translations here
are generally of worse quality, as many of them are sub-
mitted by users who aren’t necessarily expert translators.
However, the dataset is much larger, and the language
used is more common, as opposed to the professional
language in the Government dataset. This dataset is
hereby referred to as Subtitles.

The third dataset is used only for testing. It is based on
the sentence by sentence translation of Arthur Conan
Doyle’s book, “Hound of the Baskervilles”. The trans-
lation is sourced from FarkasTranslations.com. This
dataset is referred to as the Book dataset. The language,
and sentence structure used in the book, is quite differ-
ent from the data the model will be trained on, so it
serves as a test to see how well the model generalizes to
different domains.

3.1 DIY Test Set
Finally I use a custom test set consisting of translated
lyrics from The Beatles’ “Sgt. Pepper’s Lonely Hearts
Club Band” album. They were translated using google
translate, before being manually corrected to make sure
the lyrics made some sense also in Norwegian. The
resulting test set contains 394 sample sentences, with
89 being duplicates due to the nature of song lyrics.
The sentences are split according to lines of the music,
not according to how real sentences are structured (as
punctuation and sentence structure is often dubious in
lyrics).

This test set is interesting because musical and poetic
lines, while often relatively simple and short, also regu-
larly violate the rules of grammar and sentence structure
for the benefit of lyricism. Also, non-words such as
F‘Ooh”, “Aaah” and “Ho!” are often used, and some
sentences do not even make much semantic sense, such
as “Lucy in the Sky With Diamonds”. This differs
greatly from the complex terminology and non abstract
language found in government text, and to a lesser ex-
tent translated subtitles.

4 Model Overview
The translation system consist of a BPE tokenizer from
the tokenizers library with a vocabulary size of 10,000
tokens, a basic pytorch embedding network, a trans-

former (Vaswani et al., 2017) modified by David Samuel
as described in the assignment text, and a linear classi-
fier head. In the base configuration the weights of the
embedding network and the classifier head are shared.

4.1 Implementation

The system is implemented as a basic pytorch model,
but for training, validation and logging purposes the
model is wrapped in a Pytorch Lightning module.

In order to generate text sequences the model, as a de-
fault, uses a beam search with a beam width of 3. As
this is done iteratively rather than in parallel however,
it takes much longer than simply calculating the cross
entropy between the predicted and actual tokens as dur-
ing training. Calculating cross-entropy loss is 62 times
faster to be exact. Therefore, during validation as well
as training, no search or generation is made. Instead
just cross-entropy loss is used in both cases. For testing
however, sequences are generated using beam search
and BLAU scores are calculated using the torchmetrics
library.

5 Baseline Model Search

Initially to find a decent baseline model, increasingly
complex models were trained on the smallest govern-
ment training set and tested on the book validation set.
The results of these experiments are in Table 2.

All of these modelse were trained using cross entropy
loss and the AdamW optimizer (Loshchilov and Hutter,
2017), with the default weight decay of 0.01. In all the
baseline examples the learning rate is not scheduled,
instead it is kept constant. This constant learning rate,
is found using pytorch lightning’s lr_finder function. It
works by trying an exponentially increasing learning
rate for a set number of mini-batches, and measuring
the loss score. The resulting learning rate vs. loss plot,
can guide a reasonable learning rate (often some experi-
mentation is required), or even a range to pass through
when using a scheduler. The models were all trained for
16 epochs with a batch size of 4096.

Among the model configurations that performed best
on just the small government set, two sufficiently dif-
ferent ones (in bold) were selected to be trained on the
larger combined dataset. In addition, two more complex
models were also trained to evaluate the extent to which
more complex models benefitted from the increase in
data. The results of this experiment is in Table 3.

The most complex model, with 6 layers, performed the
best but also took twice as long to train as the second
best with 3 layers, for only a marginal benefit in BLEU
score. As such the second best model was selected as
the baseline. This baseline was subsequently trained on
the three different training sets and the corresponding
BLAU scores logged on both the book and DIY test sets.
These scores are in Table 4.
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Dataset Train Validate Test Size Avg. NO Length Avg. EN Length

Government 50,000 2,500 – 13.85 16.81
Subtitles 250,000 2,500 – 6.16 6.76
Book – – 2,500 13.53 13.83
DIY (Beatles Album) – – 394 (305 unique lines) 6.34 6.50

Table 1: Dataset information

Runtime d_model layers num_heads # trainable params 4-gram-BLEU (book)

12 min 32 6 4 457 K 0.028
15 min 32 8 1 500 K 0.028
9 min 256 3 4 6.5 M 0.028
9 min 32 3 4 393 K 0.026
9 min 256 3 4 6.5 M 0.024
10 min 256 3 8 6.5 M 0.024
8 min 128 3 4 2.3 M 0.023
7 min 64 2 2 817 K 0.020
14 min 256 6 4 10.5 M 0.019
6 min 32 1 1 351 K 0.019

Table 2: Comparison of model sizes trained on the government dataset

d_model layers num_heads Runtime 4-gram-BLEU

256 6 8 82 min 0.111
256 3 4 39 min 0.110
256 3 8 40 min 0.104
32 6 4 27 min 0.081

Table 3: Two of the better models from the initial config search, as well as a more complex one as a sanity check
trained on the combied dataset.

train set Runtime 4-gram-BLEU (book) 4-gram-BLEU (DIY)

combined 39 min 0.110 0.276
subtitles 28 min 0.096 0.201
government 9 min 0.032 0.051

Table 4: Baselines for the best performing model trained on all three datasets.

6 Experiments

With a decent baseline established, several experiments
were performed in an attempt to improve the model’s
performance. The training and validation loss of each
of these experiments are shown in Figure 1. Also the
4-gram-BLEU scores of each experiment is listed in
Table 5.

Rather than performing an exhaustive grid search with
each modification tested in all combinations with the
others, modifications were added cumulatively in the
order described in the following sections and retained
for subsequent experiments only if they showed an im-

provement. This was done to save time and resources.

As the baseline model contains 6.5 M trainable param-
eters, all of the experiment models also do, except for
the model with free classifier weights, it has 9.1 M train-
able parameters. The models without any dropout were
trained for 16 epochs, while the ones with were trained
for 20 epochs. In all cases the batch size used was 4096.

6.1 Small Initial Embedding Weights
The first experiment is a trick I discovered in the github
repo of an independent AI researcher using the moniker
BlinkDL (their results are not published apart from on
their public github). They had observed that initializing
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the embedding weights with a uniform distribution from
−1−e4 to +1e−4, rather than the default normal distri-
bution N(0, 1), improved convergence. After trying this
the model converged much faster, and settled at a lower
final validation loss, seemingly confirming BlinkDL’s
observation (this can be seen clearly in Figure 1b).

The reasoning provided by BlinkDL as to why this
works, is mostly empirical. They observed that when
training a transformer the embedding weights often
move slowly, by their reasoning: making it difficult
for the model to move from the initial noisy embedding.
I have not validated this for myself, but the improved
convergence at the very least shows the usefulness of
the trick in my particular setting.

6.2 LR Scheduling

An LR scheduler was then added, namely the OneCy-
cleLR scheduler (Smith and Topin, 2017). It works by
initially increasing the learning rate to a peak, before
decaying it until the last epoch, following a cosine curve.
This furter increased BLEU scores, but the model begun
overfitting earlier.

In the paper describing the OneCycleLR (Smith and
Topin, 2017), they describe something they call super-
convergence, where the model converges in much fewer
iterations than normal. This does not seem to be what
is happening in the case of this system. However: the
“warm-up, decay” curve of the OneCycleLR scheduler
is reminicient the phases of the scheduler proposed in
the original transformer paper (Vaswani et al., 2017).
An added benefit of having a moving learning rate is the
decreased need of finding a good initial one, instead we
can settle with finding a good range and let the scheduler
do the rest.

6.3 Dropout

After introducing the learning rate scheduler the model
now started to overfit, Dropout was added both in the
transformer itself as well as in the tokenizer (in the form
of BPE dropout). With the concrete dropout probabil-
ities being 0.1 in both cases. This reduced overfitting
but slowed down training. Because of this training time
was increased by 25%, giving the model time to settle.
With dropout the BLEU scores increased significantly,
especially in the last added training iterations.

6.4 Label Smoothing

Label smoothing was then added to the cross entropy
loss function, however, performance actually decreased
a bit compared to the previous configuration (Szegedy
et al., 2015). It is possible that, given even more time
to train the model would improve past the previous
iteration, however training time was already becoming
a limited resource so the modificatino was discarded in
the next experiment.

6.5 Free Classifier Weights
In the base configuration the weights of the embedding
network and the linear classifier head are shared. How-
ever, as an experiment the weights of the classifier layer
were split from those of the embedder, allowing them to
tune on their own. Performance did not increase how-
ever. The model performed slightly worse than with the
previous configuration, and took longer to train due to
the extra parameters.

Again, as in the case of label smoothing, it is possible
that given more time this configuration would outper-
form the others; in this case it would be prudent to
validate whether or not this is simply due to the addi-
tional trainable parameters by comparing it to a deeper
model (with as many trainable parameters) with non-
free classifier weights.

6.6 Best Configuration
As can be seen in Table 5, the best performing model
was the one with small intial embedding weights, the
OneCycleLR learning rate scheduler and dropout. As
such, this model configuration is hereby referred to as
M+dropout.

7 Comparing Search Methods
In the default system configuration, inference is made
using a 3 beam width beam search. As can be seen
in Table 6, there is a marginal improvement in BLAU
score when increasing the beam width to 6, but also a
two-fold increase in inference time. The greedy search,
despite being twice as fast as the 3-Beam search, looses
out quite substantially in performance. As such 3-Beam
was selected as a good tradeoff between efficiency and
prediction quality.

8 Example translations
Several translation examples are listed in Table 7. The
best translations are, not surprisingly, from the gov-
ernment dataset on which the model was trained. The
model seems to be able to translate not only from rela-
tively complex Norwegian compound words to pairs of
English ones (such as from “økonomibestemmelsene”
to “financial provisions”), but also between Norwegian
and English sentence structure, which often differ.

The model’s successful translation of the Beatles lyrics,
may be because they are fairly short sentences, contain-
ing mostly simple words that are likely to be within the
vocabulary.

Some of the worst translations are from the out-of-
domain book dataset, which also makes sense as none
of the samples were seen during training, and that most
of the samples are from an entirely different context
from what the model has trained on. The model appears
to make its worst errors when attempting to make sense
of words it has not seen, or only seen part of (due to
the BPE tokenizer splitting off common parts of words).
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(a) Training loss of the experiments

(b) Validation loss of the experiments

Figure 1: Training and validation loss of all the experiments listed in Section 6. The steps on the x axis denote
optimizer steps, which in this case is equal to batches.

Small init OneCycleLR Dropout Label Smoothing Free cls weights 4-gram-BLEU (book) 4-gram-BLEU (DIY)

X X X 0.164 0.357
X X X X 0.161 0.336
X X X X 0.161 0.381
X X 0.138 0.332
X 0.131 0.348

0.110 0.276

Table 5: 4-gram-BLEU scores for each experiment.
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Method Runtime 4-Gram-BLAU (book)

Greedy 11 sec 0.1568
3-Beam 24 sec 0.1640
6-Beam 43 sec 0.1641

Table 6: Comparison of search approaches during inference.

For example: “årstallet” is translated to “annual figure”.
Both “års” to “annual” and “tallet” to “figure”, make
some sense on their own, but not in this context. The
translation of “overgår” to “overlooking”, is also inter-
esting in a similar way. The model clearly understands
that “over” translates to “over”, but then guesses at what
the rest of the word might mean.

This misunderstanding of portions of words is likely due
to the BPE tokenizer splitting them. Thus a reasonable
path for further experiments (given enough resources)
would be an increased vocabulary size.

9 Conclusion

In this paper I opted to focus on the importance of hy-
perparameter tuning and training parameter tuning. I’ve
shown that just dialing in good parameters can take a
baseline model from a poor BLAU score of 0.11 to a
better, but still modest, 0.16.

A possible future direction is to combine the hyperpa-
rameter tuning approaches used in this paper with the
architecture experiments from papers such as (Chen
et al., 2019). As well as with data augmentation tech-
niques such as synonym replacement.
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Norwegian English, Manual
Backtranslation

English

Some good examples:

I slike tilfeller må du derfor
straks melde fra til NAV.

In such cases you must
immediately notify NAV.

In such cases, you must therefore
notify NAV immediately.

Mange av avtalene ivaretar
dermed ikke kravene til
rapportering i
økonomibestemmelsene.

Thus, many of the agreements
don’t meet requirements for
reporting in the financial
provisions.

Thus, many of the agreements don’t
fulfil the requirements for reporting in
the financial provisions.

“Nei, langtfra, min kjære Watson
— på ingen måte.

No, far from, my dear Watson, in
no way.

" No, far from, my dear Watson, in no
way.

“Det er interessant, ikke sant?” It’s interesting, isn’t it? " It’s interesting, isn’t it?"

Jeg pleide å være sint ung mann I used to be angry young man " I used to be angry young man

Jeg gjemmer hodet i sanden I’m hiding my head in the sand I’m hiding my head in the sand

Stopper tankene mine fra å
vandre

Stop my thoughts from wandering " Stop my thoughts from wandering

Some bad or mixed examples:

Vold i familien Violence in the family Wild in the family

“Nokså fornuftig!” sa Holmes. "Quite reasonable!" "Holmes" " Enoughly reasonable!" " Holmes ".

“De overgår virkelig Dem selv,
Watson,” sa Holmes, skjøv stolen
tilbake og tente en sigarett.

"You’ve truly outdone yourself,
Watson", said holmes, pushed the
chair back and lit a cigarette.

" They’re really overlooking yourself,
Watson," said Holmes, roof the chair
back and thought a cigarette.

Jeg setter årstallet til 1730.” I’m putting the year at 1730. I’m putting the annual figure to
1730.”

Dumme mennesker løper rundt Stupid people running around Runny people run around

Table 7: A table of example translations, both from the in domain government dataset and the out of domain book
dataset and DIY dataset. These results were produced using the best performing experiment model M+dropout,
described in Section 6.3.
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Abstract
Semantic parsing is key for virtual assistants
(e.g. Amazon Alexa, Apple Siri, and Google
Assistant) to understand users’ utterances and
take corresponding action(s). Traditionally, the
task-oriented intent and slot filling is solved
with rule-based or statistical systems. Seman-
tic parsing with shift-reduce parsers has shown
promising results on hierarchical representa-
tions of queries. More recently, sequence-to-
sequence models with pointer-generator mod-
ule have achieved state-of-the-art results in
parsing both simple and complex queries.

In this work, we demonstrate the usefulness
of pointer-generator network in task-oriented
semantic parsing with sequence-to-sequence
models. We experiment with sequence-to-
sequence models w/o pointer-generator mod-
ule, and show that adding pointer-generator
module greatly improves the results of naive
sequence-to-sequence models.

1 Introduction

Virtual assistants such as Amazon Alexa, Apple
Siri, and Google Assistant have played an impor-
tant role in people’s everyday life. At the core of
these voice assistants is the ability to process users’
utterances and perform corresponding tasks, such
as play song and set reminder. Traditionally, a slot-
filling system would classify the intent first and
then tag the necessary slots (Mesnil et al., 2013;
Liu and Lane, 2016). A more complex query with
multiple intents and nested slots would make such
slot-filling systems fail easily.

A Task Oriented Parsing (TOP) representa-
tion for intent-slot based dialog systems was
recently introduced by Gupta et al. (2018)
to capture complex nested queries. Figure
1 shows such a complex query with intent
IN:GET_RESTAURANT_LOCATION nested in-
side slot SL:DESTINATION. The structure of
TOP representation is so similar to standard con-
stituency parses that the modelling techniques of

Figure 1: Semantic tree for utterance “How far is the coffee
shop”.

constituency parsers can be easily adapted to solv-
ing this problem. Gupta et al. (2018) use linear-
time Recurrent Neural Network Grammar (RNNG)
(Dyer et al., 2016) to significantly improve the accu-
racy compared with strong sequence-to-sequence
(seq2seq) models, and Einolghozati et al. (2019)
further propose three approaches to improve their
model. A seq2seq model with pointer-generator
network has recently been proposed by Rongali
et al. (2020) as a unified architecture to handle
complex queries and has achieved state-of-the-art
(SOTA) on various public datasets.

In this paper, we examine the usefulness of
pointer-generator network in task-oriented seman-
tic parsing with seq2seq models. We experiment
with seq2seq LSTMs on the TOP dataset. We
find that a seq2seq LSTM model with the pointer-
generator module greatly improves the results gen-
erated by the same model without the pointer-
generator module.

2 Related Work

Task-Oriented Semantic Parsing has been a
well-researched field since the 1990s since the
release of the ATIS dataset (Price, 1990). The
task was traditionally approached by jointly clas-
sifying the intent and tagging the slots with se-
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quence tagging models (Mesnil et al., 2013; Liu
and Lane, 2016). Another line of work features
neural shift-reduce parsers (Gupta et al., 2018;
Einolghozati et al., 2019) to handle more com-
plex compositional queries. More recently, Ron-
gali et al. (2020) propose a seq2seq model us-
ing a BERT encoder (Devlin et al., 2019) and a
transformer (Vaswani et al., 2017) decoder with
a pointer-generator module, and present SOTA
results on three public datasets, which are TOP
(Gupta et al., 2018), SNIPS (Coucke et al., 2018),
and ATIS (Price, 1990).

Pointer-Generator Network was first intro-
duced by Vinyals et al. (2015) and later widely
used in NLP tasks where some words in the source
texts also appear in the target texts such as sum-
marization and style transfer (Paulus et al., 2018;
Prabhumoye et al., 2018; See et al., 2017). Jia
and Liang (2016) adopts a seq2seq RNN with an
attention-based copying mechanism for efficient
data recombination to boost accuracy on three se-
mantic parsing datasets.

3 System Description

We use simple seq2seq LSTMs as our baseline
model for parsing a source sentence into a target
semantic tree. For the pointer-generator model, we
add a pointer-generator module to the LSTM de-
coder. In this section, we describe how the queries
are formulated and the corresponding parses with
pointers for our model, and continue by describing
the encoder and decoder components.

3.1 Query Formulations and Parses with
Pointers

A seq2seq model is trained on samples with paired
source-target sequences. In order to implement the
pointer-generator module, we replace words that
are “copied” from the source texts in the target
sequences with corresponding pointers identifying
their positions in the source texts.

Take the example query from Figure 1. In our
model, the target sequence is reconstructed by com-
bining the intents with the corresponding slots,
where each slot also contains its sources. The
source-target pair for this example is then trans-
formed into the following.
Source:
How far is the coffee shop

Target:
[IN:GET_DISTANCE @ptr0 @ptr1 @ptr2

[SL:DESTINATION [IN:GET_LOCATION
[SL:CATEGORY_LOCATION @ptr3 @ptr4 @ptr5
]SL:CATEGORY_LOCATION ]IN:GET_LOCATION
]SL:DESTINATION ]IN:GET_DISTANCE

Here, @ptri is a pointer to the ith word
in the source sentence. Therefore, the span
“@ptr0 @ptr1 @ptr2” points to “How far is” in
the source text. We also replace the unified
closing bracket ] with custom closing brack-
ets for each intent and slot. Hence, the intent
[IN:GET_DISTANCE will have a custom clos-
ing bracket ]IN:GET_DISTANCE.

3.2 Encoder

We use a single-layer bidirectional LSTMs as en-
coder. We use a static word embedding model
pretrained with word2vec skip-gram (Mikolov
et al., 2013) on English Wikipedia to encode in-
put queries.

3.3 Decoder with Pointer-Generator

Our decoder is a single-layer unidirectional LSTMs.
Since the target sequences have been pre-processed
into the aforementioned special formats, the de-
coder embedding is initialized and trained together
with the model. The number of entries in the de-
coder embedding is the sum of tag set size (intents
and slots), pointers (to the source text), and special
tokens (e.g. “<pad>”).

At each decoding step, attention scores of the in-
put query are calculated to further generate the con-
text vectors. These unnormalized attention scores
are later concatenated with the decoder output to
produce final prediction. The context vectors are
then concatenated with the decoder hidden states to
generate scores for each word in the tag set vocabu-
lary. The tag set vocabulary contains the necessary
semantic parse symbols (i.e. intents and slots), as
well as some special tokens.

Finally, the unnormalized attention scores (over
the source sequence) and the scores over the tag set
vocabulary are combined and fed through a softmax
layer to obtain the final probability distribution.

In the example in Figure 2, we are trying to pre-
dict a target word after token “@ptr0”. As shown
in the figure, we compute the scores over the source
tokens (light blue, left) and the scores (dark green,
right) over the tag set vocabulary. The final distri-
bution is calculated by combining both scores and
parsing them through a softmax layer, and we ex-
pect the model to predict “@ptr1”, corresponding
to “far” in the source query.

36



Figure 2: Our seq2seq model with pointer-generator module (SEQ2SEQ-PTR). The model is currently decoding the symbol
after “@ptr0”, and by looking at the scores over the tagging vocabulary and the attentions over the source pointers, it generates
“@ptr1”, which points to the second word, namely “far” in the query.

4 Dataset and Evaluation Metrics

Dataset We use the TOP (Gupta et al., 2018)
dataset for all our experiments. It contains 44783
annotations with 25 intents and 36 slots. The
dataset is randomly split into 31279 training, 4462
validation, and 9042 test utterances.

Evaluation Metrics There are three metrics to
evaluate the systems. Exact match measures the
number of utterances whose parse trees are fully
predicted by the systems. Labeled bracketing is
commonly used in syntactic parsing (Black et al.,
1991), and we also use the pre-terminals (i.e. in-
tents and slots) in the calculations. Tree-Labeled
(TL) F1 compares sub-tree structures, instead of
just the token span. Tree Validity measures the
percentage of predicted trees which can form valid
trees via bracket matching.

5 Experimental Setup

In this section, we describe our detailed experimen-
tal setups.

LSTMs For both encoder and decoder, we use a
fixed hidden size of 200. Both encoder and decoder
contain a single layer. The encoder is bidirectional,
but the decoder is unidirectional.

Encoder embedding The embedding model has
a vocabulary of size 199,807 and vector dimension

of 300.

Decoder embedding The decoder embedding
has a vocabulary of size 226 (tag set of size 122, 4
special tokens, and 100 pointers) and vector dimen-
sion of 200.

Teacher-forcing We experiment with different
teacher-forcing rates during training.

Beam-search We experiment with different
beam sizes during decoding, besides the greedy
decoding method.

Learning rate We use a fixed learning rate of
0.0006.

Optimization We use Adam to optimize model
parameters.

6 Results and Discussion

We present the results of our best Seq2Seq-PTR
model in Table 1. Compared with the baseline
model, our Seq2Seq-PTR model generates better
results over all evaluation metrics, where the ex-
act match percentage is almost doubled. Results
also show huge improvements on Tree-Labeled
scores, with roughly 30 percentage points on F1,
precision, and recall. In terms of labeled bracket-
ing and tree validity, there are also considerable
improvements. With tree validity of 90.68%, the
baseline model also presents the strong ability of
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Model Exact match F1 Precision Recall TL-F1 TL-Precision TL-Recall Tree Validity
Seq2Seq-PTR 75.14 87.82 88.71 86.94 81.41 82.24 80.60 99.58

Baseline 38.56 72.61 62.51 67.18 54.69 47.08 50.60 90.68

Table 1: Results of the baseline model and our best Seq2Seq-PTR model (with teacher-forcing rate of 0.8 and
decoing beam size of 3).

Teacher-forcing Exact match F1 Precision Recall TL-F1 TL-Precision TL-Recall Tree Validity
0.3 71.26 84.37 89.66 79.66 79.07 84.03 74.66 93.86
0.5 72.38 86.33 88.87 82.06 79.62 82.93 76.57 95.61
0.8 73.63 86.03 88.06 84.09 80.07 81.96 78.27 98.50
0.9 73.35 85.70 87.88 83.64 79.75 81.77 77.82 98.67

Table 2: Results of our Seq2Seq-PTR model with different teacher-forcing rates.

Beam size Exact match F1 Precision Recall TL-F1 TL-Precision TL-Recall Tree Validity
2 73.51 86.98 88.20 85.79 80.37 81.51 79.27 99.39
3 75.14 87.82 88.71 86.94 81.41 82.24 80.60 99.58
5 74.50 87.87 88.65 87.10 81.36 82.09 80.65 99.48

Table 3: Results of our Seq2Seq-PTR model using different beam sizes at decoding time.

a basic seq2seq LSTM model. Adding the pointer-
generator module indeed greatly boosts the results
of a naive seq2seq LSTM model.

In seq2seq modelling, teacher forcing is a useful
strategy in training RNN networks. We experiment
with different teacher forcing rates in training our
Seq2Seq-PTR models. As shown in Table 2, nei-
ther a low teacher forcing rate (e.g. 0.3) nor a high
one (e.g. 0.9) is the most beneficial choice. In
our experiments, using a teacher forcing rate of
0.8 during training produces overall best results.
Results also show that using higher teacher forcing
rates increase tree validity, but the scores of other
evaluation metrics are compromised.

Beam search is a useful strategy at decoding
stage of a seq2seq model to generate better outputs.
In this work, we experiment with different beam
sizes with our Seq2Seq-PTR models. As show in
Table 3, using a moderate beam size of 3 produces
the best overall results, exact match and tree valid-
ity in particular.

The most profound disadvantage of the baseline
model is that it generates an output token from the
whole output vocabulary. For this reason, the gen-
erated semantic parses often contain tokens that do
not exist in the source sequences. We take a close
look at the semantic parses generated by the base-
line model on the test set, and find that out of 9042
instances, 3932 parses contain words that are not
present in the source sequences. However, for the
Seq2Seq-PTR model, since the output vocabulary
is bound by the the source sequences and the tag

set, it never generates any token that is not present
in the source sequences, apart from the intent and
slot labels. As shown in the following example, the
semantic parse of the baseline model contains out-
of-scope tokens “volunteer opportunies”, but the
Seq2Seq-PTR model produces the an exact match
to the gold tree.

Source:
What breakfast locations within
5 miles of me open at 6 am

Baseline parse:
[IN:UNSUPPORTED What [SL:CATEGORY_EVENT
volunteer opportunities ] open at 5 miles
of me Saturday at 6 am ]

Seq2Seq-PTR parse:
[IN:UNSUPPORTED What breakfast locations
within 5 miles of me open at 6 am ]

Gold parse:
[IN:UNSUPPORTED What breakfast locations
within 5 miles of me open at 6 am ]

7 Conclusion and Future Work

In this work we present the usefulness of pointer-
generator network in task oriented semantic parsing
using seq2seq LSTM models. Adding a pointer-
generator module greatly improves the results of
a simple seq2seq LSTM model over all evalu-
ation metrics. Our experimental results agree
with the SOTA model by Rongali et al. (2020),
where they incorporate pointer-generator network
in seq2seq models and their models outperform
previous SOTA shift-reduce parsers.
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For future work, we would like to carry on
the same line of research and explore pretrained
language models and transformers with pointer-
generator network. It is also interesting to experi-
ment with different embedding models to encode
the target sequences.
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Abstract

The task of targeted sentimental analysis is typ-
ically designed as sequence labelling problem.
We study the effect of the contextualized and
non-contextualized embedding models on ex-
tending the work on a baseline bidirectional
LSTM. We also introduce a layer-wise learning
rate decay during the fine-tuning phase of em-
bedding models. Results show that using large
contextualized neural language models can im-
prove the results significantly compared to non-
contextualized models. In addition, layer-wise
learning rate decay which allows to fine-tune
each layer of the pre-trained model with differ-
ent learning rate. This adds to the performance
of contextualized embedding models, that lead
to better results compared to using global learn-
ing rate for all the layers.

1 Introduction

Sentiment analysis aims to analyze and extract
opinions, views, and perceptions about an entity
(e.g., product, service, or an action). It has been
widely adopted by businesses helping them to un-
derstand consumers’ perceptions about their prod-
ucts and services. Understanding and discovering
the opinions in this online generated data could
be useful for lot of applications. Analyzing the
opinions in the reviews of the customers on an E-
commerce platform could help product deliverer to
improve their product or marketing strategy.

The idea of sentiment analysis has been re-
searched in the Natural Language Processing
(NLP) widely. Several methodologies and tech-
niques has been developed to understand and ex-
tract the sentimental opinion from the stream of
text. Positive, negative and neutral are basic senti-
ments, but there are more complex sentiments on
which work has been done as well. As there is a
gigantic amount of textual data available, it is im-
possible to manually adsorb the information about
the opinions in the text. Hence, it creates a need

for developing an computational framework which
can automatically analyze and understand the sen-
timents in the complex texts. This resulted in the
development of various opinion mining sentiment
analysis frameworks (Sadr et al., 2019; Liu, 2012).

Traditional sentiment analysis mainly focused
on the identifying the sentiment polarity for a sen-
tence or document level (Turney, 2002; Pang et al.,
2002; Yu and Hatzivassiloglou, 2003), hence pre-
dicting the opinion of the whole document. It is
assumed that the complete document or sentence
conveys a single sentiment while making a predic-
tion, pragmatically it is not correct to make this
assumption.

Research in sentimental analysis for the last few
years has focused on the targeted sentiment analy-
sis. On contrast to conventional sentiment analysis,
targeted sentiment focus on the target entities and
determine the sentiments for them, which makes it
more informative analysis.

Targeted sentiment analysis has two underlying
sub tasks, namely sentiment classification and en-
tity recognition for each mention of the entity that
is applicable to both of these cases. Sentiment
analysis is the basic classification task and entity
recognition is a pattern matching task. (Mitchell
et al., 2013) has introduced an approach where
these two tasks are joined together as an exten-
sion to the named entity recognition task. It has
been shown in the figure 1, where in (a) they are
shown as two separate tasks and in (b) it has been
collapsed together.

2 Dataset

The dataset used for this task is NoReCfine (Øvre-
lid et al., 2020), which is fine-grained sentiment
analysis dataset in Norwegian. Source of this
dataset is review articles across a wide range of do-
mains from multiple news-resources which include
movies, products, games, music and many more.
In this dataset, text is annotated for sentimental po-
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Figure 1: Targted sentimental analysis presented as
joint task of sentiment classification and entity recogni-
tion (Zhang et al., 2015)

larity, target and holders of the expression at token
level. We only focus on the sentiment polarity and
target of the sentiment in this final exam submis-
sion for IN5550. Table 1 presents the dataset and
its annotated targets. The dataset is distributed with
pre-defined train, development and test splits.

id Train Dev Test Avg. len
sents 8634 1531 1272 16.8

Targets 5044 877 735 2.0

Table 1: Number of sentences and annotated targets
across the data splits

2.1 Data format

The dataset provided for final exam is in conll-
format. Each line in the dataset have a token and
label which are separated by the tab. Sentences
are separated by a new line. The labels are BIO +
polarity (Positive, Negative) for a total of 5 labels
(B-targ-Positive, I-targ-Positive, B-targ-Negative,
I-targ-Negative, O).

Table 2

Labels Train Dev Test
B-targ-Positive 3215 561 516
I-targ-Positive 3389 615 541

B-targ-Negative 1537 252 206
I-targ-Negative 1419 238 155

Table 2: Label distribution in each split

3 Methodologies

3.1 Pre-trained embedding

We use pre-trained embedding from three differ-
ent models to extract token embedding namely:

Word2Vec Continuous Skipgram, NorBERT (Kutu-
zov et al., 2021) and NorBERT2. Word2Vec model
is trained on Norwegian-Bokmaal CoNLL17 cor-
pus. NorBERT is trained on Norsk Aviskorpus1,
Norwegian Bokmål Wikipedia Dump of September
20202 and Norwegian Nynorsk Wikipedia Dump of
September 2020 corpuses. NorBERT2 is trained
on Norwegian Colossal Corpus (NCC)3 and C4
Web Corpus4 corpuses. Embedding dimension for
Word2Vec is 100 and 768 for BERT based models.

3.2 Layer-wise Learning Rate Decay
(Zhang et al., 2020) describe layer-wise learning
decay as setting the higher learning rates for the
higher layers and lower learning rates for lower
layers of the language model. It is also termed as
discriminative fine-tuning by (Howard and Ruder,
2018) who describe this method as fine-tuning us-
ing different learning rates for each layer instead of
using a global learning rate for all the layers. Ex-
periments with the learning rate have revealed two
insights. First, NorBERT (and BERT in general) is
very sensitive to the learning rate, especially when
it is fine-tuned. In such cases, the learning rate
should be set to 1e-5(that is 0.00001) or a smaller
value. Secondly, the set up with the gradually in-
creasing learning rate described in (Howard and
Ruder, 2018) has resulted in the best performing
model over all experiments we have conducted.
The core idea of (Yosinski et al., 2014). is that the
lower layers of BERT encode general and common
information from the input, while higher layers en-
code more specific and localized information for
the downstream task in hand. Following (Howard
and Ruder, 2018), we divide NorBERT layers in
three groups and set up different learning rates for
each group. BERT has one embedding layer, 12
hidden layers and one pooler layer. We reuse the
scaling factors for groups and initialise our learning
rate with 1e-5, the default value that has worked
well in other experiments. The groups and learning
rates are shown in Table 3.

3.3 Evaluation metrics
Evaluation metrics used for this task are Binary
Overlap and Proportional Overlap (Katiyar and

1http://avis.uib.no/avis/
om-aviskorpuset/english

2https://dumps.wikimedia.org/
3https://huggingface.co/datasets/

NbAiLab/NCC
4https://aclanthology.org/2021.

naacl-main.41/
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Group Layers type Layers number learning rate
Group-1 bert.embeddings and bert.encoder 0 to 3 1e-5
Group-2 bert.embeddings and bert.encoder 4 to 7 2e-5
Group-3 bert.embeddings and bert.encoder 8 to 11 3e-5
Group-4 bert.pooler 3.6e-5

Table 3: Fixed set of hyperparameters used for Bi-LSTM experiments

Cardie, 2016). Binary overlap determines the cor-
rectness of the overlapping between gold and pre-
dicted span. Proportional span determines the over-
lap with the predicted span as precision and overlap
with the gold span as recall, which makes it a more
strict metric than binary overlap. We just focus on
the binary and proportional for the targets.

4 Experimentation

Baseline provided is a simple Bi-LSTM model
which takes in embedding from a pretrained
word2vec model. In this section, we discuss the
experimental setup of methodologies defined in the
section 3.

4.1 System Specifications

The system used for training was a HP Pavilion
Gaming Desktop TG01-0 model with an AMD
Ryzen 7 3700X processor, 16 GB physical mem-
ory, an 8 GB NVIDIA GeForce RTX 2060 Super
graphics processing unit (GPU), and a 512 GB
SSD.

4.2 Baseline Experimentation

We experimented with fine-tuning embedding mod-
els word2vec (58) and use Bidirectional LSTM
with different number of layers while keeping the
fixed set of hyperparameters shown in Table 4

Hyperparameter Output
Epochs 20
Dropout 0.2
Batch size 50
Learning rate 1e-2
Hidden layer 100
Loss function CrossEntropyLoss
optimizer AdamW

Table 4: Fixed set of hyperparameters used for Bi-
LSTM experiments

4.3 NorBERT

We run the experiments for both Norbert mod-
els with frozen BERT embedding layers and fine-
tuning them by keeping all the other hyperparame-
ters static. We choose the default model to compare
different design choices with the results of this de-
fault model. These choices are largely inspired
by the original BERT paper (Devlin et al., 2018).
The following choices have been made for the Nor-
BERT default model:

• If the NorBERT tokenizer outputs more than
one token for one input word then first
(sub)token is tagged with the true named en-
tity tag while other subtokens are tagged with
-100 (padding that will be omitted when com-
puting the loss);

• 1 linear classification layer is used on top of
the NorBERT representation;

• last hidden-layer output is used as the repre-
sentation of the input token;

We crop or pad all sentences up to 128 tokens
and fill the longer sentences with an “O” tag for
cropped words. We explore the lengths of the sen-
tences in the train dataset and found that all sen-
tences are shorter than 103 CoNLL-U tagged to-
kens, so we assume that after BertTokenizer we
will have 128 tokens at maximum. In addition, we
pad the labels with the value -100 that is the default
value to ignore by BERT-like models and set the
parameter of the loss function to ignore the label
-100 so that the padding output does not affect the
loss and training progress.

We assign the initial label (corresponds to the
non-tokenized full word) to the first subtoken (sub-
word). The rest of the subtokens are labelled as
padding. The default choice is to use the first token
if tokenization splits the word into more than one
token. This option is also used in the original pa-
per by (Devlin et al., 2018). We hypothesise that
for named entities the first token is a meaningful

43



one, because prefixes are not as common in named
entities as in general words.

We run experiments with frozen NorBERT lay-
ers and train only the classifier layers rate of 1e-2.
We have two learning rate strategies; (i) Experi-
ments with fine-tuning the NorBERT embeddings
using a global learning rate of 1e-5 for all the Nor-
BERT layers and the classifier layers. (ii) Exper-
iments with discriminative learning rate strategy
while fine-tuning the NorBERT embeddings.

We run experiments for this discriminative layer-
wise learning rate strategy for the default setting
of all the other hyperparameters. To reiterate, the
default model uses one linear classification layer,
the first subtoken and the last layer output from
NorBERT.

5 Results

In this section, we discuss the results quantitatively
and qualitatively for our experiments. We also
discuss the computational aspect of the training

5.1 Quantitative Results

Table 5 and 6 shows the results for all the exper-
iments conducted. Classifier column shows the
type of neural model used after getting embeddings
and number of layers. Strategy shows the learn-
ing rate strategy. Table shows that we improve
the results considerably over the baseline. Best
results for each metric are highlighted, where it
can be observed that we improve each metric more
than double for both target binary and proportional
overlap.

We will go through the results step by step mov-
ing up from the baseline. Baseline model repre-
sents the configuration of word2vec embedding
model with single layer BiLSTM without fine-
tuning. When we finetune the word2vec embed-
ding model and increase the number of the BiL-
STM layers, we observe a slight improvement over
the base line as number of layers are increased.
Since the training data is not that big and word2vec
is non-contextualized embedding model, hence we
don’t see significant gains for sequence labelling
task after the fine-tuning.

When we move from non-contextualized model
to BERT contextualized embedding models we
start to see a decent improvement in the results.
Even without fine-tuning both BERT models (Nor-
BERT and NorBERT2), we see an improvement
over fine-tuned word2vec model. Fine-tuning

BERT models give us significant improvements
compared to all previous experiments.

Results show that the discriminative learning
rate strategy tend to perform better than when we
use global learning rate for all the BERT layers.
We also observe that NorBERT2 tends to perform
better than NorBERT, it could be associated with
the fact that it has been trained on the significant
large corpus than NorBERT.

Figure 2 shows the confusion matrix for the best
model, NorBERT2 with BiLSTM followed by one
linear layer classifier. As most of token are labeled
"O" in the text, model tend to learn to maximize
the objective to get prediction of "O" correct. It can
be observed that it has least portion of false neg-
atives and it is most falsely predicted class when
true label is other than "O". Analyzing the dataset
showed us that there are more target labels with
positive polarity than negative, as shown in table 2.
Hence model is able to predict positive polarity
better than negative. There is almost even split
between true positives and true negatives for B-
targ-Positive and I-targ-Positive labels. On the
other hand, we observe twice true negatives com-
pared to true positives for B-targ-Negative and
I-targ-Negative labels.

Figure 2: Confusion matrix for the best model that is
Norbert2-BiLSTM-Unfreeze-1

5.2 Qualitative Results

Table 7 shows some examples of the text passed
into the model for the targeted sentiment analysis.
First column shows the input text, target and po-
larity in the input text is highlighted and second
column shows the predicted polarity of the identi-
fied target/entity. The first example text is about
the good quality of "Garmin watches"(target) ,
our model manages to identify target, it’s span and
polarity correctly. In the second example text says
that "Garmin" (target) brand are not that hated
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Embedding Classifier Fine-tuned Strategy Precision Recall F1
Word2Vec (Baseline) BiLSTM-1 False Global 0.384 0.328 0.354
Word2Vec BiLSTM-1 True Global 0.384 0.409 0.396
Word2Vec BiLSTM-2 True Global 0.386 0.377 0.382
Word2Vec BiLSTM-3 True Global 0.348 0.506 0.412
Norbert Linear-1 False Global 0.544 0.405 0.464
Norbert2 Linear-1 False Global 0.526 0.538 0.532
Norbert Linear-1 True Global 0.642 0.584 0.612
Norbert2 Linear-1 True Global 0.632 0.628 0.630
Norbert Linear-1 True Discriminative 0.654 0.606 0.629
Norbert2 Linear-1 True Discriminative 0.719 0.577 0.640
Norbert2 BiLSTM-1 True Discriminative 0.674 0.623 0.648

Table 5: Binary Overlap for targets in test data

Embedding Classifier Fine-tuned Strategy Precision Recall F1
Word2Vec (Baseline) BiLSTM-1 False Global 0.288 0.204 0.239
Word2Vec BiLSTM-1 True Global 0.264 0.229 0.245
Word2Vec BiLSTM-2 True Global 0.272 0.195 0.227
Word2Vec BiLSTM-3 True Global 0.194 0.223 0.207
Norbert Linear-1 False Global 0.449 0.274 0.341
Norbert2 Linear-1 False Global 0.375 0.263 0.263
Norbert Linear-1 True Global 0.534 0.399 0.457
Norbert2 Linear-1 True Global 0.526 0.439 0.479
Norbert Linear-1 True Discriminative 0.538 0.415 0.469
Norbert2 Linear-1 True Discriminative 0.599 0.422 0.495
Norbert2 BiLSTM-1 True Discriminative 0.555 0.456 0.501

Table 6: Proportional Overlap for targets in test data

and also they are not stylish, annotated sentiment is
negative to this but our model predict it as positive
as two parts of sentences convey different polarity
about the target. Third text mention "evil ogres"
as a target entity with negative polarity which our
gets it write. In the fourth and fifth example our
model gets the target entity right but with wrong
polarity.

5.3 Computational Results

The system used was for training was a HP Pavil-
ion Gaming Desktop TG01-0 model with an AMD
Ryzen 7 3700X processor, 16 GB physical memory,
an 8 GB NVIDIA GeForce RTX 2060 Super graph-
ics processing unit (GPU), and a 512 GB SSD.

Table 8 shows the computational cost for run-
ning these experiments for each model configu-
ration. We observe that time taken to finish one
epoch for NorBERT models is considerably more
than the baseline model. Among BERT models,
NorBERT2 is computationally more expensive as
it is trained on 15 billion token compared to the

3.5 billion token for NorBERT. Time for NorBERT
with bidirectional LSTM followed by a linear layer
as classifier is not shown in the table 8. The reason
being saga GPU resources are scarce and the PC
used for the training was running out of memory,
so experiments were run on CPU. It took more than
1 and half an hour for each epochs.

5.4 Conclusion and Future Work

We explore different contextualized and non-
contextualized embedding model and, different
finetuning approaches for embedding model for
downstream task of targeted sentiment analysis.
We conclude that contextualized embedding mod-
els tends to perform better than non-contextualized
models for sequence labelling task like named en-
tity recognition. We used layer-wise learning rate
decay strategy for fine-tuning and it gave better
results than global learning rate for all the layers
of the embedding model. Future work could be
including character level information and using
conditional random fields with contextualized em-
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Input text with gold label of target and polarity Predicted Polarity
Garmin satser på urmaker kvalitet [Garmin Fenix Chronos]Positive
er meget god tur-og treningskamerat ,og mye flottere enn
vanlige smartklokker. Positive
Riktignok har ikke [Garmin]Negative vært blant de mest forhatte,
men de har neppe samlet noen stilpoeng blant de klokkebevisste. Postive
Blir jeg engasjert slik at jeg bryr meg om hvordan det går ? På plussiden
er at [enkelte onde orker]Negative ‚til tross for at de ser ti
ganger verre ut enn i " Ringenes herre " Negative
[" My Cousin Rachel "]Positive ikke kan sies å være helt på høyde
med den gamle mesterens adapsjoner , er det ganske enkelt fordi de avgjørende
vendingene i plottet ikke kommer overraskende nok. Negative
Les anmeldelser av sesong 4 : For mye moro Det interessante med
[tidsgrepet]Negative , er at det burde gi seerne en enda mer perfekt unnskyldning til å
binge hele sesongen. Positive

Table 7: Examples of the output from the model performing targeted sentiment analysis

Model Time(sec)
Word2Vec-BiLSTM-Freeze-1 4

Word2VeC-Bi-LSTM-Unfreeze-1 9
Word2Vec-Bi-LSTM-Unfreeze-2 11
Word2Vec-Bi-LSTM-Unfreeze-3 13

Norbert-Linear-Freeze-1 39
Norbert2-Linear-Freeze-1 50
Norbert-Linear-Unfreeze-1 108

Norbert2-Linear-Unfreeze-1 127

Table 8: Time taken per epoch for each model configu-
ration

bedding models.
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Abstract
This paper explores the possibility of a
lightweight, fast and transformer-based model
for translations from Norwegian into English.
The aim is to enable fast and mobile translation
from a language spoken only by a few people
into English. Special focus is given to the han-
dling of sparse vocabulary and small datasets
and the size of the model. The experiments car-
ried out show that even with small data sets and
small models, measured by the number of pa-
rameters and inference time, reasonable to good
translations can be achieved. Experiments are
performed with both smaller and larger models.
A trade-off is made to show that even a reduced
number of parameters does not significantly
worsen the translation. The BLEU score serves
as a benchmark for translation quality.

1 Introduction

Machine Translation has seen a tremendous in-
crease in performance through the additions of
neural-based encoder-decoder architectures (Cho
et al., 2014). In concept, the encoder encodes the
source sentence into a representation for the de-
coder to use. The decoder uses the encoded repre-
sentation together with the already predicted sub
word tokens to produce a translation of the input
sentence (visualized in Figure 1). An emerging
issue when using RNNs as the underlying base
architecture in the encoder-decoder is that transla-
tion performance suffers when translating longer
sentences because the whole sentence is just repre-
sented by a single state. This problem is solved by
the attention mechanism and transformer architec-
ture (Bahdanau et al., 2014; Vaswani et al., 2017).
Attention in transformers is facilitated with the help
of queries, keys, and values. A key is a label of a
word and is used to distinguish between different
words. The query checks all available keys and se-
lects the one, that matches best. So it represents an
active request for specific information. Key and val-
ues always come in pairs. When a query matches

a key, not the key itself but the value of the word
gets propagated further. A value is the information
a word contains.
This work focuses on light-weight models for mo-
bile systems like smartphones. The aim of this
paper is not to produce the best performing mod-
els in terms of BLEU score. Rather, we propose a
trade-off between quality of translation and infer-
ence speed.

2 Related Work

The architecture introduced with the transformers
has greatly advanced the quality of machine trans-
lation. Mao et al. (2021) shows how transform-
ers can also be successfully used on mobile de-
vices by means of downsizing procedures. This
is in line with the goal of this work to develop
a lightweight model. The work of Murray et al.
(2019) shows that a transformer with reduced size
does not necessarily result in poorer quality in the
translation. This also depicts the general aim of
this work. Ranathunga et al. (2021) deals with the
problem of the lack of larger, aligned datasets for
machine translation. The lack of training data is
also a researched topic of this work.

3 Dataset

Three different datasets serve as the data basis for
training the model. The first is derived from the
Bilingual English-Norwegian parallel dataset from
the Office of the Auditor General (Riksrevisjonen)
website and the Public Bokmål- English Parallel
Corpus (PubBEPC).1 Thus, this is very formal lan-
guage with little colloquial vocabulary. From now
on it will be referred to as the government dataset.
The second dataset is translated subtitles from the
website opensubtitels.org,2 compiled by Lison and
Tiedemann (2016). Thus, this dataset reproduces

1www.riksrevisjonen.no/, www.nav.no/no/
person, www.nyinorge.no/

2http://www.opensubtitles.org/
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the structures and vocabulary of films and series, so
it is closer to colloquial language. From now on, it
will be referred to as the subtitle dataset. The gov-
ernment dataset and the subtitle dataset were also
merged into a combined dataset. The third dataset
is a compilation of everyday sentences. This also
reflects the use case of the model. It is intended to
be used for translating everyday situations. Thus,
the dataset consists of simple, predominantly short
and colloquial sentences.The data set was derived
from the vocabulary of the online language tool
Babble.3 The samples from the data set mainly
represent colloquial language. When selecting the
sentences, care was taken to include simple, short
sentences as well as longer and more complex sen-
tences. Two sentences are given below as examples.
1) "Han kan hjelpe deg." with the expected transla-
tion "He can help you." and 2) "T-banen går hvert
sjette minutt om dagen, og hvert tiende minutt om
kvelden." with the expected transaltion: "The sub-
way runs every six minutes a day, and every ten
minutes in the evening.". From now on, it will be
referred to as the DIY dataset. It is also the first
of two datasets used for evaluation purposes. The
second dataset to be evaluated is the translation of
the book "Hound of the Baskervilles" by Arthur
Conan Doyle. The sentence structures contained in
the data are from the year 1902; older and literary
language structures are predominantly used.

3.1 Dataset statistics

The data sets used differ in size. For example, the
data for training is significantly larger than the two
data sets used for validation. However, the average
length of the sentences does not differ very much.
The combined data set has 7.9 words and the DIY
data set 6.7. The book data set has 13.6. Thus,
shorter but also longer sentences are tested during
the validation.

Name samples avg. length
DIY 101 6.7
government 50000 15.3
combined 300000 7.9
subtitles 250000 6.4
book 2500 13.6

Table 1: Overview over the sample size and average
sample lenght in the used datasets.

3https://my.babbel.com/dashboard

4 Experimentation

To establish a baseline (now called experiment 1
subsection 5.1), a model was trained based on the
transformer architecture. The available datasets
except the DIY dataset and book dataset served
as the training basis. A transformer model was
trained on each dataset. It was tested against a
validation set of each dataset (in-domain) and the
newly assembled DIY dataset and book dataset,
out-of-domain. The hyperparameters of the
baseline are based on the related work, default
values in the PyTorch and Hugging Face library
and will be explained in the following paragraph.4

Adam with a default learning rate of 0.003 was
used throughout all experiments. The tokenizer
was generated on the basis of the combined
training data and the vocabulary size was set to
30.000 subword tokens. The model is composed
on an encoder and a decoder with a hidden size of
100. For the baseline, 50 epochs were trained with
a batch size of 4096. At the start of the training,
the model had a "warm-up phase" of 25 steps.
Here, the learning rate is successively increased
to the target value of 0.003. This ensures a more
stable training at the beginning.
After the baseline was established, variations
of the training were started. All variations are
trained on 50 epochs. A more efficient training
would have been possible since many models loss
plateaued before the 50th epoch but for simplicity
reasons we choose 50 epoch as a standard for all
experiments. The first variation implemented was
parameter sharing (experiment 2 subsection 5.2).
This ensures that layers share their parameters
and the models are reduced in size. The model
is optimized for use on mobile devices such as
smartphones. A small, low-computing model is
therefore the goal of this work. The complexity
of the model can only be increased as long as
the operability on mobile devices is guaranteed.
The sharing of parameters is maintained over all
experiments except the baseline.
The most promising step is to increase the number
of encoder and decoder layers in the model
(experiment 3 subsection 5.3) to allow for more
complexity. The number of epochs, the warm-up
phase and the learning rate remains unchanged.
The next step is to increase the hidden size (exper-

4https://pytorch.org/, https://
huggingface.co/docs/tokenizers/api/
tokenizer
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Figure 1: Neural Machine Translation Architecture

iment 4 subsection 5.4) to reduce the difference
to the classification layer to prevent a potential
information bottleneck between the default hidden
size of 100 and the classification output size of
30.000. With an increased hidden size of 200, it
was doubled compared to the previous experiment.
The next experiment was realized with a reduction
in vocabulary size (experiment 5 subsection 5.5).
The focus of this paper is on simple basic
vocabulary for everyday situations. Therefore,
a limitation to a smaller vocabulary is justified.
The vocabulary size was reduced from initially
30,000 to 5,000 subword tokens for both languages
combined, i.e. to 1

6 of the size.
The last experiment (experiment 6 subsection 5.6)
is a combination of previous experiments with the
addition of multiple attention heads. In this run,
the hidden size was increased to 300. This size
also allows the number of attention heads to be
increased to 3. It is hoped that this will lead to a
better understanding of the context. The number of
encoders and decoder layers is set to 3 and allows
for more complexity.

All model trainings were performed on the com-
puting cluster Saga with dedicated GPUs.5 The
model inference was run on a local computer with
an Intel i7 CPU to make performance difference
between experiments more significant. So all time
measurements are based on this particular machine.
The unit ’seconds per batch’ used in this paper
refers to the time measured on this exact local
machine and should not be seen as absolute time
measurements but rather as numbers in relation
to each other. Despite the focus of this work on
low-computational mobile devices no actual ex-
periments were carried out on smartphones. Per-
formance improvements achieved on desktop ma-

5https://documentation.sigma2.no/hpc_
machines/saga.html

chines will be proportional similar on mobile de-
vices so the experiments done on desktop comput-
ers will still stay relevant to the goal of this paper.

5 Evaluation

Previously described experiments are evaluated in
the next sections. The section order follows the
numbering of the experiments from one to six. Dur-
ing the generation of the predictions, there are two
algorithms that both search for the most likely trans-
lation, greedy search and beam search. Greedy
search is the faster one, and beam search is more
sophisticated. During the evaluation, random sam-
ples of both algorithms were tested. It turned out
that greedy search is significantly faster, but there-
fore delivers a poorer result. In direct comparison
with the model from experiment 6, trained on the
combined dataset and evaluated against the DIY
dataset, greedy search achieves a BLEU score of
41.2 (presented in section 5.6). Beam search with
a beam size of four, on the other hand, delivered
a BLEU score of 46.9 with an inference time of
1.984 batches per second. The better BLEU score
of (5.7 points) does not compare to the significantly
increased batch inference time (5.2 times), since
the aim of this work is to create a particularly fast
model. Therefore, Beam search will not be consid-
ered any further.
The last section (5.7) summarizes interesting sen-
tence structures and translations.

5.1 Baseline

The metric focus in the comparison of the different
models is on the BLEU score and its interpretation
(Lavie, 2010). The baseline training results on the
combined dataset with the DIY dataset as valida-
tion set amount to a BLEU score of 34.8 after 50
epochs (see number one in Figure 3). This value
indicates comprehensible to good translations. In
comparison, a validation using the book dataset re-
sults in a score of 10.1, which, interpreted, means
that the model has difficulty understanding the es-
sentials. The big difference in the BLEU score be-
tween the DIY dataset and the book dataset should
carry through the further experiments. This is ex-
plained by the fact that the DIY dataset consists of
simple, everyday sentences that are contained in
this way or very similarly in every larger dataset,
including in the combined dataset. The mixture of
the English version of the Norwegian government
website and the subtitles depicts formal language
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and colloquial speech. The model has no difficulty
translating simple sentences. In comparison, the
book dataset consists of literary sentences, which
are not the same as colloquial or formal language
in the combined dataset. This is the reason for the
lower score.
If the model is trained on the government dataset
only, it achieves a BLEU score of 2.2 when val-
idated by the book dataset, so the translation is
almost unusable. The formal sentences of the train-
ing dataset seem to be very different from the lit-
erary sentences. A validation by the DIY dataset
also only achieves a score of 6.17 with the same
interpretation. Thus, apparently no sentences of
everyday use are found in the training dataset, their
structure is unknown to the model.
If the model is trained on the subtitle dataset, it
achieves a score of 8.6 in the validation with the
book dataset, and 30.1 with the DIY dataset. These
results confirm the previous assumption. Subti-
tles and colloquial language are very close, literary
language deviates too much in its structure. Fig-
ure 3 depicts the BLEU scores of all models versus
their number of parameters. This is a valuable met-
ric since the goal of this paper is to find the best
translation while being constrained by low compu-
tational power. The optimal model would have a
high BLEU score while still having a low amount
of parameters. So in Figure 3 this model would
be located in the upper left part. A bad model
would be located in the bottom right part with a
low BLEU score while still having a high amount
of parameters.

5.2 Shared Parameters

The parameters of the model can be shared between
the embedding layers and the classification layer,
since input and output sizes are the same (visual-
ized in Figure 1). Sharing the parameters in embed-
ding and classification layers worsened the BLEU
score enormously and was therefore not further con-
sidered. Therefore this experiment only examines
shared parameters between the embedding layers
and not between embedding and classification lay-
ers. The BLEU score with shared parameters is a
little worse than in the baseline and decreased from
10.1 to 9.4 by 7.4% on the book dataset. On the
DIY dataset, the BLEU score decreased by 6.4%
from 34.8 to 32.7 (see Table 2). The BLEU score
thus decreased on average by 6.9% on both vali-
dation datasets. The slight decrease in translation

1 2 3 4 5 6
DIY 34.8 32.7 45.9 32.4 25.6 41.2
Book 10.1 9.4 12.9 10.9 9.6 14
Val. 21.4 18.6 25.7 23 17 15.2

Table 2: BLEU scores of all experiments on DIY,
book and validation datasets. 1 = baseline, 2 =
shared params, 3 = encoder/decoderlayer inc.,
4 = hidden size inc., 5 = decreased vocab., 6 =
mixed

quality is expected and most likely due to param-
eters having represent more information with the
same weight. The inference speed per batch in sec-
onds increased from 0.12 seconds to 0.13 seconds
compared to the baseline. The difference can be
attributed to natural variations in execution time.
The inference time is therefore considered to be
equivalent. An improvement of the inference time
was also not expected in this experiment, since the
number of computations is the same compared to
the baseline but now shared parameters in multi-
ple computations. Only the model size could be
reduced from 25.3 MB (6.233.132 parameters) to
13.3 MB (3.233.132 parameters). On end devices
with little memory or for use on the Internet, this
saving can be significant.

5.3 Multiple Encoder/Decoder Layers

In this experiment, the number of encoder and de-
coder layers was increased from 1 to 2 to give the
model more flexibility. Thus, with a training of 50
epochs on the combined dataset and the validation
with the DIY dataset, the model achieved a BLEU
score of 45.9. The quality of translation is fairly
high and sentences are clear and good structured.
This is an increase of over 11 points compared to
the baseline with the same data. The increment
of the layers resulted only in a minor increase in
model parameters compared to the shared param-
eters experiment from 3.2m to 3.4m parameters
(6.3%).
Validating the same model with the book dataset,
a BLEU score of 12.9 is achieved, which means
that the model still has difficulty understanding the
essentials. However, there is also an improvement
of almost 2 points compared to the baseline. If the
validation data is in domain, the model achieves
a score of 25.6, the sentence structures are under-
stood, but there are still grammatical errors. Com-
pared to the baseline, this is an increase of just over
5 points. 2 points improvement with an in domain
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Figure 2: BLEU scores of six different models against
their number of parameters. 1 = baseline, 2 =
shared params, 3 = encoder/decoderlayer inc.,
4 = hidden size inc., 5 = decreased vocab., 6 =
mixed

validation using the subtitles dataset.
In general, it can be said that by doubling the lay-
ers, there is a significant improvement in the per-
formance of the model. Thus, this was a useful
adaptation.

5.4 Increased Hidden Size

An increase of the hidden size from 100 to 200
results in an increase of all neurons in each layer in
the transformer. Thus also increases the number of
trainable parameters by a significant amount. The
BLEU score of the DIY dataset decreased from
34.8 to 32.4 by 7.4%. In contrast the score of
the book dataset increased slightly from 10.1 to
10.9 by nearly 8%. This observation shows that an
increase of the hidden size neurons can have a dif-
ferent effect depending on the dataset used for val-
idation. While it worsens the performance on the
simple DIY dataset it improves the translations on
the more sophisticated book dataset. The increased
hidden size also results in an increase of parame-
ters. In comparison to the baseline parameters are
increased from 6.2 m to 6.8 m. Parameter shar-
ing is still applied which decreased the parameters
before to 3.2 m. So in fact parameters in this ex-
periment nearly doubled (93% increase) compared
to the shared parameters experiment. This also has
an impact on inference time which increased from
0.12 seconds per batch to 0.23 seconds per batch.
The increased is visualized in Figure 2. The needed
inference time is the second highest after experi-
ment six (see 5.6) despite number of parameters

Figure 3: BLEU scores of six different models against
their number of parameters. 1 = baseline, 2 =
shared params, 3 = encoder/decoderlayer inc.,
4 = hidden size inc., 5 = decreased vocab., 6 =
mixed

being very similar to the baseline.

5.5 Decreased Vocabulary Size

In this experiment, the vocabulary size was greatly
reduced. On the one hand, a reduction of the vo-
cabulary size affects the number of predictable sub-
word tokens. On the other hand, a smaller vocabu-
lary size also decreases the required parameters in
the embedding as well as classification layers. The
number of parameters compared to the baseline
could be reduced from 6.2 m to 0.7 m and thus to
1
9 of the original size. The reduction in parameters
is not solely due to the smaller vocabulary but is a
combination of smaller vocabulary and shared pa-
rameters as shown in the experiment 5.2. But even
in comparison to the decreased parameters with
shared parameters a smaller vocabulary decreases
the number of parameters to 1

5 . Reducing the pa-
rameters slightly worsens the performance of the
model. Compared to the baseline, the BLEU score
on the DIY dataset decreased from 34.8 to 32.7
by 6.1% and the BLEU score on the book dataset
decreased from 10.1 to 9.6 by 4.7%. The inference
speed was halved from 0.12 seconds per batch to
0.06 seconds compared to the baseline. The model
size was reduced from 25.3 MB (6.2 m) to 3.2 MB
(0.7 m parameters).

5.6 Mixed

The next step was to add another layer, raise the
hidden size to 300 and add two more heads of at-
tentions. The layers share their parameters again
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and a total number of 14.4 m parameters is reached.
When trained on the combined dataset and vali-
dated by the DIY dataset, the model achieved a
BLEU score of 41.2. Compared to the baseline
this is a significant improvement by over 18%. The
BLEU score of the book dataset also improved
from 10.1 to 14. All those improvements come at a
large computational cost. As seen in Figure 2 the
number of parameters and inference time per batch
are by far the highest. In comparison to the base-
line parameters have increased by over 230% and
inference time by over 640% to nearly 0.8 seconds
per batch. Despite this model generating the best
translations for the Norwegian sentences it is not
the optimal model measured by our computational
constraints.

5.7 Interesting findings

Since language cannot only be assessed on a nu-
merical level, the translations of the results were
also examined in terms of content and semantics.
For this purpose, the predictions of the model were
compared with sentences that had already been
translated and evaluated. Some interesting observa-
tions are discussed below.
The baseline already provides an interesting result.
The sentence: "You speak Norwegian" becomes
"You’re talking Norwegian", so the model chooses
the present progressive. The present progressive
tense is often overused by non-native speakers of
English. It should only be used in the following
contexts: To describe an incomplete action which
is in progress at the moment of speaking; usually
with time expressions such as: now, at the moment,
right now. The use of the present progressive to
describe current and ongoing things occurs repeat-
edly in the predictions.
If the sentences become a little more complex, such
as: "I’m going to buy a gift for them.", the baseline
model generates for example the following predic-
tion: "I’m going to buy them a gift to get to them".
Here, the first part of the sentence is translated
correctly, but errors occur in the grammatically
more complex second half of the sentence. The
proper use of the object "them" was not correctly
predicted.
It can be observed that some sentences are simpli-
fied. The sentence: "Have you thought about invit-
ing Jon?" becomes "You’re going to invite Jon?"
The content remains the same, but the sentence
structure is of simpler nature.

The understanding of numbers was only partially
learned, "I have to buy a kilo of sugar.", becomes
"I’m gonna have to buy a hundred.". Here the
model recognizes that the word kilo represents a
number, but cannot correctly assign it, 100 != 1000.
With longer, literary and more complex sentences,
the baseline model reaches its limits. "I see in your
eyes the same fear that would take the heart of me,
A day may come when the courage of men fails,
when we forsake our friends and break all bonds of
fellowship, but it is not this day" becomes "I see in
your eyes that fear that would take the heart of me,
a day, a day, when we leave our friends and every
day we leave all our friends and all day, but we’re
not all this day.". But even here the approximate
meaning of the sentence is still conveyed to the
reader.
However, if the model becomes more complex (ex-
periment 6), it is suddenly able to find synonyms
for numbers: the sentence "In fourteen days, my
two sisters will visit." becomes "In a fortnight, my
two sisters’ll be over - serviced.". The end of the
translation makes no sense here, but the model
uses an alternative expression for "fourteen days",
namely "fortnight", which in turn is an expression
for "fourteen days".
Unlike the baseline model, this model also no
longer uses a present progressive when it is not
necessary. If "the Island Festival" appears in the
labels, the model replaces it with "Øyafreamus fes-
tival". Interestingly, this festival really exists.
Noteworthy, there are large differences between the
models when they are trained on different datasets.
We already know from the experiments that when
models are trained on the government dataset, they
perform worse when measured by the BLEU score.
This finding is also strongly reflected in the transla-
tions. Thus, the model’s vocabulary is very focused
on formal vocabulary and tries to recreate sentences
from everyday situations with these words. "You
need a new pair of pants" becomes "You need a
new set of finances.". In all its predictions there is
a strong influence of its training data, to the point
where translations can no longer be understood:
"I am compensated well." is the translation for "I
remember it well.". The original meaning of the
sentence is lost.
The last factor to be considered is the quality of the
translations during the training. The model from
experiment 6 trained on the combined dataset again
serves as the basis for the following explanation.
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The example sentence is "The dress code for the
wedding is shorts and swimsuit.". After epoch 20,
the content of the sentence can already be guessed:
"The code for the wedding is cargo - shorts and
cab.". Here, misunderstandings could still occur
when reading. After epoch 30, however, the mes-
sage is clearly understandable: "The code for the
wedding is both a shorts and a bathing suit.". At
the end of the training, the translation deteriorates
again. At epoch 50 the translation is "The code for
the wedding is shorts and lots of baths". Although
the sentence is grammatically correct, it deviates
strongly from the gold label.

6 Conclusion

This paper compared different transformer-based
translation models for translating everyday Nor-
wegian sentences into English. The constraint for
this study was a conceptual application running on
a smartphone limited in computational resources.
Different techniques for decreasing the model’s pa-
rameters and improving inference time like parame-
ter sharing and a smaller vocabulary size were eval-
uated. As shown, decent translations can even be
generated with a reduced vocabulary size and little
parameters. Besides the reduction of computational
requirements techniques to make the model larger
and thus computationally more heavy were also
investigated. Especially adding multiple encoder
and decoder layers (see subsection 5.3) increased
the translation quality by a lot while only raising
the computation burden slightly. With the rather
small training data, it was shown that the generated
translations are the best in in-domain contexts or
similar contexts as the training data. In a real-world
application, more training data would be necessary
to really bring translations up to a human standard.
Another possible experiment is the concept of grid
search. This involves the suggestive exploration
of the hyperparameter space and can be combined
with an evolutionary search algorithm. The BLEU
score has already been introduced as a numerical
metric. Other rules, such as a maximum number
of parameters or a maximum duration of the infer-
ence time, are also conceivable. The testing and
deployment on smartphones as well as experimen-
tation with larger training data or different base
architectures are objectives for future research.
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Abstract
This paper analyzes and compares several mod-
els with various architectures for neural ma-
chine translation from Norwegian to English
trained on small corpora with different domains
and demonstrates the results of evaluation on a
newly collected hand-annotated parallel corpus.
As baseline we used simple Transformer with a
various number of Encoder and Decoder layers.
After that we conducted several experiments
using NorBERT2 and RNNs.

1 Introduction

Neural machine translation (NMT or simply MT)
is one of the most researched subfields of Natu-
ral language processing (NLP) these days, which
might not be surprising given its direct applicabil-
ity in practice. Today’s state of the art for machine
learning translation are Transformers, but Trans-
formers are usually trained on big corpora. What
happens if we only have small corpora for training
use? Could older RNNs outperformed Transform-
ers on NMT task given only training sets? And
could pre-trained components from monolingual
NorBERT2 model help? Our focus was mainly
based on trying different architectures and using
pre-trained components, and creating the best gen-
eralizing model possible using only small training
corpus.

2 Neural machine translation task

According to paper Machine translation using deep
learning: An overview[SKD+17], machine transla-
tion is one of the subfields in the Natural Language
Processing community and its goal is to translate
the input sequence from one language to another
corresponding sequence in another language. Neu-
ral machine translation (NMT) has the same goal
but uses statistical models that can be trained di-
rectly on the corpus using deep learning. Models
used for NMT usually consist of Encoder and De-
coder, where Encoder encodes the input sequence,

and the Decoder then uses these encoding for con-
text and generating corresponding predictions.

Figure 1: Simplified architecture of the model perform-
ing NMT task [PyT]

Today’s state of the art for NMT task are Trans-
formers. According to the article by Tomas Wood
[Tho], Transformers are the key components in
neural networks used today for many tasks like
NLP, genome sequence processing, sound signals,
and more. Transformers architecture consists of
the Encoder and Decoder where Encoder receives
the input sequence, encodes it, and gives this en-
coding to the Decoder which then decodes this
encoded sequence to another sequence based on
the performed task (in this case translation from
Norwegian to English).

For evaluating how satisfactory the machine
translation is we used the BiLingual Evaluation
Understudy (BLEU)1 score which is defined as:

BLEU = bp exp (
N∑

n=1

wn log pn)

N order of n-grams,
bp sentence brevety penalty,
wn positive weights summing to one,
pn modified n-gram precisions.

1https://cloud.google.com/translate/automl/docs/evaluate#bleu
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3 Dataset

As mentioned in the introduction, we worked only
with the small corpora. We used 2 datasets for
training which differed based on their source, topic,
and average sentence length.

The first corpus was made up of two pub-
licly available subcorpora: 1) Bilingual English-
Norwegian parallel corpus from the Office of
the Auditor General (Riksrevisjonen) website and
2) Public Bokmål-English Parallel Corpus (Pub-
BEPC). In total, this corpus comprises of aligned
Norwegian-English sentences built from the public
web sites2345. We consider this corpus of high qual-
ity, made by professional translators. This dataset is
quite small as it consists of only around 50 000 sen-
tences designed for training. The average sentence
length of this corpus is a slightly over 6 words for
both Bokmål and English sentences and the topic of
this dataset is mostly about a governmental and le-
gal matters. The English level is at an intermediate
level at least.

The second corpus has been taken from the
OpenSubtitles.org6 where people provide their
translations of movies and TV series. This cor-
pus is about 5 times larger than the Government
corpus but also noisier.

As for the evaluation sets, apart from the Gov-
ernment and Subtitle corpora mentioned above, we
also used a third small evaluation set as the main
metric for evaluating our models. This corpus had
around 2,500 sentences and consisted of the sen-
tences from the book of by Arthur Conan Doyle
Hound of the Baskervilles.

Apart from datasets mentioned above we also
created our self-made dataset. We used the
CCAligned [EKCGK20] corpus that has been cre-
ated by the "Commoncrawl Snapshot" organization.
This dataset was fairly large but also quite noisy
and so we decided to cherry-pick only a few sen-
tences and merge them with translated sentences
found on the Duolingo application for learning a
new language. Because of the origins of our DIY
corpus, it consists mostly of basic everyday sen-
tences.

Total number of data is visualized on the table 1.

2www.riksrevisjonen.no
3www.nav.no
4www.nyinorge.no
5www.skatteetaten.no
6http://www.opensubtitles.org/.

3.1 Tokenizer
According to a paper from author Jonathan J. Web-
ster [WK92], tokenization is a process of separat-
ing a text into smaller units called tokens. These
tokens can be whole words, subwords (n-grams),
or only single letters. The tokenizer creates the
vocabulary of these tokens based on the corpus it
has been given. It is possible to specify the size of
the vocabulary and therefore it is up to the user to
choose the number of tokens.

Figure 2: Example of tokenization [MOR].

We trained our tokenizer on the combined train-
ing corpus and tried several different sizes of token
vocabulary. In the end, we decided to use a small
vocabulary of the size of 2000. We decided to
use a smaller vocabulary due to the fact that we
focused on a smaller corpus and smaller models
respectively. We also tried the sizes of 5000, 10000,
and 20000 but this experiment did not bring any
significant improvements.

4 Experiments

As a baseline for our neural network model we used
a simple Transformer architecture with a various
number of Encoder and Decoder layers and then we
conducted few experiments in sake of improvement
of the models performance.

The final model, that we decided to use as our
baseline, had 4 Encoder and Decoder layers, used
embedding dimension as well as the hidden size of
300, and had 3 attention heads. We set the vocab-
ulary size to 2000 according to conducted experi-
ments mentioned at the end of Tokenizer section
3.1. The results for the baseline model are further
described in the Results section 5.1.
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Dataset Train Valid Avg. no len. Avg. en len.
Government 50,000 2,500 13.85 16.81

Subtitles 250,000 2,500 6.16 6.76
Book - 2,500 13.53 13.83

Custom - 121 6.39 6.83

Table 1: Statistics of used data for NMT.

Figure 3: The Transformer - model architecture showed
in "Attention is all you need" paper [VSP+17]

4.1 NorBERT2 as Encoder

The first adjustment that we tried was to replace
the original Encoder of the Transformer with the
pre-trained NorBERT2 [KBV+21] model. Our mo-
tivation for this was that even though NorBERT2
is quite a big model for our small dataset, it comes
pre-trained on the Norwegian corpus and so if we
use this model for creating our input sentence en-
coding, it could be easier for our Decoder to train
and produce more precise translations. For time
management purposes we froze the NorBERT2
model weights during training and tried to train
only the Decoder side. Because of fixed word em-
bedding layers in NorBERT2 model, we needed
to use separate word embedding layers for the De-
coder and Encoder which also resulted in an in-
creased number of parameters. Also, one more

thing we tried in terms of this experiment was to
use hidden states of different layers of the Nor-
BERT2 as the Encoder output. The motivation
behind this was that BERT models in general learn
different kinds of information in different layers
and so the last layer of NorBERT2 does not neces-
sarily need to be the best for the purpose of neural
machine translation. Results of this experiment are
further described in the Results section 5.2.

4.2 NorBERT2 embeddings

The motivation behind this experiment was that
the previous experiment with the entire NorBERT2
model used as the Encoder did not bring more suf-
ficient results than our baseline model. One of
the reasons for it is that the architecture was very
different on the Encoder and Decoder side.

Because of this, we decided to go back to base-
line architecture. We tried to use pre-trained word
embeddings of the NorBERT2 model and share
them between the Encoder and Decoder. Because
the NorBERT2 model was pre-trained only on the
Norwegian corpus we decided to let it fine-tune on
our corpus because during the translation process
the shared word embeddings need to learn not only
the features of the input language, but also the tar-
get language. This approach also meant to increase
the size of model vocabulary to the size of Nor-
BERT2 vocabulary. The results of this approach
are described in the Results section 5.3.

4.3 RNN

In this experiment of changing the architecture of
the model to use RNN was provided. The main
disadvantage of this approach is that as opposed
to the Transformer where the input encoding can
be used for each token independently, with RNNs
whole input sentence must be encoded to only one
vector. For the implementation, we followed the
guideline from the official PyTorch site [PyT]. Neu-
ral machine translation with RNNs also uses the
architecture of Encoder and Decoder. Visualiza-
tion of the model is shown in figure 4. Results are
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described in the Results section 5.4.

(a) Diagram of the RNN Encoder.

(b) Diagram of the RNN Encoder.

Figure 4: Architecture of the RNN Seq2seq
model[PyT].

4.4 Data augmentation
In our research, we tried to briefly work not only
with the model architecture but also with the data.
During our prototyping process, we discover that
our models do not work on sentences with all the
capital letters. One of the most common ways
how to deal with this problem is to transfer input
sentences to all lower/upper case, but we decided to
experiment and extend our training corpus of these
all caps sentences. Results are further described in
the results section 5.5.

5 Results

5.1 Baseline results
As the baseline, we trained the same Transformer
model architecture on Government corpus, Subti-
tles corpus, and a combination of both corpora and
we evaluated them on all of the validation sets we

Model pa-
rameters

training set
score

Book valid.
set score

6.7 M. 0.285 0.115
8.7 M. 0.299 0.117
10.7 M. 0.314 0.118

Table 2: Comparison of the model size and model per-
formance (BLEU scores). All the models were trained
on the combined corpus.

got earlier. The BLEU scores the models achieved
are shown in the results figure 5.

We trained mostly small models up to 11M pa-
rameters and so the generalization of the model
translation skills was hard to achieve. This can be
seen on the plot 5 and also table 3 where for ex-
ample the models which were not trained on the
Government corpus performed very poorly on the
Government validation set. That is because the
Government validation set has very specific topic
and type of language, so our model is not able to
generalize that well from the other training corpora.
Second example would be the Book validation set
where every model performed poorly for the same
reasons as for the Government set.

We also tried to experiment with the size of the
model and see how the performance change which
is shown in result table 2.

From table 3 it is traced that the larger model
did improve the performance on the training and
also on the validation sets, but as opposed to the
training set, on the validation set the difference
between models is negligible.

5.2 NorBERT2 Encoder results
As mentioned in the section 4.1, we used the en-
tire NorBERT2 model as the Encoder in our NMT
model.

Please note that to save time we trained these
models only on the Subtitles corpus which might
affected the models results. Their final results are
shown on the plot 5 and table 4.

From the table 4 it is visible that the model using
the middle layer of the NorBERT2 achieved bet-
ter results than the one using the last layer which
indicates that the best information for the NMT is
not stored/learned in the last NorBERT2 layer but
somewhere in between.
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Train. set Book valid. Govern. valid. Subtitles valid. DIY valid.
Government 0.02 0.33 0.03 0.06

Subtitles 0.10 0.08 0.25 0.44
Combined 0.12 0.35 0.25 0.48

Table 3: Different performance of the same model trained on different datasets. The results are in BLEU score units.

NorBERT2
out. layer

training set
score

Book valid.
set score

7 0.158 0.083
12 0.117 0.052

Table 4: Comparison of the models using NorBERT2
as an Encoder with different layer as the output. Both
models were trained on the Subtitles corpus. Units are
in BLEU.

We mentioned that this approach did not score
very high on the evaluation board and the reasons
for this, mentioned below, are mostly just specula-
tion:

• Too big model for such small corpus (over
180M parameters).

• Too few epochs for training (30 epochs).

• The size of Encoder and Decoder were too
much different.

• We did not allow fine-tuning of the Encoder.

• We did not share word embedding layers be-
tween Encoder and Decoder.

• We tried only 2 different layers of the Nor-
BERT2 model as the output layer for our En-
coder. There might be a better performing
model.

5.3 NorBERT2 Embeddings results
As for our third experiment firstly mentioned in
4.2. We tried to use the same architecture as for
the baseline model but use the pre-trained word
embedding layer from NorBERT2, share it between
Encoder and Decoder, and let it fine-tune.

We tried to train only one model on the Subtitles
corpus which scored 0.09 BLEU on the Subtitles
valid set and only 0.023 on the validation Book set.
Results of this approach are also shown on the plot
5.

Again, the reasons why this approach did not
perform well are up for discussion but we strongly
believe that the main reason why this approach

failed is because of the size of the embedding layer.
NorBERT2 word embedding layer has a size of
50,000 tokens and dimensionality of 768. In this
approach we went back to training smaller mod-
els and so classifying to over 50,000 classes was
probably an overload for our model which had only
around 24M parameters.

5.4 NMT using RNNs
As for our fourth experiment mentioned in section
4.3. We tried to replace the Transformer architec-
ture with RNNs to see if by any chance the RNN
would work better on small corpora. Unfortunately,
this experiment failed when the RNN model was
not able to translate almost anything. The train-
ing and validation process worked and the loss
value during training gradually decreased. But we
were not able to measure any BLEU score on this
model. We think that one of the reason for lower
performance is that Encoder must encode the whole
sentence into the single vector which causes more
compressed information for the Decoder.

Here are at least some examples of the transla-
tions using RNNs.

• Target: What does it suggest?
Predicted: You” s the you to the you?

•

Target: Because I had suggested that he should
come over.
Predicted: I’m the a a a a a a a a a a a a a a a a a
a.

•

Target: There were several Mortimers, but only one
who could be our visitor.
Predicted: You” s the a a a a a a a a a a a a a a a
a a a.

From the examples shown above, it seems that
the translation using RNNs is not stuck only on one
most frequent token that it would spam on repeat,
but also it does not seems that the model picked
out any grasp of the sentence meaning. We used
a hidden size of 300 and so our assumption was
that this performance was caused by the small en-
coding dimension size. Because of this assumption
we also tried our Encoder to work bidirectionally
but that did not help either. It also seems to under-
stand that the target sentence is usually of a similar
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length as the input sentence and what more, from
the examples we see it seemed that the model even
understands the end marks of the sentences like ’.’
or ’?’. From this evaluation it seems that model
was able to learn the very minimum but not enough
to perform any kind of translation.

5.5 Data augmentation results

As mentioned in Data augmentation section 4.4,
after our first generation of models, we found out
that if we give our model the same sentence writ-
ten in Bokmål but in all capital letters our model
breaks. This is described more in the Common
mistakes section 5.7. After reading through several
articles on how to deal with this, we decided to try
instead of transferring all the sentences to lower-
case to extend the training corpus by sentences in
all caps. Unfortunately, after training our model on
such corpus we found out that it actually confused
the model and its performance further decreased
compared to the baseline models we got.

5.6 Evaluation on validation sets

Figure 5: BLEU scores of different models on various
validation sets. NorBERT2 models were trained only
on the Subtitles corpus. Baseline models were trained
accordingly to their names.

Poor generalization of models can be seen from
the plot 5 where for example model Baseline Subti-
tles performed quite well on Subtitle and DIY vali-
dation sets it performed poorly on Government and
Book validation sets. The best performing model in
our research has been baseline Transformer trained
on corpus combined from Government and Subti-
tles training corpora.

5.7 Mistakes on validation sets

Machine translation is quite a difficult task due
to the linguistic differences between the target and
source languages. The problems that one faces may
be related to the ambiguity of the words, the exis-
tence of multi-words and compounds, some lexical
and structural differences between languages, etc.
[ABM+01].

There are also some classifications of translation
errors, that have been analyzed by researchers. Un-
fortunately, the description of errors in translation
from English to Norwegian or from Norwegian to
English could not be found. However, we can rely
on the proposed classification and analysis options
for the English-Lithuanian [SKH17] and English-
Spanish / Chinese-English [VXDN06].

Figure 6: Classification of translation errors [VXDN06]

Based on the existing classifications (Figure 6,
e.g.), we would like to describe what errors can be
found in our research.

Hence, in this section, we will summarise the
most common translation mistakes patterns of our
models.

Errors that model provides in the long term:

1. No answer at all.
Input: Han er jo arvingen?
Target: He being the heir?

Predicted:

2. Model does not know what to do if Norwegian
sentence is given in capital letters

Input: hva heter du?
Predicted: What’s your name?

Input: HVA HETER DU?

Predicted: HETER DU?

Interestingly, if only the first letter in the sen-
tence is capitalized, then the model can trans-
late it, on the contrary, if the entire text is cap-
italized, then our model breaks. This might be
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caused not only by the model itself but also
by trained tokenizer.

3. Wrong punctuation

Input: Er han kommet vekk?
Target: Has he escaped?

Predicted: Is he coming

In the current example it also can be seen how
model, on the one hand, does the incorrect
lexical choice for the translation, and on the
other hand, it chooses the incorrect grammati-
cal features such as tense.

The specified linguistic errors that the model
provides:

1. Only part of the answer/grammatically incor-
rect segment.

Input: If I had only been there! He cried

Predicted: I was just a

2. Model can add extra words to translation.
Input: Andre kilder
Target: Other sources

Predicted: Other sources are

3. Model has troubles translating compound
words

Input: For mer informasjon om barnehage, kontakt
kommunen du bor i.
Target: For further information about pre-school day
care centres, contact your local municipality.

Predicted: more information on the school, you con-

tact the house.

4. Model can predict non-existent word forms.
(Close enough to word formation problem)

Target: I haven’t saw him since...

Predicted: I seven’t said heaven!

5. Errors in inflection
Input: Ifølge FBT utgjør disse opplysningene
grunnlaget for videre oppføl- ging og befaring.
Target: According to NODCS, this information con-
stitutes the basis for further monitoring and site visits.

Predicted: According to the information, these infor-
mation, the reasons, the terms are beginning and the

visit.

There are some mistakes in how words are
inflected in a wrong way. As it can be seen,

’opplysningene’ is a plural form with the plural
pronoun disse. In the current example to ways
of solving the problem are seen: 1) use ’this
information’ as a singular form, 2) use ’these
informations’ as a plural form of group of

information types. It is also can be connect to
problems with syntactic government.

6. Model can choose referents in a wrong way
in translated texts

Input: Med pistolen i hånden styrtet vi alle tre inn i
værelset.
Target: Pistol in hand, we all three rushed into the
room.

Predicted: the gun in my hand, the three of the gun
was gone.

7. Using word form in irrelevant collocation

Input: De har ingen mening om hvem denne L. L. kan
være?
Target: And you have no idea who L. L. is?

Predicted: I have any idea what this is about,

’Any’ is not the best choice here, as its use is
caused by the presence of the word ingen and
the collocation in English sentence is inappro-
priate.

8. Predictions include obscene language

Target: The goods/services must be for use within
your enterprise.

Predicted: That shit is for you in your life.

Target: Boys, we’re straight through to New York, so
anyone needs a piss, you take it now.

Predicted: We’ll be a little baby, but I’ll be a little
bitch, it’ll be a little bitch, it.

All in all, as can be seen from the examples
provided above, we were able to find most of the
error types in our predictions. We have rather big
amount of mistakes in morphological (word for-
mation, inflection, non-existed word forms, etc.),
lexical, and semantic (choice of sense, style as us-
ing appropriate lexical forms, etc.), and syntactic
(government, etc.) fields [VXDN06]. There are
also some interesting points that we luckily found
in the predictions, and errors in translation com-
pounds [SKH17] are the most important here.

6 Future directions

As the future direction of this project it make sense
to work on handling the problem with case sen-
sitivity. Capitalization seems to be a common is-
sue in neural machine translation task [XHPY20]
as the translation performance drops significantly
when introducing case-sensitive evaluation metrics.
Though there are some papers on casing methods
for Neural Machine Translation [EU20], at the mo-
ment there is no established an optimal pre- and
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post-processing methodology for machine transla-
tion.

7 Conclusion

The goal of this paper was to try to modify today’s
state of the art architecture for use on the small cor-
pora. We tried older approach using RNNs as well
as using components from pre-trained monolingual
model NorBERT2. We also tried experiment with
data augmentation and ran performance tests on
several validation sets. Unfortunately, We have not
been able to outperform our baseline Transformer
model on neither of our validation sets. We also
found the importance of choosing the target corpus
for training as this parameter created the biggest
gap in models performance. As for our DIY cor-
pus we created this corpus with the goal of seeing
if our models are usable for everyday translation
which we are happy to confirm as it seems that
the best model scored almost 0.5 BLEU which ac-
cording to BLEU table7 is considered high quality
translations.
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Abstract

This paper investigates performance on Word
Sense Induction tasks in Norwegian, using data
from the recently published NorDiaChange
data set. The paper looks at recent graph-based
approaches used to generate WSI inventories
for Norwegian and explores the possibility to
improve on this performance by using contextu-
alized embeddings (such as BERT). This paper
finds that using contextualized embeddings can
outperform more recent graph-based methods,
but that these methods have difficulty predict-
ing the ideal number of meanings.

1 Introduction

Polysemous words have long been a challenge in
NLP. The resolution of these ambiguities is gen-
erally straightforward for humans: whether or not
the word "bank" refers to a financial institution
or a river bank will in most cases be clear from
the word’s context. However, this task is more
challenging in NLP systems. In recent decades,
performance on NLP tasks has been improved by
the use of static embeddings, but these embedding
models have a shortcoming in that they do not cap-
ture polysemy; for example, the embedding for
bank is the same regardless of whether it refers
to a financial institution or a river bank. Recent
innovations with contextualized embeddings, like
BERT, have helped with this problem by produc-
ing an embedding for a word based on the context.
However, these embeddings do not actually deter-
mine the sense of the word, but rather vary based
on the context of the word.

Using NLP to determine the appropriate sense of
the word given its context can be divided into two
related tasks: Word Sense Disambiguation (WSD)
and Word Sense Induction (WSI). WSD involves
assigning words to an appropriate sense given a
priori knowledge about the possible senses of the
word; in this way, if one has data with correct as-
signments, it is easy to build a supervised system

to assign a word to its appropriate sense. WSI is
the process of assigning a words to various senses
without any prior knowledge of what the senses
actually are. Thus, WSI can be thought of as an un-
supervised task whereby a model must determine
the appropriate clustering of sense. For example
given the sentences “My bank offers good interest
rates”, “He’s been working at Nordea, the bank,
for two years” and “The bank was flooded after
it rained”, the model might determine that there
are two meanings of the word bank based on the
differences in the underlying contexts.

This paper begins with a description of the data
evaluated in Section 2 and a description of the Ad-
justed Rand Index that will be used to assess WSI
performance in Section 3. As a baseline this pa-
per measures performance using graph-based ap-
proaches to WSI in Section 4; this section includes
an overview of recent work, a discussion of method,
and a presentation of results. This paper then be-
gins to look at how contextualized embeddings may
improve WSI performance by discussing existing
approaches in Section 5; this section includes an
overview of recent work, a discussion of method,
and a presentation of results before moving on to a
presentation of variations to this approach. Other
approaches using contextualized embeddings for
WSI are then considered, including using BERT
hidden layers in Section 6 and average static em-
beddings based on candidate words generated with
BERT in Section 7. A discussion of differentiating
monosemic and polysemic words is presented in
Section 8. Finally, the paper presents a conclusion
and outlines possible ideas for further research in
Section 9.

2 Data

This paper will explore WSI in Norwegian using
the recently published NorDiaChange data set (Ku-
tuzov et al., 2022). The NorDiaChange dataset
was built to investigate semantic change over time
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in Norwegian, and consists of two subsets each
with 80 lemmatized nouns. This paper uses sub-
set 1 which looks at semantic differences between
1929-1965 and 1970-2013. NorDiaChange used
native Norwegian speakers who evaluated pairs of
sentences and determined if the chosen word was
the same or different (scale from 0 to 4). From
these judgements, a clustering of the sentences into
possible senses was determined. It is these senses
that are used for evaluating the efficacy of the WSI.
Note that the NorDiaChange includes examples in
both standard written forms of Norwegian-bokmål
and nynorsk–but bokmål is predominant.

The NorDiaChange dataset was slightly cleaned
up for use in this paper to resolve some cases where
the provided offset for the target lemma was incor-
rect, but is otherwise not changed. In some cases,
the provided offsets for the token appeared to be
slightly shifted. For example, for the context with
identifier 1970-2015_kjemi_642, the provided off-
sets would give the word " kjem" as opposed to
the desired "kjemi". In these cases, the offsets
were corrected to align properly. In other cases,
the offsets appear to reference an incorrect lemma.
For example, for the context with identifier 1929-
1965_egg_473, the provided offsets identify the
word "er" (am) as opposed to the desired lemma
of "egg". In these cases, the first word contain-
ing the expected lemma was used for the offsets.
This may result in some misidentifications; for in-
stance, if the sentence contained multiple meaning
of the word "egg" or if the identified word had
the lemma as a substring without being related,
e.g. "legg". However, this method seemed prefer-
able and more reliable than using evidently incor-
rect offsets, and sample review of the cleaned off-
sets did not show any of these potential problems.
Context sentences with the adjusted offsets are
available here: https://github.uio.no/thomasrz/trz-
in5550/blob/master/exam/all_data.csv

3 Evaluation metric

To evaluate the effectiveness of WSI per-
formance, this paper uses the Adjusted
Rand Index (ARI). ARI is a chance-
corrected version of the Rand Index:

RandIndex = AgreeingPairs
AgreeingPairs+DisagreeingPairs

An ARI score does not consider the actual labels
themselves but rather the clustering. For instance

comparing the predicted labels [1,1,2] and the tar-
get labels [a,a,f] will produce an ARI of 100% be-
cause the underlying clustering is the same between
the predictions and the targets. ARIs have a maxi-
mum of 100% (perfect alignment) and can be neg-
ative if the clustering is worse than that expected
by random chance. In general, this paper will use
the macro-average ARI across the 40 lemmas as a
benchmark.

4 Graph based methods (egvi)

4.1 Related work
Some recent work has explored graph-based ap-
proaches to handle WSI. A recent study (Lo-
gacheva et al., 2020) created an algorithm referred
to as Ego-Graph Vector Induction (egvi). This
method used static embeddings to determine a
given word’s nearest neighbours and then used vec-
tor subtraction to identify so-called “anti-edges”,
a graph between near neighbours was then con-
structed which excludes connections between unre-
lated neighbours as determined by the anti-edges
(for example, the word ruby is related to python
and opal but python and opal are not related to one
another). Using these constructed graphs, clusters
were determined using the Chinese Whispers Al-
gorithm, and these clusters were determined to be
senses for the given word.

4.2 Method
Sense dictionaries for 158 languages, including
Norwegian, based on the egvi algorithm have been
made public. The sense dictionary represents each
sense with a separate line listing the nearest neigh-
bour words of that word. For example, the public
sense dictionary1 shows that egvi determined that
the following six senses exist for the word "ris":

• perlehirse ukokt maisgrøt hirse hvetekli hvete-
grøt bokhvete 85kle hirsegrøt riskake sorghum
avkokt ros hvete kokoskake [pearl millet, un-
cooked, polenta, millet, bran, wheat porridge,
buckwheat, 85kle, millet porridge, rice cake,
sorghum, boiled, praise, wheat, coconut cake]

• makisushi mangochutney søtpoteter sesam-
pasta blomkålris currypasta sesamfrø man-
gosalat jasminris sesamolje chili risnudler

1egvi sense inventories calculated from the nearest 50, 100,
and 200 neighbours are available. This paper uses the senses
derived from the nearest 50 words. The paper uses the public
sense as a baseline and so did not fully examine performance
variations for each publicly available senses dictionary.
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woksaus chiliolje mangosalsa [maki sushi,
mango chutney, sweet potatoes, sesame paste,
cauliflower rice, curry paste, sesame seeds,
mango salad, jasmine rice, sesame oil, chili,
rice noodles, wok sauce, chili oil, mango
salsa]

• naanbrød nanbrød Nanbrød maisbolle
maiskorn bananbrød maisbrød [naan bread,
nan bread, Nan bread, corn fritter, corn kernel,
banana bread, cornbread]

• soyabønne soyabønner mungbønner soyamel
byggryn soyaost [soybean, soybeans, mung
beans, soybean meal, barley, soy cheese]

• Risen [The rice / Risen]

• grønnsaker [vegetables]

As a baseline, this paper tried to perform WSI
using these predetermined senses. Following the
method of the original paper, cluster centroids were
determined by taking the average static embedding
for all the neighbour words2. For each sentence,
the average static embedding was then calculated
(excluding the target word). To determine the ap-
propriate sense, the example was assigned to the
sense clusteroid nearest to its average sentence-
level vector (based on cosine similarity). For ex-
ample, for the sentence "Av korn bidrar hvete og
ris hver med en femtedel av verdenskonsumet."
(“Wheat and rice each account for a fifth of world-
wide grain consumption”), the sense is mapped to
the first from the sense dictionary, which contains
the word "hvete" (wheat) and similar terms like
"hirse" (millet) and "sorghum" (sorghum).

4.3 Results

Performing WSI using the predefined sense dic-
tionaries on the NorDiaChange Subset1 lemmas
resulted in an ARI of 18.2% (note: "anfektelse"
was excluded because it did not appear in the static
embeddings). This seems like a reasonable result,
but it should be noted that as this a macro-average,
most of the positive result comes from cases where

2static embedding model 100 from http://vectors.
nlpl.eu/repository/ is used for static embeddings
throughout this paper. This model was selected due to its
large vocabulary (almost 4.5 million words) and it is non-
lemmatized and hence easily applied to NorDiaChange’s con-
text sentences without further data processing. Other static
embedding models were not tested in this paper, though this
could be an area for further research.

Figure 1: NorDiaChange sentences (dots representing
the average sentence embedding) are assigned to the
nearest sense. Here average egvi senses are depicted
as upside-down triangles. One can see that the average
context embedding varies significantly from the avail-
able sense embeddings.

the baseline method (correctly) assigned all in-
stances to one class (and thus achieved an ARI
of 100% for the class). Since for Subset1 of Nor-
DiaChange, 7 of 40 lemmas have only one class,
simply predicting one class for each word would
actually produce a macro-average ARI of 35.0%
across all 40 lemmas.

It is evident that this approach has certain weak-
nesses. For example, the egvi senses of the word
"ris" are all food-related. In reality, the noun "ris"
has several meanings (loosely translated): rice,
ream (of paper), twigs, beating, criticism. The
first egvi sense includes word "ros" from the ex-
pression "ris og ros" (praise and criticism) but it is
subsumed in a list of primarily grain-related words.
The egvi method also produces "Risen" as a sep-
arate meaning, which is not particularly useful as
this could either be the definite form "the rice"
or a geographic name (a web search reveals that
Risen is a name of some insignificant small hills
and islands in Norway).

These limitations become evident when we look
at graphic representations of the determinations
according to the egvi algorithm, for example in
Figure 1. 3

5 Tf-idf Vectors with contextualized
language model candidates

5.1 Related work
Other recent approaches to WSI have tried to lever-
age the power of contextualized embeddings (like

3Note: this paper uses Singular Value Decomposition for
transforming multidimensional vectors to two-dimensional
representation
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BERT and ELMo). In two recent papers, Asaf
Amrami and Yoav Goldberg have explored the ap-
proach of using contextualized language models
to generate candidate words (that is possible sub-
stitutes for the target word), vextorizing the result
candidate documents, and then assigning the target
to senses based on the clustering of those candidate
vectors. (Amrami and Goldberg, 2018) (Amrami
and Goldberg, 2019)

For example, one can mask the target lemma in
sample sentences:

• My [MASK] offers good interest rates

• He’s been working at Nordea, the [MASK],
for two years

• The [MASK] was flooded after it rained

then use BERT to generate candidate words:

• [account, credit card, bank, loan, mortgage]

• [bank, company, DNB, insurer, Sparebanken]

• [river, lake, house, town, dam]

these words can then be vextorized (for example
using scikit-learn’s TfidfVectorizer):

• [0.42 0.32 0.42 0.00 0.42 0.00 0.00 0.00 0.00
0.00 0.42 0.42 0.00 0.00 0.00]

• [0.00 0.36 0.00 0.47 0.00 0.00 0.47 0.00 0.47
0.00 0.00 0.00 0.00 0.47 0.00]

• [0.00 0.00 0.00 0.00 0.00 0.45 0.00 0.45 0.00
0.45 0.00 0.00 0.45 0.00 0.45]

Finally, the vextorized representations can be
clustered using an appropriate clustering mecha-
nism (for example K-Means, Agglomerative Clus-
tering, Affinity Propagation, etc.,).

In Amrami and Goldberg’s original paper, 20
candidate words were generated for each masked
word, and the authors chose to assign to 7 clusters
(fixed based on observation of underlying data),
with ELMo used as the embedding model (Am-
rami and Goldberg, 2018); further work, however,
showed BERT to achieve better results. (Amrami
and Goldberg, 2019). There is good reason to
believe that BERT may be particularly suited for
an approach based on clustering candidate words.
The BERT model is based on a transformer and
is trained by masking and then predicting given

words (Devlin et al., 2018), thus producing context-
dependent embeddings. Hence, one might expect
that the embeddings for masked words, and their
predicted lexical substitutes, might differ based on
the word’s sense in its given context.

5.2 Method

This paper applied the method described in Am-
rami and Goldberg’s work, using 20 candidate
words, 3 fixed clusters (with clusters determined
using agglomerative clustering), and NorBERT2 to
perform WSI on NorDiaChange dataset. 3 clusters
were chosen rather than 7 as this fit the underlying
data better.

5.3 Results

Overall, this achieved a macro-average ARI of
8.3%. This is clearly lower than the egvi method’s
18.2%, but the macro-average is a fairly mislead-
ing statistic. As mentioned above, the higher score
for the egvi method is largely associated with as-
signing lemmas to only one cluster and achieving
100%. If one looks at the results on the individual
lemma level, one can see that ARI actually im-
proves for most lemmas where there is more than
one class (see Figure 2). Since this method enforce
3 fixed clusters, all of the monosemic words that
previously obtained an ARI of 100%, now obtain a
score of 0%.

One can also see this improvement by looking
at results of individual lemmas, for example in Fig-
ure 3. Here we see clear evidence of clustering for
the word "ris". Some of the clusters appear intuitive
(e.g. the grouping of grain related words–"mais
(corn)", "erter (peas)", "korn (grain)"–in the upper
left), but some seem less intuitive, e.g. the grouping
of points with "speilet (the mirror)" as top candi-
date word in the lower right. In this latter case, the
candidate word "speilet" is mostly likely predicted
because of the presence of the expression "riset bak
speilet" (literally, "the beating behind the mirror",
or a "backup threat"). This does generate a clear
clustering difference of the grain/threat meaning
for "ris", but shows that the challenges of language
model predictions with idioms.

Variations to tf-idf approach

A number of variations to this algorithm were in-
vestigated. For consistency, the baseline of 20 can-
didate words and 3 fixed clusters appears at the top
in each comparison.
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Figure 2: ARI per lemma comparing egvi method and method using tf-idf vector representations of candidate words
generated with NorBERT2 (20 candidate words, 3 fixed clusters). For words with more than one sense, ARI score
generally is improved using tf-idf approach.

Figure 3: Candidate tf-idf representations are projected
into two-dimensional space. They are then clustered
into 3 clusters using agglomerative clustering. Annota-
tions at each point indicate the top candidate for each
example.

5.4 Number of clusters

A possible variation of this approach is to vary
the number of clusters (either different numbers of
fixed clusters, or using a non-fixed number of clus-
ters and choosing an appropriate algorithm to de-
cide the appropriate number of clusters). Through-
out this paper, unless otherwise specified, agglom-
erative clustering is used when number of clusters
is fixed and affinity propagation is used when clus-

ters are non-fixed. In this case, using a non-fixed
number of clusters seems to have improved results
notably.

Number of Clusters ARI
3 8.3%
5 7.8%
7 7.6%
10 7.0%
Non-fixed 10.9%

5.5 Number of candidates
One can also vary the number of candidate words
(N) generated by the BERT model. This paper in-
vestigated choices of N=10,20, and 50. Best results
were obtained using 50 candidate words. This may
be because the resultant documents of N candidate
words had better overlap with higher values of N
and hence the resulting tf-idf vectors were easier to
cluster.

Number of Candidates ARI
20 8.3%
10 6.1%
50 11.5%
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5.6 Extra text

Amrami and Goldberg suggested that adding addi-
tional text to the model could improve results. For
example instead of masking an example sentence
of “The bank was flooded after it rained” as “The
[MASK] was flooded after it rained”, it could be
masked with filler words to help guide the candi-
date predictions. An example would be to add the
word and: “The bank and [MASK] was flooded
after it rained”. This paper tested variations on this
approach using og (and), eller (or) and eller til og
med (or even). The results here were mixed; og and
eller lead to slightly worse results whereas eller
til og med improves the macro-average from 8.3%
to 9.7%. Due to the mixed performance here, it
is difficult to conclude much on the usefulness of
adding coordination clauses. These clauses, or in-
deed other sentence manipulation, might be useful
in specific tasks, but care would be needed in se-
lecting them as they could lead to either improved
or deteriorated performance.

Extra text ARI
no extra text 8.3%
og 7.8%
eller 7.6%
eller til og med 9.7%

5.7 BERT Model

Varying the underlying BERT model might also
influence performance. NorBERT-2 performed sig-
nificantly better than NorBERT-1 which might not
be unexpected given that NorBERT-2 has better
vocabulary coverage.

Extra text ARI
NorBERT-2 8.3%
NorBERT-1 6.6%

6 BERT Vectors

Another option is to perform clustering directly
based on BERT’s vector representations of the
masked word rather than going through the inter-
mediary step of generating candidate words.

In this approach, one can take the final hidden
state from the BERT model and cluster with these
vectors. This paper investigated this approach with
both a non-fixed number of clusters (using affinity
propagation) and fixed clusters of size 3 and 7 (us-

ing agglomerative clustering). NorBERT-2 is the
BERT model used throughout these experiments.

ARI for NorBERT-2 Vectors

Number of Clusters ARI
3 21.1%
7 13.9%
Non-fixed 18.2%

We now begin to get results better than the egvi
baseline. This might be due to the NorBERT-2
vectors containing richer information than the can-
didate words themselves.

When we look at individual words we can see
some evidence that the clusters may be better de-
fined (see Figure 4)

Figure 4: Two-dimensional projection of NorBERT-2
Vectors for individual sentences and assigned clusters
using affinity clustering. Points here could be annotated
with the original context sentence, but this has been
omitted to improve graph clarity/size.

6.1 Hidden layers

Different hidden layers of BERT Models can be
thought of as modelling different linguistic phe-
nomena (Belinkov and Glass, 2018). Using this in-
sight, it was investigated whether a specific level of
NorBERT-2’s hidden layers was particularly suited
for the task of WSI.

Interestingly, the macro-average ARI increases
as one uses higher layers of the NorBERT-2 model,
particularly notably from layer 8 onwards. This
may be due to BERT’s higher layers learning more
about the context and this richer information being
more useful for the WSI task (see Figure 5).
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Figure 5: ARI vs hidden-layer level of NorBERT2
model used for creating vectors.

7 Average static embedding vectors based
on BERT candidate words

Another approach to clustering that this paper
looked at was using candidate words generated
by BERT but then vextorizing them with the use of
static embedding vector model. The theory behind
this approach is that one might get more defined
clusters by using static embedding vectors because
the tf-idf vextorization process will not be able to
capture the relatedness of candidate words (that
is, it does not intrinsically know that Sparebanken
and DNB are related to one another and to the con-
cept of bank as financial institution and must rely
on their appearing within similar lists of candidate
words to aid clustering).

In this approach, candidate words were thus gen-
erated and then the average static embedding vector
for each of these list of candidate words was gen-
erated. These average vectors were then clustered
(with affinity propagation for a non-fixed number
of clusters and agglomerative clustering for a fixed
number of clusters). NorBERT-2 was used as the
BERT model and NLPL Model 100 was used for
static embeddings.

This approach produced results that were quite
similar to the approach of directly using NorBERT-
2 vectors.

ARI for candidate average embedding vectors

Number of Clusters ARI
3 21.1%
7 13.7%
Non-fixed 17.8%

8 Determining a clustering threshold

While the methods of directly using NorBERT-
2 vectors and using an average static embedding

based on NorBERT-2 candidate words both yield
decent results, they perform better with a fixed clus-
ter number of 3, rather than when the affinity prop-
agation algorithm is allowed to choose the number
of vectors. This is problematic as the results rely
on a somewhat arbitrary choice of clusters which
might not be appropriate for a given word; indeed
words vary in the number of sense they have.

Secondly, the approach of choosing a fixed num-
ber of clusters has the disadvantage of imposing
clusters when there is no evidence for clustering,
for example when there is only one sense. This
is a large handicap when calculating the macro-
average ARI as seen in the discussion of the egvi
approach. The egvi algorithm with the predefined
senses did not do a particularly good job overall
but the macro-average ARI was boosted by a num-
ber of lemmas where egvi correctly predicted one
sense (regardless of whether that sense was itself
reasonable).

It might be therefore be possible to improve per-
formance by coming up with a reasonable heuris-
tic to predict number of clusters and then to per-
form clustering. Concretely, having a heuristic that
decides whether a lemma has 1 or several senses
would most help.

To approach this, it is useful to investigate var-
ious clustering statistics and see if there are any
clear trends. This was explored using the average
static embedding of candidates approach (chosen
in favour of BERT vectors as the average of static
embeddings allows one to annotate points with top
candidate word).

One approach investigated was the construction
of elbow graphs showing decline in inertia (deter-
mined with K-means clustering) for each lemma.
Ideally, elbow graphs for lemmas with multiples
sense would show a sharper initial decline as the
number of clusters is increased, and then even off
at the ideal cluster. For lemmas with one sense, the
decline should be more even as K increases.

There was some evidence of this when exam-
ining graphs. For instance, the word "stoff " (tex-
tile, material, curriculum, etc.) had 3 predicted
senses from NorDiaChange; its scatter plot (Fig-
ure 6) shows clear signs of clustering and its elbow
graph (Figure 7) shows a steep decline from 1 to 2
clusters.

Meanwhile, etterforskning (investigation) had 1
sense from NorDiaChange and shows neither clear
evidence of clustering in its scatter plot (Figure 8)
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nor an initial drop in its elbow graph (Figure 9)

Figure 6: Stoff. Average embedding vectors for candi-
date words for each sample sentence. Points are anno-
tated with the top candidate word.

Figure 7: Stoff. Elbow graph showing inertia vs. num-
ber of clusters with clustering performed using K-means
algorithm.

Unfortunately, there was significant variance
across lemmas, and this pattern was not as clear
cut across words. This made the application of
some general heuristic fairly difficult. Based on
examination of data, it was decided to try with a
threshold of .83 from 1 to 2 clusters (that is any
lemma for which the ratio of inertia with 2 clusters
to inertia with 1 clusters exceeded .83 was deemed
to have only 1 sense). This resulted in a higher
overall macro-average ARI of 31.8% (see Table 1
for details by lemma).

9 Conclusion and potential further
research

Overall, the approach of using BERT embeddings
in WSI tasks shows some promise relative to graph-
based methods, but is hampered particularly by an
inability to correctly predict the appropriate num-
ber of clusters. Introducing an inertia threshold
to distinguish monosemic words from polysemic

Figure 8: Etterforskning. Average embedding vectors
for candidate words for each sample sentence. Points
are annotated with the top candidate word.

Figure 9: Etterforksning. Elbow graph showing inertia
vs. number of clusters with clustering performed using
K-means algorithm.

words helped improve overall macro-average ARI
scores for this task, but the determination of such a
threshold was not clear cut.

Further research might explore other opportu-
nities for more accurately predicting the split in
clusters. For instance, by looking at additional
clustering statistics to see if some provide clearer
information on the ideal number of clusters for a
given word.

Another method might be to try to refine one
of the methods using candidate words but initially
apply some clustering of candidate words (for in-
stance using cosine similarity based on static em-
beddings) to try to filter out less relevant candidate
words and therefore make the candidate prediction
“purer” and easier to cluster.

One might also try to determine potential word
senses on a larger corpus and then make predictions
based on a smaller dataset, like NorDiaChange. It
is theoretically unclear, however, whether a larger
corpus would help reduce or amplify the noise that
makes word sense induction challenging.
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Table 1: ARI with and without clustering threshold

lemma no threshold threshold
macro-average 21.1% 31.8%

anfektelse 14.6% 14.6%
bit 49.7% 49.7%

bølge 42.6% 42.6%
damp 33.8% 33.8%
data 0.0% 100.0%
egg 5.1% 5.1%

etterforskning 0.0% 0.0%
fag 11.9% 11.9%
fil 31.2% 31.2%

forhold 43.2% 43.2%
formiddagen 0.0% 0.0%

frakk 0.0% 0.0%
gress 0.0% 0.0%

horisont 43.4% 0.0%
husrom 0.0% 0.0%

idiot 0.0% 0.0%
kart 0.0% 100.0%
katt 39.5% 39.5%

kjemi 0.0% 100.0%
kloakk 0.0% 0.0%
landet 3.6% 3.6%
leder 0.0% 0.0%

leilighet 14.7% 14.7%
linse 29.4% 0.0%
lyng 82.4% 82.4%
mål 19.3% 19.3%

mening 45.1% 45.1%
operasjon 17.5% 17.5%

ørret 0.0% 0.0%
paere 60.1% 60.1%

plattform 17.4% 17.4%
rad 0.8% 0.8%
rev 32.8% 32.8%
ris 25.5% 25.5%

sete 45.2% 45.2%
skjerm 36.0% 36.0%
stoff 100.0% 100.0%
tro 0.2% 0.2%

tropp 0.0% 100.0%
varsel 0.0% 100.0%
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Abstract

This article offers an empirical study of com-
bining character-level convolutional neural net-
works (CNN) with a transformer based Bidi-
rectional Encoder Representations from Trans-
formers (BERT) for doing targeted sentiment
analysis for the Norwegian language. Among
the finding is the fact that a character-based
CNN embedder together with the transformer
models seems to improve the models as com-
pared to a pure BERT embedder. The best per-
forming model is found to obtain a proportional
F1 score of 54.41% and a binary F1 score of
66.76%. This was obtained by combining the
NorBERT 2 model with an uncased character-
based CNN embedder.

1 Introduction

Unlike standard sentiment analysis, where the goal
usually is to predict the polarity of a text on a higher
level, for instance on document level, the goal in
targeted sentiment analysis is to predict the senti-
ment on a per-word basis.

This article explores using different machine
learning methods to predict the sentiment for the
NoReCfine dataset from Øvrelid et al. (2020).
Three different main embedders are tried out. One
is a simple bidirectional Long short-term memory
(LSTM) model built on top of a simple Word2Vec
embedder. The two others are the newly re-
leased NorBERT 2 model from Kutuzov et al.
(2021), while the other is a multilingual BERT
model (mBERT) model trained on 104 different
languages.

The main portion of this article focuses on the
BERT models as described in Devlin et al. (2018).
BERT is a pre-trained deep bidirectional represen-
tation from unlabeled texts by jointly condition-
ing on both left and right context in all layers. In
this article, two modified BERT models were used,
namely the Norwegian model NorBERT 2 and the
multilingual model Multilingual BERT.

We explore if adding a character-based embed-
der in addition to the big transformer based em-
bedders can improve performance even more, in-
spired by the promising results from Zhang et al.
(2015), where they use a pure character-level CNN
approach for text classification. The novelty of this
paper, is that we now combine character-level em-
beddings with a transformers-based model, which
empirically has shown to perform quite well (De-
vlin et al., 2018).

In the section 2, the methods used in the article
are explored, followed by section 3, where the re-
sults of the investigation are presented. The articl
continues with a discussion about the most interest-
ing findings in section 4 followed by a conclusion
in section 5.

2 Methods

2.1 Dataset

The dataset that was used in this project comes
from the Norwegian Review Corpus (NoReC), a
dataset introduced by Øvrelid et al. (2020). This is
a fine-grained sentiment analysis dataset for Nor-
wegians, annotated with polar expressions, targets
and holders of opinions. It is made up of texts taken
from news sources on a wide variety of domains,
including literature, video games and music. The
labels consist of of a BIO-tag and a polarity (pos-
itive or negative), which make a total of 5 labels
(B-targ-Positive, I-targ-Positive, B-targ-Negative,
-targ-Negative, O).

2.2 Evaluation

To evaluate the model, two different F1 metrics will
be used: The proportional F1 and the Binary F1.
The Binary F1 counts any overlaps in the predicted
and true labels, while the Proportional F1 reduces
to token-level F1.
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Sentences Targets
Train 8634 5044
Dev 1531 877
Test 1272 735
Total 11437 6656

Table 1: The table shows the number of sentences and
targets across the different data splits. It should be
noted that the NoReC dataset includes more labels as
described here, where only targets are used, and not
holders or polar expressions.

2.3 Models

One of the most fundamental choices when doing
machine learning is selecting the architecture. In
this article, one simple baseline model was used,
and two transformer-based BERT-based models.

2.3.1 Baseline
A simple baseline model was trained to have some-
thing to evaluate the much bigger and more com-
putationally heavy pre-trained models against. The
baseline model is a bidirectional Long short-term
memory (LSTM) model, with two LSTM-layers
and one linear layer. This was built on top of a
frozen, pre-trained Word2Vec embedder1.

2.4 Character-Level CNN

An alternative to doing text classification is using
a purely character-level model, as suggested by
(Zhang et al., 2015). The advantage of this method
is that the embedder can be smaller, since only a
few characters are needed as opposed to thousands
of words. This means that it might be lesss prone
to misspelling (Zhang et al., 2015). Empirical data
suggests that it can have some advantages com-
pared to a word-level model, for instance it might
be less prone to typos.

In this article, it was used besides the BERT em-
bedder, where the output from the word embedder
and from a simple CNN being concatenated and
fed into a classifier as described in 2.5.1. A small
change was made however: the input size had to be
increased to accept the output from both the word
embedder and the character CNN.

The non-space characters used as the vocabulary
for the CNN are:

abcdefghijklmnopqrstuvwxyzABCDEFGH
IJKLMNOPQRSTUVWXYZ0123456789!

1The embedder is available at http://vectors.
nlpl.eu/repository/20/58.zip

æøåÆØÅ"#$%\&’()*+,- ./:;<=>?@[]_̂‘| «»

additionally, all out-of-vocabulary letters were
encoded to the same custom token. This token was
also included to the vocabulary.

The character encoding was done by prescribing
a number corresponding to the index of the letter in
the alphabet, and then converting the character to
its number (a "one-hot" encoding). Each word was
then converted into a vector where each character
encoded. Each of these vectors were then placed
in a Longest word × Number of words-matrix.

This was then fed through the CNN, resulting
in matrix which was then concatenated with the
output from the embedder.

The CNN used was made up by a 1D convolution
and a linear layer.

2.4.1 Choice of Alphabet

The alphabet used is very similar to the one used
in Zhang et al. (2015), with some more characters
added, because of differences between Norwegian
and English, like the addition of the Norwegian
letters æøå and other quote signs. There were also
distinctions made between including both capital-
ized and lower cased letters (cased) and lowering
all letters (uncased).

2.5 BERT

Two different transformer-based BERT models
were utilized in this article: NorBERT 2 and
mBERT.

The model NorBERT 2, a recently released im-
proved version of the NorBERT model as described
in Kutuzov et al. (2021), trained purely on Norwe-
gian data was used as one of the models.

The second BERT model utilized in this article
is mBERT. This is a model trained on 104 differ-
ent languages. Empirical tests between mBERT
and NorBERT have already been performed, with
NorBERT generally performing quite substantially
better (Kutuzov et al., 2021), but the novelty in
the present study comes from the fact that we also
include a character-level embedder as described in
2.4.

The optimizer used to train the big network was
AdamW (Loshchilov and Hutter, 2017), a modifica-
tion of the Adam optimizer (Kingma and Ba, 2014),
which includes improvements regarding decoupled
weight decay regularization, which is very helpful
for training as big model like BERT.
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2.5.1 Classification Layer
To include both the output from the transformer em-
bedder and from the character-level CNN, a custom
classification layer was trained with the concate-
nated output from the transformer-based embedder
and the output from the character-level CNN. For
the architecture of the classification layer, both a
recurrent- and a feed-forward neural network were
tested.

2.6 Ensemble Models
BERT models are known to be unstable, with dif-
ferent seeds resulting in potentially vastly different
performance (Mosbach et al., 2020). One way to in-
creasing the likelihood of a stable model, is training
an ensemble of classifiers on different seeds. In this
paper, the ensemble methods were used after the
optimal hyperparameters, to find the performance
for the test set. This was done by training mod-
els with the same parameters, but different seeds.
Each model then predicted the character-level to-
kens, with the final output being the one that was
predicted most often on a per-token basis.

3 Results

The table 2 shows the performance using different
combinations of including the character-level CNN,
changing up on the embedder and the architecture
for the final classification layers. Table 3 shows
the performance when the learning rate is varied
and table 4 shows the importance of choosing the
correct weight decay for the model.

The figures 1, 2, 3, 4, 5 and 6 show the propor-
tional F1 score, the binary F1 score and the loss
for different epochs for the NorBERT and mBERT
embedders respectively.

The performance for the simple bi-LSTM model
was 28.37% for the proportional F1 score and
45.97% for the binary F1 score, which means
that it performs quite substantially worse than
the transformer-based models. It must however
be noted that these results were obtained without
nearly as much time tweaking the network as was
done for the BERT-models.

4 Discussion

The language-specific NorBERT model vastly
outperforms the multilingual model. The most
interesting finding in this article is how much bet-
ter performance we obtain from the NorBERT
model as compared to the multilingual one. We

Char Embedder F. clas Prop F1 Bin F1

No NorBERT RNN 0.5219 0.6699
No NorBERT FFNN 0.5203 0.6681
No mBERT RNN 0.4276 0.6076
No mBERT FFNN 0.4174 0.6060

Cased NorBERT RNN 0.5258 0.6632
Cased NorBERT FFNN 0.5249 0.6726
Cased mBERT RNN 0.4124 0.5879
Cased mBERT FFNN 0.4294 0.5939

Uncased NorBERT RNN 0.5300 0.6770
Uncased NorBERT FFNN 0.5248 0.6774
Uncased mBERT RNN 0.4187 0.5906
Uncased mBERT FFNN 0.4285 0.5968

Table 2: The table shows the best proportional and
binary F1 scores obtained for different combinations of
including characters, different underlying embedders
and different architectures for the final classification
layer. "Char" is an abbreviation for character, with No
meaning that the character-level CNN output was not
included, and the cased and uncased models specifying
if the character-level CNN includes both uppercase or
lowercase characters or not. "F. clas" is an abbreviation
for final classifier layer.
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Figure 1: The plot shows the proportional F1 score
for different epochs during training and validation for
the training of the NorBERT model combined with a
uncased character-level CNN embedder.

know from Pires et al. (2019) that mBERT actually
seem to create multilingual representations, which
should mean that doing transfer learning to Norwe-
gian should be doable. On the other hand, the study
suggests that the ease of transfer is much higher
for similar languages, as opposed to different ones,
and since there are a lot of languages in the train-
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LR Clas LR Emb Prop F1 Bin F1

0.01 1e-04 0.1057 0.2091
0.01 1e-05 0.4077 0.6327
0.01 1e-06 0.1948 0.2882
0.01 0 0.1648 0.2587

0.001 1e-04 0.4257 0.6105
0.001 1e-05 0.5258 0.6632
0.001 1e-06 0.5072 0.6313
0.001 1e-04 0.4257 0.6105
0.001 1e-05 0.5258 0.6632
0.001 1e-06 0.5072 0.6313
0.001 0 0.4886 0.6293
0.0001 1e-04 0.3829 0.5638
0.0001 1e-05 0.5271 0.6642
0.0001 1e-06 0.4986 0.6708
0.0001 0 0.4637 0.6387

Table 3: The table shows the best proportional and
binary F1 score obtained for different learning rates.
"LR Clas" is an abbreviation for the learning rate for the
classifier layer, while "LR Emb" is the learning rate for
the other embedder layers.
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Figure 2: The plot shows the binary F1 score for differ-
ent epochs during training and validation for the train-
ing of the NorBERT model combined with a uncased
character-level CNN embedder.

ing data for the mBERT model, this can be one of
the reasons for the worse performance. Research
also seems to suggest that language-specific models
can perform significantly better than multilingual
versions, as highlighted by Virtanen et al. (2019),
giving yet another potential reason for the worse
performance.

Making sure the mBERT model is able to ad-

Weight decay Prop F1 Bin F1

0.01 0.5258 0.6632
0.05 0.5306 0.6707
0.1 0.5301 0.6756
0.2 0.5371 0.6819
0.3 0.5359 0.6807
0.4 0.5344 0.6832
0.5 0.5402 0.6868
0.6 0.5469 0.6892

Table 4: The table show the best proportional and binary
F1 score obtained for different values for the weight
decay in the AdamW optimizer.

2 4 6 8 10
0

2 · 10−2
4 · 10−2
6 · 10−2
8 · 10−2

0.1
0.12
0.14
0.16

Epoch

L
os

s

Loss for the train and dev
for different epochs for NorBERT

Train
Dev

Figure 3: The plot shows the loss for different epochs
during training and validation for the training of the
NorBERT model combined with a uncased character-
level CNN embedder.

just to Norwegian. Libovický et al. (2019) sug-
gests that mBERT is made up of one language-
neutral component, and one language-specific com-
ponent. It is also know that training BERT-models
is hard due to vanishing gradients and general
instability (Mosbach et al., 2020). The training
dataset contains 8634 sentences, which might not
be enough to allow the big mBERT model to ad-
just to Norwegian. One could look into start by
training the embedder on data without the targeted
sentiment analysis, and see if that improves the
performance of the model.

Character-level information improves the per-
formance of the NorBERT. From table 2 we see
that the best performing models are those trained
with both an embedder part and a character-based
part. This might indicate that there are some pat-
terns which the big BERT model is not able to
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Figure 4: The plot shows the proportional F1 score for
different epochs during training and validation for the
training of the mBERT model combined with a uncased
character-level CNN embedder.
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Figure 5: The plot shows the binary F1 score for differ-
ent epochs during training and validation for the train-
ing of the mBERT model combined with a uncased
character-level CNN embedder.

capture. One should however note that the per-
formance difference is not very big, and the evi-
dence is merely empirical, so no definite conclu-
sion that character-level information will improve
BERT models should be drawn from this.

Character-level information does not seem to
have a noticeable impact on the performance of
the mBERT model. As opposed to the NorBERT
models, it is not clear whether the character-level
information improves the performance or not, with
some scores being higher for the models includ-
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Figure 6: The plot shows the loss score for different
epochs during training and validation for the training of
the mBERT model combined with a uncased character-
level CNN embedder.

ing the character embedding and some perform-
ing worse, as seen in table 2. One possible ex-
planation for the difference in performance, is that
whereas the NorBERT model trained on Norwegian
data only requires minor adjustments, the mBERT
model requires much bigger changes to adapt to
the Norwegian language, meaning that having even
more parameters to optimize simultaneously only
hurts performance. If the training set had been even
bigger, the results could have been different, and
we could have gotten better performance when in-
cluding the character-level CNN, but more research
is required in order to either verify or deny this.

The models might be quite prone to overfit-
ting. If we look at the plots in figure 1, 2, 3, 4,
5 and 6, we see a clear difference between loss
and F1 performance for the train and dev data. For
the train data, the binary and proportional F1 score
consistently improve. Judging from the figures, the
score also does not look like it has stagnated, mean-
ing that given enough time, they might very well be
able to have a 100% F1 score. This does however
not appear to be the case on the dev data, with per-
formance looking much flatter, and certainly not
improving at nearly the same rate as for the training
data. The loss tells a similar story, with the train
loss decreasing, while the dev loss increases for
both the NorBERT and mBERT graphs.

Fine-tuning the embedder layer in addition to
the classifier improves the performance. From
table 3, we clearly see that even for the NorBERT
model, which is already trained on Norwegian
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words, fine tuning the embedder improves the per-
formance noticeably, with improvements around
5.5% for the proportional F1 score and 7.8% for
the binary F1. This indicates that even for a model
trained on the same language, tweaking it to fit the
exact data is still worthwhile.

5 Conclusion

This study offers an empirical look at combin-
ing different concepts from machine learning to
improve the performance of a standard BERT-
approaches for targeted sentiment analysis in Nor-
wegian. On one hand, the analysis indicates that us-
ing a character-level CNN in conjunction with the
pre-trained embedder and training multiple models
can improve performance. On the other hand, data
suggests that the entire BERT model might be un-
stable, with much better performance on training
data than on unseen data, and with this being the
case also when including the character-level CNN.
The final performance of the model was 54.44%
for the proporional F1 and 66.76% for the binary
F1 when combining ten ensemble models.

Suggestions for further work include doing a
more thurough examination of the errors, to bet-
ter understand if and how the model is unstable.
Another possibility is trying to investigate how dif-
ferent CNN-architectures can improve the perfor-
mance for the character-level embedder. Another
possible direction to improve the performance,
would be to train the embedder on a larger dataset,
somewhat similar to how BERT models are trained,
and only fine-tune it on the smaller targeted senti-
ment analysis-dataset.
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Abstract

This paper is about automatic semantic parsing
for task-oriented, compositional, queries. The
task is to extract intentions from natural lan-
guage sentences, which can then be used for
user interaction systems. To explore this task,
we have experimented with different variants of
sequence to sequence (seq2seq) architectures:
varying the sentence representations and the
bridging strategies between the encoder and
the decoder. We have analyzed some of the
challenges in this particular NLP-task when it
comes to using pre-trained language models,
and find the model we developed that gives the
best performance on development data. In the
end we test our best model on test data, which
is a seq2seq model with pre-trained, static,
embeddings in both encoder and decoder. It
achieves 0.402 exact match accuracy on the
test dataset.

1 Introduction

Semantic parsing is to extract semantic information
from natural language text. This can be useful for
example in dialogue systems, for a system to be
able to understand user utterances (Rongali et al.,
2020). A basic understanding of intentions of the
user is essential for a system to be able to give
reasonable answers or follow-up questions, and to
possibly conduct extra-linguistic tasks like doing
look ups in a navigational application. The specific
sub-task we will focus on is task-oriented seman-
tic parsing (TOSP), where the prime objective is
to conduct such aforementioned extra-linguistic
tasks. In this paper we use a dataset which uses
the TOP-format presented in Gupta et al. (2018)
for representing the parse containing this semantic
information. The format is hierarchical, or tree-
structured. As sequence to sequence (hereafter just
seq2seq) architectures work with linear sequences,
we will work with a linearized or serialized version
of this tree.

The baseline we have access to, gives an exact
match accuracy score of 0.38. By studying the
nature of the task, and the current methodology
in Natural Language Processing, we improve this
baseline, and create a TOSP-system that can be a
better starting point for a dialogue system further
downstream.

The dataset we use is the TOP dataset. The
dataset has 44 000 queries. It was presented in
Gupta et al. (2018), and uses a novel hierarchical
representation of queries. The queries are crowd
sourced, where the contributors are instructed to
create sentences or phrases that could be asked
a system that assists with navigation and event
queries. Some of the queries are short, like “pam-
pering parties", and some are longer and consist of
fully grammatical sentences, like “If I take off now
what time should I arrive at Fenway Park?". Expert
annotators have created the parses for the queries.
The parses are represented as trees, with the leaves
or terminals being words from the query, and the
non-terminal nodes being Intents or Slots. The top
node of each parse has to be an Intent. However,
this representation allows for complex queries with
nested intents, as can be seen from this serialized
version of a complex parse from TOP in table 1.
This is opposed to representations with only one
top intent for the whole query, with slots inside it.
Intents describe a wish for something to be done
by the system, and the slots describe entities that
are relevant for a system to know for executing the
request further down in the pipeline. The use of the
TOP format gives us the opportunity to handle a
larger array of queries, which is a prerequisite for
a proper, human-like, understanding of meaning of
natural language.

The evaluation metric which is common in this
sub-field is exact match accuracy (Gupta et al.,
2018; Einolghozati et al., 2019), which is defined
to be a full match between prediction and gold
standard on utterance or query level. In addition,
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sometimes recall and precision scores as labelled
bracketing scores common in syntactic parsing
(Gupta et al., 2018) (which is a related task in NLP),
are reported. This metric compares the span of a
given label within each utterance, which means that
partly correct parses on query level will contribute
to the score as well. Another informative metric
available is that of tree validity. This metric does
not compare the predictions to any gold standard,
but instead looks at each prediction and measures
weather it abides to the rules of TOP, such that the
prediction could have been a valid parse.

In this paper we mostly do not use any other
evaluations than exact match accuracy in this paper.
Having only one metric makes it easier to directly
compare different models and architectures. One
additional argument for only weighting full query-
level matches is that most downstream tasks, like
query execution by a dialogue system, are expected
to be performed exactly as expected. If a request for
driving directions to a specific restaurant is parsed
in any other way, the expectations of the user are
not met, and the system is not useful. However,
in section 3.5 we have a look at some options for
post-processing to manually improve the validity
of trees directly.

For the reader with access to the code used for
the experimentation, it should be noted that we did
not use the textual predictions themselves for the
comparison of predictions with gold parses. Instead
we use the numerical identifiers for each item in the
vocabulary for comparison, and thereby increase
the efficiency of evaluation greatly, both during
the training epochs and during the final, reported,
evaluation. This is the metric used in all the tables
reporting results.

TOP dataset
Input Sentence Parse
stuff to do
tonight

[IN:GET-EVENT stuff to do
[SL:DATE-TIME tonight ] ]

Traffic near me [IN:GET-INFO-TRAFFIC
Traffic [SL:LOCATION
[IN:GET-LOCATION
[SL:SEARCH-RADIUS near
] [SL:LOCATION-USER me
] ] ] ]

Table 1: Examples from TOP dataset: one simple and
one complex (nested) query parse

2 Related work

There are two main directions for solving TOSP.
Either one can predict the serialized version of the
parse-tree directly with a seq2seq strategy, like in
Rongali et al. (2020) and Chen et al. (2020), or one
can predict a sequence of transformation-actions,
which when applied to the query creates this parse-
tree, like in Gupta et al. (2018) and Einolghozati
et al. (2019). All of these papers work on the same
dataset as us: the TOP dataset which includes com-
plex queries.

We will now briefly describe two systems from
the literature. Rongali et al. (2020) presents a
seq2seq system, with some task-specific peculiar-
ities. For the encoding part, they use pre-trained
BERT embeddings, which is the state-of-the-art
method for representing text in NLP as of today.
These embeddings are not static as the ones we use
in this paper. Each time a token is encoded at infer-
ence time, a unique representation is created based
on the current context. The more interesting part
of their system, is that they use a Pointer Generator
Network (See et al., 2017) for the decoder. This
network generates tokens in two ways: either by
copying tokens from the input sequence with the
help of pointers, or generating tokens not seen in
the input from a limited special vocabulary. Earlier,
this type of network has been used for text summa-
rization (See et al., 2017). This strategy works for
this particular task as well, since all the elements
in the input should also be in the output, and the
special token vocabulary is very small (less than
100 intent and slot types). This is similar to the
task of text summarization, where parts of the in-
put (the original text) can be used in the output (the
summary). They achieve exact match accuracy of
87.67 on the TOP dataset with their unified model
in 2020.

In Einolghozati et al. (2019), a more complex
ensemble model is presented. The embeddings are
contextualised just as in the previous paper, but
in the encoder a ranking method decides which of
the predictions from the ensemble of models gets
chosen. This means that several models with dif-
ferent hyperparameters are trained on the training
data, and a final prediction is chosen from several
possible predictions.

Both of these mentioned models are different
from the models presented in this paper, in terms
of embeddings used, Pointer Generator Network
added, and in that the second is utilizing an ensem-
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ble of models.

3 Architecture, experiments and results

In this section we present base architecture of the
system used for experimentation, and we gradually
add elements to this system. The results after each
experiment on the development set are presented
and discussed.

3.1 Baseline with improvements

In this article we only work with the direct parse-
prediction of a seq2seq model. Seq2seq is a com-
mon architecture in NLP for systems that creates
a new sequence from an old sequence, and where
there is not a 1-to-1 relationship in number of to-
kens or elements in the input and output (Cho et al.,
2014; Bahdanau et al., 2014; Sutskever et al., 2014).
Machine translation between languages is a typical
example of this, while word-class tagging (POS-
tagging) is an example of a task where the output
has the same length as the input. In seq2seq im-
plementations, the whole input has to be encoded
to a common size vector first, and this is done by
the module named encoder. The resulting context-
vector can then be used by the decoder-part of the
system to generate an arbitrary length sequence.
This is a simplified description of seq2seq, and in
reality additional modules, like attention, are used
by the decoder to weight the different parts of the
encoded input when generating the output. This
is due to the limitations of what information the
context vector can carry.

The baseline model is the starting point for all
the rest of this task. It is a seq2seq architecture, con-
sisting of a Recurrent Neural Network (from now
on just RNN) in both encoder and decoder. The out-
put of the encoder is autoregressively used by the
decoder to create the output sequence, which con-
sists of tokens from the input sentence, as well as
structural tokens, which are needed for a serialized
semantic tree (e.g. IN:[] and so on). The encoder
utilizes pre-trained, static, publicly available 1 em-
beddings trained on English wikipedia 2021 with
assistance of the Gensim Contiuous Skip-gram ap-
proach (Fares et al., 2017) as representation for
each token. The decoder uses a different context
vector at each time steps, regulated by an additive
attention mechanism (Bahdanau et al., 2014). This
mechanism consists of a one-layer neural network,
with weights trained to learn the relationship or

1http://vectors.nlpl.eu/repository/

alignment between each token in the input to each
token in the output. The decoder trains embeddings
from scratch, based on the vocabulary of the parses
in the training data, which includes special tokens
like brackets and intent- and slot names, see table
1.

The results on the development data, before mak-
ing any adjustments, can be seen in table 2. The
hyperparameters for the baseline are 20 epochs,
batch-size 248, two (encoder and decoder) uni-
directional RNNs with 1 hidden layer each, and
static word embeddings created from the English
Wikipedia Dump of November 2021.

We created a slightly improved version of this
baseline, and the results from this can be seen in
table 2 as well. Here we have added a decay of
the teacher forcing ratio (0.95) and a decay in the
learning rate (0.95) during training. The learning
rate starts at a quite high level (0.003), to have
increased efficiency in the training. If the learning
rate starts out too low, it will take a very long time
to get the parameters to make good predictions.
With a high starting learning rate the parameters in
the model change comparatively much in the right
direction. But when the model becomes quite good
at predicting, it is good to have a lower learning
rate so that the parameters do not fluctuate too
much, and go "past" the golden spot. Therefore,
the learning rate decays exponentially toward the
end of training.

Teacher forcing is a concept and an algorithm in
auto regressive generation training, like the train-
ing of an RNN (Williams and Zipser, 1989). In
the beginning of training, the predictions at a given
timestep in the decoder will most likely be wrong
more often than not. If there is no teacher forcing,
the generation at the next timestep will be based
on a preceding sequence, which is not correct or
likely in the dataset. Therefore, in the beginning
of training, it is useful to force the sequence up
to that point to be the correct one, and predict the
current token based on that. But since the model is
supposed to be able to generate parses on unseen
data as well, we want the last part of the training
to simulate that. This means, that when the model
is becoming quite good, we decrease the ratio of
timesteps when teacher forcing is used. This is
done exponentially by multiplying the teacher forc-
ing rate by a number between 0 and 1.

We also added a fine-tuning of the encoder pre-
trained embedding parameters during training. The
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motivation for this is that the pre-trained embed-
ding values are trained with a different objective
than TOSP. With TOSP, some words in the input
might be cues for a specific intent in the parse,
and these connections are emphasized by allowing
some fine-tuning of these parameters.

These three changes to the system were not sys-
tematically tuned in a grid-like way, but are rather
collectively assumed to improve the baseline, as
they do.

Baseline results
Model Exact Match Accuracy

Baseline 0.388
Improved baseline 0.423

Table 2: Baseline results on development data set

3.2 Adding directions and layers to the
encoder

In modern machine learning, the number of train-
able parameters in a system can improve the sys-
tems ability to create useful representations. In
a neural network, this can mean either to expand
the number of nodes in each layer, or by adding
more layers of nodes. Both of these changes result
in more trainable parameters between the nodes.
Adding more layers is what gives the concept of
deep learning its name. It is not a trivial addition to
a seq2seq model to add more layers, and this will
be discussed and experimented with in section 3.3.
In a sequential neural network like RNN, where
outputs at a given timestep depend on the calcu-
lations from previous timesteps (previous words),
one can also add a sequential reading from the
end. The result is that a representation for a word
is also impacted by the upcoming words. This is
called bidirectional processing (Schuster and Pali-
wal, 1997). Results comparing the unidirectional
and bidirectional encoder versions of the system
can be seen in the table 3. The hyperparameters are
the same as before, but the bridging strategy used
is a concatenation of the direction outputs of the
encoder, and then a linear transformation to a fixed
sized context vector fitting as input to the decoder.
We will describe what bridging is in section 3.3.

From the results we can see that bidirectional-
ity in the encoder does not improve the model, in
fact the results are quite poor on the development
data set. It seems like the information about future
words in the input sequence does not contribute

to the prediction of intents in the parse. One hy-
pothesis is that information about intentions/intents
in the English language follow a quite strict word
order, and can thereby be extracted well from only
the left context of a given token.

Bidirectional encoder
Model Exact Match Accuracy

Improved baseline 0.423
Bidirectional encoder 0.169

Table 3: Results on development data set, from experi-
ments with bidirectional encoder compared to the unidi-
rectional improved baseline

In the following experiments on adding more
layers to the encoder, we only use the unidirec-
tional version of the encoder. This is due to the
bidirectional model yielding quite poor results in
the previous experiments. In an RNN, layers are
stacked on top of each other, and the output of the
first layer is the input of the second layer, and so on
until the last layer, which creates the actual outputs
used by the attention module of the decoder.

As can be seen from the results below, adding
layers does not improve the results of the model
either. This may be because the bridging strategy
used so far (concatenation and linear transforma-
tion) is not optimal. We will present more experi-
ments with bridging strategies in the next section.

Layers
Model Exact Match Accuracy
1 layer 0.377
2 layers 0.254
3 layers 0.140
4 layers 0.001

Table 4: Experiments with different layer counts in the
encoder. The 1 layer model has forced linear transfor-
mation in the "bridge", like the other models in this
experiment. This is the reason why the result in the first
column deviates from the results in table 3. All results
on development data

3.3 Bridging from encoder to decoder

As mentioned earlier, in a seq2seq model there
is an encoder which outputs a fixed-sized context
vector. In the baseline this context-vector consists
of the raw, last (and only) layer of the encoder. This
only works because that vector is exactly the same
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size as the hidden (input) layers of the decoder.
If there is a difference in shape and size between
the two vectors, we need a transformation, or a
bridge, between the encoder and the decoder. In
this section, we will discuss what different options
we have for this bridging, and what issues one
encounters if there are more layers in the encoder.
Some illustrations of what bridges are and can be
are seen in figure 1. One simple solution is to
discard the outputs of the other layers, and only
use the last layer as input to the decoder. One
can also take the element-wise average of all the
hidden layers. Another option is to take the highest
values for each position in the feature space from
the encoder last hidden layers, and create a new
vector from that: a strategy called max pooling.
For all of the alternatives except concatenation, it
is optional to have some transformation of the data
to create the final context vector. We suggest two
different types of transformations: a linear (matrix
multiplication) operation with trainable parameters,
and a tiny multi-layer perceptron (feed-forward
neural network) with a non-linear transformation.
The results of experiments with these settings can
be seen in table 5.

For the experiments with bridging we used the
best non-1-layer model from the previous section.
In our case that was the (unidirectional) model with
2 layers. The motivation for this decision is that
a 1-layer encoder would not let us try out all the
possible bridging strategies, like the averaging or
concatenating of layer outputs. There is a caveat
here however, and that is that another, and perhaps
more intuitive, bridging model like using the last
layer might have yielded different results when
experimenting with layer sizes. To do a full grid
search on all combinations is outside the scope of
this paper.

None of the bridging strategies help improve
the improved baseline with only 1 layer and no
transformation. It is difficult to say why that is, as
more layers is common in neural machine learning,
and we have added more parameters in both the
encoder and the bridge. This means that a deeper
understanding of neural networks is more impor-
tant than just throwing parameters into a system.

3.4 Embeddings

Already in the improved baseline model we added
fine-tuning to the encoder embeddings, which im-
proved the performance of the system. Let us now

Figure 1: Some different bridge models. All models
ignore the attention mechanism, and focus only on how
the context vector is generated. The first illustration
describes the baseline, where the context vector is the
last hidden layer of the encoder. The second shows
how to average over the multiple hidden layers. The
third shows how one needs to have a transformation for
concatenated hidden layers. The last illustration shows
how to use only the last layer as input to the encoder.
For number 2 and 4 a transformation is optional

turn to the decoder representations. In the baseline,
the representation for the decoder generative vo-
cabulary is trained from scratch. This means that
each token present in the parses from the training
data, gets an individual, random, numerical repre-
sentation, which is updated and improved for the
particular task during training. This is not optimal,
as it takes time and resources to adjust the parame-
ters from random to optimal for a task. Usually one
would use pre-trained embeddings (which already
carry semantic information, if not for this specific
task) in such an NLP task. However, since the out-
put of the system uses special tokens (intent and
slot names) which are not common in natural lan-
guage text, there are no fully covering pre-trained

85



Bridging
Model /
pooling
strategy

Transfor-
mation

Exact
Match Ac-
curacy

Improved
baseline

na 0.423

Last layer linear 0.355
Last layer MLP 0.284
Concat linear 0.339
Concat MLP 0.358
Average linear 0.374
Average MLP 0.368
Max pooling linear 0.371
Max pooling MLP 0.350

Table 5: Experiments with different bridging strategies
between the encoder and the decoder. All experiments
with 2 layers, on the development data set

embeddings available, even if it would be possi-
ble to train such embeddings on data in the format
of the TOP parses. The Pointer Generator Net-
work (Rongali et al., 2020) mentioned in an earlier
section could also solve this issue quite nicely, by
using only the limited special vocabulary and point-
ers to the input tokens. However, both training new
embeddings with for example skip-gram or imple-
menting a Pointer Generator Network was outside
of the cope of this article. As mentioned above, the
baseline has pre-trained static embeddings for the
encoder (which are fine-tuned for the task in the
improved baseline), and trainable embeddings for
the decoder. In the following section we present
experiments with pre-trained embeddings for the
decoder as well.

The issue with using pre-trained embeddings for
the decoder, is that the output vocabulary need to
have some special tokens (see table 1), which are
not found in any pre-trained embeddings. Another
issue is that using all tokens from the pre-trained
embedding vocabulary creates a huge amount of
output classes for the decoder to predict from (200
000), which is too much for the memory of the sys-
tems we are using for training (SAGA supercluster
from NRIS, Norway) Therefore the pre-trained em-
beddings are created in the following manner: first
we downloaded the same pre-trained embeddings
as for the encoder, then we filtered this collection
to only keep the vocabulary which already exists
in the parses of the training data. Then we added
all the special tokens used in this parsing schema:

the intent and slot types. This was done by creat-
ing an average embedding based on the parts of
the intent-symbols, by averaging the embeddings
for for example “get" and “directions" in “[IN:get-
directions" into one vector which carries meaning
from both of them. In table 6 we see the results of
this, compared to the baseline. To get some more
points of comparison, we did the experiments with
both 1 and 3 layer encoders. The reason for us-
ing 3 layers instead of 2, which would be the best
non-1-layer configuration according to the results
from section 3.2, is to have as wide a range of com-
parison as possible with reasonable experimenting
efficiency.

For these experiments we used the linear trans-
formation in the bridge, with an average pooling
of the hidden last layers of the encoder, as this was
the one that yielded the best results in the previous
experiments.

The results for multiple layers seem to be very
unstable at best. The addition of pre-trained em-
beddings for the decoder actually deteriorates the
results, which is the opposite effect as for the 1-
layer configuration. This is quite surprising, since
one would think that the larger parameter-count
in the 3-layer model, given equal training epoch
count, should benefit from the pre-trained embed-
dings already containing some predictive ability as
opposed to the non-trained embeddings. Because
of this, we will focus on the results from the 1 layer
experiments. Using the pre-trained embeddings
with additional special tokens seems to be a viable
option for this configuration, and it also cuts the
training time with about 20 percent.

Embeddings for decoder
layers Decoder

Embed-
dings

Exact
Match
Accu-
racy

1 layer from scratch 0.423
1 layer pre-trained 0.440
3 layers from scratch 0.300
3 layers pre-trained 0.242

Table 6: Experiments with pre-trained embeddings for
the decoder, on the development data set

3.5 Post-processing
Looking at the final results on the development data
set, we can see that some of the predictions of the
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system do not conform to the TOP parsing rules,
see example in table 7. In a linearized/serialized
tree, there needs to be a balanced number of square
brackets. With the simple trick of making sure
that the amount of square brackets at the end of
each parse is correct, we make sure that the outputs
follow the rules of the parsing system. There is
naturally no guarantee that the adding of brackets
at the end of the parse is correct, since the closing
brackets might rather belong in an earlier position.
Studying different heuristics for making sure the
parses are valid can be an avenue for future work

Bracket problem example
[IN:GET-EVENT best
[SL:CATEGORY-EVENT concerts ]
[SL:LOCATION Vegas ] ] ] ] ] ] ] ] ]

Table 7: Prediction from the system, that is breaking the
rules of a linearized tree

4 Testing on the test set

To make a fair comparison, we are running the
baseline on the test-data as well, not on the devel-
opment data. In that way we can see if our system
has brought any improvement to the TOSP task. Af-
ter landing on one specific model we can run it on
the unseen test set. The settings/hyperparameters
of the best model are repeated in table 8.

Parameters of the best model
parameter value
teacher forcing decay 0.95/100 batches
encoder layers 1 layer
bridge pooling average
bridge type linear transformation
decoder embeddings pre-trained +
encoder embeddings fine-tuned

Table 8: The parameters of our best model from tests on
the development data, which will be evaluated on the
test data

Results on test data
model Exact match accuracy

baseline 0.392
best model 0.402

Table 9: The results after testing on unseen test data

The results on the test set are showed in table
9. Compared to previous experiments on the TOP
dataset, these results are not very impressive. The
state-of-the-art systems are just below 0.9, like
the extended SVM ranking model with ELMo-
embeddings in Einolghozati et al. (2019) which
yields an exact match accuracy of 87.25, or the
model in Rongali et al. (2020) with a Pointer Gen-
erator Network, which yields EMA of 86.67 on the
same data set. However, we manage to improve
the results twice: first by doing some changes to
the baseline, and then by adding pre-trained em-
beddings to the encoder of the seq2seq model.

Wrong predictions
Correct parse System parse
[IN:GET-EVENT
Where can we take
[SL:ATTRIBUTE-
EVENT the kids ] ]

[IN:UNSUPPORTED
Where can we take the
the kids ] ]

[IN:GET-EVENT
What is going on
[SL:DATE-TIME
right now ] ]

[IN:GET-INFO-
TRAFFIC What is
going on [SL:DATE-
TIME right now ] ]

[IN:UNSUPPORTED
outdoor dining in
miami ]

[IN:GET-EVENT
[SL:ATTRIBUTE-
EVENT outdoor ]
[SL:CATEGORY-
EVENT in
[SL:LOCATION
chicago ] ]

Table 10: Examples of wrong parses made by our model

In table 10 are some examples of mistakes from
the parser. The examples are taken from predictions
made on the development data. For the first exam-
ple, our system predicts the unsupported category
of intents, which is an actual category in the dataset.
It does not seem to recognize the phrase "where can
we take" as a wish to find a place. And "the kids" is
not the most obvious target of an event either. For
the second example, the whole tree structure is cor-
rect, but the intent type is wrong. It could be argued
that if this phrase is uttered to a navigation system
in a car, the system parse would be an acceptable
interpretation as well. In the third example, the
annotators have categorised the phrase as unsup-
ported, while the system "sees" a pattern with other
event requests. However, the system does not carry
the "dining" part from the input (which would have
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been solved with a Pointer Generator Network by
copying from the input). We can also see an exam-
ple of how intuitively similar words like Miami and
Chicago probably have quite similar embeddings,
and are intermixed in the prediction.

5 Conclusions

From our experiments we have seen that it is not
trivial what is fed from the encoder to the decoder,
and there are many ways to go about it. Averag-
ing over the hidden states of the encoder seems
to be the best way to do the bridging. We think
the detailed experimentation with different bridg-
ing strategies could be useful for other researchers
working with seq2seq systems for TOP. We have
also showed that it is possible to use pre-trained em-
beddings for non-standard vocabularies, by combin-
ing elements of the already existing vocabulary to
create useful embeddings for special tokens. Lastly,
using teacher forcing decay, fine-tuned embeddings
in the encoder, and learning rate decay appears to
improve the performance of such systems.

The context vector is not the only element used
by the decoder in seq2seq system when generat-
ing an output. There is also the attention-module,
which utilizes the outputs of each encoder timestep
separately. We did not study different options for
the attention mechanism in this paper, but there are
several paradigms and parameters to experiment
with in that sub-field as well.
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Abstract
In this paper, we applied different neural net-
work architectures in order to classify the tar-
geted sentiment in the NoReCfine dataset1.
The architectures we have used are recurrent
neural network such as Gated recurrent unit
(GRU) and Long short-term memory (LSTM),
the Norwegian ELMo (NorELMo30), pre-
trained transformer-based language models
such as the NorBERT and the Multilingual
BERT. We trained these models with and with-
out including character-level information and
encoding types of BIO and BIOUL. The pre-
trained models significantly improve the perfor-
mance compared with RNNs. The best model
was found to be the NorBERT on the BIO en-
coded dataset with F1 at 0.644 (binary) and
0.513 (proportional).

1 Introduction

Sentiment Analysis (SA) is a research field within
Natural Language Processing (NLP) that aims
to identify and categorize opinions in text and
determine whether they are written in a positive,
negative, or neutral tone. However, there could be
more than one sentiment towards different targets
in one sentence. A fine-grained sentiment analysis
or targeted sentiment analysis (TSA) is used to
solve this problem, which is identifying opinions in
sentences and analyzing them regarding their polar
expressions, targets, and holders. For example, the
sentence below has only one sentiment towards
one target, where the normal sentiment analysis
model works fine.

(1) Denne diskenPOS er svært stillegående
’This disk is very quiet-going’

But the second sentence has two different senti-
ments towards two different targets, where normal

1The code for this paper can be found at https://
github.uio.no/ecec/TSA. Read the README.md for
how to run the code.

sentiment analysis cannot identify its sentiments.

(2) En klassisk, men like så episk oppbygget inspo-
pop som fengsler i refrengetPOS, men PerryNEG
sliter med den dypere vokalen i versene.
’A classic, but just as epic built-up inspo-pop that
captivates with the chorus but Perry struggles with
the deeper vocals in the verses.’

The aim of this paper is to develop machine
learning models that are able to classify these types
of sentiments. In order to do so, we will apply a
range of different neural network architectures,
such as

(1) Recurrent neural network
(2) ELMo
(3) BERT models

The selected models for Recurrent neural networks
(RNN) and pretrained models were also tested with
included character-level information. The two best
models are then applied with another more fine-
grained label encoding of BIOUL.

2 The dataset

In this task we are working with the NoReCfine

dataset (Lilja Øvrelid and Velldal, 2020) which
is a dataset for fine-grained sentiment analysis
in Norwegian. We have three separate data files
for training, validating, and testing. The size of
the dataset was shown in the table [1]. It has
been annotated with respect to polar expressions,
targets, and holders of opinion. The distribution of
different polar labels was shown in table [2]. The
dataset is encoded in Begin Inside Outside (BIO)
type of encoding. In total, there are five classes in
the data

(1) O: outside
(2) B-targ-Positive: beginning of a target with
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positive sentiment
(3) I-targ-Positive: inside of a target with positive
sentiment
(4) B-targ-Negative: beginning of a target with
negative sentiment
(5) I-targ-Negative: inside of a target with
negative sentiment

An example of a sample from the dataset is
shown in table [3].

Train Test Development Total
8633 1271 1530 11434

Table 1: Dataset size of training, test and development
sets

Label Train Test Dev Total
B-neg 1558 210 256 2024
B-pos 3486 525 620 4631
I-neg 1472 163 244 1879
I-pos 3399 572 581 4552

O 134317 20355 24195 178867
Neg (total) 3030 373 500 3903
Pos (total) 6885 1097 1201 9184

Table 2: Number of each tag appearing in training, test
and development sets.

We observe that the dataset mostly consists of
words with neutral (O-tagged) sentiment, with very
few words with positive sentiment and even fewer
words with negative sentiment (table [2]). It seems
that the separation of training, development, and
test datasets has already considered the imbalance
of different labels and they have a similar distribu-
tion for different labels.

Han B-targ-Neg
redda O
den O

perfekte O
hustrue-skuespilleren O

Bonnie B-targ-Pos
Bedelia I-targ-Pos

og O
blødde O

overfladisk O
. O

Table 3: Sample 99 from training dataset. Here, the
B-targ-Neg, B-targ-Pos indicate the beginning of a to-
ken which has been annotated negative and positive,
I-targ-Pos indicate the inside of a token with positive
annotation and the O indicate the outside (neutral) to-
ken.

3 Architectures and Methodologies

A diverse collection of models were trained and
tested for the task. All models were fine-tuned at
the end. When the hyperparameters which yield
the best results were found for each model, we
tested the models with the optimal hyperparameters
for different encodings of the gold labels and/or
additional embeddings which provide character-
level information.

3.1 Recurrent neural networks (RNNs)

Recurrent Neural Networks (RNNs) like Gated
recurrent unit (GRU) and Long-short term mem-
ory (LSTM) have been proved to be effective in
TSA and bringing significant improvements (Zhang
et al., 2016; Yukun Ma and Cambria, 2018, 2019).
Therefore, we are interested in how these networks
deal with the NoReCfine dataset. For all of the
RNNs, we used the static embedding with an ID of
58 trained on the Norwegian-Bokmaal CoNLL17
corpus from NLPL 2.

3.1.1 Baseline

The baseline model for this task was a simple bidi-
rectional long short-term memory (BiLSTM) neu-
ral network with a linear output layer. We have later
on adjusted this model such that it could be used
with different versions of encodings for the gold
labels, or with embeddings that provide character-
level information.

2The embedding is available at http://vectors.
nlpl.eu/repository/20/58.zip
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3.1.2 GRUs and LSTMs
We have built two different recurrent neural net-
work models for this task, and tested them for a
variety of hyperparameters. Firstly, we improved
the baseline model and ensured that the model had
some additional properties and parameters to be
tuned. The baseline model was a simple bidirec-
tional LSTM, whereas our improved model can be
bidirectional or non-bidirectional, can use BIOUL
encoded target labels, can add character-level infor-
mation on top of the pre-trained embeddings, and
most common properties of a neural network, such
as the size of the hidden dimensions or the number
of layers, can be tuned. Additionally, a GRU model
can be trained with the same properties.

3.2 Embeddings from Language Model
(ELMo)

The problem with static embeddings, section 3.1,
is that these embeddings assign the same vectors
to same words in different contexts. This leads
to incorrect classification. The solution to this
is to use the Embeddings from Language Model
(ELMo) which assigns each word a vector which
is a function of the whole input phrase (Oren Mela-
mud, 2016; Bryan McCann, 2017). In this way,
the words are context-dependent, meaning that
ELMo produces different representations for words
that share the same spelling but have different
meanings. ELMo is based on bi-directional
LSTMs to process character-level tokens and
generate word-level embeddings (ELMo, 2022).

In this project, we implemented the NorELMo
(ID 217) which is an ELMo model for Norwegian3.
This model is a set of bidirectional recurrent ELMo
language models trained on Norwegian Wikipedia
texts. The implementation is done by using the
allennlp package 4. The complete architecture for
this section consists of NorELMo as the first layer,
where it extracts word embeddings from the given
text-data, and on top of this layer we have imple-
mented a GRU model.

3.3 Transformer models

Bidirectional Encoder Representations from
Transformers (BERT) is a transformer-based
model that relies purely on the self-attention

3http://wiki.nlpl.eu/Vectors/norlm/
norelmo

4https://github.com/allenai/allennlp

mechanism, which is made possible by a deep
bidirectional Transformers at its core. This is
essential since a word’s meaning can often alter as
a phrase progresses. BERT is able to process words
in relation to all the other words in a sentence by
looking at a word and all the other words that come
before and after it at the same time. Because of
this, the BERT models have become very popular
in the NLP world in recent years, due to their good
performance on most NLP tasks.

Another attempt has been made to run BERT
models in the NoReCfine dataset. One example is
from a master’s thesis (Rønningstad, 2020) where
the best result obtained with BERT was 0.5958
(binary) and 0.5105 (proportional).

The transformer models implemented in this sec-
tion are the NorBert (2022) and the MultiBERT
(Multilingual Cased) (Devlin and Petrov, 2019).
As the name suggests, NorBERT (ID 216) is a
BERT model trained on Norwegian data5. MultiB-
ERT is a large multilingual model containing 104
languages. Both BERT models were implemented
with the AutoModel for activating the model and
AutoTokenizer for tokenizing the sentences from
the transformers package in PyTorch. On top of
the BERT model, a linear layer in order to project
the output into the right number of classes.

3.4 Character-level information

Traditionally, we built Neural Language Models
using words in a sentence or paragraph or even
document. And this indeed provides us with solid
performance on different NLP tasks (Darwish,
2013; Hakan Demir, 2014). However, using
words to train the model will generate a huge
vocabulary and may hinder the improvement of
models due to their capacity for handling unknown
words, punctuation, and other document structures.
Furthermore, this may cause the model to require
more time and resources to train. Nevertheless, the
character-based models overcome these drawbacks
and provide a promising probability. A Hidden
Markov Model (HMM) with character-level
information could reduce the data sparsity problem,
which is inherently present in word-level informa-
tion, and get 25% error reduction compared with
the same model without character information

5http://wiki.nlpl.eu/Vectors/norlm/
norbert
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(Dan Klein, 2003). Previous studies have proved
that the CharacterBERT has better performance
than the BERT on different medical domain tasks
(Hicham El Boukkouri, 2020).

There are mainly two ways of using character-
level information for NLP tasks, which vary based
on the nature of the task. For example, Yoon Kim
(2015) used the characters to generate a word
representation for each token in one sentence,
where they employed CNN for word representation.
On the other hand, Xiang Zhang (2015) used
character information which was not mapped to
words first, where they also used CNN but were
directly mapped to sentiments and token categories.

In our implementation, we chose the first way
of using character information and tried to add the
character level information to our word-based deep
neural networks. The word character was first en-
coded with the generated alphabet based on all
three data sets, and the character information was
extracted using random initialized embedding and
applying a 1D convolution layer. After getting the
character information, we just concatenate the char-
acter features with the features from other methods
such as RNNs, BERTs, and ELMo and feed them
together to the classification layer.

3.5 Label encoding

There is quite a lot of research effort on NER or
TSA, especially generating the state-of-the-art
models. However, little research has studied the
effects of different annotation schemes on NER or
TSA tasks. Based on the authors’ knowledge, there
is no adequate work that investigates the impact
and implications of utilizing multi-annotation
systems on Norwegian NER or TSA tasks in the
literature. To fill this gap, we will look into the
effects of alternative annotation systems on the
Norwegian TSA problem. Begin Inside Outside
(BIO) of entities are popularly tagging format used
for token tagging in chunking tasks like named
entity recognition. Unit and last tags were added
in BIOUL format to further distinguish the end
of tokens and mid-entity tokens, and represent
the single token entity. Basically, it may be
unnecessary for regular named-entity recognition
to distinguish the end of entity token labels from
the single entity label. However, it could make a
difference when using Conditional random fields

(CRFs).

In this project, we created a Python script
that transfers the original dataset, which is
BIO encoded, to the BIOUL encoded conll
data file. Then the data file was used in the
same way as the original data, with some
minor adjustment of the code. The table 4
illustrates an example of the same sentence as
table 3 yet with the BIOUL encoding scheme.
The new dataset contains the following nine classes

(1) O: outside
(2) B-targ-Positive: beginning of a token with
positive sentiment
(3) I-targ-Positive: inside of a token with positive
sentiment
(4) L-TARG-POSITIVE: last of a token with
positive sentiment
(5) U-TARG-POSITIVE: single token without L
and I with positive sentiment
(6) Same for the negative sentiments for points 2-5.

Han U-targ-Neg
redda O
den O

perfekte O
hustrue-skuespilleren O

Bonnie B-targ-Pos
Bedelia L-targ-Pos

og O
blødde O

overfladisk O
. O

Table 4: Same example as table 3 but with BIOUL
encoding. Note that this sample contains U-targ-Neg
and L-targ-Pos.

3.6 Evaluation

The models were evaluated by proportional F1 and
binary F1 metrics. For the proportional, precision
is defined as the ratio of overlap with the projected
span, whereas recall is defined as the ratio of over-
lap with the gold span, which reduces to token-level
F1. Any overlapping anticipated and gold span is
considered correct by binary. Based on this, we
may anticipate that the model will provide better
binary F1 than proportional F1. a
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4 Training

The training of the models was compute-intensive
and time consuming. We trained the models on
Saga and the Google Colab with a seed number of
5550.

4.1 Tuning parameters
In order to maximize the performance of the model,
we tuned the hyper-parameters. The list below
shows which parameters were tuned for the differ-
ent architectures:

1) LSTM & GRU: grid search of hidden di-
mension, amount of dropout between layers,
amount dropout in RNN model (except for
1 layer model), whether they were bidirec-
tional or not, number of layers in the RNN
and whether character-level information is in-
cluded or not.

2) ELMo: tuning of the RNN model on top of
the embedding layer. Almost the same param-
eters as above; hidden dimension, number of
RNN layers, and the amount of dropout.

3) BERT: testing BERT and whether character-
level information improves the performance
or not.

4) BIOUL encoding: The models with the best
performance were retrained with the BIOUL
dataset.

In total, we trained 96 RNN models, 24 ELMo
models, and 8 BERT models.

5 Results

The hyper-parameters of each models are listed in
the Appendix section.

5.1 Best results with BIO encoding
The best performances of the models are found
in table 5. It is clear that NorBERT won among
the rest of the models, with 0.644 for binary F1
and 0.513 for proportional F1. And it is noted that
all pre-trained models perform better than RNNs.
The ELMo and the Multilingual BERT have quite
similar results.

5.2 Character-level information
The best performances of the models that were
trained with added character-level features are
found in table 6. The results show that the

Architecture Binary F1 Proportional F1

Baseline 0.328 0.157
GRU 0.383 0.201
LSTM 0.428 0.257
ELMo 0.597 0.476
NorBERT 0.644 0.513
MultiBERT 0.597 0.440

Table 5: The best performance of the each architectures
with BIO encoding. Baseline refers to the BiLSTM
with default value. GRU, LSTM, ELMo, NorBERT
and MultiBERT refer to the combination of different
hyperparameters giving best performance.

Architecture Binary F1 Proportional F1

GRU 0.221 0.134
LSTM 0.398 0.199
NorBERT 0.642 0.516
MultiBERT 0.593 0.435

Table 6: The best performance of the architectures with
included character-level information with BIO encod-
ing.

added character information makes the models
even worse for GRU and LSTM and has little influ-
ence on pre-trained models.

5.3 Label encoding

The dataset with BIOUL encoding was used to
retrain the NorBERT and ELMo models. The result
from this is in the table 7. Both scores are a little
bit lower than the model on BIO encoded data.

6 Discussion

The fine tuning of hyperparameters improved the
baseline model from 0.328 to 0.428 for binary and
0.157 to 0.257 for proportional F1, as shown in
table 5. And similar results were also found in
GRU models, but to a smaller extent. However, the
fine-tuned version of the LSTM and GRU models
do not produce very promising results for TSA
on the NoReCfine dataset, with performance still
falling below 50%.

Architecture Binary F1 Proportional F1

ELMo 0.582 0.469
NorBERT 0.614 0.483

Table 7: The performance of NorBERT and ELMo with
BIOUL encoding.
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Architecture Time taken/epoch
ELMo ∼ 100s
NorBERT ∼ 110s

Table 8: The time taken for training 1 epoch of Nor-
BERT and ELMo at GPU.

The pretrained models, on the other hand, gave
quite promising results. In the table 5, we can
see that the NorBERT model has a significant
improvement compared with the baseline. This
was actually expected since BERT models are the
most dominant architectures in the NLP world
for the moment. NorBERT is based primarily on
Norwegian text from the ground up, which may
explain why it outperforms the other pretrained
model. This is in line with the research efforts of
Jeremy Barnes (2021) and Rønningstad (2020) in
this field, where they have also built BERT model
on TSA in NoReCfine dataset and achieved the
best scores of 0.5958 for binary F1, 0.5105 for
proportional F1 and 0.6271 for binary F1, 0.4970
for proportional F1, respectively. Our score is
slightly higher, probably due to the random seed.
It is interesting that Rønningstad got his best
performance with the Multi-lingual BERT model,
while Barnes, like us, obtained the best score with
NorBERT.

Another interesting finding was that the Nor-
wegian Elmo model performed better than the
MultiBERT, but it could not beat the NorBERT.
However, the ELMo is less time-consuming than
the NorBERT while training (table 8). With regard
to the training time for RNNs, it takes only seconds
for each epoch, which is not comparable to the
pre-trained models.

The addition of character-level information
to the models does not seem to improve the
performances, and even makes the RNNs worse.
The implementation of character features is a
bit naive. We just used the random initialized
embedding for the characters of words and did
not include any further processing for character
features. This could be the possible reason
that the extra features from character level does
not improve the performance of models. The
pre-trained models seem more stable when adding
character features, compared with the RNNs.

The resulting scores for NorBERT and ELMo
on BIOUL encoding data are similar to those on
BIO encoding data. Since we just tested NorBERT
and ELMo on BIOUL encoding data, it is unknown
whether the RNNs on BIOUL and BIO encoding
data vary a lot. On the other hand, Alshammari and
Alanazi (2021), and Aasmoe (2019) compared the
effects of different encodings for NER on Arabic
and Norwegian dataset, and found a better perfor-
mance on the BIOUL encoding scheme than the
BIO encoding, but in this case, we obtained the
opposite.

6.1 Conclusion

In this project, we performed targeted sentiment
analysis on the NoReCfine dataset. We imple-
mented various neural architectures; GRU, LSTM,
ELMo, NorBERT, and MultiBERT. These models
were trained with two types of encodings; the BIO
encoding from the dataset and the BIOUL encod-
ing. We have fine-tuned the models in order to find
the best performance. In our case, we found out that
the NorBERT performed best and the Norwegian
ELMo performed a bit behind the NorBERT. How-
ever, we also confirmed the performance vs. time
when training the NorBERT and ELMo. ELMo is
less time-consuming, but its performance is not as
good as NorBERT’s. Another interesting finding
was that the pre-trained models perform best with
BIO encoding and a bit worse with BIOUL.

7 Future work

This section outlines a number of potential direc-
tions for this project that were not included in the
original scope.

7.1 Error analysis

The NorBERT model obtained almost the same re-
sult with and without including the character-level
information. The performance did not differ too
much when the NorBERT model was trained with
the BIOUL encoding. In total, these factors did
not impact the result of the model at all, which
seems a bit strange. Therefore, an error analysis
would be interesting in this case, which could
help explore the decisions of the classifier in more
detail and try to find out why the classifier is
obtaining the same result for different encoding
types and with/without including character-level
information. More specifically, these questions
would be interesting
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(1) Is there any type of sentences in the original
dataset that NorBERT cannot correctly classify?
What kinds of sentences does it struggle with?

(2) How does the NorBERT handle such sentences
with BIOUL encoding?

7.2 Character-level information
The addition of character information did not give
us better results for all the architectures in our im-
plementation. The next study could use character
features in the same way that previous research
has shown to improve model performance. One
example is Hicham El Boukkouri (2020), where he
used the character feature by firstly applying two
non-linear Highway layers, which are basically rel-
atively deep feed-forward neural networks, before
projecting to embedding and processing with CNN.
It is interesting to see if the addition of charac-
ter features would have the same improvement for
TSA.

7.3 Other types of encoding
Due to the limited time, we did not implement the
performance of more different encoding schemes
on all of the different architectures. In this paper,
we only experimented with the encoding types of
BIO and BIOUL, and obtained some interesting
results, especially with BIO. Other interesting en-
coding types like IO, BIOU, or BIOL are also worth
experimenting with and could provide a much more
comprehensive understanding of the effects of dif-
ferent encoding schemes.
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A Appendix

A.1 Parameters for models in table [5]
• GRU model:

– NUM_LAYERS=1
– HIDDEN_DIM=500
– WORD_DROPOUT=0.6
– RNN_DROPOUT=0.2
– EPOCHS=30
– BIDIRECTIONAL=False

• LSTM model:

– NUM_LAYERS=1
– HIDDEN_DIM=500
– WORD_DROPOUT=0.6
– RNN_DROPOUT=0.2
– EPOCHS=30
– BIDIRECTIONAL=False

• ELMo:

– CLASSIFIER =’gru’
– DROPOUT=0.5
– EPOCHS=20
– HIDDEN_DIM=300,
– NUM_LAYERS=3

• BERT:

– EPOCHS=50
– FREEZE=False,
– NUM_LAYERS=1
– HIDDEN_DIM=100

A.2 Parameters for models in table [6]
• GRU model:

– NUM_LAYERS=2
– CHAR_EMBEDDING_DIM=30
– CHAR_HIDDEN_DIM=50
– WORD_DROPOUT=0.5
– RNN_DROPOUT=0.2
– EPOCHS=30
– BIDIRECTIONAL=True

• LSTM model:

– NUM_LAYERS=2
– CHAR_EMBEDDING_DIM=30
– CHAR_HIDDEN_DIM=50
– WORD_DROPOUT=0.5

– RNN_DROPOUT=0.2
– EPOCHS=30
– BIDIRECTIONAL=True

• BERT:

– EPOCHS=50
– FREEZE=False,
– NUM_LAYERS=1
– HIDDEN_DIM=100

A.3 Parameters for models in table [7]
• ELMo:

– CLASSIFIER =’gru’
– DROPOUT=0.5
– EPOCHS=20
– HIDDEN_DIM=300,
– NUM_LAYERS=3

• BERT:

– EPOCHS=50
– FREEZE=False,
– NUM_LAYERS=1
– HIDDEN_DIM=100
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Abstract

Fine-grained Targeted Sentiment Analysis
(TSA) is the combined task of both identifying
a target of an opinion in a text and its associ-
ated polarity. This paper explores the effect
of extending a Bidirectional Long Short Term
(BiLSTM) model with a CRF layer for a TSA
task on Norwegian text. We train LSTM-based
models with and without CRF to jointly predict
targets and sentiment polarity on multi-domain
texts from the NoReCfine dataset. Addition-
ally we investigate the effect of using differ-
ent pre-trained word embeddings, applying cus-
tom word features and manually adding tran-
sitions constraints. While manually constrain-
ing the the CRF layer indeed keeps the model
from predicting forbidden transitions, it does
not improve performance scores. However, we
confirm that adding a CRF inference layer im-
proves the overall performance for targeted sen-
timent analysis. We find that there is still room
for improvement and outline some ideas for
further work along with our conclusion.

1 Introduction

Sentiment analysis has traditionally been ap-
proached as a document- or sentence-level clas-
sification task, determining the overall sentiment
polarity. It is often the case that both negative and
positive sentiment is expressed in the same text, but
with respect to different targets. The task of fine-
grained Targeted Sentiment Analysis(TSA) aims to
solve this challenge. To extract opinions towards
a target, TSA can be seen as two tasks: (1) identi-
fying the target and (2) identifying the sentiment
polarity towards the target. The complexity of the
task can be illustrated with a sentence having a neg-
ative polarity towards one target while at the same
time having a positive polarity towards another. An
example from the NoReCfine dataset:

Jakob Oftebro storspiller i en svært ujevn film

B-POS I-POS O O O
Jakob Oftebro storspiller i en

O O B-NEG
svært ujevn film

Figure 1: A tagged sentence from the NoReCfine

dataset.

«Jakob Oftebro gives a brilliant performance in
a quite uneven movie ». This sentence contains
both a positive and a negative target—the actor and
the movie, respectively. In a a sentence like this,
it is crucial to differentiate positive and negative
targets. The associated BIO-tag sequence is shown
in Figure 1.

This example depicts how the fine-grained anal-
ysis is a complex task and not easily solvable.

In this work we investigate how a Conditional
Random Field inference layer affects a BiLSTM
model in solving Targeted Sentiment Analysis for
Norwegian text. We will first describe some of
the relevant previous work regarding TSA. What
follows is a description of the NoReCfine dataset
and challenges it entails. Section four details the
architecture for LSTM, BiLSTM and CRF, and is
followed by the experiments section. We describe
our experiments on parameter tuning for the speci-
fied models, pre-trained word embeddings, custom
features, as well as describing the evaluation met-
rics. In the final part of this work we discuss the
results of the experiments and conduct an error
analysis.

2 Related Work

Targeted Sentiment Analysis is frequently referred
to as open-domain targeted sentiment analysis
(Mitchell et al., 2013; Luo et al., 2022). A related
task is aspect-based sentiment analysis, which dif-
fer from TSA in that it is usually based predefined
aspects within one domain (Zhang et al., 2015).
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TSA is often approached as a sequence labeling
task (Huang et al., 2015; Lample et al., 2016), con-
sisting of two subtasks: extracting the target as a
Named Entity Recognition (NER) task and classify-
ing the polarity directed at the target as a Sentiment
Analysis task.

Some early efforts to solve the task of TSA used
statistical methods such as Hidden Markov Mod-
els (HMM) and Conditional Random Fields (CRF)
(Yang and Cardie, 2013). Mitchell et al. (2013) ex-
ploited the linguistically informed features within
a CRF to outperform a strong baseline on Open
Domain Targeted Analysis in Spanish and English.
Following efforts demonstrated that using neural
models improved the performance for the task.
Zhang et al. (2015) proposed a model extending
the CRF baseline from Mitchell et al. (2013) with a
LSTM model leading to significantly higher results
compared to the baselines. Lample et al. (2016)
increased the performance of the LSTM model for
Named Entity tagging by adding a CRF layer as the
inference layer. This combination became domi-
nant in sequence labeling tasks (Huang et al., 2015)
and resulting in state of the art performance for
Yang et al. (2018).

The task has been approached with both a
pipeline method (Mitchell et al., 2013; Zhang et al.,
2015) by using separate models for the two sub-
tasks, and a joint method (Yang and Cardie, 2013),
where a single model is jointly performing the tar-
get extraction and target polarity classification. (Hu
et al., 2019) points out disadvantages of a sequen-
tial tagging approach and explores a span-based
approach as an alternative.

Recently the use of pre-trained language models
such as BERT (Devlin et al., 2019) has become the
mainstream approach for many NLP tasks, includ-
ing sentiment analysis.

The current state-of-the-art results for aspect-
based sentiment analysis is based on a pre-traind
BERT model (Luo et al., 2020). However, most re-
cent work has been done on rather limited, domain-
specific datasets. Luo et al. (2020), Hu et al. (2019)
and Li et al. (2019), among others, use datasets
from three separate domains: restaurant reviews,
tweets, and laptop reviews. Even if a domain-
specific model performs well in its respective do-
main, it might still achieve weak results in more
generalized tasks. This is because the vocabulary
might be domain specific and not transferable to
other domains, e.g. an adjective in the restaurant

Train dev
8634 | 1531

test total
1272| 11437

Table 1: number of sentences across data splits.

domain can have a different polarity in the laptop
domain. As the challenges vary between domains
and languages, it does not make sense to directly
compare scores between our work and other related
work. Therefore, in this paper, we base our work on
a BiLSTM baseline provided by the IN5550 course
at the University of Oslo, and report the scores in
comparison to this baseline.

3 Dataset

For our experiments, we use a modified version
of NoReCfine, a dataset for fine-grained senti-
ment analysis for Norwegian (Øvrelid et al., 2020).
NoReCfine consists of sentences from The Norwe-
gian Review corpus (Velldal et al., 2017), a corpus
of reviews from different news sources and over dif-
ferent domains such as literature, music, sports and
movies. The texts are split into sentences and an-
notated with BIO-tags and polarities for the targets
for each entity. This results in five possible labels:
B-targ-positive, I-targ-positive, B-targ-negative, I-
targ-negative and O. In this paper they are occasion-
ally referred to as B-POS, I-POS, B-NEG, I-NEG
and O. The original NoReCfine dataset is anno-
tated with respect to polar expressions, targets and
holders of opinion, while the modified dataset used
in this paper only contains information about the
polarity and identification of the targets.

The modified NoReCfine dataset consists of
11437 sentences and 6656 targets. Figure 2 shows
the unbalanced nature of these types of datasets,
where the majority of the tokens are O, outside an
entity. Another important aspect of the dataset is
the distribution between the positive and negative
targets. What can be seen in Table 2 is that posi-
tive targets occur almost twice as often as negative
targets.

Although Øvrelid et al. (2020) state that «the
targets should be as short as possible while pre-
serving important information», they also note that
target identification is not always a straightforward
process. Furthermore, they report that whereas an-
notators tend to agree about central elements of the
expressions, there is significantly less agreement
about target spans.
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Figure 2: Tag distribution over the dataset

Label Count
O 11434
B-targ-Positive 4631
I-targ-Positive 4552
B-targ-Negative 2024
I-targ-Negative 1879

Table 2: Class label count for the whole dataset.

The sentences in the NoReCfine dataset con-
tains target spans of various length. Although the
average target length is 1.9 tokens, there are oc-
currences of longer targets consisting of up to 35
tokens.

An example of this is

Og tekstlinjen ” Well I ’ ve been alone /
and I ’ d take you home / but my bedroom
smells like cum ” fra ” Down The Lane ”
rager lett der oppe blant årets morsomste.

(And the lyric "Well I’ve been alone / and I’d take
you home / but my bedroom smells like cum" from
"Down The Lane" easily stands tall among the
funniest of the year.) where the (positive) target
spanning 24 tokens is shown in boldface.

This sentence is a good representation of two
challenging aspects of the task at hand: the length
of the target span and the occurrences of tokens in
other languages.

4 Architecture

In this section we provide a brief description of the
models and their architecture used in this paper;
LSTM, BiLSTM, BiLSTM-CRF.

4.1 BiLSTM
Recurrent Neural Networks (RNN) are neural net-
works with recurrent properties which makes the
output directly or indirectly dependent on ear-
lier outputs. Long Short-Term memory network
(LSTM) is a type of RNN which can predict the
output based on long distance features by adding
a context layer and gates to control the flow of
information (Hochreiter and Schmidhuber, 1997).

A bidirectional LSTM (BiLSTM) adds another
LSTM layer which processes the input in the op-
posite direction, from the last word to the first.
By combining the output from both layers, we ob-
tain information about both previous and following
states. This information is especially useful for
a task such as TSA, because the words carrying
sentiment information can be on either side of the
target.

Figure 3: CRF transition matrix showing transition prob-
abilities from one tag to another.

4.2 Conditional Random Field
While the BiLSTM output carries sequential in-
formation in both directions, the predicted output
tags are conditionally independent given the LSTM
output states. As a result of adding a Conditional
Random Field (CRF) layer, we can infer the la-
bels by computing the joint probability of the tag
sequence. Consequently, it can take a wider con-
text into account than e.g. Hidden Markov Models
(HMMs) which rely on the assumption that the
current state only depends on the previous state.
CRFs were proposed by Lafferty et al. (2001) as a
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means to avoid the label bias problem of Maximum
Entropy Markov Models (MEMMS), described in
more detail by Lafferty et al. (2001). CRF layers
have repeatedly been shown to improve the results
of sequence tagging tasks (Lample et al., 2016).
Following the work of Huang et al. (2015), we
explore the effect of adding a CRF layer to the
BiLSTM baseline model and report the following
results.

The score for a specific tag sequence given a
sequence of words can be calculated as:

S(y|x) =
n∑

t=0

Ayt−1,yt +
n∑

t=0

Uyt,xt

where A is the transition matrix with probability
scores from transitions yt−1 to yt and U the emis-
sion matrix, which gives the probabilities for for
label yt given token xt. In our model, the CRF
layer’s learned parameters is the transition matrix
A. The emission scores are given as the output
from the BiLSTM, with the shape n×m where m
is the number of possible tags. An example of a
learned transition matrix from our models is shown
in Figure 3.

The conditional probability is given as:

P (y|x) = eS(y|x)∑
y′eS(y′|x)

where y′ denotes all possible sequences of tags.
The most likely sequence,

y∗ = argmaxyP (y|x)
is computed using a Viterbi decoding algorithm.
We then use negative log likelihood to compute the
loss.

Note that with possible tags, we also include
tag sequences that are forbidden in a BIO tag-
ging scheme. For example, a transition from
B-targ-Positive to I-targ-Negative
will never be seen in the gold standard. Ideally,
the model should learn through training that these
transitions are close to impossible. However, the
parameters are randomly initialized, and with lit-
tle training data, these restrictions might not be
captured. Lester et al. (2020) shows that a CRF
layer can be improved by manually placing restric-
tions on the output. We include this as one of our
experiments, where we manually initializing each
forbidden transition in the transition matrix to a
very negative number.

Figure 4: BiLSTM CRF model inspired by Lample et al.
(2016).

5 Experiments

In this section we describe the modelling, set-up,
and evaluation metrics for our experiments. The
first section describes the baseline model and the
BiLSTM-CRF model. Following is a description
of the experimental set up and the hyper parameters
we are tuning for the different models. Moveover,
we describe the experiments with different pre-
trained static embedding models, custom word fea-
tures, and manual initialization of model parame-
ters.

5.1 Baseline BiLSTM

We use a simple Bidirectional Long Short Term
Memory (BiLSTM) tagger as a baseline model. For
word representation we use a pre-trained static em-
bedding model for Norwegian words, taken from
the NLPL repository. The BiLSTM is appropri-
ate for this task as TSA can be approached as a
sequence to sequence problem. The forward and
backward states can be effective for utilizing both
future and past input features. This makes a BiL-
STM model able to represent global sequence in-
formation.

5.2 BiLSTM-CRF

We combine a Bidirectional LSTM and a CRF to
form a BiLSTM-CRF model, which is shown in
Figure 4. We used the framework for CRF avail-
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able on GitHub 1. The model takes a sentence as
a sequence as input, which is represented as em-
bedding vectors with a 100 dimension. The vector
representations are then used as input to the BiL-
STM. In this model, the LSTM layers functions
as a filter to include only the important features
from the input. The hidden states from the forward
pass and the backward pass are then concatenated
at each word and contains global information about
the whole sequence. The CRF layer deals with
the sequential data by adding conditionality to the
sequence so that the restrictions of the BIO-tag sys-
tem is not violated. e.g. a B-targ-Positive tag is
never followed by an I-targ-Negative tag.

5.3 Pretrained word embeddings

We experiment with different types of word em-
beddings as feature representations. We are using
pre-trained embeddings from the Nordic Language
Processing Laboratory (NLPL) repository 2. Sev-
eral studies have revealed that pre-trained word
embeddings layer improve performance on tasks
involving sequence taggers (Collobert et al., 2011;
Yang et al., 2018). The word embeddings represent
each word in the dataset and are used as initializa-
tion for the first layer in the BiLSTM-model.

We are experimenting on the following pre-
trained embeddings:

• ID58 Norwegian-Bokmaal CoNLL17 cor-
pus is based on the Word2Vec Continu-
ous Skipgram algorithm, vocabulary size =
1182371 and lemmatization = False

• ID124 NoWaC, algorithm: fastText Skip-
gram, Vocabulary size: 1356633 and lemmati-
zation = False.

• ID106 NoWaC, algorithm: Gensim Contin-
uous Skipgram, Vocabulary size: 1356632,
lemmatization = False.

The chosen pre-trained embeddings represent
three different algorithms: Word2Vec Continous
Skipgram, fastText Skipgram and Gensim Contin-
uous Skipgram. We are not making use of lem-
matized words as it might ignore syntactic nu-
ances and semantic information about sentiment
(Camacho-Collados and Pilehvar, 2018).

1[https://github.com/kmkurn/
pytorch-crf.git](https://github.com/
kmkurn/pytorch-crf.git)

2http://vectors.nlpl.eu/repository/

Spelling features
Starts with capital letter
All capital letters
All lowercase
Non-initial capital letters
Combination of letters and digits
Including non-alphanumeric characters
Alphanumeric characters only
Numeric characters only
Text preprocessing
Change all numbers to 0

Table 3: Features and preprocessing.

5.4 Features
Following Huang et al. (2015) we extract one-hot
feature representations for each word and concate-
nating them with its embedding vector. The fea-
tures are listed in Table 3.

5.5 Experimental setup
The baseline BiLSTM model is trained with the
hyperparameters shown in Table 5. We train a
LSTM, LSTM-CRF, BiLSTM, and BiLSTM-CRF
model with [1, 2, 3] hidden layers, batch-size [5,
64, 128], learning rate [0.1, 0.001] and hidden di-
mension[100, 200, 300]. We are using Exponential
LR scheduler with gamma = 0.9 and Adam as op-
timizer for all experiments. All experiments has a
dropout set to 0.01 after the embeddings layer and
a dropout set to 0.2 in the LSTM.

Next, we are investigating the effect of different
pre-trained embedding layers on the best model
from the hyper-parameter tuning. We are using
the three pre-trained embeddings announced in the
previous section. The embeddings with the best
results from this experiment is used throughout the
remaining experiments.

5.6 Evaluation
We evaluate the results of the model using propor-
tional and binary overlap measure F1 as proposed
for this specific task by Øvrelid et al. (2020).

The F1 score is calculated as follows:

F1 = 2 ∗ precision ∗ recall
precision+ recall

=
TP

2 ∗ TP + FP + FN

Where TP = true positive, FP = False positive
and FN = False negative.
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Hyper parameters LSTM
No. layers 3
Hidden dim 200
Batch size 5
Initial learning rate 0.001
Epochs 7
Patience 5
Binary F1 0.431
Propotional F1 0.218

LSTM-CRF BiLSTM
3 2
200 100
5 5
0.001 0.001
7 4
5 2
0.441 0.473
0.264 0.322

BiLSTM-CRF
2
100
5
0.001
6
4
0.533
0.356

Table 4: Results from tuning hyperparameters for LSTM, LSTM-CRF, BiLSTM and BiLSTM-CRF.

BiLSTM
Optimizer Adam
No. Layers 1
Hidden dim 100
LR 0.01
Batch size 50
Dropout 0.01
Embeddings ID 58

BiLSTM-CRF
Adam
2
100
0.001
5
0.01
Id 124

Table 5: Hyperparameters for Baseline BiLSTM model
and the best BiLSTM-CRF model.

The Binary F1 score measures overlapping spans
of prediction and gold labels as correct. The propor-
tional score is a more strict measure as it measures
token level F1 by assigning precision as the ratio
of overlap with the predicted span and recall as the
ratio of overlap with the gold span.

In this paper, we report both binary and propor-
tional F1 scores, but the latter is more influential
when comparing performance.

6 Results

6.1 Comparing models
Table 4 compares the best models results from the
tuning of the hyperparameters. A closer inspection
of the table shows that using a CRF increases the
performance of the models and that the BiLSTM-
CRF returns the best result. Interestingly, the bidi-
rectional models require fewer parameters com-
pared to the LSTM. Both the LSTM and the LSTM-
CRF performs the best with three layers and 200
hidden dimensions, while the Bidirectional models
has two layers and 100 hidden dimensions.

6.2 The impact of pre-trained word
embeddings

As opposed to the findings of Huang et al. (2015),
we can see from the results in Table 6 that the

BiLSTM-CRF Binary F1
ID 58 0.462
ID 106 0.465
ID 124 0.533

Prop. F1
0.281
0.286
0.356

Table 6: Results from experimenting with different pre-
trained embeddings.

choice of embeddings makes a significant differ-
ence on the performance. The pre-trained embed-
ding with ID 124 yields a result with seven percent
points better proportional F1 score than the sec-
ond best. This is consistent with the work of Røn-
ningstad (2020), which used fastText for all their
experiments with LSTM-models. Based on these
results, we use the fastText pretrained embeddings
(ID 124) in all further experiments.

6.3 Adding custom features

The results from adding custom features to our best
models are seen in Table 8. It appears that these
features do not improve the model, which is in ac-
cordance with the work of Huang et al. (2015), con-
cluding that LSTM-based models are less affected
by engineered features due to their robustness.

6.4 Enforcing CRF restrictions

The results of manually initializing CRF parame-
ters to reflect the restrictions in the BIO scheme
is exemplified in Table 7. Clearly, this works as
intended. On the other hand, this version of the
model achieved a lower proportional F1 score than
our best model.

7 Error analysis

In this section, we will examine our models’ predic-
tions in more detail. Although our best BiLSTM-
CRF model achieves higher evaluation scores, its
prediction includes a slightly higher number of
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BiLSTM
I without preceding B 57
Mix-ups of NEG and POS 19

BiLSTM-CRF
69
19

BiLSTM-CRF with restrictions
0
0

Table 7: Comparison of tag sequence errors in model predictions on the test set. Mix-ups refer to targets with mixed
polarities, e.g B-POS followed by I-NEG.

Features
BiLSTM 0.299
BiLSTM-CRF 0.334

No features
0.301
0.356

Table 8: Resulting proportional F1-scores from adding
custom features to the best models.

B
Oppløsningen B-POS
På O
218 O
x O
218 O
piksler O

B-CRF G
B-POS O
I-POS O
I-POS O
I-POS O
I-POS O
I-POS O

Table 9: Excerpt from the dataset, with predictions by
BiLSTM, BiLSTM-CRF with gold annotation to the
right.

«illegal» tag sequences than the BiLSTM model
without CRF.

As seen in Table 7, the CRF inference layer
makes several target predictions using Inside
tags from the BIO scheme without a preceding
Beginning-tag. This is surprising, as one of our
main expectations from the CRF layer was that it
would learn these restrictions. It is evident from
the results that both models make such errors, and
they do not usually overlap.

Regardless, the BiLSTM-CRF model is signif-
icantly better than the other models at capturing
targets with longer spans. The longer targets might
be better captured with the BiLSTM-CRF since we
have two directions and because the CRF-layer al-
lows us to classify tags by predicting them together
based on the dependence of the input tags. Despite
the fact that some of the long target sequences pre-
dicted by the BiLSTM-CRF model are not present
in the gold standard, this nevertheless shows the
model’s ability to identify targets with longer spans.
These long target predictions also correctly adhere
to the BIO scheme. Additionally, the BiLSTM-
CRF model repeatedly exceeds the other models in
capturing full targets with quotation marks, such as
song titles, such as «Summer In My Hometown».

The differences between the predictions might
even reflect the differences in annotation, as the
example shown in Table 9. The model’s prediction
is not a target in the gold standard, but might resem-
ble other target patterns. The difference between
the predictions mirrors a typical variation seen in
the dataset, where phrases are sometimes annotated
as a single target, and other times not.

7.1 Cross-domain data

As described in 3, The NoReCfine dataset cov-
ers multiple domains, from restaurant reviews to
game reviews. This makes the task of TSA even
more challenging, since some words might have
a positive polarity in one domain and negative
or irrelevant polarity in another. One example is
the adjective «trygt» (safe), which is a word typ-
ically associated with something positive in do-
mains such as restaurant reviews or reviews for
tools. In the training data we can find the sen-
tence «Trygt og godt album fra The New Pornog-
raphers» (in English: «Safe and good album from
The New Pornographers»), which is annotated as
B-targ-Negative. This example depicts how the
adjective «safe» might have negative connotations
in the music domain, but positive in other.

8 Conclusion and future work

In this work, we show that extending a BiLSTM-
baseline with a CRF inference layer improves the
performance of a TSA task. We observe a notice-
able improvement in performance for both LSTM
and BiLSTM when using CRF. The CRF layer did
not learn tagging scheme restrictions as well as we
had expected. However, we see that these restric-
tions can be enforced by manually initializing the
parameters.

This paper did not attempt to improve the model
with state-of-the-art transformer-based technolo-
gies. While our intention was to explore the ef-
fect of other methods, it would have been useful
to include a transformer-based model as a means
of comparison. There are additional methods that
can be explored to further improve the existing

103



BiLSTM-CRF model. We could follow Chiu and
Nichols (2016) and Lample et al. (2016) in includ-
ing character-level information, by character em-
beddings or Convolutional Neural Networks.

We have not devoted effort in our work looking
at negation and speculation. Information about
negation is highly important for sentiment analysis,
and our models makes several mistakes regarding
this phenomena. Including multitask learning of
negation has shown to make TSA models more
robust, and could be included in feature work on
TSA (Moore and Barnes, 2021).

Another interesting, but not surprising, phe-
nomenon from the results is that the models some-
times struggle with identifying targets given as pro-
nouns. A typical challenge is when the pronoun
«it» is a co-reference to a previous sentence in the
document. In the NoReCfine dataset we can find
this example of the phenomenon: «Det morsomme
er at denne ikke har et eneste dødpunkt», where
«denne» (it) is annotated B-targ-positive. It might
have been useful for the model to understand what
«denne» (it) refers to by including access to the pre-
vious sentence. One solution worth exploring is
looking at the whole document instead of just one
sentence as proposed by Luo et al. (2022).
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Abstract

In this paper, we consider the problem of neural
machine translation. In particular, due to the re-
opening of the world and people starting to travel
more, we tackle the problem of translating restau-
rant reviews. However, as there is no publicly avail-
able dataset for this application, we attempt to train
our model by transferring knowledge from other
domains. Furthermore, we show that combining
datasets from different domains helps our model
generalize better. To evaluate our restaurant review
model, we built a test dataset from scratch with
custom translated bilingual pairs, and achieve a
BLEU-score of 35.60. We also demonstrate that,
for our application, the gains of having a more
complex model out-weights the typical downsides.
Lastly, we raise some concerns related to deploying
a translation system without properly assuring the
quality of the generated sentences.

1 Introduction

Neural machine translation (NMT) is an important
task that aims to automatically translate sentences
between different languages using neural methods.
Today, NMT is one of the most researched subfields
of NLP, and it has proven to yield great results in
practice (Wu et al., 2016), giving us easy access
to translations of high quality between multiple
languages.

With the world slowly re-opening, traveling and
exploring new countries is becoming a higher prior-
ity for many, and trying out new dining options is a
natural part of the traveling experience. With Nor-
way’s low population and generally high income,
the dining options are rather limited while also be-
ing on the high-end for many tourists compared to
other countries, leading to uncertainty of whether
or not a restaurant is worth the visit. Thankfully,
many enthusiasts leave online reviews of their din-

ing experiences, helping to reduce this uncertainty.
However, in most cases, these reviews are written
in the local language of the restaurants, making it
hard for tourists to make use of the available infor-
mation. To this end, we experiment with ways to
tackle these problems using NMT methods, which
could result in practical applications.

In this paper, we experiment with NMT methods
for the practical application of translating restau-
rant reviews from Norwegian to English to better
help tourists gauge whether a particular Norwegian
restaurant is worth the visit or not.

As practicality is a key part of such an appli-
cation, there are several factors we have to con-
sider when building a system. Firstly, a translated
sentence should be of good quality, meaning it is
understandable after being translated. Secondly,
it is important that the sentiment of a translated
sentence is in tact, meaning that a positive Norwe-
gian review should also be positive when translated
to English, and the same goes with negative re-
views. Lastly, the system itself should run rather
efficiently, as having to wait makes the application
less desirable. However, there is a theoretical trade-
off between the two first factors and the last factor,
as a network with more parameters typically has a
better ability to fit the training data giving us better
performance, while a model with less parameters
naturally runs faster.

We show that this trade-off is mostly irrelevant
for our application by comparing several models
of different complexity on the task at hand. We
present the resulting models and their performances
by evaluating them both quantitatively, using the
BLEU evaluation metric designed for language gen-
eration, and qualitatively, looking at specific exam-
ple outputs.

Furthermore, what makes this task challenging,
is that there is no publicly available Norwegian-
English parallel corpus that specifically contains
language related to restaurant reviews. Therefore,
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we train our models using several datasets from
different domains and show that the models gener-
alize quite well to our application of interest when
using a varied dataset. We also build our own cus-
tom bilingual corpus by extracting online restaurant
reviews written in Norwegian and manually trans-
lating them to English. This corpus is then treated
as a held-out test set to evaluate our final model.

The rest of the paper is organized as follows. In
section 2, we describe the task at hand in more
detail and present the methods used in the paper. In
section 3, we describe the experiments conducted,
followed by the results in section 4. Finally, we
discuss the results in section 5, and conclude our
work in section 6.

2 Method

2.1 Problem description

Given an input sequence x = (x1, x2, .., xm) of
m Norwegian words, we want to use a neural
network f to predict a translated sequence of n
English words y = (y1, y2, ..., yn), where each
x and y are in a set of k pre-defined classes
C = {c1, c2, ..., ck} composed of a bilingual vo-
cabulary. Our network f consists of an encoder e
and decoder d, and a final linear classifier g. Firstly,
we produce a set of intermediate representations he,
also known as memory, by feeding x into e such
that he = e(x). To generate a translated sequence
ŷ, the memory is fed into the decoder, together
with an additional input being the previous word of
the generated sequence ŷi, which are then finally
fed into the classifier g, ŷi+1 = g(d(he, ŷi)) for
i ∈ (2, n − 1), resulting in ŷ = (ŷ1, ŷ2, ..., ŷn).
The first input will always be a special start-of-
sentence token.

We should note that the decoding is different in
the training phase and the inference phase. During
training, the input to the decoder is simply the previ-
ous ground-truth label yi, and the length of the out-
put sequence of the decoder is only as long as the
number of ground-truth labels. In inference, we do
not have access to ground-truth labels. Therefore,
we can for example employ a greedy-searching
method that will simply feed the previously gener-
ated word of class c, ŷi+1 = argmaxc g(d(he, ŷi))
as the input for the next timestep until the final spe-
cial end-of-sentence token is generated. However,
there is no guarantee that we will produce this to-
ken. Thus, we limit the output translation to a set
length.

To train our network f , we observe that each
generated word is in one of C pre-defined classes,
and we can therefore optimize our network using
a Cross-entropy loss-function together with back-
propegation and gradient descent.

2.2 Data

As mentioned in the introduction, there is no pub-
licly available Norwegian-English parallel corpus
for our task at hand. Thus, we make use of four
different Norwegian-English bilingual parallel cor-
pora. We develop our models using a government
corpus and a subtitles corpus. Then, to evaluate
which model generalizes best, we test the models
on a book corpus, and the best performing model
is then evaluated on a held-out test DIY restaurant
review corpus that we built ourselves. A summary
of the datasets is found in table 1.

2.2.1 Government Corpus

The government corpus comprises two subcopora,
the Bilingual English-Norwegian parallel corpus
from the Office of the Auditor General website,
and the Public Bokmål-English Parallel corpus .1
2 These corpora are expected to be of high quality,
as they are professionally translated.

As this dataset is intended for the government
domain, we can expect the language to be rather
formal, an example being: "Riksrevisjonen har i
undersøkelsen vist at det er store variasjoner i for-
valtningsenhetenes bemanning per innbygger i det
enkelte fylke." and the English "In the audit, the
OAG demonstrated that there are wide variations
in the administration units’ per capita staffing in
the individual county.". More interestingly, for-
mal government text tend to contain complex and
long words, as we can see from the example with
"forvaltningsenhetenes". We can also calculate
from table 1 that the average number of characters
per word for this dataset is larger than the others.
Furthermore, this dataset seems to contain more
statements than opinions, which may not be ideal
for our application of opinion based restaurant re-
views. All of this may cause our model to learn
more formal, complex, and longer sentences, which
are typically not used much by common people.

1https://data.europa.eu/data/datasets/
elrc_1061

2https://www.nb.no/sprakbanken/
en/resource-catalogue/
oai-clarino-uib-no-parallel-nob/
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Dataset Train Dev Test Avg. Nor (word/char) Avg. Eng (word/char)
Government 50,000 2,500 - 13.85 / 95.25 16.81 / 106.73
Subtitles 250,000 2,500 - 6.16 / 32.61 6.76 / 35.93
Book - 2,500 - 13.53 / 73.74 13.83 / 73.49
DIY - - 102 9.83 / 57.84 10.44 / 58.63

Table 1: Summary of datasets. The Avg. Nor/Eng (word/char) columns denote the average number of words /
average number of characters respectively. We get the average number of characters per word by dividing the latter
with the former.

2.2.2 Subtitles Corpus

The subtitle corpus consists of unofficial subtitles
for movies and TV series, and unlike the profes-
sionally translated government corpus, this corpus
is built by mapping translations made by internet
users using movie timestamps.3 Therefore, this
dataset has no guarantee of quality, and may also
bring with it some unforeseen risks.

Firstly, the translations may be wrong due to
intentional and/or unintentional errors as there is
no quality assurance. For instance, the training set
contains a sample translating "Don’t go" to "Lkke
gå" which is clearly an error. Secondly, how a
sentence is translated depends on how a user inter-
prets the original sentence, which may again lead
to translations of low quality or very customized
translations. Some examples of this include "Shit,
shit." simplified to "Faen.", and "That’s what Esben
was doing." being expanded to "På en måte har jeg
nok inntrykk av at Esben gjorde det.". The second
example more noticeably loses its semantic mean-
ing, going from an assertive statement to a a less
certain one. Lastly, the timestamps may not match
up correctly, which may lead to either completely
wrong translations or as the example above with
Esben, where several sentences are combined into
one long sentence. All of these factors may lead
to our models learning wrong translations or some
unwanted bias towards certain words or phrases.

Looking more generally on this corpus, it is
clearly less formal than the government corpus and
from table 1 the sentences are also shorter. There
are many one-liners such as "Paris!", and most of
the sentences are parts of dialogues, making them
closer to daily speech. However, since we are in
the acting domain, some of the sentences are more
dramatic and less natural to our daily speech. There
are also some special features in the dataset, such as
sentences starting with ♪ to indicate music, which

3https://opus.nlpl.eu/
OpenSubtitles-v2018.php

may lead to some unwanted biases in our model.
Overall, when combining this dataset with the gov-
ernment dataset, we end up with a more diverse and
balanced dataset with a wider distribution, and we
can expect our model to generalize better to other
domains when using both of them rather than just
a single one.

2.2.3 Book Corpus
This corpus consists of a translated and aligned
version of the book "Hound of the Baskervilles"
by Arthur Conan Doyle. 4 As this book is not in
the same domain as the two previous datasets, we
use it to evaluate the generalizability of our models.
Although both this corpus and the subtitles corpus
are mostly based on fictional work, there are still
several differences between them.

Similarly to the subtitles corpus, this book cor-
pus is also generated by an internet user. However,
the quality of the alignments are expected to be of
better quality than that of the subtitles corpus, as
the translator has previous professional experience
within this field. Thus, we would expect less errors
within the data.

Much like the subtitles corpus, this corpus also
consists of a considerable amount of dialogue.
However, in this case, the conversations are pre-
sented through a first-person narrator, compared
to that of Movies/TV Series where the dialogue is
mostly directly exchanged. An example of the first-
person narration form is ""De vil vel ikke si at De
vet hvor han er?” sa jeg." with the English transla-
tion of ""You don’t mean that you know where he
is?" said I.".

Furthermore, it is important to note that the lan-
guage of a Doyle book is rather old compared to
that of the subtitles corpus, as his books dates back
a couple of centuries. Therefore, we would expect
to find some unusual formulations in the book cor-
pus compared to today’s everyday speech. This

4https://farkastranslations.com/
bilingual_books.php
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is exemplified by "How did he die?" having the
Norwegian translation of "Hvordan gikk det for
seg?", which is a Norwegian phrase that is much
less commonly used today.

2.2.4 DIY - Restaurant Review Corpus
As we aim to apply NMT to restaurant reviews, we
create our own Norwegian-English parallel corpus
to benchmark our final model for the task at hand.
The dataset consist of a subsample of original Nor-
wegian internet user generated restaurant reviews
found on TripAdvisor, which we then manually
translate to English to construct the corpus.5 As
restaurant standards may be different from place to
place, the reviews are restricted to only Norway.

To generate a realistic and fair dataset, compared
to the training data, for our model to be evaluated
on, we cherry-picked all the reviews in our dataset
ourselves to keep some reasonable features in tact.

We attempt to keep the average sentence length
within the range of both the government and subti-
tles datasets by including some longer and shorter
sentences. We try to avoid too many uncommon
food related words, such as specific dishes, but
also left some in to keep the dataset realistic. We
also try to keep a balance between positive and
negative reviews to make sure that the model has
actually learned to distinguish between a good and
bad restaurant, which is the main purpose of the
application.

2.2.5 Tokenizer
We train a customized tokenizer for each of the
datasets based on the frequency of words using
a simple byte-pair encoding algorithm (Sennrich
et al., 2016). We generally try to keep the vocabu-
lary as small as possible, which we discuss further
in the next section.

2.3 Architecture
We employ two different architectures for the task
of NMT as described in section 2.1. Firstly, we
implement the encoder and decoder using RNNs
as a baseline, and then we replace the RNNs with
transformers.

The RNNs are implemented with GRU cells.
The encoder is bidirectional, while the decoder is
uni-directional, because we do not want to train the
decoder to rely on future information as we simply
will not have access to it during inference. As this
model is a baseline, we just want to gauge what

5https://no.tripadvisor.com/

results we can expect, thus we do not implement
any additional mechanisms such as attention.

The transformer model is modified with three
additional mechanisms. More specifically, our
transformer uses a pre-norm variant (Nguyen and
Salazar, 2019), position-infused attention (Press
et al., 2021), and the GLU non-linearity (Shazeer,
2020). Again, the encoder is bi-directional while
the decoder is uni-directional, which is achieved by
masking out the upper triangular attention weight
matrix.

In both cases, before being fed into the encoder
and decoder, the inputs are projected through an
embedding layer to produce embedded word encod-
ings. The embedding layer is of the same size as
the vocabulary, meaning it depends on the dataset
and the tokenizer used. We note that since we de-
fined our vocabulary to be bilingual in section 2.1,
we can use shared bilingual embedding layers.

One important part of our task is to keep the
system somewhat efficient, meaning that the model
should be kept as simple as possible without de-
grading the performance by a huge margin. Thus,
we try to keep the vocabulary sizes as small as
possible, as the embedding layers depend on them.
To reduce the amount of trainable parameters fur-
ther, we use the same embedding layer for both the
encoder and decoder to halve the amount of train-
able embedding weights. Furthermore, since our
embedding layers are of the same size of our vo-
cabulary, we can also share these weights with the
classification layer, saving even more parameters.

2.4 Evaluation

Evaluating generated translated text is not trivial, as
there can be many different ways to translate a sin-
gle phrase. Therefore, we will have to rely mostly
on our own qualitative analysis of the sentences
when evaluating a model. However, this is imprac-
tical when training a model, because we would like
to automatically evaluate a model quantitatively.
For this, we use the BLEU score (Papineni et al.,
2002), which mostly correlate with human evalua-
tion. Although the BLEU score ranges from 0 to
100, a sentence with a score above 60 is typically of
better quality than what a human would generate,
and can be expected from a perfect model, while
a score above 30 is usually an understandable to
good translation.
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2.5 Training and Inference

The training and inference is mostly described in
section 2.1. Here we add some additional details.

As mentioned in section 2.1, during the training
phase we simply feed the ground-truth labels of the
previous timestep to the decoder to produce a new
prediction which we compare to the current ground-
truth with a cross-entropy loss. However, this is not
possible during inference as we do not have any
labels, meaning we have to feed something else
to the model instead. The simplest method is the
greedy search method, where we simply feed in the
previously predicted word. Another way of doing
this is by using beam-search, which searches fur-
ther into the future before deciding which word to
use. Although beam-search typically yields better
results, it is also much more expensive. Therefore,
we employ the greedy search when training our
model, and only use beam-search to evaluate our
final models.

3 Experiments

We conduct several experiments aimed towards
the goal of generating translations for restaurant
reviews of both good quality and high efficiency.

3.1 RNN vs. Transformer

We compare two different sequential models in
RNNs and transformers with architectures de-
scribed in section 2.3 using the combination of the
government and the subtitles corpora. The RNN
is mainly used as a simpler model to give us an
impression of what results we can expect from our
datasets. Therefore, we focus mainly on transform-
ers for the remaining experiments.

3.2 Different training datasets

Since we have two training datasets, we train three
different models using the transformer architecture
on different partitions of the training datasets. Two
of the models are trained only on a single dataset
each, and the last model is trained on the combina-
tion of both datasets. As the evaluation data split,
we use the respective development splits, meaning
that the combined dataset will have 5,000 evalu-
ation samples. We evaluate each of the models
on the book dataset to evaluate which model will
hopefully generalize best to our restaurant review
dataset.

3.3 Vocabulary size
For each of the corpora, we experiment with dif-
ferent vocabulary sizes as a hyperparamter to see
how the sizes affect both the performance and the
run time, which is an important trade-off for our
application. For the larger combined corpus, we
find it natural to select a larger vocabulary size,
while keeping the vocabulary size smaller for the
two separate corpora.

3.4 Other Hyperparameters
Other than the vocabulary size, there are many hy-
perparameters for a transformer, but we focus on
some that may have the biggest influence on our
model in terms of translation quality and time effi-
ciency.

Firstly, we experiment with the hidden sizes,
which naturally influences how many parameters
our transformers will have, meaning it will affect
both the speed and performance. More importantly,
we experiment with the number of encoder and de-
coder layers. This is more important because of
the inference phase, where we perform a forward
pass for each predicted word, meaning the major-
ity of the run-time is spent on decoding while we
only have to run the encoder once. Therefore, we
specifically choose to have fewer or equal layers in
the decoder compared to the encoder. Specifically,
we perform a grid-search over the hidden size of
values 100, 150, 200, number of encoder layers of
2,4,6, and decoder layers of 2 and 4.

3.5 Evaluation and final test
After finding some good hyperparameters for the
three models from section 3.2, we test how each of
them perform on the book dataset to evaluate how
well the models may generalize, as well as their
runtime. Finally, we choose the best model based
on the book dataset to use on our final DIY dataset
for a final evaluation of the task at hand.

3.6 Common setup
Each model is trained with a learning rate of 0.0005
using the AdamW optimizer for 20 epochs. We also
employ a cosine learning rate scheduler with two
hard resets.

4 Results

4.1 RNN vs. transformers
Looking at the results table 2, we can clearly see
that the transformer models vastly outperformed
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Dataset Vocab Hidden Encoder Decoder Eval BLEU Book BLEU Book speed
Government 3,000 200 4 4 27.53 2.90 0.034
Government 6,000 200 4 4 27.94 2.92 0.069
Subtitles 3,000 150 4 4 26.45 11.04 0.027
Subtitles 6,000 150 4 4 27.44 11.81 0.026
Combined 5,000 250 6 2 34.64 15.58 0.025
Combined 5,000 250 6 4 35.94 15.85 0.024
Combined (RNN) 5,000 100 2 2 3.26 - -

Table 2: Some selected results specifically chosen for section 5.2. Vocab and Hidden denote the vocabulary size
and hidden size respectively. Encoder and Decoder denotes the amount of layers in each of the networks. Eval
BLEU is computed on the respective evaluation dataset. Book speed is the average time to process a single sentence
on a CPU measured in seconds per sentence. Note that the book speed includes time spent printing the results.

the RNN based model measured by the BLEU
score. Although the goal of this experiment was to
get an impression of the results we could expect,
we are unable to extract much insight out of these
results.

4.2 Different training datasets

In this section, we present the results of the ex-
periments for each individual dataset with their
hyperparameters. A selection of key results are
presented in table 2.

4.2.1 Government dataset
Although the model trained on the government
dataset performed quite well on the government
dataset itself with a BLEU scores above 27 for sev-
eral configurations, it failed to generalize to the
book dataset, with a mere 2.9 BLEU.

As discussed in section 2.2.1, the sentences in
this dataset are quite long, formal, and contains
complicated words, and the model was able to learn
these characteristics quite well. With the Norwe-
gian example sentence of "Undersøkelsen viser at
Miljøvern- departementet og Klif i liten grad gjen-
nomfører kontroll for å avdekke ulovlig eksport av
farlig avfall.", the government model with a vocab-
ulary size of 6,000 generated "The investigation
shows that the Ministry of the Environment and
the Norwegian Climate and Pollution Agency did
not monitor compliance with uncovering illegal ex-
port of hazardous waste.". This is very close to
the ground-truth in "The investigation shows that
the Ministry of the Environment and the Norwe-
gian Climate and Pollution Agency only to a very
limited extent carry out supervisory activities in
order to uncover the illegal export of hazardous
waste.". We see that the semantic meaning of the
sentence is very close to perfectly kept, with the

only discrepancy being that the generated sentence
is more confident that the Agency did not moni-
tor, compared to the ground-truth’s limited extent.
Additionally, the model also changed the sentence
to the past tense with did not instead of carry out.
Or else, the complicated and long nature of the
sentence is preserved nicely.

On the other hand, the model’s performance on
the book dataset was very poor. The Norwegian
sentence "Hun brast i en heftig gråt." was trans-
lated to "Hungary at a crisis." is clearly way off the
ground-truth "She broke into passionate sobbing as
she spoke.". This is somewhat expected, as we do
not expect a novel to be written in the same formal
way as a governmental document.

4.2.2 Subtitles dataset
The subtitles models generalized better than the
government models. This model achieved a BLEU
of around 27 on its own dataset, while achieving
over 11 BLEU for the book dataset. The following
results are computed using the subtitles model with
a vocabulary size of 6,000.

This dataset comprises of custom translations of
Movies/TV Series, meaning we are likely to find a
lot of characteristics related to oral speech, some
examples being "I’m goin’ with him." and "Egon,
what are we doing?", which the model generated
as "I’m going with him." and "What are we doing,
Egon?". The first example contains the pronunci-
ation of goin’, which the model did not learn to
catch. Otherwise, the sentence keeps the semantics
perfectly. As for the latter example, the semantic
meaning is clearly kept, although Egon is swapped
around. Overall, these are great translations.

It is only natural that the this model outper-
formed the government model, as a novel and
Movies/TV-Series are both entertainment, meaning
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the language are more likely to be closer related to
each other than with the government data. How-
ever, as discussed in 2.2.3, there are still noticeable
differences between the book corpus and the subti-
tles corpus, which we now see has an effect on the
performance of the model.

In many cases, the generated sentences would
make sense by themselves, such as "He kept an
old boots in the vehicle.". However, when com-
paring it to the ground-truth translation "He held
an old black boot in the air." and the Norwegian
sentence "Han holdt en gammel støvel i veiret.",
the translation seems a bit absurd. We also notice
some grammatical errors such as "an old boots"
in the generated sentence. A much better transla-
tion is "Hun lo og slo hendene sammen." to to the
English "She laughed and hit her hands together."
compared to the ground-truth "She laughed and
clapped her hands.". Here, we clearly see that the
main message of the sentence is preserved, and that
the action of clapping is also understandable from
the translation. Overall, the quality of the transla-
tions are decent, in that they are actual sentences
with meaning, but there are clear errors as well.

4.2.3 Combined dataset
Of the three datasets used, the models trained on
the combined dataset performed best on the books
dataset with a BLEU of over 15, while also achiev-
ing a BLEU of over 34 on its own dataset. The
following results are based on the combined model
with 4 decoder layers from table 2.

We see that the BLEU score on the evaluation set
is way higher than the other two individual datasets,
which also indicates that this model would perform
better on the individual datasets too, which indeed
is the case. Although not present in table 2, the
model achieved a BLEU of 38.59 on the govern-
ment dataset and 29.61 on the subtitles dataset. If
we take a look at the same examples as the two
previous models, the long government example is
now generated as "The investigation shows that the
Ministry of the Environment and the Norwegian
Climate and Pollution Agency to a limited extent
carry out control to identify illegal export of haz-
ardous waste.", which is arguably better than the
previous translation, as this one correctly indicates
that some action was indeed carried out, whilst also
describing the action more semantically correct us-
ing substitute words. As for the subtitles examples,
this model now produced "I’ll go with him." and
"What are you doing, Egon?. Although the first

sentence is a bit off the ground-truth in terms of
substitute words, it still capture the meaning of the
sentence completely, and the second sentence is
exactly the same translation. Overall, we can say
that the added data improved the translation for
both datasets.

As for the book dataset, the BLEU score is better
than the subtitles, but the overall quality may be
the same. Looking at the same examples as the sub-
titles, "Han holdt en gammel støvel i veiret." is now
translated to "He kept an old boot in the weeds.".
We see that the grammatical error is corrected, but
it is still unable to hit the word "air", which is un-
derstandable as "veiret" is an uncommon and old
spelling of the word. On the other hand, the other
example is now translated to "She laughed and hit
your hands together.", which is definitely a worse
result, as the action is now targeted to a second
person "your".

4.2.4 Final test on DIY Restaurant Review
Although the few examples we looked at for the
book dataset were not in the favor of the combined
model compared to that of the subtitles model, the
combined model still had a considerably better
BLEU score, meaning that the overall performance
is likely to be better. Therefore, we choose the
combined model to test on the final held-out DIY
restaurant review test set, to see how well it would
perform on our application of interests.

The final BLEU score is a great 35.60. However,
this may be an overly confident score when looking
closer at the translations.

First of, we notice that in many cases it is able
to translate long sentences quite well. An example
is "Det eneste negative var at vi skulle gjerne hatt
en drikkemeny, men det kunne vi sikkert bare ha
spurt om." being translated to "The only negative
thing was that we would like to have a drink, but
I’m sure we could just ask.". This is a very good
translation of a long sentence, although it slightly
misses the menu part. Another good example is
"Et hyggelig og uformelt sted å samle 28 venner og
familie en lørdagskveld i egen avdeling i koselige
pub-omgivelser." being translated to "A nice and
informal place to collect 28 friends and family a
Saturday night in their own section of cub commit-
tees.". Compared to the ground-truth in "A nice
and informal place to gather 28 friends and fam-
ily on a Saturday night in our own section in cozy
pub-surroundings.", we see that the translation is
mostly correct except some smaller parts, in this
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case, the very end of the sentence. Smaller parts be-
ing wrong is a recurring theme for almost all cases,
an example being "Burgeren har vi spist bedre, den
var ikke god." being translated to "The burger has
eaten better, it wasn’t good.", while our custom
translation was "We have eaten better burgers, it
was not good.". For these examples, one would get
a general impression of whether or not the review
was good or not.

Surprisingly, the model struggles with short sen-
tences. Some examples translations is " ALDRI
spis her!" to "ALDRI eat here!", where we see that
the Norwegian word has leaked into the translation,
and "Meget sur betjening." to "I’m very surprised."
which have completely different meanings. How-
ever, a complete failure of the model was "Ble godt
tatt imot og plassert på bordet med en stor nese-
hornfigur, artig." translated to "Got a good caught
and placed on the table with a big nose - skilled
*****, fun.", with ***** being a vulgar racial slur.

Overall, although having some minor errors,
most of the sentences still keep the general senti-
ment of the review being positive or negative, with
the exception of some extreme cases.

5 Discussion

5.1 Combining datasets

In section 4.2.3, we show that combining the gov-
ernment and the subtitles datasets results in better
performance for both datasets, while also genere-
lizing better to the books dataset. There are two
interesting observations from this result. Firstly,
this combination naturally yields more data that we
can train our model with, which intuitively would
mean a better trained model. Secondly, as the two
datasets are somewhat on two completely differ-
ent spectra in language, we can expect that com-
bining them would neutralize some of the extreme
cases, while also making the distribution of the data
we train our model with more diverse. Therefore,
when lacking data to train a model for an applica-
tion of interest, in our case restaurant reviews, one
can still produce decent results when transferring
learned information from another domain.

5.2 Performance vs. runtime

As mentioned in the introduction, there is usually
an inherent trade-off between performance and run-
time when making a model more complex. How-
ever, from our results in table 2, we do not expe-
rience this trade-off as much as one would expect.

When translating a few sentences at a time (as one
would in practice) we found that the runtime for
the subtitles model with a vocabulary size of 3,000,
having a total of 2,271,200 trainable parameters
was basically the same as the combined model with
4 decoder layers and a total of 7,288,660 trainable
parameters. In general, all the models translated the
sentence within a fraction of a second, and runtime
should therefore not be a problem for any of them.
However, the performance of the larger model is
noticeably better than the smaller model. There-
fore, this theoretical trade-off is not an absolute
rule that makes or breaks a practical application,
and in our case, we benefited greatly from having
more parameters with little to no cost in runtime.

5.3 Performance of the final model

The goal of this paper is to build a NMT model
for the practical application of translating restau-
rant reviews to reduce the uncertainty of visiting a
restaurant. We introduced several properties such
a system should have, and our final model mostly
check all the boxes.

Firstly, the translated sentences should be of
good quality, meaning that they are understandable.
From a quantitative standpoint, the model’s overall
BLEU score on the restaurant review dataset was
35.60, which is quite good as discussed in section
2.4. For most of the examples presented in 4.2.4,
although not perfect, one would most likely be able
to infer the general idea of the translated sentences
of what to expect from the restaurant.

Secondly, it is important that the sentiment of a
translated sentence is kept in tact. For the examples
in 4.2.4, this is mostly true. The only questionable
examples may be "ALDRI eat here!" and "I’m very
surprised". However, the first of these sentences
would most likely be seen as negative from the fact
that "ALDRI" is in all capital letters followed by
an exclamation mark. The second sentence has a
neutral sentiment when taken out of context as it is
in this case, because we simply cannot know what
caused the surprise. In this case, it does lose its
sentiment, but it probably will not do any harm as
it does not turn positive either.

Lastly, the system itself should run efficiently for
a better user-experience. As discussed in section
5.2, the performance of our model is very good,
and should generally not be a hurdle.

One concern that has to be raised for our model
is related to the output of "Got a good caught and
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placed on the table with a big nose - skilled *****,
fun.". As this model is intended for practical use,
having the risk of producing such vulgar language
is all but acceptable, especially when the applica-
tion is mostly used in foreign countries, meaning
that there may exist cultural barriers. For this rea-
son, the model cannot be deployed to production
without further development and sanity checking.

6 Conclusion

In this paper, we tackle the problem of translating
restaurant reviews using neural machine translation
methods. The main challenge of this task was the
lack of a proper dataset. Therefore, we trained a
model with data from other domains and directly
transferred the model to our domain of interest by
evaluating the model on a custom built restaurant
review test set, which the model performed ade-
quately on considering not being trained on any
related data. We also show that training a model
with data from several domains help the model
generalize better. Although having many param-
eters, the resulting model still ran efficiently for
our application. However, a major concern of our
model is related to the lack of quality assurance,
which is especially important considering the in-
tended use-cases of the system. In the future, one
should highly consider at least fine-tuning a model
with some examples from the target domain when
performing transfer learning from a completely dif-
ferent domain, principally when considering a text
generation task.
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Abstract

We have compared the two current ba-
sic approaches to Word Sense Disambigua-
tion/Induction: the graphical and lexical substi-
tution based techniques. The graphical appo-
rach being represented by the ego-graph vector
induction (egvi) algorithm (Logacheva et al.,
2020) using both the original fastText approach
as well as novel alteration of egi using BERT
embeddings, while the lexical substitution ap-
proach is represented by BertWSI (Amrami
and Goldberg, 2019). We find that the WSI
task is still an on-going NLP challenge, but key
insights for future research highlight the impor-
tance of how many word senses/how large clus-
ters are allowed, max sentence length as well as
choice of masking patterns on WSI results. Our
experiments show egvi outperforming BertWSI
on Norwegian WSI, but also that more data is
necessary to draw authoritative conclusions due
to the wide confidence intervals involved.

1 Introduction

In most languages a word can have a different
meaning based on its context, like "split" in yoga,
cooking or programming, an infinite source of in-
side jokes in any field. The fact that different mean-
ings of words were mapped to the same vector was
one of the obvious and fundamental flaws of static
word embeddings which lead to the development
of contextual word embeddings in the first place.

However, every occurrence of a word in a text
has a different contextual embedding, and so the
problem of knowing which specific meaning is in-
tended by the word used, trivial for humans, is still
a major problem in NLP known as Word Sense Dis-
ambiguation (WSD) when solved in a supervised
manner and Word Sense Induction (WSI) in the
unsupervised case. (Amrami and Goldberg, 2019)
Some researchers have even questioned whether
the concept of discrete "word senses" makes onto-
logical sense at all. (Kilgarriff, 1997)

2 Theory

WSI was previously done with static word embed-
dings. Each word in the context sentence had their
static word embeddings averaged to produce a con-
text sentence vector representation. The resulting
context vectors are mapped out in the embedding
space and will form clusters, which are assumed to
represent the sense of the word given the context.
Given a new context sentence the word embeddings
can be averaged and the resulting vector will be
closest to one of the clusters, which is the predicted
word sense. K-means and agglomerative clustering
are two examples of algorithms used for determin-
ing the geometrical limits of the word sense area in
the embedding space.

One major problem with this approach is that the
solution will vary widely depending on the amount
of clusters induced from the data. An overly restric-
tive approach will force different meanings into the
same sense cluster, and vice versa. Intuitively it
is better to have too many sense clusters than too
few, as each context can give slightly different nu-
ances in implicit associations or implication, but
it really should not be a hyper parameter choice
but given by the natural clustering of the data by
some objective algorithm. Affinity Propagation al-
gorithm (Frey and Duech, 2007) is widly used for
this purpose in WSI, as it provides the most likely
number of clusters based on the clustering of the
context vector representations in the embedding
space. (Logacheva et al., 2020) improved upon the
Affinity Propagation algorithm for use in the WSI
problem by generating ego graphs for each word
made from its closest vector neighbours in a static
word embedding space like word2vec. However,
Affinity Propagation algorithm also requires a hy-
perparameter choice to decide the sensitivity of the
clustering, if we are stingy or generous in our defi-
nition of "sense neighbourhood". This is however
even a problem for human annotators in lexicons
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Figure 1: Figure from (Logacheva et al., 2020) demonstrates the ability of nearest neighbour graphs to distinguish
different senses of the word ’ruby’ in the context of a gem, the programming language and women’s names.

and so should come as no surprise.

Semantic graphs can be constructed from the
cosine-similarity of word embeddings (Pelevina et
al., 2016) and give alternative form of context rep-
resentation (Logacheva et al., 2020). For example,
the semantic graph of "labrador" and "golden re-
triever" should be very similar, and this can also
produce word sense representations by way of
graph clustering algoritms. MaxMax is an example
of such a graph clustering algorithm applied for
word sense induction by (Hope and Keller, 2013).

SenseGram constructs ego-graph for each word,
and then breaks those graphs into sub-graphs to dis-
tinguish word senses. For example, the ego-graph
for the word "mouse" will have some nodes refer-
ring to rodents, pests and poison which will cluster
together and others referring to buttons, scrolling
wheels and pads which will be clustered away from
the rodent cluster (Pelevina et al., 2017). The sense
embedding vector is then formed by averaging the
word embeddings of the words in each sense clus-
ter.

Ego-Graph Vector Induction (egvi) was intro-
duced in (Logacheva et al., 2020) and applies vec-
tor subtraction to identify the graph node pairs that

are the most dissimilar (the anti-edges). This is
done first in order to filter out some the plentiful
noise produced between false edges formed be-
tween different word senses when including the
closest neighbours of a word in the ego-graph. Ad-
ditionally, this is done to combat the major SenseG-
ram problem resulting from the fact that most of the
words in the ego-graph will be related to the most
commonly used sense of the word. As an example,
words relating to the sense of the word "mouse" as
a metaphor for a coward will be quite fringe in the
mouse SenseGram and therefore hard to identify
as a separate word sense if they have many edges
to different word senses. We will also be using the
egvi sense embeddings for WSI with BERT con-
textual embeddings for a contextual-to-contextual
comparison with BertWSI.

2.1 Lexical substitution for WSI
The general task of replacing a word in a corpus
with another based on the context is called lexi-
cal substitution, and is applied for NLP tasks like
textual data augmentation, lexical relation extrac-
tion, paraphrase generation and text simplification.
(Arefyev et al., 2020)

Originally lexical substitution was solved in a
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Figure 2: Figure from (Kutuzov et al., 2022) shows the word usage graph for the word ’innstilling’.

supervised manner relying on human-curated often
external resources like WordNet to solve the prob-
lem as a classification task by way of sense embed-
dings, which are word embeddings that are trained
specifically for separating word senses. SupWSD
(Papandrea et al., 2017) is an example of a state-of-
the-art supervised WSD, a pipeline which makes
use of carefully chosen feature engineering, word
embeddings as well as local collocations.

(Başkaya et al., 2013) instead attempted to iden-
tify potential substitute words using n-gram lan-
guage models, and their vectors were clustered to
identify differnet word senses.

(Amrami and Goldberg, 2018) first used dy-
namic pattern querying of recurrent language mod-
els for lexical substitution. Aside from the RNN,
the dynamic symmetric patterns incorporated in-
formation about the target word itself for the word
substitution task, improving results.

Later (Amrami and Goldberg, 2019) improved
upon their own work by using contextual language
models in the form of BERT instead of an RNN in
their BertWSI, which further improved upon the
lexical substitution approach. We will be reproduc-
ing BertWSI for the Norwegian NorDiaChange and
compare it to egvi to see how these two approaches
measure up in Norwegian WSI.

One of the latest state-of-the-art method for un-
supervised lexical substitution is called ALaSca
(Lacerra et al., 2021), which incorporates exter-

nal knowledge from Wikipedia by ensuring their
context heterogeneity with the target word via clus-
tering to extract candidate lexical substitutes.

3 Dataset

We will be working on the NorDiaChange dataset
subset 2, which was annotated to track how Nor-
wegian words have changed meaning over time, i.e
diachronic semantic change. (Kutuzov et al., 2022)

Word senses in two different sentences are clas-
sified by human annotators as either:

1. Unrelated.
2. Distantly related
2. Closely related.
4. Identical
The NorDiaChange dataset also includes word

senses inventory, which is the part we will be using
as the gold standard to evaluate our WSI perfor-
mance.

4 Implementation details

4.1 Sense inventories and embeddings

We download sense inventories produced by (Lo-
gacheva et al., 2020) and calculate the word
embeddings for each of the context word to-
kens connected to each word sense, and av-
erage these to calculate our sense embeddings
for each of the word senses. These are com-
pared to the fastText embeddings based on Norsk
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Aviskorpus, NoWaC and NBDigital (ID 110
and 109 from http://vectors.nlpl.eu/
repository/#) of the ambigious word we want
to classify. http://vectors.nlpl.eu/repository/, where
the closest matching embedding is chosen for the
word sense classification.

We also use BERT for a contextual version of the
egvi WSI algorithm. For each new sentence with
an ambiguous word the contextual BERT token
embeddings for the ambiguous word are averaged
to produce a contextualized embedding for the am-
biguous word. To determine the closest sense em-
bedding to the ambiguous word we use the cosine-
similarity measure between each of the possible
sense embeddings and the word embedding, where
the shortest cosine-distance is the predicted word
sense solution for our WSI task.

The simplest way to understand the underlying
goal we are trying to achieve here is that the sense
embeddings contain information about the words
usually associated with each word sense, like
"river" for one sense of the word "bank" or teller"
for another, and we pick the word sense with most
of those associated words in the words surrounding
the word. The contextualized embeddings help
generalise the words used so if words like "current"
are used instead of "river" this would still register.

Some sentences are too long and must be
either truncated or discarded. Truncating made
the results degrade considerably as sometimes the
part of the sentence containing the word and its
immediate neighbourhood are truncated, which
ends up producing misleading context embeddings,
so we chose to discard sentences that were too
long. The max sentence length turned out to be
one of the more important hyper parameters for
improving the WSI results both with egvi and
BertWSI.

4.2 Dataset preparation

The indices for the offsets of the words are often
wrong. This causes the BERT tokenization to be
different for the words in the sentence and the word
we are looking for, to the point where the tokens
are not found in the sentence and so we cannot find
the BERT embeddings for the word. This leads to
a data loss of around 25 percent, from around 800
to around 600 sentences. As a result, care has to be
taken to make sure all the data is matched with the
correct gold labels.

5 Evaluation

RA =
TP + TN

TP + FP + FN + TN
(1)

The rand index (equation 1) checks how many
class labels are coherent, that is, not identical as
the class names for each word sense is different
in the NorDiaChange dataset and the pre-trained
sense inventories. TP is true positive, FP false
positive, TP true positive, TN true negative and FN
fake negative.

The adjusted rand index is adjusted for ran-
dom chance so the results are easier to interpret
without comparing to a baseline. We will be
using the adjusted rand index to evaluate our WSI
performance for all models to be able to compare
their results.

5.1 Error estimation

As amount of training data does not make a differ-
ence when the model is frozen bootstrapping will
likely introduce more error than cross-validation.
We share the data in 5 portions and compute the
standard deviation and resulting confidence inter-
val.

6 Models

We test lemmatized and unlemmatized fastText,
norBERT1, norBERT2, nb-bert-base and bert-
base-multilingual-cased to see how the choice of
pre-trained language model influences the WSI
results.

Additionally, we test the three different sense
inventories released by (Logacheva et al., 2020)
for building the sense embeddings. One produced
from a graph of top 50 nearest neighbours, another
of the top 100 and a third the top 200 nearest
neighbouring words and compare their WSI task
results.

7 Results and discussion

7.1 Model choice effect

The fastText embeddings resylted in a performance
for this task at a mean ARI of 0.056. The multilin-
gual BERT-model turned out to produce the best
results, closely followed by the nb-bert-base model.
norBERT1 and norBERT2 did not quite match the
other options. Overall the choice of model was one
of the most important hyper parameter choices.
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Table 1: WSI results from the various hyper parameter choices. Hidden layers early is how many early layers of the
pre-trained language model are averaged starting from layer 3, and hidden layers late how many late layers starting
from layer 17.

7.2 Sense inventory choice effect

Surprisingly, the top 200 nearest neighbour word
sense inventory did not perform as well as the top
100 inventory. We originally assumed more nearest
neighbours would imply more information, but ap-
parantly this is more irrelevant information which
is not conducive to this particular dataset.

7.3 Text pre-processing effect

Overall using lower case or removing punctuation
had a negative effect on the predictive power of our
approach. It might be that this information helps
contextualize the word to distinguish word senses.

7.4 Max sentence length effect

The choice of max sentence length turned out to
have a major effect on the WSI results when using
this approach. This might be because words further
away from our target word has an undue influence
on the word sense induction. Two options for future
research based on this insight is to weight the BERT
embeddings so words closer to the target word has
a bigger influence on the final sense embedding.
Another less drastic option could be to truncate
strings that are too long, this was attempted straight
forward by us, but in many cases the target word
itself was truncated in these cases, resulting in poor
performance. To try this solution properly care
has to be taken to truncate the sentence around the
target word and preferably not in the middle of a

sentence.

7.5 Hidden layer choice effect

We tried summing a variety of hidden layer choices
from the pretrained BERT model and observe the
effect on the WSI results. Using the final four
layers seemed to give the best results overall, and
addings one or more of the earlier layers degraded
the performance as well. The earlier layers encode
more basic linguistic knowledge, so it makes sense
that adding their values to the final embeddings
reduces the impact from the more important later
layers in determining the ambiguous word sense.

8 BertWSI reproduction comparison

8.1 Masking pattern choice effect

Model 1 from table 2 applied three masking pat-
terns, one where the target word starts the sentence
and is masked, one where the sentence ends with
the target word which is masked, and one where
it is masked in its original position. The results
from these three masking patters were weighted
and added. Model 2 from table 2 tried only using
the original masking without additional patters and
saw a substantial degradation from a mean adjusted
rand score of 0.069 ± 0.048 compared to a mean
of 0.032, although both are within the margin of
error so additional data is required to confirm this.
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Parameter Parameter choice
n-represents 30

n-samples-per-rep 30
disable-tfidf False

disable-lemmatization False
min-sense-instances 2

bert-model multilingual-cased
max-batch-size 10

prediction-cutoff 200
max-number-senses 5

Result BertWSI model 1 0.069 +- 0.048
Result BertWSI model 2 0.032 +- 0.057

Table 2: Results from BertWSI model 1 and 2. Dif-
ference between the two models is the type of patterns
used for predicting a masked word in the lexical substi-
tution phase, model 2 only uses the most obvious pattern
leading to more repetitive synonyms.

8.2 Max sense numbers effect

Limiting the maximum numbers of senses each
word type can have is necessary as each added
class makes it more likely to misclassify the word
sense, even more "correctly" than the human an-
notators. As each sentence will have a slightly
different context the choice of granularity really
is an arbitrary one, and therefore it is necessary to
match the choice to the choice of the human annota-
tors of the specific dataset. Having too few choices
makes it impossible to classify some word senses
correctly. Having a maximum of 5 senses for each
word type turned out to give the best results in our
experiments, but the variance in our results are too
high to be certain, especially for generalisation.

8.3 Lemmatization effect on performance

Adding pre-processing in the form of lemmatiza-
tion degraded the performance of all models tested.
This information appears to be helpful in perform-
ing the WSI.

9 Conclusion

We have compared a variety of hyper parameter
choices to compare the performance of two
state-of-the-art word sense induction methods
on norwegian data: egvi and BertWSI. The
best fastText egvi results were 0.056, the best
bertWSI results 0.069 and the best egvi with
BERT-embedding results at 0.08.

The models turned out to have a large vari-

Parameter Parameter choice
n-represents 30

n-samples-per-rep 30
disable-tfidf False

disable-lemmatization True
min-sense-instances 2-4

bert-model multilingual-cased
max-batch-size 10

prediction-cutoff 200
max-number-senses 5

Result BertWSI model 3 0.0171 +- 0.068
Result BertWSI model 4 0.0151 +- 0.059

Table 3: Results from BertWSI model 3, which is not
using the additional patterns to improve results. Model
4 additionally reduces the maximum number of senses
allowed to 4 from 5, which consistently reduced perfor-
mance.

ance in performance and we had only 800
sentences to classify. To determine the most
influential parameters with confidence more data is
required, a task for future research.

We conclude that the amount of word senses each
word type can have had a major effect on the WSI,
and further more that since the choice of word
sense granularity inherently is arbitrary even for
humans, for example a children’s dictionary will
not be as detailed as one for adults, this parameter
will have to be adapted to the dataset and the level
of detail provided by the human annotators to
score highly.

Finally we conclude that the state-of-the-art
NLP for word sense induction still has a way to go
as our results overall were humbling.

9.1 Code resources

The BertWSI reproduction was based on this github
repo: https://github.com/asafamr/
bertwsi

Some BERT model loader code copied from:
https://github.com/arushiprakash/
MachineLearning/blob/main/BERT%
20Word%20Embeddings.ipynb
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Abstract

A number of large foundation models for lan-
guage understanding and automatic translation
have been proposed by the research commu-
nity over the last two decades. However, these
models appear too large for deployment in pro-
duction. In real word scenarios, practition-
ers are limited by the availability of resources
for training and have business-driven require-
ments for the speed of translation. This pa-
per presents a series of experiments on scal-
ing down a classical transformer model to
translate sentences from English to Russian
in a chatbot for tourists. We investigate how
the scaled model generalizes from the do-
mains of diplomacy and popular science in
the limited-size training data to the target do-
main of tourist inquiries on a Trans-Siberian
train. The code and materials are available
at https://github.uio.no/anastg/
NLP-IN9550-Simula-exam-NMT.

1 Introduction

In the pursuit of natural language understanding by
artificial intelligence, the research community has
proposed a number of large foundation models over
the past decade (Bommasani et. al, 2021). While
these models perform well on downstream tasks,
practitioners often search for smaller models that
can be deployed for real-world applications. More-
over, companies may have limited resources and
choose training custom models from scratch, due to
high costs of using a cloud infrastructure or of pur-
chase of a GPU. Therefore, creation of lightweight
models is a direction of ongoing research (Han
et al., 2016; Schick and Schütze, 2021).

In addition to size-driven limitations of founda-
tion models, training data within a target domain is
often difficult to gather. In this situation, model cre-
ators must ensure the model performs well on the
domain outside of the training data. This problem
is known as domain shift and tackled with domain
adaptation techniques (Ramponi and Plank, 2020).

This paper presents a series of experiments
on scaling down a classical transformer model
by Vaswani et al. (2017) to be deployed in a
real-world scenario that requires English→Russian
translation. The scenario details are provided in
the Problem Description Section. We train our tok-
enizers and models from scratch on a limited-size
dataset constructed from two domains and test the
model on the third domain. By exploring model
configurations, we focus on balancing between a
vocabulary size and a model size. The key contri-
butions of this study are as follows:

• we scale a transformer-based model down to
5 million parameters and test it on a dataset of
user inquiries in the tourism domain;

• we examine the model’s generalizability de-
pending on the training datasets distribution
between two different domains;

• we thoroughly analyze translation errors in
the target domain and propose directions for
model improvement.

The remainder of the paper is organized as fol-
lows. We present the real-world use case at the
core of this study in Section 2 and the methodology
and data in Sections 3 and 4, correspondingly. Ex-
perimental design details are covered in Section 5.
Results, including the error analysis, are discussed
in Section 6. We provide an overview of related
work in Section 7 and conclude with Section 8.

2 Problem Description

In the use case of this study, a company supports a
chatbot with well-configured conversational paths
for user prompts in Russian. The purpose of the
chatbot is to help tourists during a journey on a
Trans-Siberian train. However, the chatbot lacks
support for English.

To introduce the English language, one can
choose from at least two options. While one option
is to create decision nodes and mock-up conver-
sations fully in English, it would require copying
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and translating the existing paths in Russian. This
option can be suboptimal due to a possible lack of
the English language diversity. On the contrary, we
aim to train a neural machine translation (NMT)
model that translates user input from English to
Russian automatically. We will further map the
translated input to existing conversation paths in
Russian. Backward translation from Russian to
English is out of scope of this work.

The scenario and available data for training a
model pose several constraints. Given the real-
time usage of the chatbot, the model should be
lightweight, i.e., contain less than 10 million (M)
trainable parameters. Moreover, the model must
generalize well from the domains of available train-
ing data to the domain of tourist inquiries. Finally,
the training dataset must comprise a maximum of
300 thousand (K) sentence pairs.

3 Methodology

For the tokenization step, we train two byte-pair
encoding (BPE) tokenizers that cover both Russian
and English words (Sennrich et al., 2016). In this
way, the embedding layer weights of the model are
shared with its final classification layer.

For translation, we use the transformer-based
encoder-decoder architecture with several varia-
tions (Vaswani et al., 2017). The first set of varia-
tions concerns the architecture tweaks that are re-
ported to improve performance metrics in the stud-
ies that propose them, such as substituting the fully
connected feed-forward network (FFN) layers with
the FFNGEGLU non-linear variant from Shazeer
(2020). The implementation also contains the "pre-
norm" variant from Nguyen and Salazar (2019),
where the layer normalization is applied before
the feed-forward layer transformation and residual
connection. Moreover, the model has the "position-
infused attention" from Press et al. (2021) that en-
sures the positional encodings are added to key and
query vectors at each transformer layer instead of
using the positional encodings prior to the encoder
or decoder layers.

The second variation concerns the size of the
transformer. Given that the overall goal is to cre-
ate a light-weight model, we experiment with the
number of layers in the encoder and decoder as
well as the hidden size and number of heads. De-
tailed variations are explained in Section 5.1. Ex-
periments with variations of the transformer-based
NMT model have the following objectives: (i) to

evaluate the generalizability of the model, i.e., how
the model trained on small data from two domains
performs on the target domain of the chatbot for
tourists; (ii) to explore the trade-off between a
larger vocabulary—that infers a larger embedding
and classification layer—versus a larger number
of hidden layers or more heads; (iii) to investi-
gate how additional small variations in the training
process, such as learning rate schedulers and BPE-
dropout at the tokenizer level, affect the model
performance (Provilkov et al., 2020). We use the
BLEU score for evaluation (Papineni et al., 2001).
BLEU is a precision-oriented metric based on the
count of words from a generated translation that
also appear in the golden translation.

The transformer with described variations out-
puts a distribution over the tokenizer vocabulary.
Therefore, to produce a translated sentence word-
by-word at inference time, we use greedy search
for validation within the training domain and beam
search for testing on the target domain with the
beam size of 4.

4 Data and Preprocessing

Available data for training spans two domains: par-
allel corpora of the United Nations (UN) docu-
ments1 and TED transcripts.2 The UN corpus is
small and contains formal diplomatic language. By
contrast, TED is a larger source of semi-formal
language with generic or popular science content.

We form three main training sets: "UN" that con-
tains 50K training examples, "TED" that is com-
prised of 250K training samples, and the "com-
bined" dataset that contains both training sets and
counts for 300K training samples. In addition, we
use the set "TED-300" that contains as much of the
TED data as possible under the experiment require-
ments. Note that "300" stands for 300K, the result
of rounding up the total number of sentence pairs
in the TED data. For more details regarding the
dataset statistics after preprocessing, see Table 1.

Given the data origins, we hypothesise that the
UN corpus will contribute to the training only with
the structure of the sentences, but not with the se-
mantic value. If a model overfits the corpus, it will
tend to repeat report numbers, country names, and
specific words of the corpus. By contrast, we ex-
pect that models trained on the TED or combined
corpora will perform better, because of the variety

1https://opus.nlpl.eu/MultiUN.php
2https://opus.nlpl.eu/TED2020.php
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Dataset Purpose # sentences
Avg. Avg.
len. len.
EN RU

UN train 50 000 108 117
TED train 250 000 80 79
TED-300 train 283 129 80 79
combined train 300 000 85 85
UN dev 2 500 109 120
TED dev 2 500 80 79
TED-300 dev 2 500 80 79
combined dev 5 000 95 100
book test 2 500 79 72
TS test 100 51 52

Table 1: Sizes of train/dev/test datasets, including aver-
age length of sentences in words separated by spaces,
prior to tokenization.

of represented topics.
Development (dev) sets within training domains

consist of 2500 pairs of held-out UN and TED sen-
tences, and their combination for the "combined"
training set. We keep 5000 pairs for the "com-
bined" dev set, because it corresponds to 98.4/1.6%
split of the combined version of the data. Given the
small dev set, every sentence is useful for the vali-
dation stage and we do not reduce the number of
UN dev sentences to the same proportion as the one
of the UN/TED data in the combined training set.

The test set for the target domain contains 100
hand-crafted sentences in English translated to Rus-
sian by the chatbot creators. We call this custom
dataset "TS". According to the chatbot team, the
most common inquiries concern route and hotel
suggestions, ticket and insurance details, practicali-
ties on the train regarding towels, bed linen, show-
ers, and food. Moreover, TS contains the shortest
sentences on average over all dev and test sets.

To enlarge the test set of the target domain, we
use the "book" corpus. This additional corpus is
comprised of professional translations of 2500 ran-
dom sentences from "Anna Karenina" by Leo Tol-
stoy from Russian to English. Given that the book
corpus should contain general Russian language,
evaluation on this set can approximate the perfor-
mance of the model on some questions outside of
the TS set. However, one challenge of the book cor-
pus is that it contains sentences with direct speech
and dialogues. Therefore, the model will be re-
quired to recreate the punctuation patterns that are
more complex in Russian than in English and are

not present in any of the training corpora.
The preprocessing step consists of adding the

opening brackets and semicolons to the Russian
part of the UN corpora, so that these punctuation
signs match in Russian and English in the sentences
that represent numbered lists, because in this cor-
pus, the numbered lists open with "1)" in Russian
and "(1)" in English. We also remove the indication
of background noises in square brackets, such as
"[Applause]" or "[Music]", from the TED corpus.

5 Experimental Design

5.1 Model and Tokenizer Configurations

The trained tokenizers vary by vocabulary length:
2000 tokens (small) and 5000 tokens (large). To
choose the size of tokenizers, we increase the vo-
cabulary size starting from 1000 with a step of 500
and manually inspect the results of tokenization
on several sentence pairs. The size of 2000 is the
smallest one that yields more subwords than single
letters as tokens. The idea is increase the vocab-
ulary size and shrink different parts of the model.
The tokenizer size of 5000 is chosen based on the
resulting number of model parameters.

Following the notation of Vaswani et al. (2017),
the baseline model contains N = 6 encoder and the
same number of decoder layers, the hidden layer
size is dmodel = 256. The model has h = 4 heads
to keep the dimensions of keys, values and queries
as dk = dv = dq = dmodel/h = 64 in Vaswani
et al. (2017). Table 2 presents model names for
all the configurations, including the baseline, and
an overview of model sizes. Models are named as
modelN,h, where parameters N and h are replaced
with their values, so the baseline model is model6,4
coupled with the 2000-token vocabulary.

We also fix the large vocabulary with 5000 to-
kens and decrease the number of encoder and de-
coder layers to N = 3 while keeping the hid-
den dimension and number of heads constant
(model3,4 in Table 2). Alternatively, we decrease
the number of heads and the hidden layer dimen-
sion dmodel = 128, h = 2, but keep the proportion
dmodel/h = 64 and other parameters as in the base-
line (model6,2 in Table 2).

5.2 Minor Training Enhancements

We have noticed that scaling down randomly ini-
tialized embedding weights positively affects the
training process. Therefore, we divide the embed-
ding weights by

√
dmodel by default.
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Model N dmodel h
Vocab. Number of

size parameters
model6,4 6 256 4 2 000 8.42 M(baseline)

model3,4 3 256 4 5 000 5.24 M
model6,2 6 128 2 5 000 2.63 M

Table 2: Variations of the transformer model in exper-
iments, where N is the number of encoder or decoder
layers, h stands for the number of heads, and dmodel is
the hidden size of the model layers.

Moreover, we perform four experiments with
learning rate scheduling and BPE dropout: (a) lin-
early increasing learning rate from ca. 0.0003 to
0.001 over the first 5 optimizer steps (default pa-
rameters for LinearLR in PyTorch); (b) linearly
increasing the learning rate from 0.001 to 0.003,
using a higher final learning rate in an attempt to
speed up learning; (c) linearly increasing learning
rate over the first 4000 steps and decreasing there-
after as in Vaswani et al. (2017); and (d) setting
BPE-dropout to 0.1.

5.3 Implementation Details

The model is implemented in Python 3.7 using Py-
Torch v1.7.1 and SacreBLEU from TorchMetrics
v0.7.3. The training is done with the compute re-
sources of Saga3, namely 2 NVIDIA P100 GPU
nodes for 2-10 hours depending on the model and
corpus sizes, as well as the number of epochs.

We use the batch size of 1024 tokens, 0.1 dropout
rate for encoder and decoder parts, Adam opti-
mizer with hyperparameters set as in Vaswani et al.
(2017). Generated sentences have the maximum
length of 128 tokens.

By default, experiments are run for 10 training
epochs. In the end, the best performing model with
chosen minor training enhancements is trained on
the training set that yields the best BLEU score for
the TS and books test sets for 50 epochs.

6 Results and Discussion

Overall, the performance of our model is rather
modest: the best performing model achieves 19.9
BLEU score on the TS dataset. We associate poor
performance on held-out datasets with several fac-
tors. In the trade-off between performance and a
light-weight model, the performance does not win,

3https://documentation.sigma2.no/hpc_
machines/saga.html#saga

Train Dev/test corpus
corpus UN TED book TS
UN 9.7 0.6 0.1 0.0
TED 4.3 10.0 5.9 13.1
TED-300 4.7 12.6 6.4 17.0
combined 17.0 7.6 3.3 6.1

Table 3: BLEU score obtained using the baseline
model6,4 with 2000-token vocabulary depending on
the training corpus.

and in this paper we had the lightness described in
Section 2 as a primary requirement.

In addition, we train the model only on one task,
while large contextualized models are trained on
multiple tasks and/or are fine-tuned on the target
task. In our experiments, the models overfit on
the train datasets with the content outside from
the target domain. We discuss model performance
variation depending on the training data and model
size variation in detail below.

6.1 Domain Transfer
Results of training the baseline model configura-
tion (model6,4) for 10 epochs on different datasets
are presented in Table 3. There, we report BLEU
scores on average over dev or test batches on the
dev sets, which are the same as training sets, and
on test sets that are named differently from the
train/dev sets. For example, the baseline model
trained on TED-300 and validated on the TED set
is tested on the UN, book and TS datasets.

The model trained on UN shows the worst gen-
eralization capability, while the model trained on
TED generalizes better on all the test sets. Notably,
the model trained on the combined data yields the
highest BLEU scores on UN and TED, but not on
the target book and TS sets. Because the model
trained on partial TED corpus performs well, we
enlarge the TED corpus as much as possible under
300K training samples requirement and form the
TED-300 dataset (see Table 1). On this dataset, we
obtain the best BLEU scores on the book (6.4) and
TS (17.0) corpora with the baseline model.

At this stage, we also experiment with training
process enhancements described in Section 5.2,
starting from the baseline model trained on the
combined corpus with linearly increasing learning
rate (a). Neither the larger learning rate (b) nor
the learning rate following Vaswani et al. (2017)
schedule (c) improves the BLEU scores. With the
BPE-dropout scheme (d), the performance stays
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Model Epoch Dev/test corpus Decode
UN TED book TS time, sec

model6,4 10 4.7 12.6 6.4 17.0 1.5
model3,4 10 6.2 14.3 6.5 19.9 0.8
model6,2 10 5.0 12.6 6.0 13.4 0.5
model3,4 50 8.4 17.4 8.1 19.5 0.8

Table 4: BLEU score and average translation (decode)
time for one sentence on the TS dataset obtained using
the models of variable size.

the same on TS and deteriorates for other corpora.
Therefore, we stick to TED-300 corpus and op-
tion (a) in other experiments.

6.2 Model Size Variations
The goal of this experiment with variable model
sizes is two-fold. In particular, we aim at choos-
ing the best performing model to train it for more
epochs. In addition, we try to reduce the model
size and investigate the effect on the average speed
of sentence decoding, i.e., translation from English
to Russian. Table 4 presents the results.

The best performance—19.9 BLEU on TS—is
achieved on the model with 3 encoder and de-
coder layers and 4 heads, dmodel = 256, when
it is trained for 10 epochs (model3,4). Training this
model for more epochs leads to overfitting the train
set, which is TED-300. Noteworthy, this overfit-
ting leads to the best BLEU scores for all datasets,
except for TS. The smallest model with 2 heads,
6 encoder and decoder layers and dmodel = 128
performs worse than both the baseline (the largest,
model6,4) and the medium-size model (model3,4).

The speed of decoding changes from 1.5 seconds
per sentence for the baseline 8.42 M-parameter
model by 47% to 0.8 seconds/sentence for the best
performing model with 5.24 M parameters. We
to evaluate the speed of translation on the CPU of
MacBook Pro 2021 edition.

6.3 Error Analysis
Certain errors in the translation of TS sentences are
consistent throughout the dataset. We analyze the
translation capability of the best performing model
trained for 50 epochs (model3,4). Although the
BLEU score is higher when the model is trained
for 10 epochs, we notice that after 10 epochs the
model has poorer translation quality on TS than
the model trained for 50 epochs. It can happen
if more subtokens are decoded correctly after 10
epochs but the results are evaluated with full words

by humans. Examples of translation are listed in
Table 1 in Appendix A and referenced by example
IDs in the text.

One example of an error is that the model con-
fuses English words with other English words that
start with the same syllable. For example, "towel"
is translated as "tower" (Ex. 1), "luggage" is con-
verted to "lung" (Ex. 2), "visa" is confused with
"visual" (Ex. 3), and "wifi" with "wife" (Ex. 4).
Being trained on a rather small corpus of less than
300K examples in TED-300, the model confuses
gender forms of the possessive pronouns, singu-
lar forms with plural ones for different parts of
speech (Ex. 14), chooses the wrong verb form
(perfect/imperfect, Ex. 5), or mixes prepositions
(Ex. 15). In addition, the model has translated a
verb as a homophone noun in some sentences ("a
taste" vs. "to taste", Ex. 5). One obvious mistake
type is that cities are either misspelled or spelled
with English letters. This error possibly originates
from the domain transfer, because Russian cities’
names do not appear in the training corpora at large.

Certain words are more difficult to translate than
others, because they depend on the context. For
example, in the phrase "on board the train", the
part "on board" means "while being on the train".
However, the model confuses the "on board" part
with a board of a table (Ex. 6) or with a board of
organization members (Ex. 7). In other cases, the
"on board" part is simply omitted. Out of eight
sentences with the phrase "on board", only two are
translated correctly and, in two others, the phrase
is omitted without the loss of the sense (Ex. 11).

One eye-catching mistake the model has made
is the invention of new words (Ex. 8). The root is
taken from one word, the suffix and ending are cus-
tomary for reflexive verbs. These exact parts—the
root, suffix and ending—are present as subwords
in the BPE vocabulary, which may be the reason
for such a translation. As a result, the verb re-
sembles a real word that a child would invent to
convey the meaning. In a similar direction, one
difficult word for translation, "a cabin", is decoded
as a transcription of an English word in cyrillic
letters (Ex. 9), possibly because the word "cabinet"
is well-represented in the TED-300 text and the
start of its translation in Russian coincides with the
cyrillic transcription.

Overall, the model has yielded around 20% trans-
lations of all sentences with no mistakes or mi-
nor mistakes that do not hinder understanding of a

129



tourist inquiry (evaluated by authors). It is notewor-
thy that even when a wrong preposition is chosen,
the subsequent noun has the right ending. In Rus-
sian, the noun ending depends on the preposition,
or more specifically, on the noun case that is deter-
mined by surrounding words (Ex. 10, 15).

7 Related Work

This study is closely related to three research ar-
eas: natural language understanding and transla-
tion; reducing the amount of resources for training
language models; and cross-domain performance
of natural language models.

Natural language understanding and NMT have
been rising as research fields since the emergence
of contextualized language models, such as BERT,
Multilingual BERT (Devlin et al., 2019), and
mT5 (Xue et al., 2021). Furthermore, architecture
solutions from these models have been reused by
large companies, such as Google (Wu et al., 2016).
Among all, large models for Russian exist as both
standalone models (Kuratov and Arkhipov, 2019)
and parts of multi-lingual ones (Devlin et al., 2019;
Xue et al., 2021; Reimers and Gurevych, 2019).

The trend to create larger and larger language
models has faced critique from the field, due to sus-
tainability aspects of training and using the mod-
els, as well as other negative factors, for exam-
ple, reproducing social biases from the Internet
corpora (Bommasani et. al, 2021; Bender et al.,
2021). As a response, several studies focus on
scaling down the models and speeding up train-
ing via knowledge distillation (Sanh et al., 2020),
pruning (Han et al., 2016), early exit strategies for
inference. For example, Cañete et al. (2022) focus
on creating a light-weight model in Spanish.

In the same line of research, Schick and Schütze
(2021) study how the large (GPT-3) and small (AL-
BERT) models perform on the SuperGLUE bench-
mark with variable number of parameters and pro-
pose a variant of training that improves ALBERT’s
performance (Wang et al., 2020). In addition, Chen
et al. (2021) use prompt-guided attention to train
the model for a low-resource NER task.

Finally, generalizability of models is a common
topic for AI as a whole. For natural language, the
generalizability is mainly achieved through fine-
tuning of a general model on a target domain (Raf-
fel et al., 2020). In this manner, several models
are created to cover bio-medical and other specific
domains (Lee et al., 2019).

8 Conclusion

In this study, we have experimented with
transformer-based models on top of the BPE to-
kenizer and investigated the problem of domain
shift. We have trained from scratch and tested mod-
els and tokenizers with different sizes, starting with
a small vocabulary and a model of 8M parameters
and gradually increasing the vocabulary size while
reducing the number of layers or heads to reach 5M
model parameters and 47% translation speed-up.

The experiments have been guided by a techni-
cal use case of translating tourists inquiries on a
Trans-Siberian train from English to Russian. Tech-
nical requirements have imposed upper limits on
the model and training data size. Under these re-
quirements, we have achieved the BLEU score of
19.5 on the target domain corpus after 50 epochs,
and 20 out of 100 inquiries have been translated in
the manner understandable for a native speaker.

This work can be extended in various directions.
One option is to replace attention-based encoder
and decoder with RNNs. To speed up training, we
may use larger batch sizes—an option we over-
looked in this paper. Finally, more Russian cities
can be present in the training corpora, so that the
inquiries with geographical named entities are cov-
ered well.
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ID Source sentence, 
En

Tranlsation 
produced by the model, 
En -> Ru

Manual backward translation 
with explanation of model errors, 
Ru -> En

1 Where can I change the 
towels and bed linen?

Где же я могу изменить 
башни и спать?

Where can I change the towers and sleep?

2 What is the size limit of the 
luggage? 

Каковы размеры лёгких? What are the sizes of lungs?

3 Do I need a visa for a trip? Мне нужна визуальная 
поездка?

Do I need a visual trip?

4 What is the wifi password? Что такое пароль жены? What constitutes the wife password?
5 I want to taste something 

Russian. Where can I find 
some food? 

Я хочу вкус что - то 
русское. Где я нахожу 
еду?

I want a taste something Russian. Where do I 
find (imperfect verb form) some food?

6 Can I take an electric scooter 
on board the train?

Могу ли я взять 
электрический 
аккумулятор на доске? 

Can I take an electric accumulator (meaning: 
battery) on a board (meaning: board of a 
table/whiteboard/any flat board)?

7 Does the police on board 
speak  English? 

Считает  ли полиция на 
совете на английском 
языке? 

Does the police consider  English (meaning: 
language) during the board meeting (noun 
case corresponds to the preposition)?

8 What should I do in case I 
fall ill on board? 

Что мне следует сделать, 
если я болюсь на борту?

What should I do in case I [fall ill] (impossible 
to translate: correct root, suffix and ending, but 
taken from different words, the word does not 
exist) on board?

9 How can I lock my cabin? Как я могу захлокировать 
кабин? 

How can I lock (spelling mistake) a [cabin] 
(spelled in Russian as pronounced in English)? 

10 Do you have a play room for 
children?

У вас есть игровую 
комнату для детей?

(wrong noun case and adjective ending)

11 Can I take a bike on board 
the train? 

Могу ли я взять 
велосипед? 

Can I take a bike? ("on board" is omitted 
without the loss of the meaning)

12 Can I go out to the city 
during a stop? 

Могу ли я поехать в город 
во время остановки? 

(correct)

13 Why are the toilets closed 
during the stops?

Почему туалет 
закрывается во время 
остановки?

(correct)

14 What is the average speed 
of the train?

Каковы средняя скорость 
поезда? 

What [plural form of "what" instead of the 
correct singular one] is the average speed of the 
train?

15 Is there passport control on 
the border with Mongolia 
and China?

Есть ли паспортный 
контроль над границей 
Монголии и Китаем?

Is there passport control over the border  
(noun case corresponds to the preposition) with 
(omitted preposition) Mongolia and China?

Translations with errors

Translations with minor or no mistakes

Table 1: Examples of translation of tourists inquiries from the TS corpus by model3,4 trained for 50 epochs.
Legend: translation mistakes; correct grammatical features; an incorrectly translated word in English;
a slight change of a meaning that does not hinder the general understanding of the sentence.
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