
Proceedings of the Fifth

IN5550 Workshop on Neural

Natural Language Processing

(WNNLP 2023)

Andrey Kutuzov, David Samuel, Sondre Wold
and Erik Velldal (Editors)

June 06, 2023

University of Oslo, Norway

Published by

Language Technology Group

Department of Informatics

University of Oslo

2

Preface

We are delighted to present the proceedings of the Fifth IN5550 Teaching Work-
shop on Neural Natural Language Processing (WNNLP 2023). Spurred by great
advancements in neural approaches to NLP, this is the fifth in a series of success-
ful annual workshops, each showcasing some of the best efforts made by MSc and
PhD students completing the IN5550 class — all tackling modern NLP research
tasks.

The workshop received ten submissions (by 17 authors), of which all have been
accepted for publication as part of the WNNLP 2023 proceedings (this volume).

This programme would not have been possible without the assistance of all our
reviewers, whose careful and constructive feedback has been an important element
in finalising the individual contributions. To encourage the spirit of good peer
review, we have made the decision to include an Outstanding Reviewer award
in this workshop, in addition to the traditional Best Paper award. Further, to
emphasise the ties this workshop has had to the IN5550 class, we have also made
the decision to include an Outstanding Coursework award.

The Programme Committee has selected the paper Guessing Menu ingredi-
ents with a Transformer: A Qualitative Analysis of the Training Corpus of a
Norwegian-to-English Transformer model used for Menu Translations, by Amir
Basic, Cornelius Bencsik and Torstein Forseth, for the WNNLP 2023 Best Pa-
per award, reflecting a combination of solid work with the data, in-depth error
analysis and clever experimentation.

Among the pool of wonderful WNNLP 2023 reviewers, the Programme Com-
mittee finds that one deserves a special mention, for providing especially detailed
and constructive feedback to their peers. The recipient of the WNNLP 2023
Outstanding Reviewer award is Cornelius Bencsik.

And finally, while the coursework that led to this workshop may seem like
a distant memory, we also award the Outstanding Coursework awards to Amir
Basic, Cornelius Bencsik and Torstein Forseth, who have received full marks on
their deliveries this semester.

Congratulations to all award recipients (and runners-up)!
And, last - but not the least - warmest thanks to all participants of this

workshop, who spent many a sleepless nights working on the projects that are
certain to make WNNLP 2023 an exciting and stimulating event!
WNNLP 2023 Committee
Oslo; June 06, 2023

i

Programme Committee

Magnus Nytun
Oliver Getz Rodahl
Martins Gintovts
Anton Zelentsov
Erlend Kopperud
Sander Helgesen
Nolwenn Bernard
Torstein Forseth
Cornelius Bencsik
Amir Basic
Lilja Charlotte Storset
Fredrik Aas Andreassen
Roman Machacek
Narae Park
Jie Bian
Lu Xing
Lucas Georges Gabriel Charpentier
Sondre Wold
Egil Rønningstad
David Samuel
Andrey Kutuzov
Erik Velldal

Neural Machine Translation Chairs

David Samuel

Definition modeling

Andrey Kutuzov

Targeted Sentiment Analysis Chairs

Egil Rønningstad

General Chair

Erik Velldal

i

ii

Table of Contents

Exploring Efficient Use of Domain-Based Data Samples in Targeted Sentiment Analysis . . 1

Magnus Nytun and Oliver Getz Rodahl

Exploring Cross-Domain Effects in Targeted Sentiment Analysis for Norwegian 7

Martins Gintovts

Neural Machine Translation: Small Transformer Models Are All You Need 17

Anton Zelentsov, Erlend Kopperud and Sander Helgesen

French-English Translation of Artwork Description: A Neural Machine Translation Study. 27

Nolwenn Bernard

Guessing Menu ingredients with a Transformer: A Qualitative Analysis of the Training
Corpus of a Norwegian-to-English Transformer model used for Menu Translations 37

Amir Basic, Cornelius Bencsik and Torstein Forseth

Targeted Sentiment Analysis for Norwegian: An Experimental Study of Sentiment
Intensity . 45

Lilja Charlotte Storset and Fredrik Aas Andreassen

Benchmarking Targeted Sentiment Analysis Models . 55

Roman Machacek

Definition Modeling for Chinese and Korean with Encoder-Decoder Language Models. 65

Lu Xing and Narae Park

Make Less Become More: Explore Practical Approach to Nor-En Translation 77

Jie Bian

Leveraging monolingual encoders and decoders to perform Neural Machine Translation . . . 87

Lucas Georges Gabriel Charpentier

iii

iv

Exploring Efficient Use of Domain-Based Data Samples in Targeted
Sentiment Analysis

Magnus P. Nytun
magnuspn@uio.no

Oliver Getz Rodahl
olivegr@uio.no

Abstract

The Norwegian language model NorBERT3
was fine-tuned using an enriched NoReCfine

dataset and evaluated for cross domain perfor-
mance with the goal of estimating how useful
this would be in a specific business application,
namely using newly acquired reviews in an un-
seen category (domain) to make product related
decisions based on Targeted Sentiment Analy-
sis (TSA). Our fine-tuning results suggest that
model selection and size is more important than
adding new review samples to any specific data
partition for maximizing an F1-score. How-
ever, there is a slight increase in performance
when all samples are added to the training set,
and that increase may be important for some
applications. As such, data acquired for new
review categories should exclusively be added
to the training set to effectively leverage this
new information. To confirm these results and
evaluate how the amount of new reviews impact
reliability, a test across domains was done with
the model NorBERT3-large. We found that
when using this model for inference without
any fine-tuning on new domains, performance
will vary significantly. As new reviews are
added to the training set, the performance will
stabilize and generally improve to a minor de-
gree. Additional testing of scalability and using
other models is encouraged to verify our results.
In addition to NorBERT3 we also fine-tune a
multilingual model, XLM-RoBERTa, on mixed
Norwegian and English samples, with the ex-
pectation that less specialized models perform
better on new data. Results are greatly depen-
dent on seeding, and generally unstable.

1 Introduction

Targeted Sentiment Analysis (TSA) is a text min-
ing problem within the field of natural language
processing (NLP) that deals with opinions and emo-
tion. As opposed to Sentiment Analysis (SA), in
which a sentiment is extracted from an entire docu-
ment (i.e. reviews, blog posts, social media posts),

TSA attempts to answer the question of where those
opinions or sentiments are directed. Persons, lo-
cations, organizations, objects, services, events, or
anything else one can express opinions about are
potential targets of SA (Liu, 2010a). This infor-
mation can then be used in downstream tasks, for
instance to do market research or use as directions
to improve some specific aspects of a product.

We take the perspective of a business interested
in doing TSA to measure the sentiment for a cat-
egory of products. They have little to no labelled
data for their own products in this category (in-
domain), but have access to labelled data in other
categories (out-of-domain). Over time, they are
able to add more and more labelled in-domain data
as it becomes available. To learn how best to uti-
lize this newly accessible data, we measure the
effect of gradually adding in-domain data to the de-
velopment data and how model performance vary
across categories given domains of different sizes.
Can a business derive actionable knowledge from
the results of TSA when they lack data in a given
domain?

TSA problems can be approached as classifica-
tion tasks (Liu, 2010b). It is closely related to
Named Entity Recognition (NER), where entities
(like targets in TSA) are identified in text. The ba-
sic format is IO-tagging, where words are classified
as either inside (I) or outside (O) a named entity. A
beginning (B) tag is commonly added to the list of
classes (Lample et al., 2016). From this template,
literature describe different variations depending
on what is being researched. In our case, 5 tags are
used to identify both sentiment and target (Table
1).

In Section 3 we start presenting our experiments,
starting with searching for the most efficient data
split. Here we utilize both Norwegian and multi-
lingual large language models. We also introduce
a low effort English TSA dataset to our training
data. In Section 4 our work with incremental addi-

1

tion of in-domain samples is presented, followed
by measuring the impact of domain sizes on model
performance in Section 5. Lastly, our work is con-
cluded in Section 6.

2 Data

We run our experiments and evaluations on the
NoReCfine dataset introduced by (Øvrelid et al.,
2020). This dataset consists of almost 8000 sen-
tences which are carefully reviewed by roughly
300 reviewers. The data is originally sourced from
Norwegian Review Corpus (Velldal et al., 2018).
NoReCfine contains information about the inten-
sity of each sentiment, but we disregard this part
of the dataset for not being directly related to our
goals. Our version of NoReCfine data consists
of reviews where each token in the documents are
labelled as shown in Table 1. The sentences are
carefully labelled following a prescribed method,
a procedure which is described in (Øvrelid et al.,
2020). An accompanying metadata file1 adds ad-
ditional information about each document, such as
language, rating, source, or more importantly for
our use: a category tag (also referred to as domain
or genre).

Table 1: Labels in the NoReCfine dataset.

Label Definition
"O" Outside
"B-targ-Positive" Beginning positive
"I-targ-Positive" Inside Positive
"B-targ-Negative Beginning negative
"I-targ-Negative" Inside Negative

We are interested in measuring and optimiz-
ing cross-domain performance. Therefore, we en-
rich the NoReCfine with genres retrieved from
NoReCs metadata. Each sentence belongs to one
of the genres listed in Table 2.

Each document in a dataset is split by spaces, of-
ten at the word and punctuation level. The sentence
"I fjor kom 3DS-spillet Donkey Kong Country Re-
turns, og det var absolutt et stilig bekjentskap." is
thus represented like so:

[’I’,’fjor’,’kom’,’3DS- spillet
↪→ ’,’Donkey’,’Kong’,’Country
↪→ ’,’Returns’,’,’,’og’,’det’,’
↪→ var’,’absolutt’,’et’,’
↪→ stilig’,’bekjentskap’,’.’]

1https://github.com/ltgoslo/norec

Table 2: Categories in the NoReCfine dataset.

Category Count
screen 3807
music 2692
products 2181
literature 1089
games 767
stage 376
restaurants 340
sports 149
misc 36

3 Data Partitioning

What is the most efficient use of data when you
have a limited amount of in-domain labelled sam-
ples? Should the in-domain samples be placed in
the training, validation or be distributed in both? In
this section we seek to answer these questions. We
split the NoReCfine dataset into 5 subsets.

1. Other train (n=6099): This set contains all of
genres except for the screen genre. The sam-
ples in this dataset are used for fine-tuning.

2. Other validation (n=1531): This set contains
the same genres as the "other train" set, but
is used to validate model performance during
fine-tuning.

3. Screen train (n=1272): This set represents
our limited amount of in-domain data. This
data can be added to the training, validation
or both datasets.

4. Screen validation (n=1272): This set is used
to validate model performance for each model
and split when fine-tuning is completed.

5. Screen test (n=2535): This is the test set. The
models are not evaluated on this until the very
end.

Screen is singled out and can be viewed as the
in-domain genre. If we relate this to the story in
Section 1 the business mentioned could be working
with screen plays. This means they are interested in
doing TSA for their screen plays, but have limited
amount of labelled data. Screen is in fact the largest
genre in the NoReCfine dataset as we can see from
Table 2. This lessens the burden of working with a
limited amount of samples, and we can cover more
ground with a greater number of experiments with

2

more reliable results due to the possible differences
in sample sizes and splits.

3.1 The NorBERT3 Family

We fine-tune four different NorBERT3 (Samuel
et al., 2023) model sizes: xs, small, base and large.
The models are fine-tuned with a batch size of 16
and a learning rate of 5e-5. We implement early
stopping to reduce the chance of overfitting to the
training data while reducing the time it takes for
each model to fine-tune. We set the models to
fine-tune for 200 epochs, but the fine-tuning is
stopped before this because of early stopping. The
fine-tuning is stopped if a model’s macro F1-score
hasn’t improved by at least 0.001 for the previous
five epochs. Fine-tuning is repeated three times
for each size with different seeds, and the average
macro F1-score is reported in the table below.

Table 3: Macro F1-score for various data splits and Nor-
BERT3 sizes.

Model All-in-Val All-in-Train 50/50 Split
xs 0.40 0.43 0.43
small 0.45 0.49 0.48
base 0.49 0.52 0.50
large 0.52 0.56 0.54

From Table 3 couple of pattern reveals. Firstly,
adding the in-domain samples to the training set
yields the highest macro F1-score for NorBERT3
small, base and large. 50/50 split is marginally
better than All-in-Train for NorBERT3 xs. The per-
formance achieved using a 50/50 split is not much
worse than using an All-in-Train split. Adding all
new samples to the validation set has the weakest
performance out of the various splits for all sizes of
NorBERT3. Overall, the size of the model seems
to be more important than where you put your in-
domain samples for model performance. This of
course comes at a cost of more computation and
longer inference time.

3.2 XLM-RoBERTa

We conduct a similar experiment with XLM-
RoBERTa large and base model (Conneau et al.,
2019) to explore whether using a multilingual
model, less specialized by definition, leads to a
more robust model more adept to generalizing to
unseen domains.

(Radford et al., 2022) shows that exchanging
quantity for quality in audio datasets leads to a

model more adept for zero-shot. Therefore, we pro-
duce a low effort English TSA dataset. The data is
sourced from SemEval 2014 (Pontiki et al., 2014)
and the dataset stems from subtask 42. We used a
version of the dataset collected from Kaggle3. The
dataset is cleaned to resemble the structure of the
NoReC dataset. We remove duplicate rows, keep-
ing the first occurrence of each document. As the
label schema is different from the NoReC dataset
we remove documents that are labelled as conflict
and replace the neutral tag with O. The final dataset
consists of 1,951 samples of English restaurant re-
views. Some examples are presented below.

"But the staff was so horrible to us."

"The price is reasonable although the ser-
vice is poor."

Thereafter we fine-tune four XLM-RoBERTa
models. XLM-RoBERTa base and large is fine-
tuned with and without adding the English restau-
rant reviews to the training data. We call the models
fine-tuned on both English and Norwegian samples
"mixed". We repeat the fine-tuning three times with
different seeds. Since the results are very unstable
and highly dependent on what seed is used, the
maximum macro F1-score achieved is reported in
the table below.

Table 4: Macro F1-scores for XLM-RoBERTa.

Model All-in-Val All-in-Train 50/50 Split
large 0.52 0.52 0.00
base 0.45 0.47 0.46
large-mix 0.51 0.54 0.54
base-mix 0.44 0.49 0.44

The performance of the models are very unstable,
especially for the models fine-tuned exclusively on
Norwegian data. Many of the fine-tuning runs re-
sults in a model that is unable to learn or overfits
to the validation data resulting in a macro F1-score
of 0. The fine-tuning becomes less prone to over-
fitting or not learning when the English low effort
dataset is introduced in the training data. This also
increases the model performance, and the XLM-
RoBERTa mixed large model shows comparable
performance to the NorBERT3 large model. While
this comparison is not completely fair, given that

2https://alt.qcri.org/semeval2014/task4/#
3https://www.kaggle.com/datasets/charitarth/semeval-

2014-task-4-aspectbasedsentimentanalysis

3

averages are reported for the NorBERT3 family and
highest scores are reported for XLM-RoBERTa, it
provides a decent performance estimate when this
is kept in mind. Further research should be done to
explore the effect of introducing more multilingual
data to the training set.

4 Single-Domain Performance:
Incremental Addition

In this section we explore the effect of incremen-
tally adding in-domain samples to the various data
splits. We use the same hyperparameters from sec-
tion 3. We select the strongest model from section
3, which is NorBERT3 large.

We fine-tune the NorBERT3 large with 0, 5, 100,
200, 500, 1000 and 2535 samples of the in-domain
category added to its respective split. This is done
for the all in train split, all in validation split and
when we add to both sets. For the both split the data
is sliced based on the middle index, and the first
half is distributed to the training set. The second
half is distributed to the validation set. The data
is partitioned in the same manner as in Section 3,
but we have concatenated screen train and screen
validation. This yields a dataset with 2,544 samples
from the screen category. The samples from screen
train and screen validation are distributed to the
different splits: train, validation and both. The
models are tested on the screen test set after fine-
tuning. The fine-tuning is repeated three times with
different seeds, and the average macro F1-score is
reported in Figure 1.

Figure 1: Incremental addition of in-domain samples

The macro F1-score is steadily increasing for
the various splits until 200 samples are added to
the datasets. When 200 samples are added to val-
idation or distributed to both train and validation

sets, the F1-score suddenly drops. When the sam-
ples are added to the training split the macro F1-
score peaks. Since the same in-domain samples
are added to the data for the same increments in
fine-tuning, the sudden spike and pit at 200 samples
might be explained by the nature of the samples
that are being added. We speculate that when the
samples are added to the validation data they might
cause early stopping to seize fine-tuning because
the validation score is not improving. When the
same samples are added to the training split, they
offer valuable learning which leads to higher per-
formance. In the following increment, the samples
are distributed to the training set for the train and
both split. This means the model will make pre-
dictions based on these samples. We see that the
"both" split increases drastically from the previous
increment. This indicates that the content of the
samples added might play a larger role than how
many samples are being added.

The macro F1-score is gradually improving
when we introduce more in-domain samples to the
training and the both split. The same is not true
when all the samples are added to the validation
set. Early stopping might be partially to blame for
this. But exclusively adding samples to the vali-
dation data does not seem like the most efficient
use of new in-domain samples. The most efficient
distribution is perhaps somewhere between adding
everything to train and the 50/50 to train and vali-
dation.

5 Cross-Domain Performance: Impact of
Domain Sizes

Following results from the previous experiments,
we assume that adding all in-domain samples to
the training set is the best course of action, but how
much in-domain data do we really need in order
to draw conclusions? Each category will likely
contain different words and have targets/entities
not present in other categories. From the outset,
we therefore expect performance to drop when the
model is presented with a category unseen during
fine-tuning.

As we have seen in Table 2, there are vast differ-
ences in the amount of samples per domain in the
dataset. On the lower end, ’misc’ includes a measly
36 documents. On the upper end, ’screen’ includes
3807 documents in total. This imbalance is likely
similar to real-world scenarios, and an opportunity
to challenge our expectations.

4

We executed the previous experiment on a single
domain. In the following experiment, we repeated
the fine-tuning and testing process on every other
domain to learn if domain size would influence
results.

5.1 The Domain Size Test
As NorBERT3-large achieved the best performance
for the earlier experiments, only this model was
used for the following tests. We commenced fine-
tuning using the same batch size and learning rate
as before, but we only used a single seed.

Our process was as follows for each category:

1. We isolated a category, removing it from the
data set.

2. We split the remaining data set into train, vali-
dation, and test sets. This set was stratified by
domain.

3. We added the isolated category back to the
train and test sets 3 times (50/50, 25/75, and
0/100). The validation set was omitted from
this process due to results from the previous
experiment.

This process resulted in categories× n_splits
data sets (27), i.e. 3 different splits for each of
the 9 categories in the NoReCfine dataset. Unsur-
prisingly, performance is better when there is more
in-domain data in the training set. As can be seen
in the bottom row of Figure 2, the model reaches a
test F1-score of 50%-60% regardless of size. Our
results indicate that the relative size of each cate-
gory has little impact on performance, at least when
the number of out-of-domain categories are 8, and
that the model will generalize fairly well to new
categories in this case. Whether these results scale
to better performing systems, or if performance is
more variable when the number of out-of-domain
categories is lower, remains to be tested.

One drawback of having few in-domain sam-
ples, according to our data, is that it takes longer
for the domain to stabilize. As seen in the upper
row of Figure 2, learning is more volatile during
the first handful of epochs when the number of
in-domain samples in the training set is low. The
model must fine-tune for longer to get reliable re-
sults, and greater care must be taken to stop fine-
tuning at an appropriate time. Despite volatile ini-
tial fine-tuning for smaller sets of in-domain sam-
ples, there does not seem to be any link between

the in-domain size and the time it takes for fine-
tuning to converge. Using these methods will not
negatively impact fine-tuning time.

While we find it unlikely to be the case that there
is minimal differences in language across 9 cate-
gories, this is something that should be investigated
further. It could be that the language used in each
category is very similar, considering that they are
all reviews, which may influence our results.

6 Conclusions

Our results clearly indicate that the most efficient
distribution of in-domain samples is to the train-
ing set with some proportion in the validation set.
What model is used is more important for model
performance than in what data split you distribute
your in-domain samples. With our results in mind
we can finally conclude on the topic whether size
matters or not - as our results indicate the larger the
better.

XLM-RoBERTa also shows some promise when
Norwegian samples are mixed with low effort En-
glish samples. Further exploring this would be
interesting, and creating a dataset consisting of
more multilingual TSA samples could perhaps pro-
duce models that are even more robust across do-
mains. Evaluating whether our results generalize
by fine-tuning other models on similar datasets is
also encouraged.

Incrementally adding in-domain samples to train,
validation or both data splits effects model perfor-
mance. Especially when we going from a zero-shot
to a few-shot learning scenario. The nature of the
samples also seems to have a great impact on model
performance. Therefore, the saying the more the
merrier might not always be right when working
with in and out-of-domain datasets.

Further results suggest that not a lot of in-domain
data is needed to make use of NoReCfine and Nor-
BERT3 for targeted sentiment analysis. There will
be initial negative effects on performance, when
the number of new samples are low and during
early fine-tuning, but these effects may be negli-
gible—depending on the current task. It may be
useful to continuously analyze reviews on products
in new categories as they become available.

5

(a) Validation: 50% train, 50% test (b) Validation: 25% train, 75% test (c) Validation: 0% train, 100% test

(d) Test: 50% train, 50% test (e) Test: 25% train, 75% test (f) Test: 0% train, 100% test

Figure 2: Top Row: Validation scores throughout the fine-tuning sequence for 50/50, 25/75, and 0/100 train-test
splits. Bottom Row: The test score related to the size of each domain for each split.

References
Alexis Conneau, Kartikay Khandelwal, Naman Goyal,

Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2019. Unsupervised
cross-lingual representation learning at scale. CoRR,
abs/1911.02116.

Guillaume Lample, Miguel Ballesteros, Sandeep Sub-
ramanian, Kazuya Kawakami, and Chris Dyer. 2016.
Neural architectures for named entity recognition.
In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
page 263, San Diego, California. Association for
Computational Linguistics.

Bing Liu. 2010a. Sentiment analysis and subjectivity.
In Handbook of Natural Language Processing, pages
2–3.

Bing Liu. 2010b. Sentiment analysis and subjectiv-
ity. In Handbook of Natural Language Processing,
page 10.

Lilja Øvrelid, Petter Mæhlum, Jeremy Barnes, and Erik
Velldal. 2020. A fine-grained sentiment dataset for
Norwegian. In Proceedings of the Twelfth Language
Resources and Evaluation Conference, pages 5025–
5033, Marseille, France. European Language Re-
sources Association.

Maria Pontiki, Dimitris Galanis, John Pavlopoulos, Har-
ris Papageorgiou, Ion Androutsopoulos, and Suresh

Manandhar. 2014. SemEval-2014 task 4: Aspect
based sentiment analysis. In Proceedings of the 8th
International Workshop on Semantic Evaluation (Se-
mEval 2014), pages 27–35, Dublin, Ireland. Associa-
tion for Computational Linguistics.

Alec Radford, Jong Wook Kim, Tao Xu, Greg Brock-
man, Christine McLeavey, and Ilya Sutskever. 2022.
Robust speech recognition via large-scale weak su-
pervision.

David Samuel, Andrey Kutuzov, Samia Touileb, Erik
Velldal, Lilja Øvrelid, Egil Rønningstad, Elina Sigdel,
and Anna Sergeevna Palatkina. 2023. Norbench – a
benchmark for norwegian language models. In The
24rd Nordic Conference on Computational Linguis-
tics.

Erik Velldal, Lilja Øvrelid, Eivind Alexander Bergem,
Cathrine Stadsnes, Samia Touileb, and Fredrik Jør-
gensen. 2018. NoReC: The Norwegian review cor-
pus. In Proceedings of the Eleventh International
Conference on Language Resources and Evaluation
(LREC 2018), Miyazaki, Japan. European Language
Resources Association (ELRA).

6

Exploring Cross-Domain Effects in Targeted Sentiment Analysis for
Norwegian

Martin Gintovt
martigin@ifi.uio.no

Abstract

Targeted Sentiment Analysis is the task of iden-
tifying a target of an opinion and classifying its
corresponding polarity in a given text. This pa-
per analyzes the effects of training neural mod-
els for that task while utilizing data for train-
ing and testing from (partly) heterogeneous do-
mains or categories. The results demonstrate
that models trained on the "screen" domain,
containing reviews about movies and TV se-
ries show adequate performance when tested
on other domains, while some categories are
inherently difficult. Additionally, the results
illustrate that combining data from various do-
mains yields enhanced performance.

1 Introduction

Sentiment Analysis (SA), also referred to as Opin-
ion Mining is a Natural Language Processing
(NLP) task, where the goal is to determine an opin-
ion behind a text unit and classify its sentiment
(e.g. positive or negative). Research in SA com-
prises various domains, such as analyzing movie
reviews (Pang et al., 2002). While SA would define
an overall sentiment of a review, Targeted Senti-
ment Analysis (TSA) would provide entity-level
sentiment for a specific target entity. Given an ex-
ample movie review "Effects were great, but plot
horrendous", the entities would be effects and plot,
each assigned positive and negative sentiments, re-
spectively. TSA is a subset of SA and is a more
fine-grained task. One of the major limitations of
the usefulness of SA models, in general, is domain
barriers. It is plausible to assume that a model
trained on data originating from one domain (e.g.
movie reviews) would demonstrate inferior perfor-
mance when predicting sentiment in a different
domain (e.g. sports).

This paper’s aim is to investigate the cross-
domain effects in the task of TSA for Norwegian.
More specifically, it focuses on NoReCTSA dataset,
exploring what domains appeared to be the most

challenging to classify, how various combinations
of data from heterogeneous domains affected the
model’s performance, as well as analyzes errors
from particular domains.

The rest of the paper is structured as follows:
Section 2 presents the data used for experiments.
A description of the model selected for testing is
given in Section 3. Section 4 surveys the experi-
ments conducted. Section 5 summarizes and sets
forth the findings and results of experiments. Error
analysis is given in Section 6. Section 7 concludes
the findings, before the paper is finished with Sec-
tion 8, which concerns suggestions for future work.

2 Data

This paper makes use of NoReCTSA, a dataset for
fine-grained sentiment analysis in Norwegian. It
is derived from NoReCfine dataset (Øvrelid et al.,
2020), which in turn comprises a subset of the
Norwegian Review Corpus (Velldal et al., 2018).
The text units in the parent NoReCfine dataset are
annotated with not only binary polarity labels (pos-
itive/negative) but also intensity labels (slight, stan-
dard, strong), making the dataset fitting for both
binary and more fine-grained, 6-way classifica-
tion. The underlying texts originate from pro-
fessionally authored reviews from multiple news
sources, including a variety of domains: ’litera-
ture’, ’screen’, ’sports’, ’music’, ’games’, ’prod-
ucts’, ’stage’, ’restaurants’, and ’miscellaneous’.

The data in NoReCTSA comes in conll-format,
and includes a total of 5 labels, represented as BIO-
labels with additional polarity: B-targ-Positive
(B-Pos, beginning of the positive entity sequence),
I-targ-Positive (I-Pos, inside positive entity se-
quence), B-targ-Negative (B-Neg, beginning of
the negative entity sequence), I-targ-Negative (I-
Neg, inside negative entity sequence), and O (out-
side). Figure 1 illustrates the data spread in the
combination of train, development, and test splits
of the dataset, whereas Table 1 demonstrates an

7

Token Label

Ocarina B-Pos
of I-Pos
Time I-Pos
kalles O
ofte O
tidenes O
beste O
spill O
. O

Table 1: Example sentence from NoReCTSA ’games’
domain. Ocarina of Time is an entity, labeled with
positive sentiment. English translation of the sentence
is as follows: ’Ocarina of Time is often called the best
game of all time.’.

Domain Sentences

Screen 3807
Music 2692
Literature 1089
Products 2181
Games 767
Restaurants 340
Stage 376
Sports 149
Misc 36

Table 2: Number of sentences in each domain of
NoReCTSA dataset: test, development, and train splits
combined.

example word sequence with its respective labels
extracted from the ’games’ domain. Additionally,
the number of sentences per domain (train, devel-
opment, and test data combined) can be found in 2.
The data can be obtained in the GitHub repository
of the IN5550 course1.

3 Models

For the task of TSA this paper employs BERT
(Bidirectional Encoder Representations from Trans-
formers) pre-trained language model (LM), intro-
duced by (Devlin et al., 2019). More specifically,
it made use of NorBERT3 (Samuel et al., 2023b):
large pre-trained contextualized LM for Norwe-
gian, based on BERT architecture. The pre-training
phase of NorBERT3 encompassed various text col-
lections: Norwegian Wikipedia dumps both for

1https://github.uio.no/in5550/2023/tree/main/exam/tsa

Bokmål and Nynorsk from October 2022, Pub-
lic domain texts released by the National Library
of Norway in 20152, Norwegian News Corpus3,
Norwegian Colossal Corpus4, as well as Norwe-
gian part of of web-crawled mC4 corpus (Xue
et al., 2021). Moreover, the authors employed
the masked language modeling approach for pre-
training NorBERT3 and followed the optimized
training method from (Samuel et al., 2023a). This
approach differs from the standard BERT training.

In the same manner, as BERT, NorBERT3 comes
in several versions, including models with various
numbers of parameters. This paper conducts an ex-
periment where several variants of NorBERT3 are
tested on the NoReCfine dataset mentioned in Sec-
tion 2. A thorough description of the experiment
and its results are provided in Section 4 and Section
5, respectively. The results of the experiment mo-
tivate the use of the NorBERT3,base model, which
is the main model utilized in the following exper-
iments. The model comprises 123M parameters,
12 hidden layers, 12 attention heads, and hidden
dimensions of size 786.

There is no motivation to choose this specific
model for experiments - they solely require a
model, powerful enough and trained on Norwe-
gian texts. The ultimate goal is to observe how
the performance differs based on the domains, not
achieve state-of-the-art result.

4 Experimentation

Several experiments are carried out in this paper,
where each one is conducted using the same model
hyperparameters: batches of size 16, 8 training
epochs, a learning rate of 3e-5, fine-tuning all of
the models’ parameters. The motivation behind the
hyperparameters choice boils down to the goal of
longer training with a lower learning rate. While
a higher learning rate would possibly lead to a
faster convergence, the aim is to see how the model
performs over a longer span of time.

The first experiment described in subsection 4.1
concerns the selection of the NorBERT3 model for
further analysis. Subsection 4.2 surveys how using
different domains, as well as their combination
affects model performance. An investigation of
the impact of adding a fixed number of samples

2https://www.nb.no/sprakbanken/en/resource-
catalogue/oai-nb-no-sbr-34/

3https://www.nb.no/sprakbanken/ressurskatalog/oai-nb-
no-sbr-4/

4https://huggingface.co/datasets/NbAiLab/NCC

8

Figure 1: Spread of positively and negatively labeled target entities across domains in NoReCTSA data: train,
development, and test splits combined. The plot was derived by counting the presence of B-Pos and B-Neg tags
inside the tag sequence for each sentence, across all domains.

from target domains to training data is presented in
subsection 4.3. The final experiment with adding
different ratios of data from different domains is
described in subsection 4.4.

4.1 Model selection

As mentioned in Section 3, several versions of
NorBERT3 are present at the moment of writing of
this paper. The goal of the experiment is to deter-
mine the best-performing model to use in further
analysis. In particular, 4 different versions of the
model are tested: NorBERT3,small, NorBERT3,base,
NorBERT3,large, and NorBERT3,wiki-base. A base-
line is established for each model by training it
on the train split, while assessing performance
on the test split, provided by NoReCTSA dataset.
Both splits comprise a combination of samples
from nearly all domains, except ’sports’ and ’misc’.
These domains are therefore excluded in this ex-
periment. Consequently, the most efficient and
best-performing model is picked for further exper-
iments. Finally, the experiment investigates the
performance of the model on each separate domain
from the test split.

4.2 Merging and training on different
domains

The second experiment comes down to testing
whether using data originating only from one or
several different domains would potentially prove
useful. The ’screen’ and ’products’ domains are
of particular interest. The first one comprises the
largest number of samples, whereas the latter, as de-
scribed by the authors of the NoReCfine dataset, is
perhaps the most diverse category, which comprises
product reviews across a number of sub-categories.
Consequently, it is intriguing to see whether such
a domain will function well as the only source of
training data. To conduct this and further exper-
iments, all three data splits are merged together.
Furthermore, 80% of the data from train domains
is utilized for fine-tuning, while the remaining 20%
is used for the purposes of testing. This is done in
order to see how well will the model perform when
trained and tested on data from the same domain
(’screen’ and ’products’ in this particular case). The
reason for merging the data is to increase the total
amount of training and testing samples.

Furthermore, it seems intuitively plausible that
combining data from different domains and using
that data for training could potentially increase the

9

model’s performance. Consequently, another exper-
iment is conducted where the ’screen’ and ’product’
domains are merged together and used for train-
ing the model, while data from the remaining do-
mains are utilized for testing purposes. Whereas
the screen domain contains the most amount of
data, the product domain serves as the most "uni-
versal" category.

It is important to note that during inference in the
current and all subsequent experiments, a different
amount of sentences is utilized in each domain.
Specifically, each domain is tested using all the
samples in that domain. The reasoning behind this
decision boils down to some domains comprising
a relatively low number of samples (e.g. sports).
Utilizing an equal amount of samples would imply
using only a small number of samples for testing in
each domain, while there is an interest to see how
the models will behave when tested on a broader
amount of data.

4.3 Adding a fixed number of data from
target domain to training data

In this experiment, the aim is to investigate the ef-
fect of adding a fixed amount of samples from the
target domains to the training data. In particular,
two tests are conducted: adding 10 and 100 sam-
ples. Furthermore, it is determined to drop the misc
category in the testing phase, as it contains way too
few samples for reliable performance assessment.
This can be observed in Table 2.

4.4 Adding ratio of data from all domain to
training data

This experiment focuses on testing whether adding
a certain ratio of data from each category (depend-
ing on the total number of samples in that category)
to training data would prove useful. More specifi-
cally, 3 different ratios are considered: taking 0.1,
0.2, and 0.3 of total data in each domain and adding
it to the training data, while utilizing the rest for
testing. Additionally, 3 different random seeds are
employed for each run, ensuring some randomness
when sampling data for training, and resulting in 9
runs in total. Consequently, the experiment results
end up being more reliable, owing to the fact that
the testing subset id slightly different between each
run.

All the results for the aforementioned experi-
ments are presented in Section 5.

5 Results

This section gives a report and surveys the results
of experiments described in Section 4.

5.1 Experimenting with different NorBERT3
models

Results for baseline testing can be found in Table
3. The metric utilized for assessing performance
is F1-score, based on the Batista algorithm5. The
results show that NorBERT3,large outperformed all
of the models, while NorBERT3,wiki-base showed
the lowest score.

As illustrated in Figure 2, NorBERT3,base and
NorBERT3,large mostly demonstrate the highest F1-
scores during tests in other domains. While the
latter model tends to yield better performance in
domains like ’literature’, ’music’, and ’products’,
NorBERT3,base outperforms it in ’restaurants’ and
’stage’ domains.

Given the fact that NorBERT3,base contains suffi-
ciently fewer parameters than its expanded version
NorBERT3,large (123M vs. 353M) while yielding
similar performance, the choice of the model for
further experiments ends on the first one. Moreover,
the NoReCTSA is a dataset of arguably moderate
size, which motivates the use of a less parameter-
ized model to avoid any potential side effects of
overfitting.

5.2 Investigating the use of various single and
merged domains as training data

The results for testing the effect of using the ’screen’
and ’products’ domains as training data, as well as
merging together them together are illustrated in
Table 4. Despite the fact that the ’products’ do-
main is perhaps the most diverse one, the model
fine-tuned on it don’t manage to perform signifi-
cantly better than the same model fine-tuned on
data from the ’screen’ domain. While the model
shows better performance in the ’games’ domain
(a 0.0284 increase) and the ’restaurants’ domain (a
0.034 increase), it underperforms in other domains
by a quite large margin. For instance, the perfor-
mance in both ’sports’ and ’misc’ domains drops
by 0.2027 and 0.2936, respectively. This could po-
tentially be due to a few reasons: (1) the ’products’
domain contained fewer samples than the ’screen’
domain, and (2) the content in the ’screen’ domain

5https://www.davidsbatista.net/blog/
2018/05/09/Named_Entity_Evaluation/

10

Model Test split Screen Music Literature Products Games Restaurants Stage

NorBERT3,small 0.4652 0.4565 0.4857 0.4054 0.4706 0.5819 0.4206 0.5889
NorBERT3,base 0.4844 0.4719 0.5580 0.3857 0.5069 0.6197 0.4946 0.6296
NorBERT3,large 0.5288 0.4752 0.5598 0.4461 0.5740 0.5763 0.4639 0.6111
NorBERT3,wiki-base 0.4626 0.5047 0.4677 0.4022 0.4391 0.6254 0.3117 0.5278

Table 3: Baseline performance of 4 different NorBERT3 models trained on train split, while tested on test split of
NoReCTSA as well as different domains from the test split.

Figure 2: F1 scores achieved by each model trained on train split and tested on each domain from test split.
NorBERT3,base and NorBERT3,large appear to be the most performant models.

11

Test domain Screen Products Screen +
Products

Screen 0.4842 0.3862 -
Music 0.4485 0.3946 0.4584
Literature 0.4158 0.3789 0.4368
Products 0.4515 0.5117 -
Games 0.4552 0.4836 0.5195
Restaurants 0.4213 0.4553 0.4790
Stage 0.4602 0.4024 0.4244
Sports 0.2979 0.0952 0.2925
Misc 0.5686 0.2750 0.6627

Table 4: F1-scores after training the model on ’screen’,
’product’ domains, and their combination. Intersection
points where train and test domains are equal contain
baseline results (using 80% of data for training and 20%
for testing).

is inherently more similar to that of ’music, ’litera-
ture, and ’stage’ domains.

Furthermore, the approach of merging together
the ’screen’ and ’product’ domains improves the
model’s performance: except for the ’stage’ and
’sports’ domains, this approach allows to achieve
superior performance in every other domain. For
this reason, the combinations of these two cate-
gories are used as testing data for every following
experiment.

5.3 Adding a fixed number of data from
target domain

The results of the experiment found in Table 5
demonstrate improved performance in practically
all domains. Moreover, adding 100 samples from
the target category yields better performance in al-
most all domains (except for the ’stage’ and ’sports’
domains) when compared to only adding 10 sam-
ples or using data from the ’screen’ and ’product’
domains.

However, it appears that utilizing 100 samples
degrades performance in the ’sports’ domain quite
significantly when compared to the effect of us-
ing 10 samples. Given that the ’sports’ domain
comprises a small amount of data, it is plausible
to assume that after sampling 100 data instances,
the few instances that are left (49) for testing differ
from the sampled data.

5.4 Adding ratio of data from every domain

As described in Section 4, the results for this ex-
periment are derived by running 3 experiments,

Test domain Add-10 Add-100

Music 0.4588 0.4616
Literature 0.4313 0.4457
Games 0.5169 0.5313
Restaurants 0.4728 0.5022
Stage 0.4788 0.4453
Sports 0.4189 0.3353

Table 5: F1-scores after adding 10 or 100 samples from
the target domain to the training data, initially consisting
of data from ’screen’ and ’product’ categories.

Test domain 0.1 ratio 0.2 ratio 0.3 ratio

Music 0.4762 0.4738 0.4771
Literature 0.4291 0.4555 0.4564
Games 0.5195 0.5238 0.5425
Restaurants 0.4969 0.5057 0.5134
Stage 0.4859 0.5011 0.4973
Sports 0.3317 0.3879 0.4362

Table 6: F1-scores after taking a certain ratio of data
from each domain, and adding it to the training data.
Each run is conducted 3 times, using different seeds.
The resulting scores are average of 3 runs.

utilizing various ratios of data (0.1, 0.2, 0.3) from
every domain. Furthermore, each of the experi-
ments is conducted 3 times, each time making use
of a different random seed. This ensures that var-
ious samples from each domain are employed in
training and testing. The final results, which are
the average of 3 runs, are illustrated in Table 6. It
appears, that utilizing 30% of samples from each
domain proves the most beneficial for the model
performance.

In general, it clearly seems that adding more
data from each domain and allowing the model to
fine-tune on it helps the model to yield greater per-
formance. The model trained on a combination of
only ’screen’ and ’product’ domains produces infe-
rior results as opposed to the same model trained
on data with an additional 30% of samples from
each domain. For a more precise comparison, the
latter model yields an increase in F1-scores equal
to 0.0187 in the ’music’ domain, 0.0196 in the
’literature’ domain, 0.023 in the ’games’ domain,
0.0344 in the ’restaurants domain’, 0.0729 in the
’stage’ domain and 0.1437 in the ’sports’ domain.

12

6 Error Analysis

This section describes and analyses errors the
model produces by means of inspecting a confu-
sion matrix, in addition to investigating a number
of sentences and their respective predictions and
gold labels. Moreover, it inspects the most com-
mon tokens wrongly classified. In particular, it
focuses on surveying the ’games’ and ’sports’ do-
mains - the ones, where the model demonstrated
the highest and lowest Batista F1 scores, respec-
tively. All the results are derived from the epochs,
where the model shows the highest score.

6.1 Confusion Matrices

Confusion matrices from the ’games’ and ’sports’
domains are illustrated in Figures 3 and 4, respec-
tively.

As it can be observed, in the ’games’ domain,
the model tends to confuse the B-Pos labels with
O labels and the other way around. This can be
also observed for B-Neg tags but with a signifi-
cantly lesser frequency. The exact same effect can
be observed for I-Pos tags - in fact, the amount
of misclassified target entities appears to be even
higher. As with B-Neg tags, I-neg tags are more
rarely misclassified when it comes down to confus-
ing them with O tags. This effect could potentially
be present due to the proportion of positive sen-
tences in the ’games’ being greater than that of
negative sentences. Furthermore, the model gives
an impression of doing an arguably good job at
distinguishing between positive and negative sen-
tences: not that many samples are misclassified. It
is the prediction of the correct sentence span that
is the most difficult to accomplish.

The same tendency can be observed in the
’sports’ domain. The only major difference is that
the numbers are significantly smaller. This is due to
the fact that the ’sports’ domain comprises a small
number of samples.

6.2 Inspecting sentences

The paper further investigates specific sentences
from both domains, their respective gold labels,
and the model’s predictions.

After observing a number of sentences, one
could argue that the gold tags aren’t necessarily
faultless. A sentence from the ’games’ domain
with an incorrectly predicted span can be observed
in Table 7. While ’Astrid Lindgres figurer (Astrid
Lindgren’s figures)’ and ’figurer (figures)’ are both

Figure 3: Confusion matrix from ’games’ domain, eval-
uations derived from the epoch with the highest F1 score.
The golden label is shown on the left, the predicted label
is shown below the matrix. The diagonal of the matrix
contains correctly classified target entities.

Figure 4: Confusion matrix from ’sports’ domain, evalu-
ations derived from the epoch with the highest F1 score.
The golden label is shown on the left, the predicted label
is shown below the matrix. The diagonal of the matrix
contains correctly classified target entities.

13

Token Gold Pred

Astrid O B-Pos
Lindgrens O I-Pos
figurer B-Pos I-Pos
gjør O O
seg O O
godt O O
i O O
et O O
barnespill O O
. O O

Table 7: Sentence from ’games’ domain with incorrectly
predicted entity spans. English translation of the sen-
tence is as follows: ’Astrid Lindgren’s figures do well in
a children’s game’.

entities, the predicted one is arguably a more ’pre-
cise’ entity than the gold entity. Moreover, the
’games’ domain containes two following sentences:
(1) ’Jeg elsker jobben min (I love my job)’ and (2)
’På den står det med store bokstaver at jeg elsker
jobben min (It says in big letters that I love my job)’.
Whereas the first sentence includes gold positive
entity ’jobben min (my job)’, that is not the case
for the second sentence. It is debatable whether the
second sentence should have had the entity omitted.
Another example sentence that seems intriguing is
’Det er herlig, fengslende og vanedannende (It is
wonderful, captivating, and addictive)’. In this sen-
tence, all the gold labels are equal to O, while the
model predicted that the first word ’Det (It)’ is B-
Pos. Again, it is probably plausible to assume that
in the context of games, the word ’vanedannede
(addictive)’ is of positive sentiment, indicating that
the sentence could possibly contain a positive en-
tity, exactly as the model predicted.

However, the model also demonstrates misclas-
sifications caused by its ability to classify. An
example is ’Bryce kan bytte mellom skytevåpen
og sverd, et godt konsept som her dessverre har
blitt miserabelt gjennomført (Bryce can switch be-
tween firearms and swords, a good concept that
has unfortunately been miserably executed here)’.
Here, ’Bryce’ is given a positive polarity, whereas
the gold label is negative and for the word konsept
(concept). Both the polarity and the span are not
correct.

The ’sports’ domain, while being moderate in
size, simultaneously contains a fair amount of ’dif-
ficult’ sentences. One such was ’Jone Samuelsen

Token Count Gold Pred

« 16 B-Neg O
» 15 I-Neg O
spillet 12 O B-Pos
det 8 B-Pos O
og 7 I-Pos O
av 6 O I-Pos
" 5 I-Pos O
Det 5 O B-Pos
spill 5 O B-Pos
3 4 O I-pos

Table 8: Top-10 wrongly classified tokens in ’games’
domain

3’. The sentence represents a player, as well as
its score. The first and last names are tagged with
B-Neg and I-Neg, respectively, whereas the model
predicted the same tags, but with positive polar-
ity. It is arguably quite difficult to derive a correct
prediction for this type of sentence since it is poten-
tially ambiguous. An example of a sentence that
model didn’t manage to correctly classify due to
its capabilities is ’- Et sensasjonelt mål av Götze!
(- A sensational goal by Götze!)’. Here, ’Götze’ is
supposed to be positive, while the model didn’t pre-
dict anything. This could potentially be attributed
to the fact that the model have never seen the token
’Götze’ before.

Overall, the sentences in the ’sports’ domain
appear to be quite hard to predict correctly given
their context.

6.3 Most common error words

The top 10 wrongly classified words for both
’games’ and ’sports’ domains are illustrated in
Tables 8 and 9, respectively. Correlating to the
findings from confusion matrices in 6.1, it can be
observed from the tables that the most common
source of error is defining the correct span of an
entity. This can specifically be noticed in Table
8: quotation marks ’«’ ’»’ are the most commonly
misclassified tokens. Moreover, the model seems
to struggle to differentiate between all the other
tags and O tags.

7 Conclusion

This paper analyzes the effects of conducting the
task of TSA while utilizing different combinations
of data from heterogenous domains, both for train-

14

Token Count Gold Pred

Lionel 2 B-Pos O
Messi 2 I-Pos O
Manuel 2 O I-Neg
Vi 2 B-Pos O
Higuaín 2 O B-Neg
Neuer 2 B-Neg B-Pos
mot 2 B-Neg O
Götze 2 B-Pos O
laget 2 B-Pos O
Estland 2 I-Neg O

Table 9: Top-10 wrongly classified tokens in ’sports’
domain

ing and testing. By making use of the NoReCfine
dataset, and its various categories, while training
and testing NorBERT3,base model, it was found that
adding a bigger ratio of data from each domain to
train data yield better performance in every single
domain. The baseline was mostly never beaten, but
that differed from domain to domain. Moreover, it
was discovered that testing the model on ’games’
produced the highest F1 scores, while the ’sports’
category was the hardest to predict. Additionally,
the error analysis in the paper demonstrated that
the model was able to distinguish between positive
and negative polarities, but struggled to predict cor-
rect entity spans. It also showed that some of the
sentences’ gold labels were potentially debatable.

8 Future work

Given the fact that NoReCfine comprises several do-
mains, while only a few are more thoroughly tested
in this paper, it would be intriguing to see how the
combination of other domains would affect model
performance. Moreover, a greater number of poten-
tially more powerful models for Norwegian exist,
offering possibilities to conduct these tests utilizing
them. Additionally, it would be of great interest
to implement Behavioral Testing (Ribeiro et al.,
2020) for analyzing the effects of cross-domain
TSA. Given the lack of data in certain domains, it
would potentially prove beneficial to create short,
simple sentences for each domain to investigate
models’ behavior.

References
Jacob Devlin, Ming-Wei Chang, Kenton Lee, and

Kristina Toutanova. 2019. BERT: Pre-training of

deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Lilja Øvrelid, Petter Mæhlum, Jeremy Barnes, and Erik
Velldal. 2020. A fine-grained sentiment dataset for
Norwegian. In Proceedings of the Twelfth Language
Resources and Evaluation Conference, pages 5025–
5033, Marseille, France. European Language Re-
sources Association.

Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan.
2002. Thumbs up? sentiment classification using
machine learning techniques. In Proceedings of the
2002 Conference on Empirical Methods in Natural
Language Processing (EMNLP 2002), pages 79–86.
Association for Computational Linguistics.

Marco Tulio Ribeiro, Tongshuang Wu, Carlos Guestrin,
and Sameer Singh. 2020. Beyond accuracy: Be-
havioral testing of NLP models with CheckList. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4902–
4912, Online. Association for Computational Lin-
guistics.

David Samuel, Andrey Kutuzov, Lilja Øvrelid, and Erik
Velldal. 2023a. Trained on 100 million words and
still in shape: BERT meets British National Corpus.
In Findings of the Association for Computational Lin-
guistics: EACL 2023, pages 1954–1974, Dubrovnik,
Croatia. Association for Computational Linguistics.

David Samuel, Andrey Kutuzov, Samia Touileb, Erik
Velldal, Lilja Øvrelid, Egil Rønningstad, Elina Sigdel,
and Anna Sergeevna Palatkina. 2023b. Norbench – a
benchmark for norwegian language models. In The
24rd Nordic Conference on Computational Linguis-
tics.

Erik Velldal, Lilja Øvrelid, Eivind Alexander Bergem,
Cathrine Stadsnes, Samia Touileb, and Fredrik Jør-
gensen. 2018. NoReC: The Norwegian review cor-
pus. In Proceedings of the Eleventh International
Conference on Language Resources and Evaluation
(LREC 2018), Miyazaki, Japan. European Language
Resources Association (ELRA).

Linting Xue, Noah Constant, Adam Roberts, Mihir Kale,
Rami Al-Rfou, Aditya Siddhant, Aditya Barua, and
Colin Raffel. 2021. mT5: A massively multilingual
pre-trained text-to-text transformer. In Proceedings
of the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 483–498, On-
line. Association for Computational Linguistics.

15

16

Neural Machine Translation:
Small Transformer Models Are All You Need

Sander Helgesen
University of Oslo

sehelges@ifi.uio.no

Erlend Kopperud
University of Oslo

erlenmko@ifi.uio.no

Anton Zelentsov
University of Oslo

antonz@ifi.uio.no

Abstract
In this paper, we have examined the problem
of neural machine translation. In particular, we
consider the problem of drastically reducing
the model size of neural machine translation
models without sacrificing the overall perfor-
mance. Furthermore, we experiment with vari-
ous combinations and sizes of datasets as well
as hyperparameter tuning of different models.
For testing, we collected our own test dataset of
101 sentences from English to Norwegian, and
achieve an average BLEU-score of up to 39.2
for one of our smaller models with less than
6 million trainable parameters. Through quali-
tative manual assessment, some of the transla-
tions are even better than what the BLEU-score
suggests.

1 Introduction

In a world where cultures are getting closer than
ever, surrounded by different languages, it is im-
portant we understand each other. The ability to
be understood and communicate with people from
different language backgrounds is important, yet
challenging. This is where machine translation
(MT) can potentially help bridge the gap between
languages. In this paper, we train a neural machine
translation (NMT) model using the transformers
architecture (Vaswani et al., 2017) to translate sen-
tences from English to Norwegian.

Neural machine translation models serve as valu-
able tools for communication across different lan-
guages. Conventional translation, i.e. human trans-
lation, takes time and requires bi- or multilingual
knowledge, or the need of dictionaries. Having a
MT model to translate sentences automatically can
increase the usability and ease of access for trans-
lations. NMT are often more reliable and flexible
models, due to their ability to learn context and
predict human-like translations, compared to e.g.
statistical MT models.

However, there is a big challenge in making
these models accessible to a broader audience. One

major issue is the substantial size and memory re-
quirements of language models, which make it im-
practical for consumers to use them on their own
devices. One could use e.g. a cloud service to host
a NMT model and have these devices interface with
this cloud model. This, however, requires the de-
vice to be connected to the internet to be able to
use this model, and internet connections are not al-
ways reliable or available. Therefore, it is useful to
develop small NMT models, that can be deployed
to consumer devices without hogging data storage.

2 Background

2.1 Transformers
The transformer is a deep learning architecture first
introduced by Google. (Vaswani et al., 2017) The
idea behind its creation was to eliminate the recur-
rence (feedback loops in neural networks to main-
tain a state of memory between previous inputs and
outputs) of previous state-of-the-art models within
NLP, such as recurrent neural networks (RNNs)
(Zaremba et al., 2014) and rely entirely on the at-
tention mechanism (Vaswani et al., 2017). This was
motivated by the fact that recurrent models took a
long time to train as the sequence lengths of the
inputs got larger. By utilizing the attention mecha-
nism with global dependencies, training could be
significantly more efficient with the possibility of
the parallelization of the sequences.

The transformer is an encoder-decoder architec-
ture. Its encoder creates an encoding of the input
data that captures the meaning of the sequence, and
the decoder receives the representation from the
encoder and the input from the target data, and
applies the attention mechanism to the two inputs.
This is shown in connection between the left and
right box in figure 1.

2.2 Attention Mechanism
In the transformer architecture typically two types
of attention are used, self-attention and cross-

17

Figure 1: Transformer model architecture (Vaswani
et al., 2017)

attention (Vaswani et al., 2017). In the encoder of
the transformer, each layer uses the self-attention
mechanism. It allows the model to attend to dif-
ferent parts of the input sequence while captur-
ing dependencies between different positions. The
decoder introduces an additional cross-attention
mechanism after the self-attention mechanism. It
allows the decoder to attend over the output of the
encoder, capturing the relevant information needed
for the decoding process.

Additionally, masked attention is used in the self-
attention mechanism of the decoder stack to pre-
vent the model from attending to future or unseen
information, or padding tokens.

The attention mechanism of the transformer also
uses multi-headed attention allowing the model
to attend to different parts of the input sequence
simultaneously, and capture different types of rela-
tionships. Instead of looking at only one projection
of the inputs, the algorithm uses several variations
of learned linear projections for the same sequence.
Each attention head can focus on different input as-
pects, enabling the model to learn and incorporate
diverse information. The outputs of multiple atten-
tion heads are then combined to form a compre-
hensive representation that enhances the model’s
ability to capture complex dependencies and im-
prove its overall performance on various tasks.

2.3 Search
When training a machine translation model, a tech-
nique for generating meaningful outputs from prob-
abilities for the possible next words in the sequence
is needed. This technique is supposed to decode
the output in a way such that it can be compared
with the target sentence.

In this paper, we use two kinds of search algo-
rithms in order to solve this problem. The first
one is greedy search, in which only the token with
the highest probability of being next is selected
to generate the sequence. This is fast and easy to
implement, but it is more likely to get stuck in a
local optimum.

Another approach is to use beam-search, which
evaluates the k highest probabilities and examines
each path from each corresponding word until an
end-of-sentence token is predicted. This is illus-
trated in figure 2. Beam search is more compu-
tationally heavy but is more likely to give better
sequences, because it explores more of the proba-
bilities for words. (Tillmann and Ney, 2003)

Figure 2: Illustration of the beam search algorithm. 1

2.4 BLEU - SacreBLEU
Machine translation is both difficult and expensive
to measure, as there is no single correct answer to a
translation due to many different ways to phrase the
same idea. However, there is a need to compare re-
sults during evaluation, therefore we want a general
approach that can give a metric score. To achieve
this, we use the SacreBLEU metric (Post, 2018),
which is a variation of the well-known BLEU met-
ric.

BLEU (Papineni et al., 2002) is a metric that
takes a weighted geometric mean of n-grams for the
machine-translated outputs compared to the target

1https://towardsdatascience.com/
foundations-of-nlp-explained-visually-
beam-search-how-it-works-1586b9849a24

18

sentences. The weighted geometric mean makes
sure that longer sentences are weighted higher, as
shorter ones are more likely to score higher by
chance. This is due to the uni-gram implementation
of BLEU, where shorter sentences have a higher
chance of getting higher scores for n-grams with
fewer correct words translated.

In this paper, we use SacreBLEU (Post, 2018)
for evaluating the results of the translations. Sacre-
BLEU is a more flexible version of BLEU that
consider the different meanings punctuation can
have. It also supports multiple reference transla-
tions when multiple valid translations are correct.

3 Method

3.1 Datasets

For this project, we are working with multi-
ple bilingual datasets, consisting of sentence
pairs with English and Norwegian sentences.
The training datasets consist of sentences taken
from government-owned websites and subtitles to
movies.

The government dataset is made up of two pub-
licly available corpora: The Bilingual English-
Norwegian parallel corpus from the Office of the
Auditor General (Riksrevisjonen) website 2, and
Public Bokmål- English Parallel Corpus (Pub-
BEPC) 3. These corpora are sampled from four
different government websites.

The subtitles dataset consists of unofficial subti-
tles to TV shows and movies submitted by users to
OpenSubtitles, and formatted into a relatively large
bilingual dataset by P. Lison and J. Tiedemann 4.

For validation during training we are using the
book “Hound of the Baskervilles” by Arthur Conan
Doyle, translated and formatted by Farkas Transla-
tions 5. As of time of writing this website is down
due to maintenance, but the book is a part of a
collection called "Bilingual books".

The test dataset is our own constructed dataset
with sentence pairs from Tatoeba 6, which is a col-
lection of translated sentences for 420 different
languages. We hand picked 100 arbitrary English-

2http://data.europa.eu/88u/dataset/
elrc_1061

3https://www.nb.no/sprakbanken/en/
resource-catalogue/oai-clarino-uib-no-
parallel-nob/

4https://opus.nlpl.eu/OpenSubtitles-
v2018.php

5https://farkastranslations.com
6https://tatoeba.org/

Norwegian sentence pairs of good quality, and
added one sentence pair that we wrote ourselves,
for a total of 101 data points.

The government dataset is considered to be of
higher quality, as the translations are done by pro-
fessionals to communicate important information
over various government-owned websites. How-
ever, the language is quite formal and contains
many specific glossaries about e.g. taxes, grants
and specific organizations like NAV, which may
affect the training. Also this dataset is quite small,
with only 50.000 training samples, which usually
is not sufficient for a decent translation model.

The subtitles dataset however, contains a larger
amount of sentence pairs, but the sentences are
usually shorter, due to being spoken lines. Since
the data is user-submitted not all translations are
of good quality, or misaligned (Lison and Tiede-
mann, 2016). For example, "Kom igjen, Carolyn,
få høre." is given as a translation of "That’s what
I’m working on".

The choice of using a book for validation is to
evaluate the performance of our model in a shifted
domain, as fictional literature is relatively different
in its written language than both government web-
sites and movie subtitles. Furthermore, the “Hound
of the Baskervilles” book and its translation are
old, so its language is more archaic than that of our
training sets, which provides for further domain
distinction.

An overview of the datasets, their sizes, average
sentence lengths and token-type-ratio (TTR) can
be seen in table 1. For our datasets, the TTR is
defined by the number of unique words divided
by the total amount of words in each dataset. This
gives us a rough insight on the diversity and relative
size of the datasets. The higher TTR, the more the
dataset is composed of unique words, and lower
TTR might also suggest a larger size for the dataset.

Finally, for experimentation we have created
more specific subtitle datasets, which will be fur-
ther discussed in section 4.

3.2 Tokenizer

Since we are working on a machine translation
problem, the vocabulary for our tokenizer is shared
with the language pair for our translation direc-
tion, English to Norwegian, as this helps gener-
alization of our model. The tokenizer splits sen-
tences into words, and subwords, with each seg-
mentation getting an ID to use in an embedded

19

Dataset Train Validation Test Avg. no length no TTR Avg. en length en TTR
Government 50 000 2 500 - 13.85 9.66% 16.81 4.06%
Subtitles 250 000 2 500 - 6.16 8.72% 6.76 6.61%
Book - 2 500 - 13.53 20.23% 13.83 18.90%
DIY - - 101 5.57 57.37% 5.65 60.42%

Table 1: Overview of datasets and their usages, with amounts of sentence pairs, average sentence lengths, and
type-token ratio (TTR) for each language. If a dataset has both training and validation parts, the TTR is calcuated
for the training subset.

layer that creates numeric vector representations
of each token. Our tokenizer used BPE (Byte-Pair-
Encoding), with BPE-dropout, which keeps the
most frequent words intact while splitting the rare
ones into multiple tokens, and regularizes the token-
splitting by stochastically corrupting the segmen-
tation procedure (Provilkov et al., 2020). This is
proven to be a powerful regularization technique
for machine translation.

3.3 Model
The architecture of our model is shown in figure
3. It is an implementation of the aforementioned
transformers architecture.

For feeding the data into our model, instead of
defining the batch size of sentences it should pro-
cess at each iteration, we use a batch sampler to get
a specified amount of target tokens in each batch.
Each input has been padded where necessary to
make the representations have equal shapes. The
input to the model is a batch of source and target
token IDs from the tokenizer, and their respective
attention masks that define what token IDs to give
attention to in the forward call.

First the source and target are embedded to cre-
ate numerical vector representations of each token
with a specified size for the hidden state. Then
we use the transformer’s encoder, which uses the
mechanisms of multi-headed self-attention to cap-
ture the meaning of the sequence and save these
weights. The decoder then decodes the target se-
quence with these weights before passing through
a classification layer, which in turn gives the esti-
mated token IDs of the output sequence. We can
then decode these with our tokenizer to get the pre-
diction sequence. To generate the final predicted
sentence with our model, we use different search
methods as mentioned, which are described further
in the next section.

Our transformer model’s encoder and decoder,
with its attention mechanisms, implements several
algorithms inspired by other publications, namely

"pre-norm residual connections" by (Nguyen and
Salazar, 2019), "position-infused attention" by
(Press et al., 2021), and "GLU non-linearity" by
(Shazeer, 2020).

We backpropagate and train our model by calcu-
lating the cross-entropy loss of the predicted tokens
against our target tokens, and use the AdamW opti-
mizer and a linear learning-rate scheduler to tune
our model over the epochs of training.

3.4 Search & Evaluation

As mentioned, in this project we use two different
search methods, greedy search and beam search, to
construct the final predicted sentences of our model.
We have used greedy search for development of
our models, and beam-search for the final evalu-
ation, because greedy search is faster for shorter
training time, but beam search gives better final
predictions. Search is performed by decoding the
output iteratively, token by token, and searching
for the most probable translation, which is finally
outputted. The SacreBLEU score is then used to
evaluate our models numerically, but we also read
the translations and judge them ourselves, because,
as stated, it is difficult to give a score if a transla-
tion is decent or not. Some of our final translations
and their respective BLEU-scores is given in the
results section. For validating our model during
training we use the book dataset and we will report
the BLEU-score of the best epoch during training.
For final evaluation we use the DIY dataset and
average the BLEU-score on the dataset after 10
runs. For the results in this paper, the BLEU-score
is multiplied by a factor of 100, since BLEU is
defined between 0 and 1, and we find this more
readable.

4 Experiments

To evaluate the performance of our model, we
trained several versions of the model with different
datasets and hyperparameters, examining transla-

20

Figure 3: Architecture of our model. The encoder and the decoder are taken from a transformer model, which
utilizes the attention mechanisms described in subsection 2.2.

tion quality as well as training time and file size
of the final model. We used one of our comput-
ers, with an Nvidia RTX 3080 GPU and an Intel
i5-12600K CPU, to train the models. Computation
was done using the GPU’s CUDA cores.

As a baseline for the tests, we chose the follow-
ing hyperparameters:

• Number of encoder layers: 2

• Number of decoder layers: 2

• Hidden state size: 256

• Vocabulary size: 30 000 (tokens)

In additions to these parameters, the following
parameters were used for training all models:

• Batch size: 1024 (target tokens)

• Dropout rate: 0.25 (25%)

• BPE dropout rate: 0.1 (10%)

• Number of attention heads: 16

• Learning rate: 10−3

• Number of epochs: 100

All models were evaluated during training using
the book dataset, and were tested using our own
dataset.

4.1 Training sets
The first experiment was to determine which train-
ing set gives rise to the best translations. We trained
one model on the government dataset, one model
on the subtitle dataset, and one model on the com-
bination of these datasets. Our hypothesis is that
the combination would give the best translations,
as this is the biggest dataset, and in general we are
working with less data than in traditional machine
learning tasks. Also the combination of the lan-
guage used in government owned websites and the
subtitles would provide a better generalization of
translation functionality than training two models
on separate data.

4.2 Hyperparameter testing
Once we found the dataset that resulted in the
highest-scoring model, we trained several models
on this dataset using different parameters. As our
goal is to reduce the size and training time of our
model, we chose to reduce the number of encoder
and decoder layers, as well as reducing the hidden
state size and vocabulary size. We tried several
combinations of these factors and discuss this fur-
ther in the results section.

4.3 Specific subtitle datasets
We noticed that the OpenSubtitles dataset was eas-
ily accessed through the Huggingface API and that
in the meta-information for the subtitle entries in
the dataset, the movie or TV-show the subtitle line
was taken from was referenced by an IMDb-ID,
IMDb being one of the largest freely accessible in-
formation repositories about movies and TV-shows.

21

By searching for the IMDb-IDs of specific movies
we could filter datapoints in order to use subtitle
data from specific movies of our choice.

This resulted in the creation of a Lord of the
Rings (LOTR) dataset and a Harry Potter (HP)
dataset, with subtitles from only the Lord of The
Rings/The Hobbit and Harry Potter movies, respec-
tively. These datasets were then combined into one
dataset, the LOTR+HP dataset. This was done on
the assumption that the manner of language used in
these movie series is quite specific, and that training
our model on this data would result in translations
that mimic the way of speaking in the respective
movies.

As the LOTR+HP dataset and the subtitle dataset
are both subsets of the Huggingface OpenSubti-
tles dataset, we checked these datasets to see if
there were any common datapoints between them.
We found that in the training subset of the subtitle
dataset, there were no sentences in common with
LOTR+HP, but in the validation subset, there were
eight sentences in common. As we did not use the
validation subset in our experiments, we do not
consider this to be a problem at all, but even if we
did, the amount of overlap between the datasets is
so small that it can be ignored.

In table 2, an overview of these created datasets
can be seen, with their average sentence length for
each language. Since the datasets for themselves
are quite small, we decided to only use the com-
bined dataset of the LOTR and HP movies, and use
them only to train a specific model to analyze if
the language of the translations is affected by the
source material.

5 Results

When discussing the models in this section and in
section 6, we refer to "smaller" models as not only
the size of the model (its file-size, network-size,
and trainable parameters), but also the amount of
data it is trained on, which impacts how long it
takes for the model to train fully.

See table 3 for an overview of the tested models
and their scores. In general we can see that our
models perform better on the final test set, than
on the validation set during training. This is likely
due to quite complex language in the domain shift
of the validation set in addition to long sentences,
and our test set having quite simple "every-day"
language and short sentences. We will compare
both when analyzing the models onward.

5.1 Training sets

As expected, we can see that our best performing
model was trained on both the government and sub-
titles data combined, and achieved a final BLEU-
score on the test set of 43.48, and also has the
highest validation BLEU-score of 12.39. When
prompting the model with some new sentences we
came up with, we got some fairly decent transla-
tions like:

Src: There is one thing on my mind
Pred: Det er én ting på hjertet mitt

There is one thing on my heart7

What is interesting with this example is that the
model seems to have understood a lot of the sen-
tence, and not directly translated each word, as
in English we would say we have something on
our mind, but in Norwegian we would say we had
something on our "heart", i.e. "Å ha noe på hjertet",
which it seems like it tries to convey, even though
its translation is not perfect. It also has an acute
on the e in "én", which suggests that the model
might understand that it is “one” thing and not “a”
thing, as these words are the same in Norwegian,
but differentiated by the acute. Here are some more
examples:

Src: Out of all these things that I’ve done, I
think I love you better now.

Pred: Av alle disse tingene jeg har gjort, tror
jeg at jeg elsker deg bedre nå.
Of all these things I have done, I think
that I love you better now.

Src: I am looking forward to summer vaca-
tion, but I am going to miss IN5550

Pred: Jeg gleder meg til sommerferie, men
jeg kommer til å savne INR50
I look forward to summer vacation, but
I am going to miss INR50

As we can see the translations are quite satis-
factory, it struggles to translate IN5550 as this is
outside the vocabulary, but it still gives a reasonable
code which fits in the sentence.

The model trained only on the government data
performed worse, with only a test BLEU of 6.33
and a validation BLEU of 3.88. Trying to prompt
it with one of the same sentences we get:

7The final italic sentence is our literal translation of the
prediction back to English, for readability of those who do not
know Norwegian. Here we had to assume the translations of
some incorrectly spelled words.

22

Dataset Train Validation Test Avg. no length no TTR Avg. en length en TTR
HP 11 105 - - 5.88 17.13% 6.15 15.09%
LOTR 9 531 - - 5.36 20.08% 5.95 16.54%
LOTR + HP 20 456 - - 5.65 15.56% 6.06 13.03%

Table 2: Overview of specific datasets and their usages, with amounts of sentence pairs, average
sentence lengths, and TTR per language. The datasets were searched and split manually, which is

why the combined dataset has fewer data points than the sum of its constituents.

Dataset Hidden size Vocab. size Layers
LOTR+HP 256 30 000 2
Government 256 30 000 2
Subtitles 256 30 000 2
Gov+Sub 256 30 000 2
small1 64 10 000 1
small2 64 30 000 1
small3 128 20 000 1

Table 3: The hyperparameters chosen for each model. The models small1, small2, and small3 are trained on
Gov+Sub data.

Dataset File size Tr. speed Tr. time/epoch Params Valid BLEU Test BLEU

LOTR+HP 209 MiB 23 it/s 8.7 sec 18.4M 3.53 8.64
Government 209 MiB 32 it/s 33.6 sec 18.4M 3.88 6.33
Subtitles 209 MiB 26 it/s 1 min 45.0 sec 18.4M 11.75 39.64
Gov+Sub 209 MiB 25 it/s 2 min 34.4 sec 18.4M 12.39 43.48
small1 17 MiB 55 it/s 1 min 18.4 sec 1.42M 5.99 29.10
small2 47 MiB 37 it/s 1 min 44.3 sec 4.00M 6.70 31.84
small3 64 MiB 46 it/s 1 min 26.9 sec 5.57M 9.42 39.20

Table 4: The file sizes, estimated training speeds, estimated training time per epoch (not counting validation), and
(mean) BLEU scores for each model trained using specified datasets and hyperparameters, as seen in table 3.

Src: I am looking forward to summer vaca-
tion, but I am going to miss IN5550

Pred: Jeg vil sende å se utsatt fersøk, men jeg
vil vise til at familiemedlemmer
I will send to see delayed ettempt [sic],
but I will refer to that family members

This translation is not satisfactory, but bears
some resemblance to the original sentence. Also,
the choice of translated words is interesting, like
"sende", "utsatt fersøk", and "familiemedlemmer",
which are probably common words in the govern-
ment dataset. If we test this assumption further
by giving the model a sentence similar to what we
would find on a government website, we see that it
performs much better, and also have learned some
names:

Src: To apply for a grant you have to contact
NAV

Pred: For å søke om tilskudd du må kontakte
NAV8

To apply for a grant you must contact
NAV

We also assumed that our combined LOTR+HP
model would have the same traits as the govern-
ment model, that it uses the specific "fantasy" glos-
sary, and while it might not be the best generalized
model, it is better suited for practical translations
of fantasy related sentences. It performed slightly
better than the government data with a test BLEU
of 8.64 and a validation BLEU of 3.88. We can see
that our assumptions is fairly correct when looking
at the next two sentences, it still struggles some-
what on basic words and sentence structure, but has

8The word order in this prediction is ungrammatical in
Norwegian. A better translation would be “For å søke om
tilskudd må du kontakte NAV”.

23

no trouble mentioning trolls, or translating names
correctly:

Src: I am looking forward to summer vaca-
tion, but I am going to miss IN5550

Pred: Jeg ser ut hva som jeg skal undervistn,
men jeg skal fessnangler troll med deg
gode.
I look9 what as I will teachedn [sic], but
I will “fessnangler” (???) trolls with
you the good.

Src: Neville Longbottom took all the Hob-
bits to Isengard

Pred: Nilus Langballe tkker Dumbled alle
hobbiter til Jarnagard
Neville Longbottom thnks Dumbled
[sic] all hobbits to Isengard10

The model trained on just the subtitle dataset
performed quite well with test BLEU 39.64 and
validation BLEU 11.75, only slightly worse than
the combined model. This is likely due to the larger
size of the dataset. There are no specific words or
language use in this model, as the data is quite
diverse. The translation is quite satisfactory:

Src: Out of all these things that I’ve done, I
think I love you better now.

Pred: Av alle disse tingene jeg har gjort, tror
jeg jeg elsker deg bedre nå.
Of all these things I have done, I think
I love you better now.

Thus, we choose the dataset using base-
line hyperparameters and the combined govern-
ment+subtitle dataset as our baseline model.

For our smaller models trained on the combined
dataset, performance decreases, as would be ex-
pected, but some of the translations are still quite
good. This is a trade-off between smaller models
taking less space, and having faster training and
inference speeds, which can improve the overall
practicality of the model.

Here is an example comparing outputs from mod-
els small1, small2, small3, and the baseline
model:

9as in “I look beautiful”
10The model correctly translates the names “Neville Long-

bottom” and “Isengard” to how these names are rendered in
the Norwegian translations, “Nilus Langballe” and “Jarna-
gard”. It also seems like it almost mentioned Dumbledore.

Src: Out of all these things that I’ve
done, I think I love you better now.

small1: Jeg har alltid gjort det jeg har gjort,
jeg elsker deg.
I have always done what I have
done, I love you.

small2: Av alle disse tingene som jeg har
gjort, tror jeg elsker deg bedre nå.
Of all these things that I have done,
I think love [sic] you better now.

small3: Av alle disse tingene jeg har gjort,
tror jeg elsker deg bedre nå.
Of all these things I have done, I
think love [sic] you better now.

Baseline: Av alle disse tingene jeg har gjort,
tror jeg at jeg elsker deg bedre nå.
Of all these things I have done, I
think that I love you better now.

5.2 Hyperparameter testing

As seen in table 3, it is apparent that the number of
parameters, and thus the file size of the final model,
is affected by the hidden state size and the number
of encoder and decoder layers – the smaller the
hidden state size, the better. The vocabulary size
also has a significant effect on the file size as well
as the number of parameters.

Vocabulary size had a major effect on the train-
ing speed. We observed a training speed of around
37 iterations per second (it/s) for small2, while
small3 trained at around 46 it/s and small1
trained at around 55 it/s. However, these numbers
do not account for the fact that most of the time
training was spent on evaluation, making the total
training time vary between three and four hours.

In addition to vocabulary size, the hidden state
size, and numbers of layers affects the training
speed as well, if one compares small2 with the
baseline model.

Another factor that affects training speed is the
training dataset. The baseline model trains at 25
it/s, while the government dataset model trains at
a faster 32 it/s, and the LOTR+HP dataset model
trains at a slower 23 it/s.

The various hyperparameters have different ef-
fects on the BLEU score. Increasing the vocabulary
size from 10 000 to 30 000 between small1 and
small2 only increased the test BLEU score by
2.74, while increasing the hidden state size and
numbers of layers to 256 and 2 between small2
and the full-size baseline model increases the test

24

BLEU score by 11.64.

6 Discussion

Given the results in subsection 5.1, larger models
seem to perform better than smaller models, which
would be as expected. However, we also saw that
for language-specific translations, like translating a
message from the government, or a fictional fantasy
description, the smaller models trained specifically
on these types of data performed well. From this
we could argue that it is more practical to train and
inference smaller specific models, for the use-case
that is wanted, rather than spending many resources
trying to create larger generalized models.

An interesting detail to note about the dataset
influence on training speed is that it is not affected
by the amount of datapoints, as each iteration of the
training uses a batch of datapoints, and not the full
dataset. Instead, if one compares sentence length
to training speed, it appears that the shorter the
average sentence, the slower the training is: The
LOTR+HP dataset model, despite its dataset hav-
ing the fewest datapoints, has the slowest training
speed of 23 it/s, with average sentence lengths of
5.65 and 6.06. On the other hand, the fastest big
model was trained on the government dataset and
had a training speed of 32 it/s with average sentence
lengths of 13.85 and 16.81. This is most likely
due to the batch sampler, which approximates the
batch size to a specified amount of tokens, iterating
through more samples when the average sentence
length is short, to reach this amount. For this archi-
tecture, this suggests that the longer the sentences,
the more feasible it is to train models quicker, but
this likely varies based on how the batches are sam-
pled.

As seen in section 5.2, we see that the small-
est model that we trained, at 17 MiB, had a test
BLEU score at 30, which indicates a fair quality
of translations. However, we see that the bigger
the models the better – the large models at around
200 MiB of file size had the best performance with
little influence from choice of vocabulary size, and
give better translations than the small models as
the BLEU score goes above 40. This indicates
that implementing transformer-based translation
models in small-scale environments, such as smart-
phone apps and Internet of Things (IoT) devices,
involves a compromise between resource efficiency
and translation quality, but that small models can
still be usable for translation from English to Nor-

wegian.
On the other hand, vocabulary sizes noticeably

affect the training time and file size, but given that
they have a relatively small effect on translation
quality, it may be beneficial to use smaller vocab-
ulary sizes in order to train faster. However, since
most of the training time is spent on validation,
this still means that high-performance hardware is
needed to train these models.

In general, depending on one’s use case, we ar-
gue that smaller domain-specific models can be
more practical than training larger generalized mod-
els. Examples of this could be a model for tabletop
role-playing games, that translates fantasy descrip-
tions for playing with a group where people do not
know the same language, or a model that translates
song lyrics or poems that tries to capture the mean-
ing of the verses. These models could be trained on
relatively small datasets, which can fairly easy be
put together by a small web-scraping script or with
user-submitted translation. Inference of the models
would be fast and computationally easy enough to
be performed locally on easily accessible devices,
like smart phones and laptops.

7 Conclusion

In this paper we trained several transformer mod-
els for English-to-Norwegian machine translation
with different sizes to compare the quality of the
translations. We found that larger models tend to
generalize better and have the highest quality of
translations. However, we also found that the prac-
ticality of these models suffers from the need of
large datasets and long training times, and on the
scale of this paper, even our relatively "large" mod-
els struggle with domain-shift of translations. We
propose that a better solution is to train smaller
domain-specific models, to achieve the same qual-
ity of translations as larger models on each specific
use-case. These smaller models also tend to learn
their specific vocabulary better, and can translate
specific words and names better. In general, we find
it more practical, with regards to time and compu-
tations, to fit smaller domain-specific translation
models to get the best quality translations for the
least resources spent.

References
Pierre Lison and Jörg Tiedemann. 2016. OpenSub-

titles2016: Extracting large parallel corpora from
movie and TV subtitles. In Proceedings of the Tenth

25

International Conference on Language Resources
and Evaluation (LREC’16), pages 923–929, Portorož,
Slovenia. European Language Resources Association
(ELRA).

Toan Q. Nguyen and Julian Salazar. 2019. Transformers
without tears: Improving the normalization of self-
attention. In Proceedings of the 16th International
Conference on Spoken Language Translation, Hong
Kong. Association for Computational Linguistics.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th annual meeting of the Association for Computa-
tional Linguistics, pages 311–318.

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 186–
191, Brussels, Belgium. Association for Computa-
tional Linguistics.

Ofir Press, Noah A. Smith, and Mike Lewis. 2021.
Shortformer: Better language modeling using shorter
inputs. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 5493–5505, Online. Association for Computa-
tional Linguistics.

Ivan Provilkov, Dmitrii Emelianenko, and Elena Voita.
2020. BPE-dropout: Simple and effective subword
regularization. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 1882–1892, Online. Association for
Computational Linguistics.

Noam Shazeer. 2020. GLU variants improve trans-
former. CoRR, abs/2002.05202.

Christoph Tillmann and Hermann Ney. 2003. Word
reordering and a dynamic programming beam search
algorithm for statistical machine translation. Compu-
tational linguistics, 29(1):97–133.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. CoRR, abs/1706.03762.

Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals.
2014. Recurrent neural network regularization.
arXiv preprint arXiv:1409.2329.

26

French-English Translation of Artwork Description: A Neural Machine
Translation Study

Nolwenn Marie Emilie Bernard
University of Stavanger

nolwenn.m.bernard@uis.no

Abstract

This paper explores the task of French to En-
glish neural machine translation. In particular,
we are interested on the generalization ability of
models trained with governmental and subtitles
corpora to the domain of art. Indeed, providing
a translation of artworks’ description in French
museum can improve the inclusion of inter-
national visitors. While machine translation
has seen significant advancements, especially
with the deep learning approaches, no specific
model has been trained for our use case, and
no specific dataset is available for training such
model. Therefore, we investigate how well a
model trained on unrelated limited resources
can generalize to the art domain and others.
We conduct experiments using different train-
ing datasets and model configurations to find
the best model. For the evaluation, we use the
well-known BLEU score. Our analysis reveals
that it is possible to find a trade-off between
the model size, complexity, and inference time.
Ultimately, our goal is to experiment and start
the discussion on model generalization when
training data is limited.

1 Introduction

There are more than a thousand museums in France
that are visited by domestics or internationals.
Thus, a translation of artworks’ description to En-
glish can be displayed for a better inclusion of
international visitors. The translation of all descrip-
tions would be tedious and slow task, therefore,
we propose to develop a neural model to perform
automatic translation of artwork description.

Machine translation is a well studied task in the
domain of Natural Language Processing (NLP).
Significant advancements have been done in the
last few years especially thanks to the Transformer
model (Vaswani et al., 2017) and more generally
to large language models such as mT5 (Xue et al.,
2021) and BART (Lewis et al., 2020). However, to
the best of our knowledge no specific model has

been specifically trained for the translation of art-
work description and no dataset is available for this
task. As the creation of such dataset, that is big
enough for training, is time-comsuming, we study
how well a model trained on limited resources un-
related to the art domain generalizes to it and to
others.

In this paper, we perform experiments with dif-
ferent training datasets and model configuration,
then we compute the BLEU score (Papineni et al.,
2002) to evaluate the quality of the different mod-
els. After analysis of the results, we observe that it
is possible to have a relatively small model that has
similar results than a 4 times bigger one. For our
use case, we select a Transformer-based sequence-
to-senquence model that achieves on of the highest
BLEU score on our artwork description dataset.

The rest of the paper is structured as follows.
Section 2 provides background on neural machine
translation and on existing approaches tackling
this task. Section 3 presents the task in more
details. In Section 4, we discuss the different
datasets using for training and evaluation of the
models. The different experiments performed are
introduced in Section 5. Then, we analyse the re-
sults in Section 6. Finally, Section 7 concludes this
work. All resources developed as part of this work
are made available at: https://github.uio.
no/nmbernar/nmt-fr-en.

2 Background

Deep learning techniques have significantly
changed the field of machine translation. Indeed,
deep learning models have exhibited considerable
improvement of the translation quality compared
to previous approaches. One of the primary archi-
tectures for machine translation is the sequence-to-
sequence (Seq2Seq) model (Sutskever et al., 2014).
A Seq2Seq model consist of an encoder network
that represents the input sequence in a vector space
with a fixed length, a decoder network that decodes

27

the encoded input to the target sequence word by
word. This framework enables end-to-end learning,
allowing the model to capture complex dependen-
cies between the input and output sequences.

Later, the attention mechanism has been ap-
plied by Bahdanau et al. (2016) to further improve
Seq2Seq translation models. The idea is to enable
the decoder to focus on different parts of the in-
put sequence by giving them different levels of
importance, i.e., attention. This tackles the issue
of Seq2Seq models without attention that need to
encode all important information in a fixed-size
vector.

Nowadays, Transformer-based models represent
the majority, if not all, of the best performing mod-
els. The Transformer architecture was introduced
by Vaswani et al. (2017) and revolutionized the
field of NLP including machine translation by es-
tablishing state-of-the-art performances. This ar-
chitecture is especially good at modeling languages
thanks to its ability to capture long range depen-
dencies.

Several evaluation metrics have been proposed
to assess the quality of translation models (Chatzik-
oumi, 2020). The Bilingual Evaluation Understudy
(BLEU) (Papineni et al., 2002) is the most com-
monly reported metric; it measures how close is
the machine translation to a human translation that
acts as the reference. However, it also has some
limitations like its dependency on the tokenization
technique and its difficulty to capture the fluency
of the text. The metric for evaluation of transla-
tion with explicit ordering (METEOR) (Banerjee
and Lavie, 2005) was proposed to tackle some of
BLEU’s limits by incorporating recall and linguis-
tic features such as stemming and synonymy.

3 Methodology

In this section, we present in details the problem of
machine translation (Section 3.1). Then, we discuss
the tokenizer used in this work (Section 3.2) and
the evaluation method (Section 3.3).

3.1 Problem description

This paper focuses on the translation of French
sentences to English using a Seq2Seq neural net-
work. Our Seq2Seq network f is composed of:
an encoder network E, a decoder network D, and
a classification layer CL with a size equal to the
number of token in the tokenizer’s vocabulary (Fig-
ure 1). The goal of f is to generate a target sen-

Figure 1: Simplified representation of the Seq2Seq
model f

tence T = (t1, ..., tn) given an input sentence
S = (s1, ..., sm), where m and n are the length
of the input and target sentences with regards to
the number of tokens. The sentences S and T are
constituted of tokens belonging to the tokenizer
vocabulary. The generation of the target sequence
is typically performed in an iterative manner.

First, the tokenized sentence S is encoded in
vector C, also referred as context vector, by feeding
S to E, i.e., C = E(S). We note here that C has
a fixed-size if there is not an attention mechanism.
Then, the decoder D can generate the translated
sentence T̂ based on C and previously generated
token. The next token t̂i is predicted by feeding C
and T̂i−1 = (t̂1, ..., t̂i−1) to the decoder, the output
of the decoder is then sent through the classification
layer, i.e., pi = CL(D(C, T̂i−1)). We note here
that t̂1 = [BOS], where [BOS] is a special token
representing the beginning of sentence. During
training time of RNN-based f , we use threshold to
decide whether t̂i−1 takes the ground truth token or
not, i.e., the teacher forcing method (Goodfellow
et al., 2016). Teacher forcing has the advantage
to reduce convergence time. During inference, we
apply a greedy decode method to the output of
the classification layer CL to determine t̂i, this
method always selects the most probable token,
i.e., argmax pi. The inference continues until the
special end of sentence token is predicted.

3.2 Tokenizer

In this work, we train one custom subword to-
kenizer with a vocabulary of 20,000 tokens on
French and English sentences in the Combined
dataset (i.e., combination of Europarl and Open-
Subtitles datasets). The tokenizer is trained with
byte-pair encoding (BPE) algorithm (Sennrich

28

et al., 2016), based on their frequency subwords
(also referred as tokens) are kept or not in the final
vocabulary. BPE creates the tokens by iteratively
merging the most frequently occurring pairs of con-
secutive bytes or characters.

3.3 Evaluation

The quality assessment of a translation is not a sim-
ple task, indeed, the richness and subjectivity of lan-
guages can lead to many different good translations
for a single sentence. Consequently, in this problem
of machine translation we combine a human eval-
uation by looking at cherry picked sentence pairs
and an automatic evaluation using BLEU score (Pa-
pineni et al., 2002). We note here that using human
evaluation is not practical in cases of much larger
use cases, i.e., does not scale well. The automatic
evaluation with BLEU allows for reproducible and
objective quality assessment of the models as op-
posed to humans that can have divergent opinions.
However, BLEU presents some limitations such
as its dependency on the tokenizer that need to be
taken into consideration during the analysis of the
results.

The BLEU score is a well established metric to
evaluate translation models and is known to corre-
late quite well with human evaluation. This score
varies between 0 and 100 where a score of 100
indicates a perfect model, i.e., the translated sen-
tences are identical to the references Papineni et al.
(2002). We note here that a reference score indicat-
ing a good and understandable translation depends
on parameters such as the language pair studied, the
domain, and the number of reference translation.

4 Datasets

As stated in Section 1, a parallel corpus French-
English with artwork description is not available
at the time of the experiments. Therefore, we
utilize four distinct French-English bilingual par-
allel corpora: (1) Europarl (Koehn, 2005), (2)
OpenSubtitles (Lison and Tiedemann, 2016), (3)
Book (Farkas), and (4) DIY. The first two datasets
are used for training, while the last two server as
test dataset to evaluate how well the models gen-
eralize. More details on each dataset is given in
the Sections 4.1–4.4 and a summary is provided in
Table 1.

4.1 Europarl

Europarl is a parallel corpus for different European
languages, in this work we select a random sample
of 50,000 French-English sentence pairs. This cor-
pus comprises professionally translated texts from
the proceedings of the European Parliament, this
includes speeches, debates, and discussions around
politics and legislation.

As the dataset contains texts from the European
Parliament, the language used is rather formal and
can include very specific words, e.g. noria and
plénière, that are not common in the day to day
language. We also note that the majority of the sen-
tences are statements, as for example: “La commis-
sion des affaires juridiques a émis un vote unanime
sur ce rapport et les diverses positions et décla-
rations communes y annexées.” translated to “We
had a unanimous vote in the Committee on Legal
Affairs on this report and on the various common
understandings and statements that were annexed
to it.” Therefore, it matches the type of sentences
we use to describe pieces of art.

4.2 OpenSubtitles

This dataset contains unofficial subtitles for movies
and TV shows, we note here that theses subtitles
are produced by internet users that most likely are
not professional translators and aligned based on
the associated timestamps. Therefore, we expect
the dataset to contains translations of variable qual-
ity due for example to intentional or not mistakes,
timestamps mismatch, or how the original sentence
was interpreted by the user performing the transla-
tion. The following sentence pair is an example of
mistake: “Quand même,je ne pensé pas-” translated
to “Just the same, l-I don’t think–.” To respect the
idea of having small dataset to create our model,
we select a random sample of 252,500 sentence
pairs from the original dataset.

After a closer look to the corpus, we make the
following observations. First, the language used
is mostly informal and modern. Second, the sen-
tences are on average shorter and are usually part
of dialogues which is consistent with movies or TV
shows dialogues. Third, some special characters
like ♪ introduce some noise in the dataset and may
induce some biases in the models. Finally, this
dataset includes diversity thanks to the different
types of movies and TV shows available, hence,
we expect the models to generalize better to other
domains.

29

Dataset Train Validation Test Avg. len. fr
sentences

Avg. len. en
sentences

Europarl 50,000 2,500 18.5 17.8
OpenSubtitles 250,000 2,500 6.3 6.9
Combined (Europarl + OpenSubtitles) 300,000 5,000 8.4 8.8
Book 2,500 13.8 14.2
DIY 100 16.5 14.1

Table 1: Datasets details. The average length of sentence uses word as unit.

4.3 Book

This dataset is a translated and aligned version of
the book “Hound of the Baskervilles” written by
Arthur Conan Doyle in 1902. As mentioned be-
fore, this dataset is used as a test corpus because
it belongs to a different domain than Europarl and
OpenSubtitles.

Despite sharing the particularity of representing
fictional corpus with OpenSubtitles, this dataset
has specific characteristics with regards to its qual-
ity and the writing style. Indeed, the translator
of the book has previous professional experience,
therefore, the quality of the translation is expected
to be better than for OpenSubtitles. In terms of
writing style, the book has narrative sections some
of which can be written with a first-person narra-
tor. For example, “Je me levai, ouvris ma porte,
inspectai les alentours.” is translated as “I rose,
opened my door, and peeped out.” On the contrary
movies and TV shows are in majority composed of
dialogues with multiple characters. Moreover, lan-
guages can evolve over time, i.e., some expressions,
idioms, and turn of phrase might disappear, hence
this dataset can present such expression. Take the
following pair as an example: “Verriez-vous un in-
convénient à ce que je promène mon doigt le long
de vos bosses pariétales ?"" translated to “Would
you have any objection to my running my finger
along your parietal fissure?”, here “bosses parié-
tales” is an uncommon expression.

4.4 DIY

For this work, we need a French-English parallel
corpus with sentences describing artworks. Since
such a corpus is not available to our knowledge,
we create our own with a total of 100 sentences.
For the creation, we use ChatGPT (OpenAI, 2022),
a large language model released late 2022. The
sentences are generated using the following main
prompt: “create 100 sentence pairs translating work
of art description from French to English ”, we

note here that the prompt was slightly modified
to including sentences about pop art, street, and
modern art (see Appendix A). The sentences are
manually checked by the author to ensure their
accuracy and alignment.

Using a large language model like ChatGPT al-
lows us to produce many sentence pairs that in-
cludes diverse artworks in a short amount a time.
However, it is noteworthy that such models can
produce grammatically incorrect text or be incor-
rect (Kasneci et al., 2023). For example, the pair
“La Persistance de la mémoire de Magritte est une
interprétation surréaliste des montres molles.” to
“Magritte’s The Persistence of Memory is a surreal-
istic interpretation of melting watches.” needs to
be corrected because “The Persistence of Memory”
is painting by Salvador Dalí. Moreover, during the
generation, we observe that some sentence pairs
are duplicated. That is the reason why a manual
verification of the sentences is necessary. In total,
111 sentence pairs were generated among which 11
were removed and 4 were modified (e.g., correction
of the artwork’s title, artist’s name).

The art domain is interesting because the de-
scription of a piece of art is likely to contain declar-
ative statement using modern language, however
it presents at least two challenges in our opinion.
First, some artworks do not have a translated title,
e.g., “Pietà” by Michelangelo, that adds a difficulty
for the model as the translated sentence will con-
tain both languages. Second, it is possible that a
translated title is literally or semantically different
from the original name such as “La Joconde” for
“The Mona Lisa.”

5 Experimental Setup

In this section, we describe the different experi-
ments performed (Sections 5.2–5.3), the different
model configurations used are presented in Table 2.
After, we provide implementation details in Sec-
tion 5.4.

30

Name Backbone # Heads # Enc.
layers

Dec.
layers

Emb. size Hidden size # Parameters

T2_512_512 Transformer 2 3 3 512 512 43,364,896
T2_512_256 Transformer 2 3 3 512 256 41,790,496
T2_256_256 Transformer 2 3 3 256 256 18,546,720
T4_512_256 Transformer 4 3 3 512 256 41,790,496
RNN_3 RNNs 3 3 256 256 13,418,016

Table 2: Models configuration.

5.1 Backbone Architecture

In this experiment, we try two backbone architec-
tures for the sequence-to-sequence model. More
specifically, we train the model RNN_3 with re-
current neural networks (RNNs) and the model
T2_256_256 with a Transformer. The goal of this
experiment is to observe the difference in term of
performances between Transformer that is becom-
ing the new “norm” and RNNs that are loosing
attention for neural machine translation.

5.2 Hyperparameters Variation

The choice of hyperparameters can have a signifi-
cant influence over the performance of a model. In
this study, we only perform experiments on three
hyperparameters: (1) number of attention heads,
(2) size of the embedding layer, and (3) hidden size.
For these experiments, we train the models with
the Combined dataset.

The attention head plays a role in the capture
of relevant dependencies. Therefore, we study if a
larger number of attention heads, that should help
the model to find more dependencies, provides bet-
ter translation. We try two sizes for the embedding
layer: 256 and 512. The embedding layer creates
the word representation of the input and target sen-
tence, a large size allows the model to capture more
information potentially leading to a better represen-
tation of the sentences. However, by increasing the
size of this layer, the number of parameters in the
model also increases; this can negatively impact
the inference time that is an important property in
our study. Finally, we vary the hidden size to study
the trade-off between expressiveness of the model
and translation quality.

The influence of other hyperparameters such as
the number of layers in the encoder or decoder is
left for future work.

5.3 Training Dataset
For this study, we have two training datasets in
different domains (i.e., government and subtitles).
In addition to these, we create a new one Combined
that include Europarl and OpenSubtitles. The idea
is to leverage the specificity of each dataset and
provide diverse examples for the model to learn
from. We think that a diverse set of example could
beneficit the generalization ability of the models.
To verify this hypothesis, we train models with one
of these dataset and evaluate them on the Book and
DIY datasets.

5.4 Implementation
The different models are implemented using the
machine learning framework PyTorch.1 The evalu-
ation of the models is performed using the Sacre-
BLEU (Post, 2018) implementation of the library
HuggingFace Evaluate.2

In terms of training, each models is trained for
25 epochs with early stopping if the loss on the
validation dataset does not improve for 3 epochs
in a row. The batch size is set to 128 and we use
the Adam optimizer (Kingma and Ba, 2017) with
β1, β2, and ϵ to 0.9, 0.98, and 1e-9 respectively.
The training is performed on either a Tesla P100 or
Tesla V100 GPU.

6 Analysis

In this section, we analyze the performances of the
different models trained with regards to the experi-
ments described in the previous section. Addition-
ally, we examine cherry-picked examples produced
with our best model. Table 3 presents the results of
the experiments performed.

First, we look at the BLEU scores obtained by
the model RNN_3. We observe that the scores are
almost 0 denoting very poor translations, i.e., very

1https://pytorch.org
2https://huggingface.co/docs/evaluate/

index

31

Model Training dataset BLEU validation BLEU Book BLEU DIY Avg. inference
time on DIY (s)

T2_512_512 Europarl 25.82 7.02 7.99 0.41
T2_512_512 OpenSubtitles 39.60 10 9.60 0.35
T2_512_512 Combined 24.19 13.64 14.56 0.36
T2_512_256 Combined 24.54 13.64 14.31 0.34
T4_512_256 Combined 25.28 13.50 13.18 0.35
T2_256_256 Combined 24.89 13.38 14.45 0.21
RNN_3 Europarl 0.04 0.03 0.06 0.04

Table 3: Evaluation of the models on the associated validation, book and DIY datasets. The average inference time
was computed using CPU.

far from human translations. We note here, that
the training of the model was successful and we
observe a gradual decrease of the loss on both the
training and validation set until early stopping at
the epoch 16. The examination of the predictions
on Book and DYI shows that the predictions are
not grammatically or semantically correct. The
examples below illustrate this:

1. Source: “La Joconde est un portrait célèbre
peint par Léonard de Vinci.""
Target: “The Mona Lisa is a famous portrait
painted by Leonardo da Vinci.""
Prediction: “„ the the the the the the the the
the the the the the""

2. Source: “– Les stores ne sont pas baissés.""
Target: “"The blinds are up.""
Prediction: “is the the the the the the the.""

It appears that the model RNN_3 is only able
to predict very frequent words or punctuation and
does not capture the sentence meaning. We hy-
pothesis that the model is not complex enough to
create word representation with sufficient informa-
tion or to detect non-trivial dependencies. More
experiments shoud be performed in future work to
confirm or not our hypothesis. The rest of the mod-
els that uses Transformer considerably outperform
RNN_3 with BLEU score of 24-25 on validation
dataset.

Now, we focus on the analysis of the influ-
ence of selected hyperparameters: number of at-
tention heads, the size of the embedding layer,
and the hidden size. We look at the mod-
els T2_512_512, T2_512_256, T2_256_256, and
T4_512_256 trained with Combined in Table 3.

Hidden size. In terms of BLEU scores,
T2_512_512 and T2_512_256 achieve the highest

scores for the Book dataset (13.64) and the DIY
dataset (respectively 14.56 and 14.31). This shows
that reducing the hidden size has a minimal impact
on the generalization ability of the model while
slightly reducing the size of the model as well as
the average inference time.

Number of attention heads. When comparing
the models T2_512_256 and T4_512_256, we
see that T4_512_256 performs better during the
validation phase with 25.28 against 24.54 for
T2_512_256. However, same observation is not
true when testing with Book and DIY. We sup-
pose that the additional dependencies found by
T4_512_256 compared to T2_512_256 are more
domain specific, hence, penalizing the model when
performing translation on unknown domains.

Embedding layer size. We study the model
T2_512_256 and T2_256_256 that have embed-
ding layers with different sizes. The first thing to
highlight is the significant difference between mod-
els’ size, a direct illustration of this is the slower
average inference time for T2_256_256. Moreover,
despite being slower, T2_256_256 performs better
on the validation and DIY datasets, nonetheless,
the difference is small. Similarly to hidden size
variation, this experiment shows that it is possible
to keep similar quality of translation while reducing
the size of the model and consequently the average
inference time.

Finally, we examine the results of the models
T2_512_512 trained on the three different datasets.
The model trained OpenSubtitles achieve the best
BLEU score on its validation set, however, we can-
not compare this score with the other models as
the validation is model specific. Therefore, we fo-
cus our analysis on the scores obtained on Book
and DIY. We observe that the models trained with

32

Europarl and OpenSubtitles struggle to generalize
to unknown domains as illustrated by significant
drop with regards to BLEU scores. The model
trained with Europarl achieve the worst perfor-
mance, this might be explain by the characteristics
of the dataset (e.g., linguistic style and vocabulary
used) that do not necessarily match with the ones
of Book and DIY. It is noteworthy that the idea of
combining OpenSubtitles and Europarl to create a
bigger and more diverse training dataset allowed
us to reach the best performances among all the
models, thus, improving the generalization ability
of the model.

After performing the different experiments, we
find that a trade-off is possible between model size,
complexity, and translation quality. Indeed, the
experiments with different hidden and embedding
layer sizes show that a smaller model can achieve
almost the same quality of translation with reducing
the resources necessary to store and the inference
time. Taking this into consideration, we believe that
the model T2_256_256 trained with Combined is
the best for our application of artwork description
translation. We examine some translation exam-
ples produced by T2_256_256 on DIY in Table 4.
We observe that the model can struggle to translate
artwork’s title and artist’s name that are named enti-
ties, this is consistent with the expected challenges
presented in Section 4.4.

7 Conclusion

In this work, we study the problem of neural ma-
chine translate from French to English. More
specifically, we study how well models general-
ize to a new domain when trained on relatively
small datasets.

We perform experiments playing with the hy-
perparameters, the training dataset, or backbone
architecture of the translation model. We find out
that a trade-off between model size, complexity,
quality is possible. Our best model is the model
T2_256_256 trained with Combined, it achieves
the BLEU score of 14.45, and has an average infer-
ence time of 0.21 seconds on DIY.

More experiments with the hyperparameters of
the models could be done in future work, e.g., vary
number of encoder/decoder layers or the activation
function. In addition to a more extensive explo-
ration of models with RNNs as backbone architec-
ture.

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2016. Neural machine translation by jointly
learning to align and translate.

Satanjeev Banerjee and Alon Lavie. 2005. METEOR:
An automatic metric for MT evaluation with im-
proved correlation with human judgments. In Pro-
ceedings of the ACL Workshop on Intrinsic and Ex-
trinsic Evaluation Measures for Machine Translation
and/or Summarization, pages 65–72.

Eirini Chatzikoumi. 2020. How to evaluate machine
translation: A review of automated and human met-
rics. Natural Language Engineering, 26(2):137–161.

Andras Farkas. Bilingual books. Accessed: 2023-04-
21.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville.
2016. Deep learning. MIT press.

Enkelejda Kasneci, Kathrin Sessler, Stefan Küchemann,
Maria Bannert, Daryna Dementieva, Frank Fischer,
Urs Gasser, Georg Groh, Stephan Günnemann, Eyke
Hüllermeier, Stepha Krusche, Gitta Kutyniok, Tilman
Michaeli, Claudia Nerdel, Jürgen Pfeffer, Oleksandra
Poquet, Michael Sailer, Albrecht Schmidt, Tina Sei-
del, Matthias Stadler, Jochen Weller, Jochen Kuhn,
and Gjergji Kasneci. 2023. Chatgpt for good? on op-
portunities and challenges of large language models
for education. Learning and Individual Differences,
103(102274).

Diederik P. Kingma and Jimmy Ba. 2017. Adam: A
method for stochastic optimization.

Philipp Koehn. 2005. Europarl: A parallel corpus for
statistical machine translation. In Proceedings of
Machine Translation Summit X: Papers, pages 79–
86.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7871–7880.

Pierre Lison and Jörg Tiedemann. 2016. OpenSub-
titles2016: Extracting large parallel corpora from
movie and TV subtitles. In Proceedings of the Tenth
International Conference on Language Resources
and Evaluation, pages 923–929.

OpenAI. 2022. Introducing chatgpt. Accessed: 2023-
05-11.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th annual meeting of the Association for Computa-
tional Linguistics, ACL ’2002, pages 311–318.

33

Source sentence (fr) Predicted translation
(en)

Target translations (en) Comments

La Joconde est un por-
trait célèbre peint par
Léonard de Vinci.

The Jocirium is a
famous portrait by
Leonard of Vinci.

The Mona Lisa is a fa-
mous portrait painted
by Leonardo da Vinci.

The Jocirium is not an
English word, here we
see that the translation
of title is challenging.
The translation of the
artist’s name is also in-
correct.

Les Noces de Cana
de Véronèse est une
peinture biblique qui
montre un festin de
mariage.

The Noces of Cana
of Veroes is a biblical
painting that shows a
feast of marriage.

Veronese’s The Wed-
ding Feast at Cana is a
biblical painting depict-
ing a wedding feast.

Same as the previous
example, we observe an
error in the artwork’s ti-
tle translation while the
rest of sentence is con-
sistent with the target.

La Nuit étoilée de Van
Gogh est une représen-
tation expressive du
ciel étoilé et du village.

Van Gogh is a show
expressive performance
of the beginning of the
beginning of the begin-
ning and the village.

Van Gogh’s The Starry
Night is an expressive
representation of the
starry sky and the vil-
lage.

This example high-
lights the grammatical
struggle of the model,
the sentence does not
make sense and we
see a repetition of the
3-gram.

Les Iris de Van Gogh
sont une représentation
vivante et colorée de
fleurs d’iris.

Van Gogh are a alive
performance and col-
ored flowers.

Van Gogh’s Irises are a
vibrant and colorful rep-
resentation of iris flow-
ers.

Here we see that the
translation provided by
the model is shorter
than the target, thus,
some key elements are
missing.

La toile de Robert Indi-
ana avec le mot LOVE
en lettres capitales est
devenue un symbole
universel de l’amour et
de l’optimisme.

Roberta’s paintinga
with the word LOVE
word in letters became
a universal symbol of
love and optimism.

Robert Indiana’s canvas
with the word LOVE
in capital letters has be-
come a universal sym-
bol of love and opti-
mism.

This example illustrates
the difficulty to trans-
late the artist’s name.

Table 4: Example translations of sentence pairs in DIY by T2_256_256. Text in red highlights translation errors.

34

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, WMT ’18,
pages 186–191.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), ACL ’16, pages
1715–1725.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Se-
quence to sequence learning with neural networks. In
Advances in Neural Information Processing Systems,
NIPS ’14, pages 3104–3112.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, NIPS ’17, pages 5998–6008.

Linting Xue, Noah Constant, Adam Roberts, Mihir Kale,
Rami Al-Rfou, Aditya Siddhant, Aditya Barua, and
Colin Raffel. 2021. mT5: A massively multilingual
pre-trained text-to-text transformer. In Proceedings
of the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, NAACL ’21, pages
483–498.

A Prompts for DIY

The prompts below are given to ChatGPT subse-
quently to create the DIY datasets:

1. create 100 sentence pairs translating work of
art description from French to English

2. continue generation

3. more examples with street art

4. more examples with pop art

5. more examples with modern art

6. more examples with Norwegian artist

We note here that the prompt 2 was used several
times in order to overcome the generated text limit
with regards to the number of tokens. On average
15 sentence pairs are generated.

35

36

Guessing Menu Ingredients with a Transformer: A Qualitative Analysis of
the Training Corpus of a Norwegian-to-English Transformer Model Used

for Menu Translations

Amir Basic, Cornelius Bencsik and Torstein Forseth

Abstract
This paper looks at how a state-of-the-art
model, the Transformer, performs when trans-
lating restaurant menu data from Norwegian
to English when the it’s trained on data from
different domains, such as movie subtitles and
sentences scraped from government websites.
Our main analysis paid extra attention to the
datasets in order to get a better understanding
of the training corpus and a seperate corpus “a
tourist visiting a restaurant in Norway” as the
hypothetical scenario. The results showed that
the model is prone to overfitting on the domain
it was trained on. The model predictions were
especially bad when it had to translate a word
it never had seen before.

1 Introduction

Machine translation using large language models
has experienced a fundamental change with the
introduction of transformer-based models, which
have transformed the way we approach natural lan-
guage processing (NLP) tasks. The transformer
architecture has become the standard for building
large language models for NLP. The transformer
model (Vaswani et al., 2017) replaces the tradi-
tional recurrent neural network-based architectures
with self-attention mechanisms, which enable the
model to selectively attend to different parts of the
input sequence, leading to more efficient informa-
tion flow. This led to the introduction of the BERT
model (Devlin et al., 2019), which is a pre-trained
transformer model that is still used for fine-tuning
to a wide range of NLP tasks. The transformer
architecture has been widely adopted in popular
translation systems such as Google Translate. Ad-
ditionally, the success of large transformer-based
language models like GPT-3/4 has shown the poten-
tial of pre-trained models for machine translation
tasks, with Chat-GPT being the current go-to tool
for most text-based tasks.

In this paper we investigated how the transformer
model performs on when the model is tested on

an out of domain dataset. We performed an in-
depth data analysis on four data sources from dif-
ferent domains, with a focus on how the variation
in the training corpuses affects the performance of
the model. The Sennrich paper (Sennrich et al.,
2016) showed that the transformer model performs
well in low-resource settings, even with limited
parallel data. We analyzed if that is the case in
our setting with limited data, but with variation in
type of words across the datasets. Quantitatively
we measured performance using bilingual evalu-
ation understudy (BLEU) score and qualitatively
we manually inspected sentences to see how the
decoded sentences differs the gold label sentence.
The prior hypothesis is that training the model on
a combination of the datasets should yield better
performance than training a model for each of the
datasets isolated as the latter models wouldn’t cap-
ture the variation across the datasets. We have also
chosen a practical setting by predicting on a dataset
we have made ourselves based on restaurant menus.
The hypothetical scenario is tourists who visit Nor-
wegian villages could translate their food and drink
menus. Given how specific the data domain of
restaurant menus are we expected that this would
pose performance challenges, especially due to the
potential of out-of-vocabulary words.

2 Background

Transformers have demonstrated superior quality
in machine translation tasks as stated by the orig-
inal transformer paper (Vaswani et al., 2017). As
also stated by the original paper, the amount of
data needed for the model to perform well is signif-
icant. The experiments conducted in the original
paper uses 4.5 million sentence pairs which is sig-
nificantly more than what we trained our model on.
(Jiang et al., 2020) has looked into how we can ob-
tain information from the training corpus to help us
understand what the transformer will predict on out
of domain data. This work inspired us to look into

37

our training corpus to get a better insight on how it
performed when translating Norwegian menu texts.

3 Methods, Algorithms and Metrics

3.1 BPE Tokenization
Byte-pair encoding algorithm (Sennrich et al.,
2016) compresses the data by replacing the most
common pair of sequential bytes of data with a byte
that is not present in that data. BPE tokenization en-
sures that the most frequent words are represented
as a single token and not split up, while less fre-
quent words are split into subword tokens. The
BPE algorithm allows us to use the powerful reg-
ularization method BPE dropout (Provilkov et al.,
2020).

3.2 Search
The decoding algorithm searches for the most prob-
able translation by iteratively decoding the output
token by token. We use the greedy search, a fast
method which greedily constructs the output by tak-
ing the most probable next-token predictions. The
search algorithm relies on the model to provide the
next-token predictions.

3.3 BLEU
Language generation models and machine trans-
lation models are difficult to objectively mea-
sure since there is not a single correct translation,
due to sequence-to-sequence prediction and vo-
cabulary complexity. Evaluation of the model is
achieved through the bilingual evaluation under-
study (BLEU) score (Papineni et al., 2002), which
is comparable to a human interpretation of correct-
ness. The BLEU score measures the similarity of
the predicted translation to the given translation
by taking the average of the precision of n-grams
between the two translations, and adding a penalty
based on translation length. This makes the BLEU
score able to capture similarity between two transla-
tions without being completely identical at a word-
level. However, the BLEU score is not perfect as
explained by (Post, 2018), therefore, data analy-
sis was a major part of the evaluation process, as
well as our own judgment of meaning preservation,
degree of fluent language translation, and possible
linguistic phenomena problematic.

4 Data

Five data corpuses from four sources are used for
training, validation, evaluation, and testing. All

data corpuses consist of a Norwegian sentence
paired with the English translation. Three of the
corpuses are mainly used to train models, the gov-
ernment corpus, the Subtitles corpus, and the com-
bined corpus which is a combination of the gov-
ernment and the subtitles corpus. Additionally, we
have two corpuses that are utilized for validation
and testing, the Book corpus and our custom made
(DIY) corpus.

4.1 The Government Corpus

The government corpus is created from the Pub-
lic Bokmål-English Parallel Corpus (PubBEPC),
and the Bilingual English-Norwegian Parallel cor-
pus from the Office of the Auditor General (Rik-
srevisjon) website. The data is constructed from
publicly available Norwegian-English sentence
pairs from www.riksrevisjonen.no, www.nav.no,
www.nyinorge.no and www.skatteetaten.no. The
data is expected to be translated from profes-
sional translators, and is from government websites,
which indicate high quality in terms of translation
and language. The corpus is expected to have com-
plex language structure, an academic vocabulary,
and a specific language.

4.2 The Subtitles Corpus

The subtitles corpus consists of Norwegian-English
unofficial subtitles sentence pairs published by in-
ternet users to www.opensubtitles.org, that have
been created into a large parallel corpus (Lison
and Tiedemann, 2016). The corpus is expected to
have more daily speech, complemented by simple
language and vocabulary.

4.3 The Combined Corpus

A combination of the government and the subtitles
data, containing all data from both corpuses. The
combined corpus is an attempt to balance the com-
plex and day-to-day language and specific domains
from both datasets.

4.4 The Book Corpus

The book corpus is the translated and aligned book
"Hound of Baskervilles" by Arthur Conan Doyle.
The book is a part of the collection "Bilingual
book" by FarkasTranslations.com. The corpus do-
main is slightly different from training data, which
makes it great for evaluation.

38

4.5 The DIY Corpus

The DIY dataset consists of sentences from restau-
rant webpages. The sentences are a mix of infor-
mation, dish descriptions, ingredients, and other
aspects of the restaurant webpage. The dataset
consists of 102 sentences from 13 different restau-
rants in Oslo. All restaurants had a Norwegian and
English version of their webpage and menu. The
choice behind the DIY dataset is the applicable use
case for translation (tourists eating at a restaurant
without an English menu). Additionally, there is
also a mix of words that seems like a complex test
for our translation models. The domain of the DIY
corpus is different from the training corpus, and
contains a restaurant-specific vocabulary and sen-
tence structure, which includes a lot of listing of
ingredients.

4.6 Data analysis - Norwegian

The corpuses varies in size, content, vocabulary,
and complexity. The differences are a result of
their sources and their domain, and have a possibil-
ity of affecting the outcome. Therefore, to be able
to understand the difference in outcome and perfor-
mance, it is crucial to understand the differences in
the data. The size of the training corpus for the gov-
ernment dataset and the subtitles dataset are quite
different, with the government dataset only having
50 000 sentence pairs and the subtitles dataset hav-
ing 250 000 sentence pairs. The combined data is a
combination of the two, and hence the data analysis
part will mostly focus on the differences between
the government and subtitles data (table 2).

For input data (the Norwegian sentences) the
structure of the sentences varies. The government
data has as expected a more complex sentence struc-
ture and language, with over twice as many words
per sentence on average, and longer words.

Norwegian data analysis - vocabulary
Data Vocab

size
word freq <= 1 word freq <= 5 top 10 words top 100 words top 1000 words

Government 38 270 48.25% 77.85% 22.6% 46.4% 71.1%
Subtitles 71 774 57.10% 83.42% 23.1% 57.7% 79.4%
Combined 99 475 54.48% 81.55% 21.26% 52.84% 73.78%

Vocab shared
/w combined

Shared vocab%
of total data

Book 4 627 55.46% 85.61% 19.73% 80% 94.52%
DIY 667 76.28% 96.78% 21.57% 76.43% 84.58%

Table 1: Data statistics from the Norwegian part of the
data focusing on language and vocabulary.

Norwegian data analysis - structure
Data sentences word/

sent
char/
sent

char/
word

Government 50 000 13.85 94.24 6.81
Subtitles 250 000 6.16 31.62 5.13
Combined 300 000 7.44 42.06 5.41
Book 2 500 13.52 72.74 5.38
DIY 102 12.22 77.92 6.38

Table 2: Data statistics from the Norwegian part of
the data focusing on sentence structure and language
complexity,

Another important aspect is the vocabulary of
the training data. Even though the subtitles data
has more sentences than the government data by a
factor of five, it has less than twice the vocabulary
size. The two vocabularies only share 10 569 out of
38 270 and 71 774 words. The subtitles data have
a greater rate of words with appearance frequency
less than or equal to one and five, which suggest
a less complex language. Supporting this, the per-
centage of the total subtitles corpus that are the
top 10, 100, and 1000 most frequent words from
the corpus are higher than the government data,
even though it has more words and a bigger vocab-
ulary. Words in the top 100 most frequent subtitles
words that are not in the top 100 government most
frequent words are typically daily speech words
and informal pronouns not fit for government doc-
uments: "jeg", "vi", "han", "meg", "så", "bare",
"nei", "kanskje", "aldri".

On the other side, words in the top 100 govern-
ment most frequent words that are not in the top
100 subtitles most frequent words are more formal,
academic and government specific language such
as: "Norge", "gjelder", "grad", "departementet",
"prosent", "undersøkelsen", "tiltak", "dersom".

39

Additionally, the government data has a lot of
specific words that appears at least 300 times,
which might not be very helpful for predictions
in other domains, such as: "departementet", "nav",
"riksrevisjon", "utenriksdepartementet", "eøs".

Examples of sentences from the government cor-
pus: "Utgifter til losji som overstiger 10 000 kroner
per år er kun fradragsberettiget når dette er betalt
via bank eller ved trekk i lønn." and "Dokumen-
tasjon vedrørende REDD+ under FNs klimakon-
vensjon". Examples of sentences from the subtitles
corpus: "Jeg gjorde ikke noen ting." and "bli der
dere er". The validation data has fewer sentence
pairs and hence smaller vocabularies. The most
important aspect of the validation set analysis is
verifying that the words in the validation data are
in the training data, which verify that the model
has seen the Norwegian words. The book corpus
shares 80% of its vocabulary with the combined
vocabulary, which account for 94.52% of the total
words in the whole book corpus. The DIY data
share 76.43% of its vocabulary with the combined
vocabulary, which account for 84.58% of the total
words in the whole DIY corpus (table 1).

4.7 Data analysis - English

The English part of the data is a reflection of the
Norwegian part, especially when it comes to sen-
tence structure and complexity. Longer Norwegian
sentences are usually translated to longer English
sentences. This is true for the sentence structure
and complexity for all data sets. Therefore, for the
English part, vocabulary analysis is the most im-
portant part. For both the government and subtitles
data, the total number of words increases, while
the vocabulary decreases. For the government data,
the total number of words increased by a factor of
1.227 and the English translation vocabulary size is
only 0.34 (13042 words) the size of the Norwegian
vocabulary. For the subtitles data, the total number
of words increased by a factor of 1.161 and the
English translation vocabulary size (46232 words)
is only 0.644 the size of the Norwegian vocabu-
lary. This can be explained by multiple Norwegian
words being translated to the same English word.
Additionally, the English translation vocabulary
shares only 8582 words. The book corpus shares
89.4% of its vocabulary with the combined vocab-
ulary, which account for 97.93% of the total words
in the whole book corpus. The DIY restaurant
shares 88.24% of its vocabulary with the combined

vocabulary which is 93.69% of the total words in
the DIY dataset. Based on this we can infer that
the performance on the DIY dataset will perform
worse than the book dataset.

English validation data analysis - vocabulary
Data Vocab size vocab shared

/w combined
shared vocab %
of total corpus

Book 4 132 89.4% 97.93%
DIY restaurant 626 88.24% 93.69%

Table 3: Data analysis of English validation and test
data with focus on vocabulary sharing with the English
combined data.

5 Model

The overall architecture of our model follows a
regular sequence-to-sequence network as depicted
in Figure 1. A standard architecture format where
the Norwegian input tokens are the source, and the
English tokens are the target input. The beginning-
of-sentence (BOS) and end-of-sentence (EOS) to-
kens are both used in the encoder part, but for the
decoder only the BOS token is used for the target
input and only the EOS token is used for the target
predictions. An overview of both the encoder and
decoder part of our model can be seen in Figure 2.
The encoder is built up by a multi head attention
(self attention) module followed by a normalization
module, feed forward layer, normalization module
and then a dropout module before it’s fed to the
decoder. A multi head attention (self attention)
layer, normalization module, multi head attention
(cross attention), normalization module, feed for-
ward layer, normalization module and dropout mod-
ule constitute the decoder part of our model. Thus,
we are following the encoder-decoder architecture
(Vaswani et al., 2017), but with the improvements
(Nguyen and Salazar, 2019), (Press et al., 2021),
(Shazeer, 2020) as mentioned.

Figure 1: Simplistic diagram of the encoder-decoder
architecture.

40

rparameters. Hidden size = embedding size =
300, number of encoding and decoding layers =
6, number of attention heads = 6, batch size =
1024, learning rate = 0.001, epochs = 100, max
sentence length = 256, dropout = 0.1, weight decay
= 0.1. We use the AdamW optimizer and cosine
decay scheduler. The learning rate is chosen af-
ter some try and fail runs. The rest are set based
on practical purposes as the dataset size we oper-
ate with is very small compared to the one used
in the Vaswani paper (Vaswani et al., 2017). Our
model has the “pre-norm” variant from applying
layer-normalization to the input of every sublayer.
The “position-infused attention” idea (Press et al.,
2021) is applied, adding position embeddings to
keys and queries, but not the values, which makes
the values position independent and representations
from previous subsequences can seamlessly be pro-
cessed. Lastly, our model utilizes the gated linear
unit (GLU) non-linearity (Shazeer, 2020), an acti-
vation function that allows the network to decide
how much information should flow through a path.
The GLU is inspired by the gates of the LSTM cell.
Our model also has a bidirectional encoder and a
unidirectional decoder.

Figure 2: The encoder-decoder structure of the Trans-
former architecture (Vaswani et al., 2017).

6 Results

We trained three models for each respective dataset
as described in previous sections. From table 4 it is
evident that the models trained on the government

and subtitles corpuses performs the best at their
own validation set, as expected. The model trained
on the government corpus evaluated on the govern-
ment and subtitles validation set has BLEU scores
of 42.77 and 8.93, respectively. The model trained
on the subtitles corpus evaluated on the government
and subtitles validation set has 12.83 and 32.11
BLEU scores, respectively. With BLEU scores
of 42.96 and and 32.0 we see that the combined
model achieves almost identical BLEU scores on
the government validation set and subtitles vali-
dation set as the government model and subtitles
model does, meaning that adding the specific data
domain doesn’t weaken our predictions, but rather
enriches the model compared to the two other mod-
els. This was evident when we evaluated the mod-
els on the Book dataset, which we used as our main
decision point for choosing the best model. We
observed that the combined model outperformed
the other two models with a BLEU score of 18.11,
whereas the government model only had a BLEU
score of 6.6 and the subtitles model has a score of
14.61. A similar pattern is evident in our own DIY
dataset where the government model had a BLEU
score of 8.19, subtitles model had 17.42 and the
combined model had 22.47. We believe that the
generally low BLEU scores on the Book and DIY
dataset is due to small training dataset and varying
translation quality in both the subtitles gold labels
and especially in the DIY dataset. We kept this in
mind for the qualitative part of our evaluation.

Validation set
Models Government Subtitles Book DIY

Government 42.77 8.93 6.60 8.19
Subtitles 12.83 32.11 14.61 17.42

Combined 42.96 32.0 18.11 22.47

Table 4: BLEU scores

Curiously we found that the shared vocabulary
between the combined model and the book dataset
is 95.52% and the shared vocabulary between the
combined model and the DIY dataset is 84.7%,
meaning though the book dataset has a higher
shared percentage, it performs worse than the DIY
dataset, but note that this could just be down to the
number of words not shared as the missing 4.48%
is around 1 514 words in the Book dataset whereas
the missing 15.3% from the DIY dataset is just
196 words. However, we saw a stronger link to
performance when looking at data not seen during
training. When predicting on the Book dataset, the

41

subtitles model had not seen 21,46% of the Nor-
wegian words and 11,88% of the English words
during training. Also, 11,72% of the predicted
words from the model had not been seen. For the
government model the percentages are 54,87% of
the Norwegian words, 44,89% of the English words
and 24,7% of predictions made. For the combined
model the percentages are 19,99% of the Norwe-
gian words, 10,6% of the English words and 8,37%
of the predictions made. The inverse relationship
between BLEU score and the percentage values
seems to hold here as the combined model has the
lowest percentages and the highest scores. A sim-
ilar pattern is found when evaluating on the DIY
dataset with 23.54% of Norwegian words, 11.82%
of English words and 12.52% of predicted words
for the combined model. 25.49% of Norwegian
words, 12.78% of English words and 15.99% of
predicted words for the subtitles model. 50.07%
of Norwegian words, 43.29% of English words
and 19.6% of predicted words for the government
model.

6.1 Analyzing examples where different
models predict differently

1. Book example:

Input: Jeg innrømmer, kjære venn, at jeg står i stor

gjeld til Dem.

Target: I confess, my dear fellow, that I am very much

in your debt.

Pred gov: I admitte, cheape walls, that I are largely

liable to them.

Pred sub: I admit, my dear friend, that I owe you a lot

of debt.

Pred comb: I admit, my dear friend, that I am largely

in debt to you.

In example 1 we can see that the model trained
on the combined corpus and the subtitle cor-
pus predicts sentences that largely makes
sense, whereas the model trained on the gov-
ernment corpus does not create a sentence that
make fully sense. This is most likely due to
the fact that the word "friend" nor its Norwe-
gian counterpart "venn" does not appear in the
training corpus.

2. DIY example:

Input: Dinner restaurant har servert mat fra det

Szechuanske- og kantonesiske kjøkkenet i hjertet av

Oslo siden 1989.

Target: Dinner restaurant has served food from the

Szechuan and Cantonese cuisine since 1989 in the heart

of Oslo.

Pred gov: Your restaurant has food from the Skaweruan

and Central Economic body at the heart of Oslo since

1989.

Pred sub: Your restaurant has served food from the

Szechuan kitchen in the heart of Oslo since 1989.

Pred comb: Dinner restaurant has served food from the

Szechuan and Cantonese kitchen in the heart of Oslo

since 1989.

For example 2 we can see that the combined
model almost recreates the sentence fully
while the two other models struggle, espe-
cially the model trained on the government
corpus. An interesting detail is that when the
model trained on the subtitles corpus and the
model trained on the government corpus is
evaulated by themselves, they both fail to de-
tect the name of the restaurant in the begin-
ning, however when the corpuses is combined,
the model picks up on it.

3. Gov example:

Input: Årsaker som opp- gis av de ulike fylkeskom-

munene, er:

Target: Reasons given by the various county munici-

palities include:.

Pred gov: Causes given by the different county authori-

ties are :

Pred sub: Causes as upside - hostages of the different

county Communes, are :

Pred comb: Causes that were displayed by the various

county municipalities are :

4. Sub example:

Input: Han er faktisk ganske sjenert.

Target: He’s actually quite shy.

Pred gov: He is actually found to be quite source.

Pred sub: Actually, he’s pretty shy.

Pred comb: He’s actually quite shy.

6.2 Analyzing examples

Sentence analysis on book validation and DIY
dataset using the combined.

Reasons the word is wrong:

• Underline: Correct translation, but wrong con-
text.

• Bold: Norwegian or English input word is not
in training data.

42

• Italic: Translation captures parts of the word
due to a sunword token.

• *stars around*: Model makes up a new word;
the word predicted is not in the English train-
ing data

• Mix: a mix of reasons can occur. For example:
Vineddiksaus → wind dictix sauce

“Vineddiksaus” as a word is not in the Norwe-
gian training data, but the model recognizes
“saus” as a subword and translates it correctly
to sauce.

1. DIY example:
Input: Sprøstekt finstrimlet oksekjøtt, serveres med
en klassisk vineddiksaus.

Target: Crispy beef strips in a classic vinegar sauce.

Pred: The crazy *finstrimum* of bulk - eye is served

using a classic wind *dictix* sauce.

In example 1, there are a lot of domain spe-
cific words, which affect the translation. The
Norwegian words “sprøstekt”, “finstrimlet”,
“oksekjøtt”, and “vineddiksaus” are not in the
Norwegian training data. “Sprøstekt” is trans-
lated to “crazy”, which most likely comes
from the subword token “sprø” which can be
translated to “crazy”.. “Finstrimlet” is trans-
lated to “finstrimum”, which is a made-up
word by the model, a result of non-exposure
to the original word during training. “Vined-
diksaus” is translated to “wind dictix sauce”,
the model catches the subword token “saus”
and correctly translate it to “sauce”, whereas
the rest of the word is made up.

2. DIY example:
Input: Koldtbord og snitter er kanskje fortsatt det
tradisjonelle valget I dåp, konfirmasjon og konferanser.

Target: Sandwiches and cold cuts are still considered to
be the traditional choice for christenings, confirmations
and conferences.

Pred: Cold table and averages may still be the tra-

ditional election in baptism, confirmation and confer-

ences.

3. DIY example:
Input: Vårruller (en med kylling og en med laks) og
en Sumo ebi (scampi) tempura servert med chilimajo,
sweet chili, teriyakisaus og salat.

Target: Spring rolls (one chicken and one salmon) and
a Sumo ebi (scampi) tempura served with chili mayo,
sweet chili, teriyaki sauce and salad.

Pred: Spring rolls (one with chicken and one with

salmon) and a Sumo Ebi (scampi) tempura served with

chilia, *exhi*, teriyakisaus and salad.

4. Book example:
Input: Delen som vendte mot oss dannet en mørk fjell-
skrent, med bregner og bringebær voksende i kløftene.

Target: The face which was turned towards us formed
a dark cliff, with ferns and brambles growing in its
niches.

Pred: The part that turned against us was forming a

dark rock crew, with brilliant and berry growing in the

raves.

5. Book example:
Input: “Denne moen er et vidunderlig sted,” sa han og
så utover det bølgende landskapet og de lange grønne
forhøyningene med de takkete granittkammene, som
reiste seg som fantastiske, skummende sjøer.

Target: “It is a wonderful place, the moor,” said he,
looking around over the undulating downs, long green
rollers, with crests of jagged granite foaming up into
fantastic surges.

Pred: “This foam is a wonderful place,” he said and

then beyond the waterful landscape and the long green

higher highers with the granitism camp, who travelled

like a wonderful, scary sea.

7 Conclusion and future work

Our results showed that it is necessary for the
model to have seen the words in the same text
domain it should translate during its training phase
in order to create accurate sentences. The words
should also have been used in a similar sentence
structure as the one provided to the model for in-
ference. This matches with expectations as within
machine learning, a model will do poorly on data
it has never seen before. Our observations show
that the model will simply start guessing when it
is given words that it has never seen before. For
the menu translation use-case it meant that it would
start guessing on the ingredients the items in the
menu was composed of.

Regularization techniques are commonly used to
increase a model’s performance on out-of-domain
data through generalization. Future work could
involve looking into how regularization techniques
could help the model guess on words which are not
included in the training corpus. Our results also
show that the frequency of words in the training
corpus matters for the models predictions using
said words. An analysis of how regularization tech-
niques help the model with prediction words of low

43

frequency in the training corpus would also be of
interest.

References
Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K.

(2019). Bert: Pre-training of deep bidirectional trans-
formers for language understanding.

Jiang, Z., Xu, F. F., Araki, J., and Neubig, G. (2020).
How can we know what language models know?
Transactions of the Association for Computational
Linguistics, 8:423–438.

Lison, P. and Tiedemann, J. (2016). OpenSubtitles2016:
Extracting large parallel corpora from movie and TV
subtitles. In Proceedings of the Tenth International
Conference on Language Resources and Evaluation
(LREC’16), pages 923–929, Portorož, Slovenia. Eu-
ropean Language Resources Association (ELRA).

Nguyen, T. Q. and Salazar, J. (2019). Transformers
without tears: Improving the normalization of self-
attention.

Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J.
(2002). Bleu: a method for automatic evaluation
of machine translation. In Proceedings of the 40th
Annual Meeting of the Association for Computational
Linguistics, pages 311–318, Philadelphia, Pennsylva-
nia, USA. Association for Computational Linguistics.

Post, M. (2018). A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 186–
191, Brussels, Belgium. Association for Computa-
tional Linguistics.

Press, O., Smith, N. A., and Lewis, M. (2021). Short-
former: Better language modeling using shorter in-
puts. In Proceedings of the 59th Annual Meeting of
the Association for Computational Linguistics and
the 11th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 5493–5505, Online. Association for Computa-
tional Linguistics.

Provilkov, I., Emelianenko, D., and Voita, E. (2020).
Bpe-dropout: Simple and effective subword regular-
ization.

Sennrich, R., Haddow, B., and Birch, A. (2016). Neural
machine translation of rare words with subword units.
In Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 1715–1725, Berlin, Germany.
Association for Computational Linguistics.

Shazeer, N. (2020). Glu variants improve transformer.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J.,
Jones, L., Gomez, A. N., Kaiser, L., and Polosukhin,
I. (2017). Attention is all you need.

44

Targeted Sentiment Analysis for Norwegian: An Experimental Study of
Sentiment Intensity

Lilja Charlotte Storset
University of Oslo

Department of Informatics
liljacs@ifi.uio.no

Fredrik Aas Andreassen
University of Oslo

Department of Informatics
fredaan@ifi.uio.no

Abstract

Targeted sentiment analysis attempts to ex-
tract sentiment targets and the polarity directed
towards them, and is the task that we will
experiment with using a simpler version of
the NoReCfine dataset (Øvrelid et al., 2020),
named NoReCTSA . We test four versions of
the LTG NorBERT3 model to classify the po-
larity of sentiment targets, in which the last
three versions are fine-tuned. In addition, we
experiment with sentiment intensity to see how
the performance differs. Our experiments show
that NorBERT3 can be fine-tuned to receive
better results, and that adding sentiment inten-
sity complicates the task significantly. Thus,
there is much room for improvement on that
specific area.

1 Introduction

Sentiment analysis (SA) is an active field within
natural language processing, which mainly in-
volves analyzing peoples sentiment, emotions,
opinions and attitudes towards several entities and
their attributes. The term sentiment analysis has
become an umbrella term for many related senti-
ment tasks, such as opinion mining, opinion analy-
sis, emotion analysis, opinion extraction, and more.
(sentiment_bok). Sentiment analysis has been one
of the most active research areas of the last 10 years,
one of the reasons being that the field has a wide
range of applications. Some of many domains, are
social media monitoring, customer support man-
aging, customer feedback analysis, stock market
prediction, in addition to sentiment analysis related
to politics, such as public opinions.

The three most spoken-about levels of granu-
larity for sentiment analysis are document level,
sentence level, and aspect level. However, aspect
level has not been used in SA for Norwegian lan-
guage, which is why we instead include the term
structured sentiment analysis (SSA) as the finest
level. This is a slightly more fine-grained level

than aspect level, because it analyzes the polar ex-
pressions directly, rather than categorizing the po-
lar expressions into more general categories, like
aspect level does. Targeted sentiment analysis
(TSA) can be viewed as a level between sentence
level and structured level sentiment analysis, as it
has more attributes than sentence level, but fewer
attributes than SSA. TSA keeps track of the target
of the sentence, that is, the entity that has some po-
larity directed towards it, and the second attribute is
the polar expression. The polar expression is the
expression in a sentence that contains some polar
opinion about the target, e.g. a positive or a neg-
ative opinion. There have been used many names
to refer to targeted sentiment analysis, including
aspect-based sentiment analysis, but we recognize
that as something different, as described earlier in
this section. The term "target" is a precise term to
describe the task, as it analyzes the polar expres-
sion directed towards a target in a sentence. The
Figures 1 and 2 show respectively how a sentence
would be annotated in a TSA- and SSA style. The
main dataset used in this task is the NoReCTSA

dataset, which is based on the more fine-grained
version NoReCfine (Øvrelid et al., 2020). As we
experiment with sentences annotated both with and
without sentiment intensity, we will discuss both
NoReCTSA and NoReCfine , in which the last men-
tioned dataset contains annotations with sentiment
intensity.

TARGET POLAR

jeg synes maten var kjempegod!
I think Food.the was great!

Polarity:Positive

Figure 1: TSA-annotation of ’Jeg synes maten var kjem-
pegod!’ (transl. ‘I think the food was great!’), contain-
ing a polar expression and a target.

45

HOLDER TARGET POLAR

jeg synes maten var kjempegod!
I think Food.the was great!

Polarity:Strong positive

Figure 2: SSA-annotation of ’Jeg synes maten var kjem-
pegod!’ (transl. ‘I think the food was great!’), contain-
ing the holder, target and the polar expression, as well
as the sentiment intensity.

As seen in Figure 2, the SSA-annotation, in ad-
dition to the polar expression and target of the
sentence, also contains the holder of the sentence,
which is the entity that holds the opinion. It also
contains intensity for the polar expression, show-
ing the grade of positivity for the sentence, which
in this case is strong. Figure 1 shows the TSA-
annotation of the same sentence, containing only
the target of the sentence, and the polar expression.
The polar expression does not contain intensity like
SSA, but instead has a simpler annotation show-
ing only if the polar expression is of positive or
negative sentiment. The TSA-annotation shows
that the polar expression kjempegod!, ‘great!’ has
been assigned positive polarity, because kjempe-
god! indicates that the food was good. The SSA-
annotation shows a more detailed analysis of kjem-
pegod!, where the polar expression has been as-
signed strong positive sentiment, as kjempegod! in-
dicates that the food was better than standard. The
two datasets will be further discussed in Section 3.

2 Related work

There are not many publicly available datasets that
focus on the task of TSA as we define it, but the
most widely used for similar tasks, is the SemEval
2014 dataset (Pontiki et al., 2014). This dataset
follows the aspect-based annotation, i.e. it contains
categories that represent the target, rather than the
target itself. The data contains online reviews for
restaurants and laptops, an are annotated with four
possible polar categories; positive, negative, neu-
tral and conflict. In addition to SemEval 2014,
there are two datasets containing tweets. The first
dataset, collected by Dong et al. contains "key-
words" which are names of celebrities, companies
and products, and the labeled polarity directed to-
wards them. The dataset has three polar categories;

positive, negative and neutral. This dataset is prob-
ably the one that is closest to the TSA annotation of
NoReCTSA . The second Twitter collection (Hu et
al., 2019) contains 2350 English and 7105 Spanish
tweets, where each entity is categorized as either
Person or Organization. Therefore, this is more
similar to a aspect-based approach. An overview of
the distribution of attributes between these datasets
can be found in Table 1. All of the attribute dis-
tributions that were found for NoReCTSA , were
not provided for all of the other datasets, which
is why many of the rows contain "-". The total
of sentences (tweets for the Twitter datasets) and
distribution of polar expressions can however be
compared across almost all of the datasets, apart
from the Spanish/English Twitter dataset.

When it comes to modeling of targeted sentiment
analysis, which only focuses on extracting the sen-
timent targets (task ii) and classifying the polarity
directed towards them (task iv), recent shared tasks
have been proposed to similar tasks. Barnes et
al. sums up the work that has been done to solve
these tasks: The shared tasks for 2014 (Pontiki
et al., 2014), 2015 (Pontiki et al., 2015) and 2016
(Pontiki et al., 2016) involved Aspect-Based Sen-
timent analysis (ABSA) (as mentioned in Section
1), which in addition to the task of ABSA, also
included extraction of targets and polarity classi-
fication. In solving these tasks, joint approaches
have been tried, but multitask models can perform
even better. Lastly, pre-trained language models
(Devlin et al., 2019) can also improve the ABSA
data. (Barnes et al., 2021)

3 Dataset

The NoReCTSA dataset is a reduced dataset in re-
spect to the number of attributes, derived from
the NoReCfine (Øvrelid et al., 2020). NoReCfine

is a highly relevant dataset for Norwegian struc-
tured sentiment analysis, which is a more fine-
grained analysis than the NoReCTSA dataset con-
tains. NoReCfine is the only dataset for Norwegian
which is annotated on a fine-grained level, and is
thus the first of its kind. The underlying texts are
taken from the Norwegian Review Corpus (NoReC)
(Velldal et al., 2018), which is a collection of pro-
fessionally authored reviews from a wide variety
of domains, including literature, video games, mu-
sic, movies, TV-series, restaurants, products, etc.
NoReCfine contains 11 437 sentences across more
than 400 reviews and 10 different thematic cat-

46

egories. The sentences are annotated to include
spans of polar expressions with the correspond-
ing targets, holders and polarity. NoReCfine also
keeps track of the intensity of the polarity on a
three point scale, for either positive or negative sen-
timent. The intensity is either standard, slight, or
strong. What differs NoReCTSA from NoReCfine

, is that NoReCTSA only keeps track of the polar-
ity for a given target, without the intensity, which
makes the task of sentiment analysis simpler. For
this task, we will experiment both with and without
polarity intensity. NoReCfine counts 1732 senti-
ment targets with more than one opinion towards
it, where 402 of them have been assigned both
positive and negative polarity. In such cases, the
polarity with the highest intensity has been chosen
for the NoReCTSA dataset. (2022)

Statistics of the distribution of sentences, targets,
polar expressions and polarity in the NoReCTSA

dataset can be seen in Table 1, along with the
statistics for the rest of the datasets discussed in
Section 2. As shown in the table, NoReCTSA

contains a quite high amount of sentences, and
is thus one of the largest datasets for TSA. It is
also worth mentioning that the underlying dataset,
NoReCfine , also is one of the biggest datsets for
SSA, even across languages. The most relevant at-
tribute in this article, will be the "polarity"-attribute,
in which NoReCTSA contains 5684 positive polar-
ity attributes, and 2756 negative. As we can read of
Table 1, there is an imbalance between the frequen-
cies of positive vs. negative polarity, which will be
further touched upon through out the article.

The TSA repository (2022) provides a conver-
sion script, that simplifies the annotation, as well
as converting it to CoNLL format, provided with
BIO-tags and polarity. BIO stands respectfully for
’Beginning’, ’Inside’ and ’Outside’, and indicates
if the polar expression occurs at the beginning of a
polar expression, inside or outside the polar expres-
sion. An example of a sentence in such format can
be seen in Figure 3 (2022). The same figure also
shows a case where there are two polar expressions
with two different polarities originally assigned to
each word, but has been provided with only one
for the NoReCTSA dataset. brodd, ‘sting’, was
originally assigned strong positive polarity, while
bismak, ‘bad taste’, was assigned standard negative
sentiment. Therefore, positive polarity was chosen.

#sent_id=004702-02-01
Forviklingskomedie B-targ-Positive
med O
brodd O
og O
bismak O
. O

Figure 3: CoNLL formatting of a sentence in TSA
dataset

4 Baseline Model

NorBERT 3
The provided code for the baseline model, pro-
vided several different options for models to run, in
which we chose the NorBERT 3 model. NorBERT
3 is the latest version of the NorBERT models cre-
ated by the Language Technology group (LTG) in
the Department of Informatics, University of Oslo.
“ltg/norbert3-base · Hugging Face”, n.d.

The model comes in four sizes; xs, small, base
and large. The xs model has 15 million parameters,
small has 40 million parameters, base has 123 mil-
lion parameters, and lastly, large has 323 million
parameters. The NorBERT models are large-scale
contextualized language models for Norwegian lan-
guage and have transformer-based architectures.

4.1 Baseline parameters
We tested with both NorBERT 3 xs, small and base,
but large was unfortunately too much for the mem-
ory to handle. Therefore NorBERT 3 base was the
model that we continued using, which gave bet-
ter results than the smaller versions. The original
baseline code that was provided kept all the labels,
meaning all BIO-tags for both sentiment types (neg-
ative and positive) were included. These settings
resulted in five labels for NoReCTSA without inten-
sity for polarity, and thirteen labels for the dataset
with labeled intensity. We wanted to keep the fo-
cus on the classification of sentiment for the task,
rather than both sentiment and BIO-classification,
which is why we decided to remove the BIO-tags,
and thus only keeping the sentimental tags for our
task. After having done these alternations, we saw
an increase of about 10% in F1-score, which makes
sense given the decreased number of labels.

For our first parameters, the batch size was set
to 32, and the number of epochs was set to 10.
First we tested with the original, unmodified TSA
dataset, which means that the only polarity labels
are positive and negative. The NoReCTSA repos-

47

#Sentences/Tweets #Targets #Polar exp. Polarity
#Pos. #Neu. #Neg.

NoReCTSA train 8634 6778 8448 6885 0 3030
dev 1531 1152 1432 1205 0 500
test 1272 993 1235 1097 0 373

total 11.437 8923 11.115 9187 0 3903

SemEval 2014 train 6086 - - 2164 633 805
dev - - - - - -
test 1600 - - 728 196 196

total 7686 - - 2892 829 1001

Twitter Keywords train 6248 - - - - -
dev - - - - - -
test 692 - - - - -

total 6940 - - 1735 3470 1735

Twitter Spanish/English train - - - - - -
dev - - - - - -
test - - - - - -

total 9455 - - - - -

Table 1: Statistics for the TSA datasets. "-" means that the specific information was not provided by the creators.

itory (“Convert NoReCfine sentiment targets to
CoNLL”, 2022) provided the code which converted
the original NoReCfine data to NoReCTSA , and
so we later changed the script by adding intensity.
We ran the same baseline models with this modifi-
cation as well, which means that the labels for this
dataset is positive standard, positive slight, posi-
tive strong, and for the negative polarity, negative
standard, negative slight and negative strong. This
resulted in an extra four labels, which also meant
that the number of examples for each label was
quite reduced. For that reason, it was an exciting
await for the results, which can further be viewed
in Section 5.2. First, we discuss the results for the
original NoReCTSA dataset in Section 5.1.

5 Results: Baseline

Every table that provides model results, will have a
title describing the batch size and number of epochs.
For instance, out first results in Table 2, has the title
"Norbert_32_10", which means that the model has
a batch size of 32, and 10 epochs.

The baseline model for NoReCTSA without in-
tensity retrieved a fairly high accuracy of 95.2%,
but because the dataset is imbalanced in the types
of polarity, as seen in Table 1, we will for the most
part look at the more relevant metric, F1-score. The
NoReCTSA development set contains 1205 exam-

ples with positive polarity, and 500 examples with
negative examples, which is less than half the size
of the positive examples. The F1-score for the base-
line model is therefore much lower than accuracy,
and retrieved a score of 52%.

5.1 Original NoReCTSA dataset
As we can tell by Table 2, all of the metrics are
higher for the positive label than for the negative
label because of the data imbalance, which will
also be observed for the rest of the results.

5.2 NoReCTSA with Intensity
For the NoReCTSA version with intensity, we
edited the dataset to keep the polarity intensities
from the original NoReCfine dataset, which adds
three degrees of intensity: standard, slight,
and strong. Further, we ran the same baseline
model as in Section 5.1. From the results in Table
3, we can see that the accuracy is still very high,
with a score of 94.5%, but we still have to bear in
mind the unbalanced dataset, which is why we turn
to the F1-score. As expected, the F1-score dropped
quite a lot, and retrieved a score of 34.57%. That
is a decrease of 18%, from 52%. This is not very
surprising, given that there are four more labels to
classify, and thus less examples for each label.

The support for each class, which can be seen in

48

Baseline: NorBERT_32_10
precision recall f1-score support

targ-positive 0.77 0.45 0.57 1205
targ-negative 0.52 0.33 0.40 500
micro avg. 0.69 0.42 0.52

Table 2: Results for the baseline model with a batch size of 32 and 10 epochs.

Baseline with Intensity: NorBERT_32_10
precision recall f1-score support

Negative_standard 0.43 0.27 0.33 377
Negative_slight 0.0 0.0 0.0 64
Negative_strong 0.0 0.0 0.0 59
Positive_standard 0.62 0.33 0.43 900
Positive_slight 0.0 0.0 0.0 36
Positive_strong 0.52 0.33 0.40 269
micro avg. 0.5283 0.2569 0.3457

Table 3: Results for the baseline model with intensity, with a batch size of 32 and 10 epochs.

Table 3, is quite important when understanding the
retrieved metrics for the dataset with intensity. We
remember from earlier that the number of negative
examples are much lower than the positive exam-
ples, and with the added intensity, the number of
examples for especially negative polarity, has low-
ered drastically. E.g. there are only 59 examples
for negative strong, compared to 269 examples for
positive strong. Even lower is the number of exam-
ples for positive slight, which only has 36. Overall,
there is a very low number of examples for any-
thing other than the standard examples. There are
simply not enough examples for these categories,
which results in some of the scores being 0.0.

6 Fine-tuning the model

When trying to improve the unmodified NorBERT
3 baseline model, we started with experimenting
with the batch size and number of epochs. As read,
our baseline model had a batch size of 32 and a
number of 10 epochs. We did two modifications of
this model, where the second modification had the
same number of epochs, but an increased batch size
of 64. Our second modification had a batch size of
64, and an increased 30 number of epochs. Our last
modification included adding a linear layer on top
of the BERT layer. The results for these models
can be found in the next section (7).

7 Results: Fine-Tuned Models

7.1 original TSA
For the sake of simplicity, we do not show the sup-
port for each class in the upcoming tables, as the
number of examples remain the same, both with
and without intensity. We also only include the
F1-score for each of the models, as this is the most
relevant metric, but we will include all of the met-
rics when showing the results for the final test set
in Section 8. Table 4 shows a comparison of the
results from all of the modified models without
intensity, including the baseline model, where the
second column represents the first modification of
our model. The first modification contained a batch
size of 64 and 10 epochs. As seen in the table,
our F1-score improved from 52% to 61% when
doubling the batch size. This is an increase of 8%,
which shows that batch size is a rewarding param-
eter to tune. For our next modification, we kept
the batch size of 64, but increased the number of
epochs from 10 to 30. As seen in Table 4, the F1-
score actually dropped down to 52%, which is a
decrease of 9%. This leads us to believe that the
model was overfitted with 30 epochs. We do, how-
ever, have one last modification, which is adding
a linear layer on top of the BERT-model. When
adding the layer, we kept the batch size of 64, but
tested with both 10 and 30 epochs to see if the
model would produce an overfitted result, even

49

with the linear layer. It actually did not. In fact,
our last modification did better with 30 epochs than
with 10. With these settings, the model with 10
epochs retrieved an F1-score of 55%, while the
model with 30 epochs gave back a score of 61%,
in which the results for the best model can be seen
in the same table (4) along with the other results.

7.2 TSA with intensity
So far, we have seen the results from several modi-
fications of the NorBERT 3 base model, tested on
the unmodified TSA dataset. Now, we present the
results for the NoReCTSA dataset with intensity,
using the best settings for the model, but trained
and evaluated on the dataset with added sentiment
intensity. The results can be seen in Table 5.

Best Model with Intensity:
NorBERT_64_30 f1-score

Negative_standard 0.38
Negative_slight 0.0
Negative_strong 0.0
Positive_standard 0.52
Positive_slight 0.0
Positive_strong 0.25
micro avg. 0.43

Table 5: Results for the best model with intensity, with a
batch size of 64, 30 epochs and a linear layer.

As seen in Table 5, the categories that retrieved
scores of 0 for the baseline model, are still 0, which
leads us to believe that these categories need more
examples in order to improve the most, all though
there is definitely possible to experiment with more
fine-tuning. All though the zero-scores stayed the
same, the F1-score improved from 34% to 43%,
giving an increase of 9%, which is the exact same
increase as for the unmodified dataset. We are
satisfied with the results improving for both the
unmodified NoReCTSA dataset, and the dataset
with intensity!

8 Final results on test set

Finally, we procede to present the results of the test
set, using the best settings from Section 7. The re-
sults are retrieved using the same two models from
the same section, trained on the train data from the
original NoReCTSA dataset and the train data with
intensity. The results for the unmodified data can

be seen in Table 6. Here, we again provide the sup-
port for each label, as the number of examples are a
bit decreased for the test set. We also provide a con-
fusion matrix for each granularity, showing where
the models did the best, and where it struggled the
most.

NoReCTSA without intensity
We are pleased to see that the F1-score barely
dropped with 1%, from 61% to 60%, even though
there are fewer examples. Compared to the very
first baseline model run on the development set,
this is an increase of 8%. Figure 4 is a confusion
matrix showing where the model performed best,
and where it struggled the most.

From the confusion matrix, we can clearly see
that the model classifies the positive class much
better than the negative, and is most likely due
to there being more than twice the amount of the
positive labels than the negative labels.

True:

#sent_id=201344-14-01
Den O
opplevde O
kvaliteten B-targ-Positive
er O
god O

Predicted:

#sent_id=201344-14-01
Den B-targ-Positive
opplevde I-targ-Positive
kvaliteten I-targ-Positive
er O
god O

Figure 5: A sample showing how the model classifies
a whole noun phrase, ’Den opplevde kvaliteten’ (transl.
‘The experienced quality’), as a positive target instead
of only the head of the noun phrase, ’kvaliteten’.

NoReCTSA with intensity
We can see in Table 7 that the F1-score dropped
more for the test set with intensity, than the test
set without intensity. While the F1-score for the
unmodified test set dropped by only 1%, the F1-
score for the dataset with intensity dropped by 7%,
from 43% to 36%. This shows that the existing
examples for the intensity labeled dataset was very
much needed for the score to maintain, while the
binary dataset had enough to maintain its score.
The zero-valued scores remains the same for the

50

Comparison: All Models without Intensity
Baseline Modified #1 Modified #2 Modified #3

Positive 0.57 0.65 0.60 0.66
Negative 0.40 0.48 0.33 0.47
micro avg. F1-score 0.52 0.61 0.52 0.61

Table 4: Comparison of all models without intensity. Baseline batch size:32, epochs:10, Modified #1 batch size:64,
epochs:10, Modified #2 batch size: 64, epochs: 30, Modified #3 batch size:63, epochs:10, linear layer.

Final Model on Test: NorBERT_64_30
precision recall f1-score support

Positive 0.70 0.61 0.65 1097
Negative 0.48 0.38 0.42 373
micro avg. 0.65 0.55 0.60

Table 6: Results with the best model on the original TSA test set.

Figure 4: Confusion matrix showing errors for the final model on test set without intensity

test set, and can additionally be seen very clearly
in the associated confusion matrix in Figure 6.

In addition to showing difficulties with the zero-
scored labels, the confusion matrix in Figure 6
also clearly shows, like for the unmodified dataset,
the advantage of the positive class having more
examples than for the negative, especially for the
standard intensity, which also does slightly better
for the negative class.

9 Conclusion

We have seen that it is possible to fine-tune the
NorBERT3 model to retrieve better results for the
NoReCTSA dataset, with and without polarity in-
tensity. We also know that one can fine-tune much
more than we have done, e.g. by adding more
and/or different layers, adjust dropout, as well as
experimenting more with different epoch and batch
size combinations. Based on the result we have
seen, we believe that such modifications would im-
prove the model for this task even more. Further,

51

Final model on test w/ intensity: NorBERT_64_30
precision recall f1-score support

Negative_standard 0.37 0.37 0.37 280
Negative_slight 0.0 0.0 0.0 50
Negative_strong 0.0 0.0 0.0 43
Positive_standard 0.43 0.47 0.45 655
Positive_slight 0.0 0.0 0.0 50
Positive_strong 0.59 0.16 0.25 378
micro avg. 0.43 0.32 0.36

Table 7: Results for the final model with intensity

Figure 6: Confusion matrix showing errors for the final model on the test set with intensity

we saw that the models with added polarity inten-
sity gave much lower results than the models with
binary polarity, and particularly struggled a lot with
the low-supported classes. This also reflected in
the final test scores, which decreased more for the
dataset with added polarity intensity, than for the
one without. As the results are now, we do not
believe that the model with added sentiment inten-
sity would be useful for prediction of such tasks.
Therefore, we are curious to know if data augmenta-
tion, i.e. automatically create more equivalent data
could improve these results, perhaps even more
than experimenting with parameters of the models.

References

Barnes, J., Kurtz, R., Oepen, S., Øvrelid, L., &
Velldal, E. (2021). Structured Sentiment
Analysis as Dependency Graph Parsing.
Proceedings of the 59th Annual Meeting
of the Association for Computational Lin-
guistics and the 11th International Joint
Conference on Natural Language Process-
ing (Volume 1: Long Papers), 3387–3402.
https:/ /doi.org/10.18653/v1/2021.acl-
long.263

Convert NoReCfine sentiment targets to CoNLL
[original-date: 2022-08-12T09:20:25Z].

52

(2022). Retrieved May 15, 2023, from
https://github.com/ltgoslo/norec_tsa

Devlin, J., Chang, M.-W., Lee, K., & Toutanova,
K. (2019). BERT: Pre-training of Deep
Bidirectional Transformers for Language
Understanding. Proceedings of the 2019
Conference of the North American Chapter
of the Association for Computational Lin-
guistics: Human Language Technologies,
Volume 1 (Long and Short Papers), 4171–
4186. https://doi.org/10.18653/v1/N19-
1423

Dong, L., Wei, F., Tan, C., Tang, D., Zhou, M., &
Xu, K. (2014). Adaptive recursive neural
network for target-dependent twitter senti-
ment classification. The 52nd Annual Meet-
ing of the Association for Computational
Linguistics (ACL).

Hu, M., Peng, Y., Huang, Z., Li, D., & Lv, Y.
(2019). Open-Domain Targeted Sentiment
Analysis via Span-Based Extraction and
Classification. Proceedings of the 57th An-
nual Meeting of the Association for Com-
putational Linguistics, 537–546. https://
doi.org/10.18653/v1/P19-1051

Ltg/norbert3-base · Hugging Face. (n.d.). Retrieved
May 16, 2023, from https://huggingface.
co/ltg/norbert3-base

Øvrelid, L., Mæhlum, P., Barnes, J., & Velldal, E.
(2020). A Fine-grained Sentiment Dataset
for Norwegian. Proceedings of the Twelfth
Language Resources and Evaluation Con-
ference, 5025–5033. Retrieved March 22,
2023, from https://aclanthology.org/2020.
lrec-1.618

Pontiki, M., Galanis, D., Papageorgiou, H., An-
droutsopoulos, I., Manandhar, S., AL-
Smadi, M., Al-Ayyoub, M., Zhao, Y., Qin,
B., De Clercq, O., Hoste, V., Apidianaki,
M., Tannier, X., Loukachevitch, N., Kotel-
nikov, E., Bel, N., Jiménez-Zafra, S. M.,
& Eryiğit, G. (2016). SemEval-2016 Task
5: Aspect Based Sentiment Analysis. Pro-
ceedings of the 10th International Work-
shop on Semantic Evaluation (SemEval-
2016), 19–30. https://doi.org/10.18653/v1/
S16-1002

Pontiki, M., Galanis, D., Papageorgiou, H., Man-
andhar, S., & Androutsopoulos, I. (2015).
SemEval-2015 Task 12: Aspect Based Sen-
timent Analysis. Proceedings of the 9th

International Workshop on Semantic Eval-
uation (SemEval 2015), 486–495. https :
//doi.org/10.18653/v1/S15-2082

Pontiki, M., Galanis, D., Pavlopoulos, J., Papageor-
giou, H., Androutsopoulos, I., & Manand-
har, S. (2014). SemEval-2014 Task 4: As-
pect Based Sentiment Analysis. Proceed-
ings of the 8th International Workshop on
Semantic Evaluation (SemEval 2014), 27–
35. https://doi.org/10.3115/v1/S14-2004

Velldal, E., Øvrelid, L., Bergem, E. A., Stadsnes,
C., Touileb, S., & Jørgensen, F. (2018).
NoReC: The Norwegian Review Corpus.
Proceedings of the Eleventh International
Conference on Language Resources and
Evaluation (LREC 2018). Retrieved May
16, 2023, from https://aclanthology.org/
L18-1661

53

54

Benchmarking Targeted Sentiment Analysis Models

Roman Macháček
romanma@uio.no

Abstract

Targeted Sentiment Analysis (TSA) deals with
extracting sentiment targets and assigning sen-
timent polarity to them. TSA can be thought
of as a combination of two tasks, Named En-
tity Recognition (NER) and Sentiment Assign-
ment (SA) for Entities. Sentiment Assignment
can include not only polarity (Positive, Nega-
tive) but also Intensity (1-3), as in Norwegian
NoReCtsa dataset. The goal of this paper is
to thoroughly evaluate and train models for
sentiment analysis, based on factors such as
category and zero, few-shot learning. Word
analysis is carried out, to see how the models
perform on the word level, together with hy-
pothesis testing about the elements that may
effect the sentiment assignment. Custom edge-
case sentences were developed, to identify, if
the model has bias and can understand logical
statements, such as negation and nesting. Re-
sults showed the shortcomings of the trained
models and further directions for improvements
were provided.

1 Introduction

Internet and its usage has become one of the most
prevalent things in many lives. Millions of peo-
ple write reviews, feedback, descriptions, blogs
and messages every day. It is practically unlim-
ited, ever increasing source of natural language
data with great usage potential. To gain useful
knowledge from this source, extraction of the data
is required. Extracted data is then used to find pat-
terns in order to make predictions. Many methods
exist, while currently, the most prevalent method is
Deep Learning (Bishop, 2006). There are hundreds
of applications, ranging from recommendation sys-
tems, text generation, chatbots, translation and au-
tomatic correction of text. One such application
is Sentiment Analysis (Dang et al., 2020), which
deals with detection of sentiment in data. It can be
used to capture user feedbacks, help in customer
support, improve political campaigns and social

media posts.
The paper is divided into several sections starting
from Section 1. Detailed description of the problem
is given in Section 2. In Section 3 we look at and an-
alyze the dataset, mostly focusing on frequencies of
tags and polarities together with word occurances.
Section 4 deals with model training evaluation and
selection of optimal model/checkpoint of the mod-
els. Best models from Section 4 are used in Section
5 where they are evaluated on a finer-grained word
level, to see where the models make the most mis-
takes. To understand the learning process further,
we look in Section 6 at different techniques for
learning, including learning based on a single cate-
gory. For Section 7 we prepared a custom dataset,
including sentences that could help us understand
asymmetries in the decision process of the models,
including preferences (men vs women) and simple
negations (not).
Main aim of this paper is not to replicate some
state-of-the-art results, instead it is to introduce the
task of TSA and provide insights into the training
procedure, together with model analysis for this
task. Furthermore, some open questions are pro-
vided together with potential future work.

2 Background

Formally, Sentiment Analysis (SA) (Dang et al.,
2020) attempts to extract the the polarity of a doc-
ument or sentence. Targeted Sentiment Analysis
(TSA), or Targeted Non-aspect-based Sentiment
Analysis in (Pei et al., 2019), takes this a step fur-
ther and deals with finer-grained polarity defined
on an entity level. Each token is assigned a BIO-
tag, like in Named Entity Recognition (NER) (Roy,
2021), together with polarity. Polarity is defined as
either Positive, Negative, or Neutral, determining
polarity towards specific documents in SA and iden-
tified entities in TSA. In addition, intensity is often
introduced, determining the strength of polarity. To
find sentiment towards entities is generally

55

Figure 1: A word cloud of the NoReCfine dataset

harder, since it requires models to look for words
that are related to possibly multiple entities in the
sentence.
Targeted Sentiment Analysis has been studied in
many different scenarios. There are different ap-
proaches for solving this problem. Given task can
be view as a combination of two subtasks: Term
Extraction (TE) for identifying terms (entities) in
the text (Li et al., 2018), Sentiment Classification
(SC) for assigning sentiment towards found terms
(Wang et al., 2018). We can view the problem as
a singular task, and do both of the subtasks simul-
taneously (Toledo-Ronen et al., 2022). This task
is usually solved by utilizing already pre-trained
models (Li et al., 2019) or generative models (He
et al., 2019). Cross-domain learning, where mul-
tiple domains are used for training and testing is
studied in (Peng et al., 2018). Further research on
the bias of the models (Lakkaraju et al., 2023) and
it’s elimination in the trained models (Wang et al.,
2021) is also prevalent. In this paper we deal with
TSA as a single task and evaluate the models in the
cross-domain environment. Additionally, study of
the bias is performed.
Throughout our experiments, the Norwegian
dataset NoReCtsa (Rønningstad et al., 2023) based
on NoReCfine (Øvrelid et al., 2020) is used.
NoReCfine has several expressions that can have
the same target. By assigning a value (1-3) to sen-
timent intensities and summing all sentiments we
obtain a NoReCtsa sentiment clipped to (-3, 3).

3 Dataset exploration

We use two forms of NoReCtsa dataset for the
experiments, the original dataset includes labels,

polarity, and intensity of the sentiment polarity,
starting from 1 (lowest), ending at 3 (highest). The
simplified version drops the intensity and keeps the
sentiment polarity of the sentence. Both datasets
include 11437 samples of annotated sentences with
metadata.

Token Sentiment
Manipulerende O
barnebok B-targ-Negative
om O
norsk O
asylpolitikk O

Table 1: Sample of an annotated sentence (simplified)

Some datasets suffer from imbalanced data
(Kulkarni et al., 2021). Our dataset has this prob-
lem as well, since sentiments and polarities are not
evenly distributed as can be seen from Table 2. Un-
even distribution of sentiments, BIO-tags, could
lead to bias of the models.

Sentiment SentimentInt Samples
Positive Positive_1 194

Positive_2 1831
Positive_3 1324

Negative Negative_1 182
Negative_2 781
Negative_3 316

Table 2: Samples of sentiments with intensity (Int) from
all of the splits from the original dataset

The extreme of such a case would be sentiment
intensity with only one sample, giving us almost
no chance

56

Model F1 Acc
mC4 0.525 0.951
mBERT 0.398 0.939
XLM-R_base 0.487 0.945
Wiki 0.473 0.947
ScandiBERT 0.489 0.946
Oversampled 0.524 0.951
NorBERT_3_x-small 0.457 0.942
NorBERT_3_small 0.502 0.948
NorBERT_3_base 0.530 0.953
NorBERT_2 0.481 0.947
NorBERT_1 0.457 0.946
NCC 0.504 0.949
NBDigital 0.472 0.947
NB-BERT_base 0.514 0.951
NAK 0.526 0.952

Model F1 Acc (Int)
mC4 0.311 0.937
mBERT 0.232 0.929
XLM-R_base 0.276 0.934
Wiki 0.269 0.934
ScandiBERT 0.295 0.933
Oversampled 0.325 0.939
NorBERT_3_x-small 0.247 0.929
NorBERT_3_small 0.286 0.934
NorBERT_3_base 0.317 0.940
NorBERT_2 0.288 0.935
NorBERT_1 0.256 0.930
NCC 0.295 0.937
NBDigital 0.268 0.936
NB-BERT_base 0.311 0.935
NAK 0.311 0.940

Table 3: Statistics of trained models on simplified (Left) and original (Right) datasets

of training a model that would be able to distin-
guish such intensity. Sentiments like Negative_1
with low amount of samples would be hard to gen-
eralize for the model, due to low variability of the
sentences. Sentiments like Positive_3 represent a
large portion of the dataset and the model could be
biased towards selecting them.
The model has to perform Named Entity Recogni-
tion together with sentiment assignment. It needs
to assign a BIO tag to each token, beginning (B),
inside (I) and outside (O) of each entity. Amount
of samples for each tag can be seen in the Table
4. Problem here lies in the fact, that the sentence
doesn’t even have to contain an entity to begin with.
This can lead to problems related to generalization,
where model simply outputs the most prevalent tag
(O) for each token.

Tag Samples
B 6656
I 6434
O 178917

Table 4: Frequency of BIO-tags

Furthermore, some words may occur more often
with negative, or positive sentiment in the dataset.
Would trained models associate these words with
the most frequent sentiment? Fortunately, we will
use already pretrained models that were trained
on large datasets, by fine-tuning them we could
alleviate some of the above mentioned problems.

4 Mirror mirror, what model is the best?

The LTG research group at the University of Oslo 1

offers multiple models which are pre-trained on the
Norwegian language (Kutuzov et al., 2021). We
selected most of these models to perform a thor-
ough evaluation. The models are based on either
the Transformer (Vaswani et al., 2017) or BERT
(Devlin et al., 2019) architecture. Further, Nor-
Bert_3_base model was pre-trained on different
corpora (Wikipedia, NCC, NBDigital, NAK, mC4).
Detailed description of the pre-trained models, to-
gether with the data used for their training, can be
found in (Samuel et al., 2023). Same models were
trained and seeded differently for training, offering
statistics such as variability, which was interest-
ingly quite low (σ < 0.01).
Accuracy is evaluated on the token level, whereas
F1 score is evaluated at entity level. Based on re-
sults from Table 3 we can select optimal models
(NorBERT_3_base, NorBERT_3_small for simpli-
fied dataset, Oversampled for dataset with inten-
sity), and further evaluate them for each sentiment
category. Notice similarities in the accuracies, main
difference is in the F1 score. Most of the sentences
consist only of the trivial tag (O), which the model
picks quickly. Small differences in the accuracy (<
0.1) are thus more important, since here the model
has to improve prediction for the entities requiring
sentiment.

As we can see from Table 5, F1 score is much

1https://huggingface.co/ltg

57

Sentiment F1 Precision Recall
Overall 0.478 0.518 0.444
Positive 0.521 0.531 0.511
Negative 0.347 0.468 0.276

Table 5: Sentiment results from NorBERT_3_base
model evaluated on the simplified test set

lower for the negative sentiments, probably due to
the smaller sample size. An important phenomenon
to mention here is the overfitting of the models, in
which the models achieve high accuracy in early
epochs, causing the model to overfit on the training
data in later stages. To overcome this, we select
optimal checkpoint based on best evaluation accu-
racy.

Sentiment F1 Precision Recall
Overall 0.238 0.280 0.207
Positive_1 0 0 0
Positive_2 0.189 0.201 0.178
Positive_3 0.337 0.394 0.295
Negative_1 0 0 0
Negative_2 0.248 0.269 0.230
Negative_3 0.124 0.143 0.109

Table 6: Sentiment results from Oversampled model
evaluated on the original test set

Notice that the Table 6 contains zero values,
since the computation of F1 score requires pre-
cision and recall. At least one of them has to be
zero, specifically in the calculation of precision,
recall, the denominator has to be zero. This results
in division by 0, which in turn leads to undefined
behavior, outputting zero. More importantly, this
gives us insight into the trained models, because
they cannot fit to categories well with small amount
of samples as can be seen in Table 2.
An additional problem to point out is the check-
point selection problem. Model has to learn both
the tagging and the sentiment assignment, but from
the start it has to prefer tagging. As was pointed
out, the last few percent of the evaluation accuracy
are most important and increase the F1 score the
most. During training the accuracy will increase
significantly, if the model starts tagging correctly
and assigns (O) tag to the most, if not all tokens.
This results in high accuracy from start, while F1
score keeps increasing for some time, as can be
seen in Fig 2. Model can have a perfect tagging but
suboptimal sentiment assignment and can still be

selected as perfect checkpoint.

Figure 2: Illustration of optimal checkpoint selection on
original dataset using Oversampled model

The selected checkpoint achieves acc=0.943,
F1=0.246 while the last checkpoint achieves
acc=0.940, F1=0.327, which differs significantly
in F1 score.

5 Word Analysis

To further analyze best performing models, we can
look at words, not only entities, to get an idea
where models make most mistakes. Note that ac-
curacy is evaluated on the simplified dataset with
NorBERT_3_base model, accuracy (Int) is eval-
uated on the original dataset with Oversampled
model.

Word Acc Acc (Int) Amount
Jawbone 0.500 0.250 4
’ 0.542 0.454 11
boka 0.615 0.615 13
skjermen 0.530 0.462 13
Chronos 0.533 0.333 15
Fenix 0.529 0.411 15
Men 1.0 1.0 44

Table 7: Examples of selected words and their classifi-
cation accuracies for original and simplified dataset.

Furthermore, we can form hypotheses about the
classification of tokens. Does the word size plays
an important role in the classification accuracy?

As we can see from Fig 3, the token accuracy has
high variance, but if we do not consider the extreme
cases (too short, long words) we can see a decrease
in accuracy. This behavior was also observed for
the original dataset. Another hypothesis is whether
words with capital letter have lower classification
accuracy, since they should represent part of the

58

Category Acc F1
products 0.947 0.345
literature 0.954 0.340
games 0.937 0.373
misc 0.923 0.216
stage 0.967 0.387
sports 0.945 0.232
screen 0.936 0.305
restaurants 0.942 0.321
music 0.912 0.309

Category Acc F1
products 0.941 0.290
literature 0.943 0.224
games 0.944 0.373
misc 0.908 0.133
stage 0.950 0.203
sports 0.948 0.232
screen 0.937 0.212
restaurants 0.933 0.193
music 0.899 0.165

Table 8: NorBERT_3_small model trained on category (screen on Left, games on Right) and evaluated on the
remaining categories. For this task, the simplified dataset was used.

Figure 3: Accuracy of the classification based on length
of word on simplified dataset

entities more often. From Table 9 we observed that
difference can be quite high (10-15%).

First-case Acc Acc (Int)
Upper 0.840 0.790
Lower 0.941 0.937

Table 9: Difference between upper-case and lower-case
word classification accuracy

As was mentioned previously, tagging is impor-
tant and plays a significant role during classifica-
tion. The beginning (B) and inside (I) of the entity
have low accuracies. Accuracy metric is, as was
said, skewed towards accuracy of (O) tags, as can
be seen from Tables 4 and 10. Accuracy should
therefore not be used for model evaluation, if the
model has high accuracy with tags (O), it does not
mean that it performs well, it can just assign (O)
to everything. Consider sentence: I like this music,
where music is the only entity here with tag (B)
and positive sentiment. If we use token accuracy
and our model didn’t match only the music label,
we would still get 75% accuracy even though the

model has 0% accuracy on the entity level. Never-
theless, we can still use token accuracy of (O) as a
baseline, that model should reach and overcome in
order to perform better at actual entity recognition.

Tag Acc Acc (Int)
B 0.627 0.436
I 0.569 0.345
O 0.945 0.940

Table 10: Accuracy based on BIO tags of individual
words (tokens)

6 Categorical Learning

Until now, we trained our models using training
subset of the dataset. By utilizing metadata from
NoReCtsa we build datasets that come from spe-
cific sources. Training on such sources helps us
to understand how different amounts of samples
and vocabularies affect the quality of the resulting
model.

Tag Samples
products 2181
literature 1089
games 767
misc 36
stage 376
sports 149
screen 3807
restaurants 340
music 2692

Table 11: Categories of NoReCtsa dataset

We would like to see if categories with large
amount of samples (screen) perform better than

59

categories with smaller sample size (games). Cat-
egories with large amount of samples should pro-
vide richer vocabularies, therefore having higher
similarity (overlap) with vocabularies from other
categories.
Categorical learning here refers to training on a
single category. To evaluate models trained in such
a way, we perform evaluation on the rest of the
categories. Using analysis from previous chapters
we expect small variance in accuracies, but large
differences in F1 scores as we can see from Table
8. Performance is worse in almost all categories
while using games category as our training set, but
interestingly, sports category is better. The reason
for this may be connected to the sentences being
more similar between games and sports than with
screen. Further analysis would be required to con-
firm this.
Could we improve the performance of the model
trained on games? One option is to introduce some
samples of the category that we are going to test
on into the training set. How many samples do we
need per category? This is a difficult question to
answer, but for this task big improvements should
not be expected from small sample size. Small
amount of samples cannot capture variability of
sentences and would not represent a sufficiently
large proportion in the training set to affect the re-
sulting gradients. We can of course counter this
problem by increasing the sample size. In some
cases this is impossible since categories have small
sample size as can be seen in Table 11.

Tag Acc F1
products 0.941 0.256
literature 0.944 0.183
misc 0.910 0.139
stage 0.958 0.195
sports 0.949 0.234
screen 0.941 0.140
restaurants 0.936 0.241
music 0.905 0.153

Table 12: NorBERT_3_small model trained with games
with 10 samples per category from simplified dataset

Interestingly, few-shot learning with 10 samples
actually resulted in worse quality of the model.
The problem here is connected to variability of
resulting models, by training multiple models on
same category we noticed fluctuation of F1 scores
by 10 to 30%. By increasing samples per category

we observed small improvements. For example,
for literature with 100 samples, the model achieves
accuracy of 0.951 with F1 of 0.207.

7 Behavior Testing

So far we worked with accuracy and F scores that
helped us to evaluate the models. However, the
problem is that these values provide only one value
quantifying the quality of the whole model (Ribeiro
et al., 2020). To gain insights into specific cases
that we deem important, we have to design our own
dataset. In this case we want to test two specific
cases: preference and logic.
Preferences guide our choices in real life, but there
are some cases where preferences are a nuisance,
since they introduce asymmetry to the selection.
One such example may be a hiring process, where
the model should not prefer gender or race for the
recruitment of specific jobs. In the worst scenario,
model would have positive sentiment towards men
and negative towards women. Employing such
a model into the real world would therefore lead
to inequalities. Therefore, some sentences were
designed to test some of the possible scenarios, in-
cluding race, gender, age and countries. Consider
sentence such as: x is a great country. We can
replace x by any country and see if the sentiment
changes.
Logical statements on the other hand would test the
behavior of the model on cases where negations,
nesting and contradictions are prevalent. One such
case could be a sentence including positive senti-
ment on one side, but negative sentiment from the
other, which one should be preferred in the end?
Example of such an sentence may be: Everyone
likes x, but I don’t. Would, for example the last
sentiment in the sentence be preferred over the oth-
ers? Another important, quite frequent scenario is
negation, where the model has to change the senti-
ment to the opposite polarity. Not doing so would
result in catastrophic behaviors in the real world
application.
Sentiment towards token can be marked as TG

P ,
where G is gold label and P is prediction made by
the model based on token T as is in Tables 13 and
14. When examining for preferences, we observed
the model to perform well for most of the sentences,
but showed asymmetry in the case of age (barna
vs tenaringene vs voksne). Unfortunately, logical
statements were not evaluated due to the model not
being able to recognize most entities.

60

Disseo
o menneneb-3

o kano
o ikkeo

o danseo
o ioo detoo heleo

o tattoo .oo
Disseo

o kvinneneb-3
o kano

o ikkeo
o danseo

o ioo detoo heleo
o tattoo .oo

Mannenb-2
b-2 påo

o sceneno
i-3 syngeroo stygtoo .oo

Damenb-2
b-2 påo

o sceneno
o syngeroo stygtoo .oo

Rekrutterereno
o sao

o atoo hanb-0
o ikkeo

o eroo kvalifisertoo noko
o .oo

Rekrutterereno
o sao

o atoo hunb-0
o ikkeo

o eroo kvalifisertoo noko
o .oo

Atoo hviteb-1
o menni-1

o seroo mistenkeligeo
o utoo ,oo væroo oppmerksomo

o .oo
Deno

o svarteb-1
o manneni-1

o seroo mistenksomo
o utoo ,oo væroo oppmerksomo

o .oo
Jego

o likeroo ikkeo
o disseo

o barnab-2
o ,oo deo

o sprayetoo husetoo mittoo nedo
o .oo

Jego
o likeroo ikkeo

o disseo
o tenaringene b-2

b-2 ,oo deo
o sprayetoo husetoo mittoo nedo

o .oo
Jego

o likeroo ikkeo
o disseo

o voksneb-2
o ,oo deo

o sprayetoo husetoo mittoo nedo
o .oo

USAb+3
b+2 eroo etoo flottoo lando

o .oo
Norgeb+3

b+2 eroo etoo flottoo lando
o .oo

Kinab+3
b+2 eroo etoo flottoo lando

o .oo

Table 13: Examples of sentences including preferences such as race, gender and country

Våpenb+1
o eroo foroo åo

o beskytteo
o menneskeroo .oo

Våpenb-1
o setteroo samfunnetoo ioo fareo

o .oo
Våpenb+0

o eroo foroo åo
o beskytteo

o menneskeroo ,oo meno
o setteroo ogsåo

o samfunnetoo ioo
fareo

o .oo
Detoo eroo santoo atoo jego

o ikkeo
o likeroo flyb-2

o .oo
Detoo eroo ikkeo

o santoo atoo jego
o ikkeo

o likeroo flyb+1
o .oo

Duo
o taroo feiloo ,oo jego

o sao
o ikkeo

o detoo eroo santoo atoo jego
o

ikkeo
o likeroo flyb+1

o .oo
Duo

o taroo feiloo ,oo jego
o sao

o ikkeo
o atoo detoo eroo ikkeo

o santoo
atoo jego

o ikkeo
o likeroo flyb-1

o .oo
Deo

o flesteo
o elskeroo detteo

o flyselskapetb-2
o ,oo meno

o personligo
o likeroo jego

o detoo ikkeo
o

.oo
Jego

o likeroo ikkeo
o detteo

o flyselskapetb-2
b-2 ,oo selvo

o omo
o deo

o flesteo
o gjøroo detoo

.oo

Table 14: Examples of sentences including logical statements, nesting and negations

8 Future work

There were multiple suggestions throughout this
paper for potential directions of research. Training
models with different hyperparameters could help
with exploring the variability of training. We could
use best models from Table 3 and tune the param-
eters for them. Additionally, checkpoint selection
could be improved, by including F1 score into the
criterion that defines the selection.
As for the word analysis, different hypotheses
could be tested. If we knew the entities, we could
try to augment the dataset by switching entities.
Doing so could improve quality of the model and
stabilize it, adding some entities outside of dataset
vocabulary (from Dictionary) could also help to
enrich the dataset. But as we saw, the main prob-
lem lies probably not in sentiment assessment but
in entity recognition, additional sentences would
therefore help.
Categorical learning offers many possible scenarios
to test. We could try to find which combinations
of categories result in the best models. Determin-
ing similarity of vocabularies based on categories
could help us in choosing which category would

be most useful to train upon. Finding an optimal
amount of samples to add per category for few-shot
learning could be done by introducing a penalty for
adding an sample to training, which would have
to be leveraged by accuracy/F1 gains. Different
metrics to assess the quality of TSA could be used
and compared.
Furthermore, enriching the dataset and coming
with new edge-cases is obviously one possibil-
ity for Behavior Testing. To improve the entity
recognition, we could use entities from the training
dataset to see if the model is biased. In general,
many sentences would have to be created in order
to gain statistically significant results. For that,
some automated testing could be done, where we
could for example create a template and fill the
template with words from vocabulary, evaluating
such a set would result in one of the tests.

9 Conclusion

To summarize, we worked with the Norwegian
NoReCtsa dataset, both the simplified and original
versions with intensity. By analyzing the dataset
we gained insights into the representation of words
and distribution of categories, which were used

61

in further sections. The the most represented sen-
timents and tags were also explored, showing us
additional problems that we may face during train-
ing of our models.
Multiple models were used and trained. By intro-
ducing seed we gained some statistical properties,
most importantly variance, which was especially
low, implying stability of the models. By evaluat-
ing the models, we discovered that accuracy is high
due to outside (O) tag being most represented, so
model could achieve high accuracies just by label-
ing everything the same. Therefore F1 score proved
useful while evaluating the models on the entity
level. Sentiments that were underrepresented could
not be evaluated and the ones that could showed
low F1 scores. The reason for lower F1 scores was
due to automatic checkpoint selection which maxi-
mized accuracy but not F1 scores.
We further evaluated the best models for simplified
and original dataset. Our focus was on word analy-
sis. Additional questions were asked and answered,
showing us additional properties about classifica-
tion accuracy of words. We showed that length of
words plays a small, but not insignificant role, since
classification accuracy decreased with increasing
length of words. Furthermore, we showed that
model performs worse for words starting with capi-
tal letters.
During categorical learning we answered the ques-
tion of whether a model trained on categories
with larger samples performs better, than a model
trained on smaller sample categories. We tried to
improve the performance of the model on different
categories by introducing samples from other cate-
gories.
And finally, we looked at Behavior Testing. By
creating a custom dataset we tried to evaluate the
model on specific, interesting sentences including
preferences and logic. Unfortunately we were not
able to fully compare the results since model per-
formed poorly in those cases.
TSA turned out to be to be a difficult task due to
a combination of sentiment assessment and entity
recognition, requiring lots of samples to achieve
good results.

References
Christopher M. Bishop. 2006. Pattern Recognition and

Machine Learning (Information Science and Statis-
tics). Springer-Verlag, Berlin, Heidelberg.

Nhan Cach Dang, María N. Moreno-García, and Fer-

nando De la Prieta. 2020. Sentiment analysis based
on deep learning: A comparative study. Electronics,
9(3):483.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing.

Ruidan He, Wee Sun Lee, Hwee Tou Ng, and Daniel
Dahlmeier. 2019. An interactive multi-task learning
network for end-to-end aspect-based sentiment anal-
ysis. In Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics, pages
504–515, Florence, Italy. Association for Computa-
tional Linguistics.

Ajay Kulkarni, Deri Chong, and Feras A. Batarseh.
2021. Foundations of data imbalance and solutions
for a data democracy.

Andrey Kutuzov, Jeremy Barnes, Erik Velldal, Lilja
Øvrelid, and Stephan Oepen. 2021. Large-scale con-
textualised language modelling for Norwegian. In
Proceedings of the 23rd Nordic Conference on Com-
putational Linguistics (NoDaLiDa), pages 30–40,
Reykjavik, Iceland (Online). Linköping University
Electronic Press, Sweden.

Kausik Lakkaraju, Biplav Srivastava, and Marco Val-
torta. 2023. Rating sentiment analysis systems for
bias through a causal lens.

Xin Li, Lidong Bing, Piji Li, Wai Lam, and Zhimou
Yang. 2018. Aspect term extraction with history
attention and selective transformation. In Proceed-
ings of the Twenty-Seventh International Joint Con-
ference on Artificial Intelligence, IJCAI-18, pages
4194–4200. International Joint Conferences on Arti-
ficial Intelligence Organization.

Xin Li, Lidong Bing, Wenxuan Zhang, and Wai Lam.
2019. Exploiting BERT for end-to-end aspect-based
sentiment analysis. In Proceedings of the 5th Work-
shop on Noisy User-generated Text (W-NUT 2019),
pages 34–41, Hong Kong, China. Association for
Computational Linguistics.

Lilja Øvrelid, Petter Mæhlum, Jeremy Barnes, and Erik
Velldal. 2020. A fine-grained sentiment dataset for
Norwegian. In Proceedings of the Twelfth Language
Resources and Evaluation Conference, pages 5025–
5033, Marseille, France. European Language Re-
sources Association.

Jiaxin Pei, Aixin Sun, and Chenliang Li. 2019. Targeted
sentiment analysis: A data-driven categorization.

Minlong Peng, Qi Zhang, Yu-gang Jiang, and Xuanjing
Huang. 2018. Cross-domain sentiment classification
with target domain specific information. In Proceed-
ings of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 2505–2513, Melbourne, Australia. Association
for Computational Linguistics.

62

Marco Tulio Ribeiro, Tongshuang Wu, Carlos Guestrin,
and Sameer Singh. 2020. Beyond accuracy: Be-
havioral testing of NLP models with CheckList. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4902–
4912, Online. Association for Computational Lin-
guistics.

Arya Roy. 2021. Recent trends in named entity recogni-
tion (ner).

Egil Rønningstad, Erik Velldal, and Lilja Øvrelid. 2023.
Entity-level sentiment analysis (elsa): An exploratory
task survey.

David Samuel, Andrey Kutuzov, Samia Touileb, Erik
Velldal, Lilja Øvrelid, Egil Rønningstad, Elina Sigdel,
and Anna Palatkina. 2023. Norbench – a benchmark
for norwegian language models.

Orith Toledo-Ronen, Matan Orbach, Yoav Katz, and
Noam Slonim. 2022. Multi-domain targeted senti-
ment analysis.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need.

Bo Wang, Tao Shen, Guodong Long, Tianyi Zhou, and
Yi Chang. 2021. Eliminating sentiment bias for
aspect-level sentiment classification with unsuper-
vised opinion extraction. In Findings of the Associ-
ation for Computational Linguistics: EMNLP 2021,
pages 3002–3012, Punta Cana, Dominican Republic.
Association for Computational Linguistics.

Shuai Wang, Sahisnu Mazumder, Bing Liu, Mianwei
Zhou, and Yi Chang. 2018. Target-sensitive mem-
ory networks for aspect sentiment classification. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 957–967, Melbourne, Australia.
Association for Computational Linguistics.

63

64

Definition Modeling for Chinese and Korean with
Transformer-based Encoder-Decoder Language Models

Narae Park∗

University of Oslo
naraep@uio.no

Lu Xing∗

University of Oslo
luxi@uio.no

Abstract

Definition modeling is an NLP task of gen-
erating the definition of a given word in
a given context. Definition modeling in
English has been studied extensively, but
there is not enough research on definition
modeling in other languages. In this paper,
we investigate definition modeling in Chi-
nese and Korean, two languages that are
very different from English. We fine-tune
several transformer-based encoder-decoder
language models on data in Chinese and
Korean respectively for definition genera-
tion task, evaluate them on tasks in the
same language they were fine-tuned on,
and explore their potential for generating
definitions in other languages. The results
show that a model fine-tuned on data in
one language performs reasonably well in
definition generation in that language, but
not so well in other languages.

1 Introduction

Definition modeling, the task of generat-
ing the meaning of a given term (word or
phrase)(Gardner et al., 2022), has been a con-
sistently researched area of Natural Language
Processing (NLP) since it was first introduced
in 2017 (Noraset et al., 2017). The initial mo-
tivation for definition modeling is to generate
a more transparent representation of the se-
mantics of embeddings, i.e., to represent the
embeddings of words in a human-readable way
(Noraset et al., 2017; Mickus et al., 2019). Def-
inition modeling can be useful for a variety of
NLP tasks, including classification, question
answering, and machine translation, by allow-
ing us to understand the semantic meaning of
words in context. In addition, it has many
other practical uses, such as creating dictio-
naries for low-resource languages, extending

∗These authors contributed equally to this work.

existing dictionary resources (e.g., upgrading
dictionaries over time, creating dictionaries for
specific domains, etc.), and as a learning aid
for reading (Mickus et al., 2019; Bevilacqua
et al., 2020; Kong et al., 2022; August et al.,
2022). Definition modeling began with gen-
erating the meaning of a word’s static em-
bedding (Noraset et al., 2017), but based on
the fact that words are polysemous and their
meanings are determined in context, later defi-
nition modeling studies (Gadetsky et al., 2018;
Mickus et al., 2019; Bevilacqua et al., 2020)
have been using both word and context infor-
mation to address the polysemy of words and
to generate more accurate meanings.

One challenge with definition modeling is
that most of the research to date has been
conducted on English data1, so there is clearly
not enough research on definition modeling in
other languages. Given the many potential
applications of definition modeling, it is im-
portant to investigate how definition modeling
performs in other languages. Since many of
today’s NLP tasks, including definition model-
ing, are approached by fine-tuning pre-trained
large language models, it will be useful to
investigate how well definition modeling per-
forms in other languages by fine-tuning pre-
trained models on data in those languages. As
a step in this direction, in this study, we at-
tempted definition modeling in Chinese and
Korean, which have very different linguistic
characteristics from English and also differ
from each other in many respects2. We fine-

1To the best of our knowledge, there have been some
studies on Chinese(Tang et al., 2021; Zheng et al., 2021;
Kong et al., 2022) and one study on French(Reid et al.,
2020).

2English is a fusional language, Chinese is an isolat-
ing language, and Korean is an agglutinative language.
In terms of sentence structure, English and Chinese fol-
low a Subject-Verb-Object (SVO) order, while Korean
follows a Subject-Object-Verb (SOV) order. In terms

65

tuned several transformer-based pre-trained
language models on data in Chinese and Ko-
rean respectively, and evaluated them in terms
of hyperparameters, datasets, models, and
prompts. Furthermore, we explored the po-
tential of these fine-tuned models to generate
definitions in other languages. Through this,
we aim to broaden the understanding of defi-
nition modeling in the context of language di-
versity.

2 Experiment design

2.1 Datasets
A word can have different meanings in differ-
ent contexts. A classical example is the word
“bank”, which can mean a financial institution
or the land alongside a river. Therefore, it is
necessary to provide the context of the word
when generating its definition. Each meaning
of a word is called a sense, and the definition of
a word in a given context is called a sense def-
inition. The context of a word is usually the
sentence in which the word appears, and is also
called a usage example. In light of this, the def-
inition modeling task requires a dataset that
contains the word and its context, and the def-
inition of the word in that context. Datasets
that meet these requirements for Chinese are
very rare, and there are no such datasets for
Korean yet, to the best of our knowledge. We
prepared datasets for Chinese and Korean as
described in 2.1.1 and 2.1.2. We also used the
Oxford English dataset collected by Gadetsky
et al. (2018) when evaluating language shift
ability of the models.

2.1.1 Chinese data
We generated a dataset based on the data3

provided in a previous study on definition
mordeling for Chinese (Fan et al., 2020). The
dataset used by Fan et al. (2020) was based
on Chinese WordNet4, which is a knowledge
base of sense distinction and lexical-semantic
relations released by the Institute of Linguis-
tics, Academia Sinica. Chinese WordNet uses
traditional Chinese characters and Fan et al.
of writing system, English uses the Latin alphabet, Chi-
nese uses Chinese characters, and Korean uses Hangul.
These are just a few examples of the many differences
between these languages.

3https://github.com/blcuicall/AutoDict/tree/ccl2020
4https://lope.linguistics.ntu.edu.tw/cwn2/

(2020) used opencc-python5 to convert tradi-
tional Chinese characters to simplified Chinese
characters. They also used jieba6 to perform
word segmentation7. Their final dataset con-
tains 84 542 entries (including train set, vali-
dation set, and test set). Each entry contains
a word, its definition, and one usage example
(context) of the word.

As this study tries to examine the effect
of a toy-sized dataset, we randomly selected
1,000 entries from Fan et al. (2020)’s dataset.
We manually checked to make sure that the
dataset contains words that have only one
meaning as well as words that have multiple
meanings.

The dataset potentially have some quality
issues. The variety of Mandarin Chinese used
in Taiwan (where the Institute of Linguistics,
Academia Sinica is located) and in Mainland
China are slightly different. Their relation is
similar to that of British English and Ameri-
can English. Taiwan uses traditional Chinese
characters and Mainland China uses simplified
characters, and there are also some differences
in word usages. Because Fan et al. (2020) used
an automatic tool (opencc-python) to convert
the characters, there might be some errors in
the converted characters. We did not check all
the converted characters manually. Nonethe-
less, this is the only dataset that meets the re-
quirements for definition modeling in Chinese
that we know of, so we decided to use it for
our experiments.

The final dataset contains a total of 1000 en-
tries, and is divided into training, validation,
and test sets with a ratio of 8:1:1. The statis-
tics of the dataset are shown in Table 1.

2.1.2 Korean data

There are no existing studies on definition
modeling in Korean, so we collected data di-
rectly from a Korean dictionary website. We
used the Basic Korean Dictionary (words:
50,637 senses: 70,354), provided by the Ko-
rean government as an easy-to-use dictionary

5https://github.com/yichen0831/opencc-python
6https://github.com/fxsjy/jieba
7Chinese text usually does not contain spaces be-

tween words. Word segmentation is the process of di-
viding a text into words and adding spaces between
words.

66

Set Words Senses Entries Cxt Def
Train 259 561 800 21.81 9.07
Valid 32 70 100 21.55 9.37
Test 32 68 100 21.98 9.78
* Words: number of unique headwords in the dataset
** Senses: number of unique senses in the dataset
*** Cxt: context. Def: definition. These two columns
show the average number of words (as segmentated
with spaces by Fan et al. (2020)) in each entry’s
context and definition, respectively

Table 1: Main statistics of the Chinese datasets

for Korean language learners and teachers8.
The data can be downloaded as XML, which
contains information such as word-id, writ-
ten form, lexical unit, homonym, part of
speech, pronunciation, definition, usage exam-
ples, multilingual translations, etc.

We extracted words from the entire dataset,
where the lexical unit is ‘word’ and have usage
examples available. These words have 43,314
different written forms and 66,441 different
senses. The usage examples for each sense of
these words include phrases, sentences, and di-
alogues. We decided to use only sentence ex-
amples (There are usually two sentence exam-
ples per sense), because the phrases can be too
short and the dialogues may include sentences
without the target word. We sampled 1000
senses, including those with different senses
but having the same written word form9. To
observe the differences according to the con-
figuration of the dataset, we constructed the
dataset in three different ways: (1) include one
example for each sense, resulting in 1000 en-
tries, (2) include all examples for each sense,
resulting in 2269 entries, and (3) concatenate
all examples for each sense into one string,
resulting in 1000 entries. We then divided
these datasets into training, validation, and
test sets at a ratio of 8:1:1. The statistics of
the datasets are shown in Table 2.

2.1.3 English data
We did not use any English data for train-
ing, but we tried English when evaluating the
models for language shift tasks. We used the
Oxford dataset collected by Gadetsky et al.
(2018) from the Oxford Dictionary.

8https://krdict.korean.go.kr/,
https://krdict.korean.go.kr/statistic/dicStat

9Therefore, different senses with the same written
form include both homophones and polysemy.

Set Words Senses Entries Cxt Def
(1) Single examples
Train 510 802 802 19.77 13.21
Valid 64 96 96 20.01 14.19
Test 64 102 102 19.26 12.72
(2) Multiple examples
Train 510 802 1825 19.63 13.36
Valid 64 96 214 19.83 14.10
Test 64 102 230 19.03 12.68
(3) Concatenated examples
Train 510 802 802 44.67 13.21
Valid 64 96 96 44.21 14.19
Test 64 102 102 42.91 12.72
* The Word column represents the number of distinct
written forms of words.

** Cxt: context. Def: definition. These two columns
show the average number of tokens split by Ko-
rean morphological segmentation for each entry’s
context and definition, respectively

Table 2: Main statistics of the Korean datasets

2.2 Base models
2.2.1 Considered models
We tested various encoder-decoder models for
the task of definition generation. However,
many models are trained mainly on English,
which somewhat limited testing of definition
modeling for languages other than English. T5
(Raffel et al., 2020), T0 (Sanh et al., 2022) and
flan-T5 (Chung et al., 2022) do not support
Korean or Chinese. Multilingual T5 (mT5)
(Xue et al., 2021) is expected to support 101
languages, including Korean and Chinese, but
it must be fine-tuned before it is usable on
downstream tasks. We tried fine-tuning the
mT5 model for definition generation for many
epochs, but it did not generate any meaning-
ful results, so we decided not to use mT5
due to our limited time and resources. We
also tried fine-tuning the tokenizer-free model,
byT5 (Xue et al., 2022), but this did not
produce meaningful results, either. The lan-
guage models we finally used for definition
generation are mBART-50 (Tang et al., 2021)
and M2M100 (Fan et al., 2021) (in two sizes:
418M and 1.2B). They are both models trained
for multilingual translation tasks, and support
both Chinese and Korean. Because they are
trained for multilingual translation tasks, one
must specify the source language and target
language when using them, telling them which
language to translate from and which language
to translate to. If we set the source language
and target language to the same language, we
can fine-tune them for monolingual sequence-

67

to-sequence tasks, i.e., definition modeling.

2.2.2 mBART-50 (large)

mBART-50 is based on mBART (Liu et al.,
2020), which is “a sequence-to-sequence de-
noising auto-encoder pre-trained on large-scale
monolingual corpora in many languages us-
ing the BART objective”. As the name im-
plies, mBART applies the BART (Lewis et al.,
2020) approach to a large monolingual corpora
in many languages, learning to recover texts
from the noised input, which is phrase-masked
and sentence-permuted, using a single trans-
former model. mBART-50 extends mBART to
incorporate additional languages without loss
of performance for the 25 languages mBART
originally supported, resulting in a model that
supports 50 languages. mBART-50 demon-
strates an effective way to make multilingual
translation models through multilingual fine-
tuning of pre-trained models for multilingual
tasks.

2.2.3 M2M100 (418M, 1.2B)

M2M100 is a model trained for many-to-
many multilingual translation, capable of han-
dling direct translation between 100 language
pairs. While traditional multilingual mod-
els often rely on English-centric data (data
translated from or to English) for training,
M2M100 learns directly from data between
the source language and the target language
to better preserve meaning. To achieve this,
a massive 7.5 billion sentence MMT (Many-
to-Many) dataset spanning 100 languages was
constructed, enabling training of a multilin-
gual translation model that supports 9,900
translation directions. The benchmark results
report that it outperforms English-centric
models. The model is available in three sizes:
418M, 1.2B, and 12B.

2.3 Metrics

During the training process, we used Rouge
(Recall-Oriented Understudy for Gisting Eval-
uation) (Lin, 2004) and BLEU (Bilingual Eval-
uation Understudy) (Papineni et al., 2002)
scores to evaluate the performance of the mod-
els. Rouge and Bleu are both metrics com-
monly used in NLP tasks. We used “evaluate-

metric/rouge” package10 and “evaluate- met-
ric/bleu” package11 from Hugging Face to cal-
culate the scores.

The “evaluate-metric/rouge” package only
supports Latin alphabets by default. Pass-
ing a custom tokenizer allows it to support
non-Latin languages like Chinese and Korean.
For Chinese, we used a tokenizer that splits
the text based on spaces. Since the Chinese
dataset we used was already segmented by
spaces, this simple tokenizer is sufficient for
our purpose. However, this tokenizer did not
work well for Korean, even though Korean
texts have spaces, so we used a Korean mor-
phological parser Komoran12 as the tokenizer
for Korean.

The “evaluate-metric/bleu” package sup-
ports non-Latin languages by default, but in
our experiments, the BLEU scores it calcu-
lated were almost always 0. We suspect that
the reason is that the BLEU score is calcu-
lated by comparing the n-grams of the gener-
ated text and the reference text, and it has
something to do with how the package cal-
culates n-grams in Chinese and Korean texts.
Definitions are usually short, which could also
be a factor. However, this package also cal-
culates other related scores, such as precision
and brevity penalty, which are useful for eval-
uating the performance of the models. In addi-
tion, definition generation is a recall-oriented
task, which is more suitable for the Rouge
score. Therefore, we mainly use the Rouge
scores in our evaluation and only use BLEU
scores as an additional reference.

We also used human evaluation to evaluate
the performance of the models. We checked
the generated definitions manually and gave a
general evaluation of the quality of the gener-
ated definitions.

3 Experiments and Results
3.1 Zero-shot generation of definitions
We first tested zero-shot definition generation.
However, the pre-trained models we used are
unsuitable for zero-shot generation of defini-
tions. mBART-50 and M2M100 are trained for

10https://huggingface.co/spaces/evaluate-
metric/rouge

11https://huggingface.co/spaces/evaluate-
metric/bleu

12https://docs.komoran.kr/

68

machine translation tasks. When used with-
out fine-tuning, even if the source language
and target language are set to the same lan-
guage, they will just generate output that sim-
ply repeats the input text.

We also tried few-shot learning, e.g., provid-
ing a few examples in the prompt, but it did
not work well. The generated texts were still
just repetitions of the input texts.

3.2 Fine-tuning
3.2.1 Hyperparameters
We used Trainer13 from Hugging Face to fine-
tune the models. We used the default hyper-
parameters for the most part. We also tried
different batch sizes, learning rates, and num-
ber of epochs.

Because Training consumes a lot of mem-
ory and a large batch size can cause memory
errors, we used gradient accumulation to sim-
ulate a larger batch size. Along with other
memory-saving techniques like mixed preci-
sion training, enabling gradient checkpointing,
and reducing max_length, we were able to
train the models with a mini batch size of 2
and a gradient accumulation step of 8, which
is equivalent to a effective batch size of 16.

We tested different batch sizes and learning
rates with the three base models. The base
combination we found for the Chinese dataset
was a batch size of 16, a learning rate of 3e-
6, and 10 epochs for mBART-large-50. For
korean dataset, the optimal combination was
a batch size of 16, a learning rate of 1e-5, and
6 epochs for mBART-large-50.

3.2.2 Different datasets
We fine-tuned the models using the different
datasets constructed in 2.1.2 to see if different
configurations of the dataset affect the model’s
performance. The results are as shown in 3.

The results indicate that more entries do
not necessarily mean better performance, as
the multiple example dataset (which has 2269
entries) performed very similarly to the sin-
gle example dataset (which has 1000 entries).
On the other hand, the concatenated exam-
ple dataset (which has 1000 entries) performed
better, which is consistent with previous re-
search (Almeman and Espinosa Anke, 2022)

13https://huggingface.co/transformers/main_classes/
trainer.html

Dataset R1 R2 RL B B1
Single ex 0.265 0.09 0.259 0.028 0.32

Multiple ex 0.267 0.085 0.257 0.03 0.323
Concat. ex 0.297 0.115 0.29 0.043 0.369
* R1: Rouge-1, R2: Rouge-2, RL: Rouge-L, B: Bleu,
B1: Bleu-precisions-1

** Single ex: Single example. Multiple ex: Multiple
example. Concat. ex: Concatenated example

Table 3: Performance on different Korean datasets
(Results of models fine-tuned on mBART-50 with a
batch size of 16, learning rate of 1e-5, and 6 epochs.
Average of two runs)

that found that the length of examples influ-
ences the performance of definition modeling,
since the concatenated example dataset has
longer examples. Based on the results, we used
the concatenated example dataset for the rest
of the experiments.

3.2.3 Different base models

To investigate whether the pre-trained model
used for fine-tuning influences performance,
we compared the performance of models fine-
tuned on three base models, as shown in Ta-
ble 4

Model R1 R2 RL B B1
Chinese dataset
mBART-large-50 0.289 0.035 0.274 0.0 0.311
M2M100_418M 0.228 0.015 0.227 0.0 0.242
M2M100_1.2B 0.248 0.025 0.242 0.018 0.286

Korean dataset
mBART-large-50 0.297 0.115 0.29 0.043 0.369
M2M100_418M 0.278 0.114 0.268 0.044 0.309
* For the Korean dataset, we were unable to fine-tune
the M2M100_1.2B model due to the memory error,
even with a mini batch size of 1.

** Regarding the performance scores, since the lan-
guages, datasets and tokenizers used are different,
it is not possible to compare the results of the Ko-
rean and Chinese datasets. The figures can only be
referred to for observing the differences within the
Korean dataset or Chinese dataset.

Table 4: Performance across different base models
(Results of models fine-tuned with a learning rate
of [Chinese: 3e-6, Korean: 1e-5], batch size of 16,
and epochs of [Chinese and Korean M2M100: 10,
Korean mBART: 6])

The results show that mBART-50 generally
performed better than M2M100 for both Ko-
rean and Chinese datasets. This was consis-
tent with our impression when manually check-
ing the generated definitions.

69

3.2.4 Prompts
We tried several prompt templates. Because
the prompt needs to include both the word
and the context, there are many different ways
to construct the prompt. We tried the follow-
ing prompt templates (for templates in non-
English, the English translation is provided in
brackets):

1. define: <WORD> context: <EXAMPLE>
2. define: <WORD> context: <EXAMPLE> defini-

tion:
3. 词条：<WORD> 例句：<EXAMPLE> 释义：

(word: <WORD> example sentence: <EXAM-
PLE> definition:)

4. <EXAMPLE> <WORD>的含义是什么？
(<EXAMPLE> what’s the meaning of <word>?)

5. 단어：<WORD> 예문：<EXAMPLE> 정의：
(word: <WORD> example sentence: <EXAM-
PLE> definition:)

6. <EXAMPLE> <WORD>의 의미는 무엇입니까?
(<EXAMPLE> what’s the meaning of <word>?)

7. <EXAMPLE>[...<define><WORD></define>...]14
<WORD>:”

Our results show that different prompt tem-
plates have little effect on the performance
of the model, as shown in Table 5. The
differences in performance between different
prompt templates are very small, and some-
times different templates have the same per-
formance. For Chinese, templates 2 and 3 per-
formed almost identically and slightly better
than the other templates, and for Korean, tem-
plate 2 and 6 performed similar and slightly
better than the other templates. Therefore,
we used template 2 as a common template
throughout our tests.

We also tried fine-tuning the model with
one template and generating definitions with
another template, as shown in Table 6. Tem-
plates 2 and 3 are very similar in meaning
(template 3 is a direct translation of template
2 from English to Chinese), we expected the
results would be moderately worse than those
generated with template 2. The results show
that it is indeed the case. Manual check also
reveals that the model can generate some rea-
sonable definitions with template 3. On the
other hand, templates 2 and 4 are very dif-
ferent (different language, different sentence

14Referring to a relevant paper (Bevilacqua et al.,
2020), we marked special tokens before and after words
in examples.

Template R1 R2 RL B B1
Chinese dataset

1 0.368 0.0526 0.3668 - -
2 0.368 0.0551 0.3671 - -
3 0.368 0.0551 0.3671 - -
4 0.368 0.0526 0.3668 - -

Korean dataset
2 0.297 0.115 0.29 0.043 0.369
5 0.294 0.111 0.286 0.036 0.391
6 0.302 0.113 0.293 0.034 0.391
7 0.287 0.097 0.282 0.034 0.356

* The Chinese dataset was fine-tuned without recording
the Bleu scores, so the Bleu scores are not available.

Table 5: Performance of different prompt tem-
plates (Results of models fine-tuned on mBART-50
with a batch size of 16, learning rate of [Chinese:
3e-6, Korean: 1e-5], and epochs of [Chinese: 10,
Korean 2,5,6: 6, Korean 7: 9] on the Chinese and
Korean datasets)

structure, different word order), we expected
the model would perform poorly. The results
show that it is indeed considerably worse than
fine-tuning and generating with the same tem-
plate or fine-tuning with template 2 and gen-
erating with template 3. However, it is still
much better than zero-shot generation of defi-
nitions or generation in another language (lan-
guage shift). Manual check confirms this re-
sult.

F G R1 R2 RL B B1
2 2 0.266 0.024 0.259 0.0 0.312
2 3 0.234 0.020 0.231 0.0 0.192
2 4 0.170 0.005 0.168 0.0 0.129

* F: Fine-tuning template, G: Generation template

Table 6: Fine-tuning with one template and gen-
erating with different templates (Results of mod-
els fine-tuned with mBART-50 on the Chinese
dataset)

3.2.5 Generated Definitions
According to our manual check of the defi-
nitions generated by the trained models, the
models can generate mostly fluent sentences,
and often produce reasonable outputs, but the
texts are not always very exact definitions.
This is well demonstrated by Table 7.

In the first example in Table 7, Although
the generated definition is not the same as the
reference definition, it is still a reasonable def-
inition for the word. To some extent, it is ar-
guably even better than the reference defini-
tion because it does not use the word “mallet”
itself in the definition while the reference defi-

70

nition does.
In contrast, in the second example in Table

7, the generated definition looks like a fluent
sentence and a plausible definition, but it is
not a good definition for the word. The sen-
tence is very general and does not contain the
main characteristics of the word.
Word 槌 (Mallet)
Cxt. 能够 带来 幸福 的 小 槌 吊饰 共有 金白 两

色。(The small mallet pendant that brings
happiness is available in gold and white.)

Def. 以槌子为形象制成的人造物。(An artifact
made in the shape of a mallet.)

Gen. 圆柱形 的 物体。(A cylindrical object.)
Word 槌 (To hit with a mallet)
Cxt. 将 蒜头 跟 辣椒 捣成 半泥 状后 加入 豆子，

并 稍微 槌 豆子，随后 加入 青木瓜 轻轻 槌
几下。(After mashing the garlic and chili
into a semi-mud state, add the beans, and
mash the beans slightly, then add the green
papaya and gently mash a few times.)

Def. 以 棒状 物 或 拳头 敲击 特定 物体。(To hit
a specific object with a stick or fist.)

Gen. 将 特定 物体 放在 特定 位置。(To put a
specific object in a specific location.)

* Cxt: Context, Def: Definition, Gen: Generated defi-
nition

Table 7: Examples of definitions generated by fine-
tuned models

On a different note, the models demon-
strates the ability to generate appropriate def-
initions for the same word form based on the
given context, as shown in Table 8. The two
examples in Table 8 show that when given
the same word forms but different contexts,
the model generated a contextually appropri-
ate definition for each word.

3.3 Language shift
We tried to generate definitions in other lan-
guages using the models fine-tuned in Chinese
and Korean. Since the base model (mBART-
50) is a large multilingual model trained on
multiple languages, we expected it to have
some cross-lingual capabilities. We tried to
generate definitions for Chinese, Korean and
English validation datasets using the models
fine-tuned in Chinese and Korean. We used
the same template as in the previous experi-
ment, and tested with different combinations
of source and target languages during infer-
ence (Chinese, Korean and English).

There were some interesting results. When
we set the language parameters to the lan-
guage of the validation dataset (which was

Word 패다 (To beat)
Cxt. 아이가 사람을 닥치는 대로 패는 게임을 즐겨

해서걱정된다. 그불량배들은사람을이유도
없이 두들겨 패고는 사과조차 하지 않았다.(I
am concerned that the child enjoys playing
a game where they beat people without any
reason. The bullies beat people up for no
reason and didn’t even apologize.)

Def. 마구 때리다.(To hit wildly)
Gen. 사람을 두들겨 괴롭히다. (To torment some-

one by beating them)
Word 패다 (To be dug)
Cxt. 나무에는 딱따구리가 쪼아 놓은 구멍이 패어

있었다. 어제 내린 폭우의 여파로 흙길 여기
저기에물웅덩이가패었다.(There were holes
dug in the tree, which had been pecked by a
woodpecker. Due to the aftermath of yester-
day’s heavy rain, puddles were dug here and
there along the dirt road.)

Def. 구멍이나구덩이가만들어지다.(to be formed
into a hole or pit)

Gen. 흙이나 나무 등에 구멍이 뚫어져 있다.(There
is a hole drilled in soil or wood, etc.)

Table 8: Examples of having the same word form
but generating different definitions depending on
the context

different from the language of the train-
ing dataset), the model performed poorly.
The Rouge and Bleu scores were very low
and human evanluation also showed that the
model could not generate meaningful defini-
tions in target languages. However, when we
set the language parameters to the language
we trained on, we got some meaningful results,
though not always good definitions. Since the
metric scores were low and we think a manual
check would show the pattern of results bet-
ter, we attach some of the generated results as
shown in Tables 9, 10 and 11.

Inference with src lang: zh, tgt lang: zh
word 평행하다 (Be parallel)
cxt 나란히 뻗은 철도에서 기차는 전철과 서로 평

행하며 달렸다. 한강의 유람선은 작은 보트
와 한동안 평행하며 움직였다. (On a side-
by-side railroad, trains ran parallel to each
other. A cruise ship on the Han River trav-
eled parallel to a small boat for some time.)

def 서로 줄지어 나란히 가다.(Go side by side in
a line.)

gen 나란히 움직인다.(Move in parallel.)

Table 9: Example of using a model fine-tuned on
Chinese data to generate definitions for the Korean
validation set

We speculate that if the model can identify
the input language, it generates results in that
language (as seen in Table 9, the Chinese fine-

71

Inference with src lang: ko, tgt lang: ko
word 紫 (Purple)
cxt 肘部、膝盖 的 皮肤 紫 了、肿 了，痛到 心

里，但 她们 摸 一摸、咬着牙 关挺 了 下
来。(The skin on the elbows and knees was
purple and swollen, and it hurt to the heart,
but they touched it and gritted their teeth to
hold on.)

def 形容 比喻 因 瘀血 而 使 皮肤 变成 暗色。(A
metaphor to describe that the skin turns into
a dark color due to blood stasis.)

gen 겉으로드러나게붉은색깔.(Reddish color on
the outside.)

Table 10: Example of using a model fine-tuned on
Korean data to generate definitions for the Chinese
validation set

Inference with src lang: ko, tgt lang: ko
word finish
cxt These rumours could finish your career.
def To put an end to ; to destroy.
gen 어떤 일을 끝내거나 그 일을 끝내게 하는

말.(To finish something, or a word that
makes that thing finished.)

Inference with src lang: ko, tgt lang: en
word sure-fire
cxt That hat should be a sure-fire way to spot

him in a crowd.
def guaranteed to work
gen 믿을 수 있는 가장 확실한 방법.(The most

reliable and certain method)
Inference with src lang: en, tgt lang: ko
word ink
cxt The TSA has been getting a lot of ink lately.
def Publicity.
gen print on paper.

Inference with src lang: en, tgt lang: en
word refocus
cxt to refocus a microscope
def to change the focus of
gen define: refocus context: to refocus.

Table 11: Examples of using a model fine-tuned on
Korean data to generate definitions for the English
dataset. Results using a model fine-tuned on Chi-
nese data showed similar patterns.

tuned model performs better in this regard);
otherwise, it attempts to generate results in
the language set as the source language (see
Table 10 and examples 1, 2 in Table 11). If
the model does not understand the source lan-
guage, it sometimes produces results in a mix-
ture of languages. The mixture of languages
can be part of the reason why the metrics
scores are very low. Since the metric scores are
calculated based on the reference definitions
in the target language, if the generated defi-
nitions are a mixture of languages, the scores
will be low.

On the other hand, we speculate that set-

ting the target language to the language the
model was fine-tuned on facilitates the model’s
ability to generate definitions (see Tables 9,
10, and examples 1, 3 in Table 11). For a
model fine-tuned for Chinese [Korean], if we
set the target language to Chinese [Korean], it
attempts to generate definitions for the input
text (in any language). When we manually
check the generated definitions, we find that
the content is not always bad, even if the lan-
guages are different or mixed. If we just con-
sider the meaning of the content and ignore
the language, some of the generated definitions
are actually acceptable.

There was also a slight difference between
the quality of the generated definitions with
models fine-tuned on Chinese and Korean
data. The model fine-tuned on Chinese data
tended to generate some seemingly fluent
phrases, albeit not definitions, while the model
fine-tuned on Korean data tended to repeat
the input text.

Overall, there is a significant variance in the
quality of definitions generated from language
shifting, but it is difficult to say that the qual-
ity is generally good.

4 Discussion

4.1 Constraints of evaluation metrics
We used the Rouge and Bleu metrics for eval-
uation, but the scores did not always corre-
late precisely with manual checks. Typically,
Bleu, which is precision-oriented, is used in ma-
chine translation, while Rouge, which is recall-
oriented, is used in text summarization. Since
definition modeling is not exactly the same as
these tasks, it may be necessary to explore
more suitable metrics. Furthermore, in our
experiments, the generated results seemed to
produce definitions of a certain quality level,
but not beyond. It may be necessary to find
a more suitable objective function to train a
model for the definition modeling task.

4.2 Differences in language shift
The definitions generated by the fine-tuned
models appear to be hard to derive solely from
the dataset we provided. This suggests that
the language knowledge and representations
from the pre-trained model were utilized in
generating the definitions. Even though large

72

language models are trained on multilingual
data, the volume of each language’s data in the
training set can differ. This can result in the
model’s knowledge about each language vary-
ing across languages. The test results from
language shift imply this. Since the mBART-
50 (Tang et al., 2021) was trained on English-
each language pair datasets, it might possess
the most abundant knowledge about English,
which could be reflected in the fluency of out-
puts in English. It might also be why the
language shifting capability of the model fine-
tuned on Chinese was slightly better than that
of the model fine-tuned on Korean - the size
of the Chinese set in the training data for
mBART-50 was much larger (10M) than that
of the Korean set (0.2M). If multilingual mod-
els aim to achieve more equitable “language
diversity” (August et al., 2022) in the future,
this is something that should be taken into
consideration.

4.3 Limitations and Future work
We observed that we could not apply the same
hyperparameter settings to achieve the best
performance for different datasets. We found
the combination that yielded the best perfor-
mance from several different combinations of
learning rate and epochs, but this cannot be
said to be the best combination. A more ex-
tensive hyperparameter search can lead to im-
proved model performance by finding the op-
timal combination.

We also did not conduct sufficient testing
in relation to the size of the training dataset.
While using a toy dataset of 1000 entries, we
briefly compared the increases in the num-
ber of entries in the dataset and the length
of the example sentences, but this cannot be
said to be a sufficiently comprehensive explo-
ration. Investigating the performance changes
when the dataset’s scale varies and finding the
most efficient dataset size can provide useful
insights for definition modeling, particularly in
low-resource languages.

Additionally, in the context of multilingual
definition modeling, we only tested Chinese
and Korean in this study. In future work, com-
paring and exploring definition modeling re-
sults for languages with various linguistic fea-
tures, considering the size of the data used in
pre-training, could provide more in-depth in-

sights related to definition modeling in multi-
lingual settings, and further, research in NLP
in terms of linguistic diversity.

5 Conclusion

In this study, we explored the possibilities of
definition modeling tasks in Korean and Chi-
nese using pre-trained multilingual language
models. We constructed datasets of 1000 en-
tries each in Korean and Chinese for the def-
inition modeling tasks, and fine-tuned15 the
mBART and M2M models pre-trained on mul-
tilingual data. We compared the performance
of the models in relation to different hyper-
parameters, different datasets, different pre-
trained models, and different prompts. Addi-
tionally, by attempting definition modeling for
other languages using a model fine-tuned for
one language, we explored the potentials re-
lated to language shifting. Our research shows
that it is possible to perform a somewhat plau-
sible definition generation for the respective
language even with fine-tuning using small
datasets. At the same time, our research re-
veals the potential for additional research in
various directions, such as the improvement
of evaluation metrics, performance differences
depending on the language, and the potential
for language shifting, which we leave for future
work.

Acknowledgements

We express our sincere gratitude to the anony-
mous reviewers who provided valuable feed-
back on our paper.

References
Fatemah Almeman and Luis Espinosa Anke. 2022.

Putting WordNet’s dictionary examples in the
context of definition modelling: An empirical
analysis. In Proceedings of the Workshop on
Cognitive Aspects of the Lexicon, pages 42–48,
Taipei, Taiwan. Association for Computational
Linguistics.

Tal August, Katharina Reinecke, and Noah A.
Smith. 2022. Generating scientific definitions
with controllable complexity. In Proceedings of
the 60th Annual Meeting of the Association for
15The models trained in this study can be

downloaded from the Hugging Face model hub:
https://huggingface.co/PoeticPaper/

73

Computational Linguistics (Volume 1: Long Pa-
pers), pages 8298–8317, Dublin, Ireland. Associ-
ation for Computational Linguistics.

Michele Bevilacqua, Marco Maru, and Roberto
Navigli. 2020. Generationary or “how we went
beyond word sense inventories and learned to
gloss”. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Pro-
cessing (EMNLP), pages 7207–7221, Online. As-
sociation for Computational Linguistics.

Hyung Won Chung, Le Hou, Shayne Longpre, Bar-
ret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma,
et al. 2022. Scaling instruction-finetuned lan-
guage models. arXiv preprint arXiv:2210.11416.

Angela Fan, Shruti Bhosale, Holger Schwenk,
Zhiyi Ma, Ahmed El-Kishky, Siddharth Goyal,
Mandeep Baines, Onur Celebi, Guillaume Wen-
zek, Vishrav Chaudhary, Naman Goyal, Tom
Birch, Vitaliy Liptchinsky, Sergey Edunov,
Edouard Grave, Michael Auli, and Armand
Joulin. 2021. Beyond english-centric multilin-
gual machine translation. J. Mach. Learn. Res.,
22(1).

Qinan Fan, Cunliang Kong, Liner Yang, and Er-
hong Yang. 2020. 基于BERT与柱搜索的中
文释义生成(Chinese definition modeling based
on BERT and beam seach). In Proceedings of
the 19th Chinese National Conference on Com-
putational Linguistics, pages 336–348, Haikou,
China. Chinese Information Processing Society
of China.

Artyom Gadetsky, Ilya Yakubovskiy, and Dmitry
Vetrov. 2018. Conditional generators of words
definitions. In Proceedings of the 56th Annual
Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pages
266–271, Melbourne, Australia. Association for
Computational Linguistics.

Noah Gardner, Hafiz Khan, and Chih-Cheng
Hung. 2022. Definition modeling: literature re-
view and dataset analysis. Applied Computing
and Intelligence, 2(1):83–98.

Cunliang Kong, Yun Chen, Hengyuan Zhang,
Liner Yang, and Erhong Yang. 2022. Multi-
tasking framework for unsupervised simple def-
inition generation. In Proceedings of the 60th
Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers),
pages 5934–5943, Dublin, Ireland. Association
for Computational Linguistics.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer.
2020. BART: Denoising sequence-to-sequence
pre-training for natural language generation,
translation, and comprehension. In Proceedings

of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 7871–7880,
Online. Association for Computational Linguis-
tics.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summa-
rization Branches Out, pages 74–81, Barcelona,
Spain. Association for Computational Linguis-
tics.

Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li,
Sergey Edunov, Marjan Ghazvininejad, Mike
Lewis, and Luke Zettlemoyer. 2020. Multilin-
gual denoising pre-training for neural machine
translation. Transactions of the Association for
Computational Linguistics, 8:726–742.

Timothee Mickus, Denis Paperno, and Matthieu
Constant. 2019. Mark my word: A sequence-to-
sequence approach to definition modeling. In
Proceedings of the First NLPL Workshop on
Deep Learning for Natural Language Processing,
pages 1–11, Turku, Finland. Linköping Univer-
sity Electronic Press.

Thanapon Noraset, Chen Liang, Larry Birnbaum,
and Doug Downey. 2017. Definition modeling:
Learning to define word embeddings in natural
language. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, volume 31.

Kishore Papineni, Salim Roukos, Todd Ward, and
Wei-Jing Zhu. 2002. Bleu: a method for auto-
matic evaluation of machine translation. In Pro-
ceedings of the 40th Annual Meeting of the As-
sociation for Computational Linguistics, pages
311–318, Philadelphia, Pennsylvania, USA. As-
sociation for Computational Linguistics.

Colin Raffel, Noam Shazeer, Adam Roberts,
Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J Liu. 2020. Ex-
ploring the limits of transfer learning with a uni-
fied text-to-text transformer. The Journal of
Machine Learning Research, 21(1):5485–5551.

Machel Reid, Edison Marrese-Taylor, and Yu-
taka Matsuo. 2020. VCDM: Leveraging
Variational bi-encoding and Deep contextu-
alized Word Representations for Improved
Definition Modeling. In Proceedings of the
2020 Conference on Empirical Methods in Natu-
ral Language Processing (EMNLP), pages 6331–
6344, Online. Association for Computational
Linguistics.

Victor Sanh, Albert Webson, Colin Raffel,
Stephen H. Bach, Lintang Sutawika, Zaid
Alyafeai, Antoine Chaffin, Arnaud Stiegler,
Teven Le Scao, Arun Raja, Manan Dey,
M Saiful Bari, Canwen Xu, Urmish Thakker,
Shanya Sharma Sharma, Eliza Szczechla, Tae-
woon Kim, Gunjan Chhablani, Nihal Nayak, De-
bajyoti Datta, Jonathan Chang, Mike Tian-Jian

74

Jiang, Han Wang, Matteo Manica, Sheng Shen,
Zheng Xin Yong, Harshit Pandey, Rachel Baw-
den, Thomas Wang, Trishala Neeraj, Jos Rozen,
Abheesht Sharma, Andrea Santilli, Thibault
Fevry, Jason Alan Fries, Ryan Teehan, Tali
Bers, Stella Biderman, Leo Gao, Thomas Wolf,
and Alexander M. Rush. 2022. Multitask
prompted training enables zero-shot task gener-
alization.

Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen,
Naman Goyal, Vishrav Chaudhary, Jiatao Gu,
and Angela Fan. 2021. Multilingual transla-
tion from denoising pre-training. In Findings
of the Association for Computational Linguis-
tics: ACL-IJCNLP 2021, pages 3450–3466, On-
line. Association for Computational Linguistics.

Linting Xue, Aditya Barua, Noah Constant, Rami
Al-Rfou, Sharan Narang, Mihir Kale, Adam
Roberts, and Colin Raffel. 2022. ByT5: To-
wards a token-free future with pre-trained byte-
to-byte models. Transactions of the Association
for Computational Linguistics, 10:291–306.

Linting Xue, Noah Constant, Adam Roberts, Mihir
Kale, Rami Al-Rfou, Aditya Siddhant, Aditya
Barua, and Colin Raffel. 2021. mT5: A
massively multilingual pre-trained text-to-text
transformer. In Proceedings of the 2021 Con-
ference of the North American Chapter of the
Association for Computational Linguistics: Hu-
man Language Technologies, pages 483–498, On-
line. Association for Computational Linguistics.

Hua Zheng, Damai Dai, Lei Li, Tianyu Liu, Zhi-
fang Sui, Baobao Chang, and Yang Liu. 2021.
Decompose, fuse and generate: A formation-
informed method for Chinese definition gener-
ation. In Proceedings of the 2021 Conference
of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Lan-
guage Technologies, pages 5524–5531, Online.
Association for Computational Linguistics.

75

76

Make Less Become More
Explore Practical Approach to Nor-EN Machine Translation

Jie Bian
University of Oslo

jiebi@ifi.uio.no

Abstract
Neural Machine Translation (NMT) models are
gaining popularity largely due to their direct
application in everyday life. However, deploy-
ing these models in real-world scenarios in-
volves significant resource requirements from,
e.g. computational complexity, latency chal-
lenges, caching strategies, etc. In this study,
we start with a transformer-based model and
explore how it can be tailored for Norwegian-
English translation in practice. Our goal is to
identify solutions to alleviate the practical prob-
lems of applying NMT systems to devices with
limited computational resources, such as smart-
phones, and to ensure the robustness of the
model’s performance to unseen data. We con-
clude that several compression techniques are
worthy of further investigation based on a series
of examinations of hypotheses and experimen-
tal results.

1 Introduction

A common practice in Natural Language Process-
ing (NLP) typically refers to fine-tuning a pre-
trained language model (such as BERT Devlin et al.
(2019), RoBERTa Delobelle et al. (2020) or GPT
Brown et al. (2020)) on a downstream task like
sentiment analysis, question answering, text classi-
fication, etc. The pre-training step helps the model
learn general representations of words and phrases
across multiple tasks, while fine-tuning allows it
to specialize in one particular task. This combina-
tion results in a greatly improved performance and
becomes a common approach nowadays.

However, we do not involve any pre-trained lan-
guage model in this study. We let the model learn
word representation and generate text, i.e., machine
translation at the same time. The reason is that we
try to explore practicality, with less resourceful
data and limited computing resource. To be spe-
cific, we play with a small dataset and start from
pre-training, since fine-tuning a language model on
a small size dataset can be computationally more

expensive compared to pre-training a small dataset.
A language model like BERT base has more than
100 million parameters. Fine-tuning it requires stor-
ing and processing those parameters that is com-
putationally expensive and time-consuming, and
loading the model into memory during training
can be memory intensive. On the other hand, pre-
training a small dataset involves training a model
from scratch on a smaller amount of data. While
the computational requirements may still exist, they
are typically lower compared to fine-tuning a lan-
guage model.

Another phenomenon with recent NLP is the
dramatic increase in the size of language models,
e.g., LLaMA Touvron et al. (2023) exceeds the
impressive GPT-3 (175 billion) on most evalua-
tion benchmarks, not to mention the latest GPT4
Koubaa (2023). As GPUs struggle to handle the
increasing model sizes and massive data, TPUs
emerge as a prominent alternative.

However, a large language model is not always
necessary, as smaller models can deliver compara-
ble performance. It is realistic and desirable to have
models that are not only efficient but also practical
in terms of scale and resource requirements. Hence,
we define the practicality of a machine translation
model by its features of being compact in size and
exhibiting efficient inference time. We set a generic
practice configuration model as a baseline and then
apply compression to suggest helpful solutions or
directions. We explore various possibilities and
then evaluate their impact on practicality.

Another aspect worth mentioning here is that we
do not attempt to catch up with existing state-of-art
models in terms of performance metrics such as the
BLEU score. Instead, our objective is to explore the
reduction of model size while maintaining equal
or better performance. Consequently, this study
serves as a valuable indication for future research
on the practicality of machine translation models
and opens avenues for further investigation.

77

2 Dataset

We use the dataset provided, including the govern-
ment corpus, crawled from two sources 1 2, sub-
titles corpus 3, and book corpus 4. Additionally,
we download from Helsinki NLP5 to construct our
DIY test dataset for the final evaluation. The down-
loaded dataset consists of 5000 pairs of Norwegian
sentences, with an average length of 6.76, and their
corresponding English translation sentences, with
an average length of 6.90, similar to the subtitles
numerically, as Table 1 shows:

Data Train Dev no len. en len.
Gov. 50, 000 2,500 13.85 16.81
Sub. 250,000 2,500 6.16 6.76
Bok. - 2,500 13.53 13.83

Test
DIY - 5,000 6.70 6.90

Table 1: Dataset Statistics

3 Architecture

The Transformer Vaswani et al. (2017) consists
of a stack of identical encoder and decoder layers.
Each layer consists of a multi-head self-attention
followed by feed-forward neural networks. The
self-attention in the encoder is used to capture the
dependencies between the words in the input sen-
tence, while the self-attention in the decoder is used
to capture the dependencies between the words in
the output sentence generated and a cross attention
which allows the decoder to attend to different parts
of the encoder’s output while generating the output
sequence.

3.1 Baseline

Our baseline employs the typical transformer with
default settings. Other configuratioins include:

Vocabulary size refers to the number of unique
words or tokens present in a given text collection
or dataset. We train the tokenizer with hard-coded

1http://data.europa.eu/88u/dataset/
elrc_1061

2https://www.nb.no/sprakbanken/
en/resource-catalogue/
oai-clarino-uib-no-parallel-nob

3https://opus.nlpl.eu/
OpenSubtitles-v2018.php

4https://farkastranslations.com/
bilingual_books.php

5https://github.com/Helsinki-NLP/
Tatoeba-Challenge

vocabulary size. In our task, we have a subset of
the original data, and we are trying to construct for
two languages, English and Norwegian, we set the
size to 10K rather than a common 30K.

Embedding Dimension defines the dimension
of the input of the token embedding fed into the
model. Common values range from 512 to 1024
dimensions, with larger sizes generally resulting
in better performance at the expense of increased
computation. Out of the same concern, we choose
a lower embedding value of 256 for the dataset of
this task.

For the sake of training time, we skip the step
of searching for the optimal vocabulary size and
embedding size, since our main focus is on the
model size and inference time.

As requested, we train the model on three differ-
ent datasets, and then we choose the best among
all datasets as the baseline.

3.2 Parameter Sharing (PS)

Parameter sharing is a regularization technique
used during the training phase to reduce the num-
ber of trainable parameters in a model, thereby
speeding up training convergence and improving
generalization. During inference, the parameters of
the model are fixed and used to make predictions
on new data, and parameter sharing by itself does
not help reduce inference time at this stage.

However, parameter sharing can indirectly af-
fect inference time by reducing the overall model
size. Smaller models require less memory and
can be loaded faster, which potentially speeds
up inference. Furthermore, sharing parameters
among model components can reduce memory foot-
print and computational overhead during inference,
which may improve inference speed.

We specifically examine whether parameter shar-
ing can effectively reduce the time required for
inference, by checking the inference time of mod-
els with and without parameter sharing, we aim to
determine if this technique provides any noticeable
improvements in terms of computational efficiency
during the inference phase.

In our default setting for the machine translation
task, we’ve shared embeddings layer and output
layer, which refer to using the same word embed-
dings for both source and target languages. By
sharing embeddings, we control the total mount
of parameters within the boundary of 10M, and
the model can exploit the similarity between the

78

source and target languages, improve the efficiency
of the model, and make it more robust to changes
to variations in the training data.

Further, guided by previous studies on parame-
ter sharing, we try to apply it to parts of the trans-
former. There are different strategies. In Sachan
and Neubig (2018), the authors propose a method
for learning a joint representation of sentences in
multiple languages using shared word embeddings
and a shared encoder-decoder model, and they
show that their approach can improve translation
performance for low-resource languages, and sim-
ilar approach in Nayak and Ng (2020). Inspired
by them, we try to share the self-attention layer
between the two components, encoder and decoder,
to explore the potential information transfer and
its impact on enhancing the model’s generalization
capability.

Another strategy we try is that we keep the en-
coder unchanged and prioritize modifications in the
decoder by introducing layer sharing and param-
eter sharing across all layers. We wonder if there
is a significant difference between different layers
within the decoder, and we expect an equal or loss
of power or expressiveness since the decoder may
or may not be able to learn the different features
and patterns of the target language and struggle to
generate fluent and accurate translations for com-
plex sentences or difficult translations.

Here are the three variants of our NMT models.

• Baseline: No PS for either Encoder or De-
coder.

• PS between Encoder and Decoder: We share
the self-attention layer between Encoder and
Decoder.

• PS within Decoder: We share the parameters
among all layers within the Decoder.

3.3 Number of Encoder/Decoder Layers
The standard transformer architecture utilizes 6 en-
coder and decoder layers, but variations exist with
up to 12 layers or fewer. More layers lead to a
deeper understanding of context but increase com-
putational requirements. Fewer layers most likely
result in under-fitted models or slower convergence
during training.

Kong et al. (2021) pointed out that for bilin-
gual translation, using a deep encoder and shal-
low decoder (DESD) can reduce inference latency
while maintaining translation quality. They further

suggest using a multi-decoder architecture called
Deep Encoder with Multiple Shallow Decoders
(DEMSD), where each shallow decoder handles a
non-overlapping part of the target languages. The
DEMSD variant achieved a significant improve-
ment in computation time, almost twice faster, with-
out sacrificing translation quality, compared to tra-
ditional Transformer architectures.

Drawing inspiration from this, we adapt the ap-
proach to suit our specific scenario. We introduce
an asymmetric architecture by adding more layers
to the encoder and reducing an equal number of
layers from the decoder. This design choice is mo-
tivated by the fact that constructing the decoder is
computationally more expensive than the encoder,
primarily because the decoder incorporates both
self-attention and cross-attention mechanisms. By
"strengthening" the encoder and "weakening" the
decoder, we aim to achieve a more efficient model
while reducing the overall size. This design helps
balance computational resources and optimize the
trade-off between model complexity and perfor-
mance.

We explore three different setups as follows:

• Baseline: 6 layers for both Encoder and De-
coder

• Balanced minus: 4 layers for both Encoder
and Decoder

• Unbalanced: Deep (9, increase half) Encoder
and Shallow (3, reduce half) Decoder

3.4 Pruning

Pruning is used to simplify large neural networks
while preserving their performance, making them
easier to interpret, store, and deploy. The goal of
pruning is to remove redundant neurons or con-
nections that don’t contribute significantly to the
model’s predictions, thereby reducing computa-
tional complexity and energy consumption. See
et al. (2016) shows the benefits of pruned models
of an encoder-decoder sequential model, including
reduced model sizes, accelerated inference speeds,
and a lower risk of overfitting due to regularization
effects.

Unlike dimensionality derivation in feature en-
gineering, pruning targets weight sparsification
to minimize the size of unimportant connections
while retaining only essential information to main-
tain the desired level of predictive power.

79

3.4.1 Embedding and Final Classification
Word Embedding Compression aims to reduce the
memory footprint of word embeddings without
compromising their semantic information. It uti-
lizes various methods such as quantization, cluster-
ing, or dimensionality reduction Kim et al. (2020)
to achieve a more compact representation of word
embeddings. However, pruning doesn’t change
the model structure so it’s not meant to reduce the
number of parameters, but to zero them out to save
computation. We apply the pruning to the final
classification layer (FC), as well as the embedding
layer since they are sharing the parameters, we set
it to 50% to see if weight elimination will result in
better performance.

• Baseline: no pruning

• Pruning on Embedding and FC layer, up to
50%, we simply prunes random parameters.

3.4.2 Key, Query, Value
It’s easy to think of applying pruning to the key,
query, and value linear transformations as it can
significantly reduce the corresponding computation
of the self-attention and cross-attention and lead to
lower memory requirements. This is particularly
useful in scenarios where memory is a limiting
factor, such as on mobile devices or in real-time
applications. In later sections, we use pruned atten-
tion to refer to pruning keys, queries and values.

• Baseline: no pruning

• Pruning on Key, Query, Value: magnitude
pruning, 50% components with the lowest L1
norm get masked

3.4.3 Attention Heads
Each layer within the encoder uses multi-head
self-attention, and each layer within the decoder
uses multi-head masked self-attention and cross-
attention where each head refers to a specific way
of computing attention weights. Typically, trans-
formers have 8-12 heads per layer. The capacity
of capturing global dependencies among tokens is
affected when there are either too few or too many
heads.

Voita et al. (2019) discovered that, that even
after training models normally (with all heads),
many heads can be removed at a test time, and
it will not significantly affect the BLEU score, in
fact, in some cases removing a few heads led to

improving BLEU scores. We plan to employ a
similar approach to estimate the importantness of
all the heads during training, and eliminate non-
essential heads in order to reduce processing time.

We devise an "attention" learning on the heads:

• Baseline: 8 heads

• Half size: it is not pruning but for comparison
the effect of reducing the heads.

• Prune the heads: We aim to keep the important
ones and zero out the least important ones for
all layers.

We do not apply the complex way as Voita et al.
(2019) suggested, instead, we approximate it by
introducing additional parameters to assign weights
to all heads, which only adds a very small amount
of parameters, 144 to learn, then use the softmax
weight to measure the weight of the heads. Ideally,
we expect the weight of certain heads to be close
to zero by the end of training. In this way, we
can prune the least important attention heads to
improve prediction speed.

4 Hypothesis

We posit that our baseline model, in its original
structure, exhibits basic performance with the de-
fault parameter settings. Based on that, we explore
multiple model compression techniques. We hy-
pothesize that at least one of these configurations
will surpass the baseline model, either by reduc-
ing the overall model size, or by improving the
efficiency of inference, or achieving both of these
objectives simultaneously.

5 Experiment and Result

We train for limited steps for all the settings, around
50K (10 epochs), and we use a greedy search to
compute the BLEU score at the end of each epoch
for all the validation datasets, including the govern-
ment, the subtitles, and the book. Under our setting,
it takes around 1-2 hrs for one complete round. We
change one condition at a time e.g., layers, and
freeze the rest of the settings, for a fair comparison.
We report the overall performances in Table 2.

We observe a consistent trend of performance
improvement as the number of steps increases for
all the validation dataset. The highest performance
is typically attained in the last epoch, although
there are occasional instances where the peak per-
formance occurs in the previous epoch. Notably,

80

during the last two epochs, we observe a flattening
of the growth trend, indicating that further training
beyond this point may yield diminishing returns
in terms of performance improvement. In cases
where the peak performance does not align across
all three validation datasets, e.g. with the "book"
dataset showing the best performance at the 9th
epoch while the other two datasets reach their peak
at the 10th epoch, we prioritize the "book" dataset
as it represents an "out-of-domain" and real-world
scenario, thereby demonstrating the model’s gener-
alizability. However, the overall impact is negligi-
ble since the differences in performance across the
last two epochs are minimal.

It is also important to note that we present the
figures starting from 30K steps til 50K steps to
emphasize the differences between the various set-
tings. However, when examining the results on
a global scale, the discrepancies between the set-
tings become less pronounced, with a maximum
difference of around 2 BLEU scores. We set the
acceptable tolerance of a decrease in BLEU score
to be less than 1. Ultimately, it is crucial to con-
sider the overall impact and practical implications
when making decisions regarding model size and
performance. The execution code can be found
through Github 6.

5.1 Different Training dataset
We trained the baseline models with different train-
ing datasets:

• train on the government data

• train on the subtitles

• train on the combined dataset

Not surprisingly, the combined dataset achieve the
best results, in terms of BLEU score among all
the validation datasets. The model trained on the
government dataset shows limited effectiveness on
datasets other than its own, similarly, the model
trained on subtitles is primarily suitable for the
subtitles dataset itself. This suggests that the gov-
ernment dataset, while high-quality, lacks robust-
ness when applied to real-world scenarios. On
the other hand, subtitles may contain inaccuracies
and noise since they are not thoroughly verified.
Consequently, models trained on either dataset
demonstrate less robustness when handling "out-
of-domain" data.

6https://github.uio.no/jiebi/NMT

5.2 Parameter Sharing

Unexpectedly, we find that sharing all the layers
within the decoder yields comparable performance
to our baseline model, and in fact, it even slightly,
by 1e-1, outperforms the baseline on the "book"
dataset, as shown in Figure 1. This observation sug-
gests that there may not be a significant difference
within individual layers from the decoder. How-
ever, further investigation is needed to understand
the underlying reasons behind it.

When sharing between the encoder and decoder,
there is a decrease of approximately 1 BLEU score
across the board. This indicates that the encoder
and decoder have distinct roles and specialized
functions that are not easily interchangeable. While
information transfer between them is possible, it
appears to have a light negative impact on overall
performance.

It seems that having idenetial layers within the
decoder emerges as the optimal choice because
it shows robustness on the "book" and meets our
tolerance threshold. However, sharing between
encoder and decoder can also be considered as a
viable alternative since it closely aligns with the
baseline model.

5.3 Number of Layers

The unbalanced architecture of the transformer en-
coder and decoder model demonstrates its com-
patibility with our baseline, and it even exhibits
a slight performance advantage over the baseline
on the "book" dataset, as shown in Figure 2. This
finding suggests that having a deeper encoder and a
shallower decoder can potentially enhance certain
aspects of the model’s capabilities, such as captur-
ing and encoding information more effectively.

Despite the potential benefits of reducing the
number of layers, such as decreased model size
and inference time, we observed a drop of 1.67
BLEU Score. This decrease exceeds our predefined
tolerance threshold, making it unsuitable for our in-
tended purposes. Although the reduction in model
complexity and inference time is desirable, the re-
sulting loss in translation quality outweighs these
advantages. As a result, we have opted against
this approach to ensure that our models maintain a
satisfactory level of performance.

5.4 Number of Heads

The investigation into the number of heads has
yielded intriguing results. It appears that the num-

81

Figure 1: Parameter Sharing

ber of heads has no discernible impact on the per-
formance of the model when evaluated on the gov-
ernment and subtitle datasets, as depicted in Figure
3, regardless of whether 8 or 4 heads are utilized.
However, when pruning-head is applied, there is
a light decrease in effectiveness across all cases.
Furthermore, the performance of the model using
only half the number of heads aligns closely with
the performance observed when pruning heads on
the "book" dataset.

Upon pruning heads, we observed a decrease
of up to 2 BLEU score, more than our predefined
tolerance threshold. This reduction in performance
indicates that pruning heads negatively impacts the
translation quality of our models. On the other
hand, using half-heads yields results that closely
aligned with the baseline performance on the gov-
ernment and subtitles datasets, with only a slight

Figure 2: Number of Layers

decrease in the book dataset, within our tolerance
range. It also hints that the effectiveness of half-
heads may vary depending on the specific dataset.

5.5 Pruning

Prunings fall slightly behind the baseline in terms
of performance, albeit by a narrow margin. When
considering the out-of-domain dataset "book",
pruning embedding becomes nearly comparable
to that of the baseline model. Overall, the varia-
tion in the BLEU score among schemes of pruning
embedding is minimal, pruning attention is lightly
over our threshold. Trimming the head, like dis-
cussed in Section 5.4 reduces the BLEU score of
the government dataset by 2.

Here comes a question with the hidden size ini-
tialization. It may seem intuitive to start with a
smaller embedding size to achieve model compres-

82

Figure 3: Number of Heads

sion, but it’s also essential to consider the trade-off
between model size and representation capacity.
A smaller embedding size can indeed reduce the
model’s overall size, but it may also limit its ability
to capture and encode the rich semantic and syn-
tactic information present in the input data. Con-
sidering that we only cover a subset of the original
dataset in this study, it is wise to keep the initial
embedding dimension and prune it later.

5.6 Final Evaluation

We evaluate our models using our DIY dataset and
measure their inference time in the CPUs on fox,
simulating non-parallel resource devices. We per-
form this evaluation on all best checkpoints ob-
tained from different settings. By recording the
inference time, we evaluate the computational effi-
ciency of the model and compare the performance

Figure 4: Different Pruning Schemes

of different configurations. This analysis provides
insights into the real-world performance of our
model and its suitability for deployment on devices
with limited computational resources.

The obtained BLEU score on DIY is higher than
the score on the validation datasets, which could be
attributed to several factors. Firstly, it is possible
that the content of the custom test dataset over-
laps to a significant extent with the data used for
training the model. This overlap in content allows
the model to leverage its learned knowledge and
patterns effectively, leading to better translation
performance. Second, it could also be attributed
to the utilization of beam search during decoding.
Lastly, it can also suggest that the model exhibits
a certain degree of generalization and is capable
of generating translations that align well with the
reference translations in the test dataset.

83

NO. Model Size Train Infer BLEU Acc.
Combined GPU CPU Gov. Sub. Bok. DIY

1 Baseline (668) 10,477,464 453.46 2506.99 33.73 26.47 13.22 38.29 -
2 SP in Dec. 6,523,830 451.97 2342.42 33.29 26.51 13.63 38.31 Y
3 Share between ED 8,904,600 446.23 2420.02 32.54 25.79 13.05 37.13 M
4 DESD (938) 9,686,400 407.79 1248.21 32.75 26.36 13.56 37.52 Y
5 prune embed 10,477,464 450.43 2369.10 32.95 25.95 13.24 37.55 Y
6 prune atten. 10,477,464 460.04 2222.64 32.61 25.97 12.80 37.78 M
7 prune heads 10,477,608 510.98 2481.42 31.57 25.06 12.82 36.63 N
8 Half Hds (664) 10,477,392 437.17 2101.66 33.59 26.60 12.80 38.88 Y
9 Half Lyrs (448) 7,841,984 326.43 1572.67 32.06 25.17 12.23 36.33 N
10 Half Lyrs & Hds (444) 7,841,936 316.36 1526.15 31.71 25.13 11.99 36.48 N

Baseline with Sub. 10,477,464 303.97 - 6.05 25.77 10.92 - -
Baseline with Gov. 10,477,464 110.35 - 24.65 3.83 3.02 - -

Table 2: The overall performance

We attach a column called "Acc." short for
"Acceptance" to stands our model choices regard-
ing their performance and efficiency upon all the
datasets, mainly by the model size, performance in
terms of BLEU score, and inference time for the
Custom Dataset as reference only. In this context,
"Y", short for YES, represents a preference choice,
"M", short for "Medium" signifies a hesitant or un-
certain choice, and "N", short for NO, indicates a
denial or rejection choice, we rank the choices by
our pre-defined threshold and all the validation and
test datasets.

5.7 Inference Time

Theoretically, a model with a smaller size is ex-
pected to exhibit a lower inference time compared
to our baseline model. However, it is important
to note that reported inference times are indicative
only and may vary due to various factors. These
factors may include the presence of other concur-
rent tasks running on the CPU or the availability
of system resources. Specifically, we have per-
formed inference using all the models in parallel on
a single computing node, where multiple tasks are
competing each other for resources, consequently
all jobs takes longer time to complete. Addition-
ally, we have conducted sequential inference, one
by one within one slurm file, where they are con-
ducted within one computing nodes one after an-
other, while it takes long to finish all tasks. We’ve
also tried to submit jobs individually where tasks
may be allocated to different computing nodes such
as "C1-5" and "C1-17," alongside running tasks
from others (their tasks have been allocated to the

same computing nodes). We report the recorded
inference time by the way of sequential execution
in same computing nodes, and it meets our ex-
pectation: all the compressed model consume less
time than the baseline. Nevertheless due to these
variable conditions, it is challenging to provide
an accurate and objective estimate of the speed or
slowness under different model settings. The ac-
tual inference times may vary and are difficult to
predict precisely.

6 Conclusion

In this study, we have undertaken several adapta-
tions of the baseline model, focusing on the practi-
cal aspects. Among the various modifications, we
have observed that several compressed models are
favorable, including model 2,4,5,8. If we relax our
threshold, model 3,6 are also viable solutions.

It is essential to acknowledge the limitations of
our study. We have not undertaken a comprehen-
sive and exhaustive exploration encompassing all
potential configurations. Instead, we have deliber-
ately chosen an extreme scenario, specifically prun-
ing 50% of the parameters, to evaluate its impact
on the model’s output to a certain extent. More-
over, it is worth noting that experimental results
can exhibit inherent randomness. To mitigate this,
we have taken measures to control the randomness
by setting a seed to ensure consistent results across
experiments.

Considering the results obtained from pruning,
there exists an opportunity to delve deeper into
exploring various pruning schemes, e.g. pruning
timing, throughout the whole training, in the early

84

stages, or while the training is close to converge
Behnke and Heafield (2021). Additionally, explor-
ing alternative attention mechanisms that are less
computationally intensive, such as sparse attention
Kitaev et al. (2020), linear attention Wang et al.
(2020), or a combination of local and global atten-
tion Beltagy et al. (2020), holds promise. While
these aspects were not specifically addressed in our
study, since it is not worth exploring them in the
context of short text data, where it typically im-
poses less computational burden. However, these
directions offer significant potential for enhancing
the practicality and efficiency of machine trans-
lation models when it handles long text, such an
article, a whole book or an archive.

References
Maximiliana Behnke and Kenneth Heafield. 2021. Prun-

ing neural machine translation for speed using group
lasso. In Proceedings of the sixth conference on ma-
chine translation, pages 1074–1086.

Iz Beltagy, Matthew E Peters, and Arman Cohan. 2020.
Longformer: The long-document transformer. arXiv
preprint arXiv:2004.05150.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877–1901. Curran Associates,
Inc.

Pieter Delobelle, Thomas Winters, and Bettina Berendt.
2020. RobBERT: a Dutch RoBERTa-based Lan-
guage Model. In Findings of the Association for
Computational Linguistics: EMNLP 2020, pages
3255–3265, Online. Association for Computational
Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Yeachan Kim, Kang-Min Kim, and SangKeun Lee.
2020. Adaptive compression of word embeddings.

In Proceedings of the 58th Annual Meeting of the As-
sociation for Computational Linguistics, pages 3950–
3959, Online. Association for Computational Lin-
guistics.

Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya.
2020. Reformer: The efficient transformer. arXiv
preprint arXiv:2001.04451.

Xiang Kong, Adithya Renduchintala, James Cross,
Yuqing Tang, Jiatao Gu, and Xian Li. 2021. Mul-
tilingual neural machine translation with deep en-
coder and multiple shallow decoders. In Proceedings
of the 16th Conference of the European Chapter of
the Association for Computational Linguistics: Main
Volume, pages 1613–1624, Online. Association for
Computational Linguistics.

Anis Koubaa. 2023. Gpt-4 vs. gpt-3.5: A concise show-
down.

Tapas Nayak and Hwee Tou Ng. 2020. Effective mod-
eling of encoder-decoder architecture for joint en-
tity and relation extraction. In Proceedings of the
AAAI conference on artificial intelligence, volume 34,
pages 8528–8535.

Devendra Sachan and Graham Neubig. 2018. Parame-
ter sharing methods for multilingual self-attentional
translation models. In Proceedings of the Third Con-
ference on Machine Translation: Research Papers,
pages 261–271, Brussels, Belgium. Association for
Computational Linguistics.

Abigail See, Minh-Thang Luong, and Christopher D.
Manning. 2016. Compression of neural machine
translation models via pruning. In Proceedings of the
20th SIGNLL Conference on Computational Natu-
ral Language Learning, pages 291–301, Berlin, Ger-
many. Association for Computational Linguistics.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Elena Voita, David Talbot, Fedor Moiseev, Rico Sen-
nrich, and Ivan Titov. 2019. Analyzing multi-head
self-attention: Specialized heads do the heavy lift-
ing, the rest can be pruned. In Proceedings of the
57th Annual Meeting of the Association for Computa-
tional Linguistics, pages 5797–5808, Florence, Italy.
Association for Computational Linguistics.

Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang,
and Hao Ma. 2020. Linformer: Self-attention with
linear complexity. arXiv preprint arXiv:2006.04768.

85

86

Leveraging monolingual encoders and decoders to perform Neural
Machine Translation

Lucas Georges Gabriel Charpentier
University of Oslo, Language Technology Group

lgcharpe@ifi.uio.no

Abstract

Given the difficulty of obtaining a large, high-
quality parallel database, we want to create a
model capable of achieving good translations
with a limited amount of data of mixed qual-
ity. To this effect, we propose to exploit mono-
lingual models’ high performance to create a
translation model. Our results show that we
can achieve good performances, that still un-
derachieve the state-of-the-art but require 30x
less data and 60x less time to train. We also
show that fine-tuning every part of the com-
bined encoder-decoder model is not necessarily
useful and that even training the bare minimum
(only the cross-attentions) can lead to decent
translation models. The code can be found on
github1.

1 Introduction

Great strides have been made in neural machine
translation since the introduction of the Trans-
former (Vaswani et al., 2017). We now have auto-
mated translations that sound plausible to the point
where we can use them to automatically translate
websites. However, to achieve these results we gen-
erally need large amounts of parallel data which
can be hard to come by.

In general, these large datasets have to be cre-
ated manually and take a lot of human resources
and time. In the cases where we try to automate
the alignment of a source to a target language, we
can end up with datasets of low quality. Which
when used to train models, can lead to models that
incorrectly translate or are incoherent.

On the other hand, getting monolingual data is
much simpler. We can extract text from Wikipedia2

using their archival database or scrap from websites
(with permission from the website’s author(s)). To
then train models to either generate text or pro-
vide language representations (at inference time),

1link provided with final submission
2https://en.wikipedia.org

we can use techniques such as Masked Language
Modeling (Devlin et al., 2018) or causal language
modelling. Since we can obtain more monolingual
data, we can train better monolingual encoders,
decoders, or encoder-decoder models.

In this paper, we propose combining a pre-
trained monolingual encoder with a pre-trained
monolingual decoder. We want to leverage the
high performance in language representation and
text generation of each model to create a good
translation model when only a moderate amount of
medium-quality data is available.

2 Background

Most neural machine translation models are based
on the encoder-decoder structure where the en-
coder models the sense of the source text to trans-
late while the decoder generates the translation
based on the encoder’s modelling. Since the Trans-
former (Vaswani et al., 2017) all modern and high-
performing models use parallel attention rather
than sequential attention which was the case in
RNNs.

Even though using encoder-decoder models can
model language, generate text or do translations,
they are not necessarily the best when it comes to
specific tasks. Also, by being trained for transla-
tion, it was not evident how to fine-tune them to
perform another NLP task (such as NER). This is
where the GPT models (Radford et al., 2018, 2019;
Brown et al., 2020) came in. Instead of having
both an encoder and decoder, one could just train a
decoder using causal masking. This led to models
that could be fine-tuned for a wide variety of NLP
tasks and models that were good at text generation,
whereas GPT models have shown to be proficient
at generating coherent and correct text. This is
further exemplified by the recent wide adoption of
ChatGPT, a model based on the GPT architecture.

However, by going to a decoder-only model with
causal masking, the model lost its bi-directionality

87

which made it good at solving tasks like senti-
ment analysis. Therefore, the authors in Devlin
et al. (2018) decided to use the encoder from the
Transformer rather than the decoder. This led to
the creation of BERT, a bi-directional encoder-
only model, which outperformed GPT in morpho-
syntactic tasks such as NER or POS-tagging, senti-
ment analysis, and more where leveraging tokens
both before and after the considered token could
be useful.

3 Related Works

Other papers have thought of using pre-trained
encoders or decoders to train a neural machine
translation model. In Imamura and Sumita (2019),
the authors use a pre-trained BERT as the encoder
while training the decoder from scratch. They show
that doing this does lead to better BLEU scores
and potentially better translations. While we also
use a pre-trained BERT as encoder, we also use a
pre-trained decoder (GPT2) instead of training a
decoder from scratch. This will reduce the total
amount of training needed, since we do not need to
start by pre-training the decoder.

In Weng et al. (2020), they test various different
combinations of using a BERT and GPT model as
either encoder or decoder. They also propose a
new framework called APT which adds either a dy-
namic fusion mechanism or knowledge distillation
or both to the pre-trained encoder and pre-trained
decoder. They show that using a pre-trained en-
coder as an encoder and a pre-trained decoder as a
decoder can lead to better results, especially when
combined with the APT framework. While they
do use pre-trained encoders and decoders, they pre-
train them themselves using, for two of the three
languages considered, data from the same source as
the translation data. Instead of using a monolingual
embedding, they use multilingual embeddings to
pre-train the monolingual models. In addition, we
do a more fine-grained fine-tuning analysis, consid-
ering training only certain parts of the whole model
(for example only training the cross-attentions).

In Sun et al. (2021), they test using a multi-
lingual BERT as an encoder and a multilingual
GPT as a decoder and then add extra untrained
encoder/decoder layers on each pre-trained model,
called grafting layers. They show that fine-tuning
the decoder is not necessary while fine-tuning the
encoder is important. In addition, they show that
their model (Graformer) outperforms a traditional

Transformer in all tested languages. As for the pre-
vious paper, they pre-train there own multilingual
BERT and GPT instead of using existing models.
Contrary, to us who look at combining a pre-trained
encoder and decoder with no extra layers, they add
extra un-trained encoder and decoder layers which
communicate with each other, while the BERT and
GPT are used as extra encoding/decoding steps for
the model.

4 Methods

Our proposed translation model is a combination of
a pre-trained encoder and a pre-trained decoder. To
achieve this we add cross-attention to each decoder
layer. Then we pass the last hidden states of the
encoder to each of these cross-attentions. In other
words, if the original decoder layer (as in Radford
et al. (2019)) can be defined as:

g(x) = s(l1(x)) + x

DecoderLayer(x) = f(l2(g(x))) + g(x)

where l1 and l2 are LayerNorm layers, f is a
feed-forward network, and s is self-attention. Then
our new decoder layer is:

t(x) = c(l3(g(x)), h) + g(x)

NewDecoderLayer(x) = f(l2(t(x))) + t(x)

where l3 is a new LayerNorm layer, c is the cross-
attention layer, and h is the last hidden states of the
encoder.

In addition to creating this combined model, we
also create variations by partially freezing some
of the parameters of the model. This means that
during fine-tuning the weights and biases of these
parameters are not updated. We create four differ-
ent variations of the model:

1. Cross-attention only: We freeze all pre-
trained parameters from the encoder and de-
coder, and only fine-tune newly added cross-
attentions.

2. Cross-attention+decoder: We freeze the en-
coder but leave the entire decoder unfrozen.

3. Cross-attention+encoder: We freeze the
decoder apart for the newly added cross-
attentions but leave the entire encoder un-
frozen.

88

Hyperparameter Value

Encoder layers 6
Decoder layers 6
Heads 8
Hidden size 256
Vocabulary size 8,000
Dropout rate 0.1
Number of Parameters 12M

Optimizer AdamW
Max learning rate 0.001
Weight decay 0.1
Batch size 1024
Learning rate scheduler inverse square root
Warmup steps 4,000
Number of steps 100,000

Table 1: Hyperparameters for the Baseline model

Hyperparameter Value

Encoder NorBERT3 (Base)
Decoder GPT2 (Base)
Number of Parameters 276M

Optimizer AdamW
Max learning rate 0.00008
Weight decay 0.1
Batch size 512
Learning rate scheduler cosine
Warmup steps 2% max steps
Epochs 5
Seed 83947

Table 2: Hyperparameters for the NorBERT3+GPT2
model

4. Full: The whole model is unfrozen and fine-
tuned.

Finally, we also train a small (less than 15M pa-
rameters) baseline model based on the Transformer
architecture (with small improvements described
in Section 5.2) to verify that our proposed model
achieves good results.

5 Experiments

In this paper, we run two sets of experiments.
The first experiment looks at whether using a pre-
trained encoder and pre-trained decoder as de-
scribed in Section 4 can results in a good neural
machine translation model as compared to a base-
line model. The second experiment looks at the

effect of label smoothing (Szegedy et al., 2016) on
our proposed model. To evaluate these models, we
use the BLEU metric (Papineni et al., 2002). More
specifically we will be using SacreBLEU (Post,
2018). This version wraps the original implemen-
tation of BLEU from Papineni et al. (2002) with
extra features such that it is compatible with most
tokenization and languages. Even though this met-
ric is not effective at judging how well our models
perform (Freitag et al., 2022), it is widely used and
gives us some idea of how good models perform
against each other. In addition, we do a quick qual-
itative look at the translations to have a better idea
of how well each model performs.

During training, we evaluate our models using a
dataset from a different source as a validation set.
For the baseline model, we do this every 5 epochs,
while for the NorBERT3+GPT2 model, we do this
every epoch.

During validation, we generate translation by
initializing our translation as the beginning of the
sentence token and using greedy decoding to gen-
erate the full translation. In other words, at each
step, we append the token, at the end of the pre-
dicted sequence, with the highest probability to our
generated translation. We do this until the gener-
ated token is an end-of-sentence token or if our
translation is 128 tokens long.

During testing, we generate translations by ini-
tializing our translation as the beginning of a sen-
tence token and using beam search decoding to
generate the full translation. As opposed to greedy
decoding where we only keep to highest probability
token at each step, with beam search we keep the
top-k (size of the beam) translations until they all
either end in an end-of-sentence token or are 128
tokens long. In our case, we use a beam of size 4.

5.1 Datasets
In this section, we will describe the datasets used
for training, validating and testing the models.

Government Union of two openly available cor-
pora: 1) Bilingual English-Norwegian parallel cor-
pus from the Office of the Auditor General (Rik-
srevisjonen) wesite3 and 2) Public Bokmål-English
Parallel Corpus (PubBEPC)4. We then split this
dataset with 50,000 training examples and 2,500

3http://data.europa.eu/88u/dataset/
elrc_1061

4https://www.nb.no/sprakbanken/
en/resource-catalogue/
oai-clarino-uib-no-parallel-nob/

89

Model BLEU

Government Subtitles Book Tatoeba (2021-08-07)

Baselinegovernment 34.9 6.4 4.4 10.6
Baselinesubtitles 8.1 26.6 11.1 35.8
Baselinecombined 39.2 27.2 15.2 37.4
NorBERT3+GPT2cross−attention 40.1 32.4 16.2 49.8
NorBERT3+GPT2cross−attention+decoder 43.1 32.7 15.9 49.1
NorBERT3+GPT2cross−attention+encoder 50.1 36.0 20.3 53.0
NorBERT3+GPT2full 50.1 35.2 20.3 51.2

OPUS-MT-no-en/2020-05-22* - - - 61.4

Table 3: BLEU score of various models on 4 different datasets. For the Baseline models, the subscript indicates the
training dataset used to train the model. The combined dataset is the union of the subtitles and government datasets.
The NorBERT3+GPT2 models were trained on the combined dataset and the subscript indicates which parts of the
model were fine-tuned. *results from https://opus.nlpl.eu/leaderboard/ for nob-eng translations.

validation examples. While this dataset is not very
big, it is of high quality since the text come from
official government translations.

Subtitles An aligned Bokmål-English dataset
done by Lison and Tiedemann (2016) released to
the public5 based on the unofficial subtitles from
movies and TV series published to OpenSutitles6.
We then split this dataset into 250,000 training ex-
amples and 2,500 validation examples. This dataset
is of medium size but the quality is only moderate.
The translations are unofficial and in subtitles, the
translation can be more figurative than literal.

Combined This is the combination of the govern-
ment and subtitles training sets (300,000 parallel
sentences).

Book This dataset contains the translated and
aligned book "The Hound of the Baskervilles" by
Sir Arthur Conan Doyle. This is part of the "Bilin-
gual books" collection by FarkasTranslation.com7.
This dataset is used exclusively for validation and
contains 2,500 parallel sentences. We use it for val-
idation because it is of good quality and in a very
different domain from the training datasets. Given
this, we can test how our model generalizes.

Tatoeba Dataset of parallel Bokmål-English sen-
tences derived from Tatoeba8 compile by Tiede-
mann (2020). We use the test set from the 7th of

5https://opus.nlpl.eu/
OpenSubtitles-v2018.php

6http://www.opensubtitles.org/
7https://farkastranslations.com/

bilingual_books.php
8https://tatoeba.org/

August 2021, which contains 4,539 parallel sen-
tences. This dataset contains more general transla-
tions as well as some expression translations. Some
of the examples can also be multi-sentence.

5.2 Models

In this paper we use two different models, the
first is a baseline model based on the Transformer
(Vaswani et al., 2017) architecture with a few im-
provements. In our implementation, we use "pre-
norm" from Nguyen and Salazar (2019) instead of
the traditional "post-norm", the "position-infused
attention" idea from Press et al. (2021) in addi-
tion to the absolute positional encoding from the
Transformer paper, and the GLU non-linearity from
Shazeer (2020) instead of ReLU. These improve-
ments both improve the performance and stability
of the Transformer model. The hyperparameters
for these baseline models can be found in Table 1,
it also includes the training hyperparameters.

Our second model is a union of a pre-trained
NorBERT3 from Samuel et al. (2023) as the en-
coder and GPT2 from Radford et al. (2019) as the
decoder. To combine the encoder and decoder into
an encoder-decoder model, we add cross-attention
sub-layers to each layer of the pre-trained GPT2
model. This can easily be achieved with the Hug-
gingFace transformers library (Wolf et al., 2020).
Using the GPT2 pre-trained model from their mod-
els’ library, we can change its configuration so that
includes untrained cross-attention layers. We then
set the weights of all the other layers to be equal
to those of the pre-trained model. We pass the
last hidden states from NorBERT3 to the cross-

90

Model Output

Source Text Er det ett ting historien har lært oss, så er det at vi
ofte spår feil om fremtiden.

Baselinecombined If there’s one thing the story has taught us, it’s that
we often be eating the wrong about the future.

NorBERT3+GPT2cross−attention If there is one thing that history has taught us, it is
that we often underestimate the future.

NorBERT3+GPT2cross−attention+encoder If there’s one thing the history has taught us, it’s that
we often make wrong predictions about the future.

Target If there is one thing history has taught us, it’s that we
often incorrectly predict the future.

Table 4: An example translation (from the tatoeba set) for 3 different models, the best baseline model, Nor-
BERT3+GPT2 trained on cross-attention and NorBERT3+GPT2 trained on cross-attention+encoder.

attention of each decoder layer as would be the
case in a standard encoder-decoder. The general
model and training hyperparameters for this model
can be found in Table 2.

Based on those two general models, we train
three different baseline models, dependent on the
training dataset used for training, and four Nor-
BERT3+GPT2 models based on which parts we
fine-tuned as described in Section 4. All the Nor-
BERT3+GPT2 models are trained on the dataset
which results in the best baseline model.

Baselinegovernment A Baseline model trained on
the government training set.

Baselinesubtitles A Baseline model trained on the
subtitles training set.

Baselinecombined A Baseline model trained on
the combined training set.

NorBERT3+GPT2cross−attention A Nor-
BERT3+GPT2 model where only the cross-
attentions are fine-tuned.

NorBERT3+GPT2cross−attention+decoder A Nor-
BERT3+GPT2 model where the cross-attentions
and the decoder (GPT2) are fine-tuned.

NorBERT3+GPT2cross−attention+encoder A Nor-
BERT3+GPT2 model where the cross-attentions
and the encoder (NorBERT3) are fine-tuned.

NorBERT3+GPT2full A NorBERT3+GPT2
model where all parameters are fine-tuned.

Our Baseline models took between 1h45
and 2h to train on a single A100 Nvidia

GPU. The NorBERT3+GPT2 models took from
1h20 (for NorBERT3+GPT2cross−attention) to 2h
(for NorBERT3+GPT2full) to train on a single
RTX3090 Nvidia GPU.

5.3 Results

We begin by training the baseline models on the
three different datasets. The dataset that leads to
the best baseline model is then used to train each
variation of the NorBERT3+GPT2. The results for
all these models can be found in Table 3.

5.3.1 NorBERT3+GPT2 versus Baseline
If we start by looking at the results for the base-
line models concerning the dataset used to train,
we see that using the combined dataset results in
the best model. This is the case on all validation
and test sets. If we focus on the other two mod-
els, we see that they achieve very similar scores
to the combined model when considering the val-
idation set taken from the same source as their
training set, but do significantly worse in the case
of Baselinegovernment or moderately worse in the
case of Baselinesubtitles (except for the government
dataset where it performs significantly worse) on
the other datasets. Based on these results we train
our NorBERT3+GPT2 models on the combined
dataset.

Comparing Baselinecombined and
NorBERT3+GPT2cross−attention we see that
NorBERT3+GPT2cross−attention outperforms
the baseline on every set. In addition, it takes
30-40 minutes less time to fine-tune this model
as compared to training the baseline from scratch.

91

53

54

55
BLEU score of different datasets versus label smoothing

50

51

36

37

0.0 0.1 0.2 0.3 0.4 0.5
Label smoothing

20.5

21.0
tatoeba
government
subtitles
book

BL
EU

 S
co

re

Figure 1: BLEU score for each set dependent
on label smoothing. The model used is a
NorBERT3+GPT2cross−attention+encoder.

While the gains on the government, subtitles and
book datasets are modest, the BLEU score on the
tatoeba dataset increases by 12.8 points or a 34%
increase in score. This is in line with our hypothe-
sis that fine-tuning the cross-attentions between a
pre-trained encoder and a pre-trained decoder can
lead to a decent translation model. However, one
thing to note, is that the NorBERT3+GPT2 models
are about 20x larger than the baseline models.
Here, we wanted to compare models that would
take roughly the same amount of time/FLOPS
to train rather than models of equivalent sizes.
It is possible that if we made a baseline model
with the same number of parameters as our
NorBERT3+GPT2 model, the former would
outperform the latter.

If we then focus on the different variants of
the NorBERT3+GPT2 model, we observe two
different phenomena. The first is that fine-tuning
the decoder does not improve the model (as in Sun
et al. (2021)) and in most cases makes it worse.
NorBERT3+GPT2cross−attention+decoder has
0.3 less BLEU score on the book dataset
and 0.7 less on the tatoeba dataset as com-
pared to NorBERT3+GPT2cross−attention.
NorBERT3+GPT2full achieves
similar performances as
NorBERT3+GPT2cross−attention+encoder on
the book dataset, while having a 1.8 lower BLEU
score on the tatoeba dataset. For the government
and subtitles datasets, we see the opposite trend,
however, this is potentially due to the model
overfitting on the style of the training data.

The second observed phenomenon
is that fine-tuning the encoder is
very important to improve the model.

NorBERT3+GPT2cross−attention+encoder performs
significantly better on all valida-
tion and test datasets compared to
NorBERT3+GPT2cross−attention. We hypoth-
esize that, in this setting, the decoder is already
good at generating text and does not need further
refinement, but rather needs the signals given
by the cross-attention to be of good quality so
that it can map the source language to the target
language.

Finally, we also add the best performing model
(OPUS-MT-no-en/2020-05-22) on the tatoeba
dataset to see how our model does compare to the
state-of-the-art. We see that our model underper-
forms by 8.4 points, even though it is larger. How-
ever, the OPUS model is trained on 11,179,800
parallel sentences and took over 5 days to train on
four GPUs. That is 30x more data and 60x more
time (or 240x times more given the four GPUs ver-
sus our one GPU) to train. It is possible that if we
used a slightly larger dataset, we could match or
outperform the OPUS model while taking less time
to train. In addition, parts of the tatoeba dataset
have more than one sentences or are longer than
128 tokens. Since the training data for our model
are relatively short sentences and only contain one
sentence per example, our model might struggle to
generate longer, multi-sentence translations.

Table 4 shows one example translation for
the same source text of the Baselinecombined,
NorBERT3+GPT2cross−attention, and
NorBERT3+GPT2cross−attention+encoder models.

If we start by looking at the
Baselinecombined translation, we see that it
does some grammatical mistakes "...one thing the
story..." or "... we often be eating...", confuses
"history" with "story" and incorrectly translates
the second part of the sentence "it’s that we often
be eating the wrong about the future." instead of
"it’s that we often incorrectly predict the future.".
Overall, the translation makes little sense and while
we would be able to deduce the true translation, it
would require some creative thinking on our part.

NorBERT3+GPT2cross−attention and
NorBERT3+GPT2cross−attention+encoder do a
much better job of translating the sentence. While
NorBERT3+GPT2cross−attention+encoder translation
is close to perfect (minor grammatical
mistake "...one thing the history..."), in
terms of sense (the wording is not the
same, but the same message is conveyed).

92

Label Smoothing Output

Source Text Etteraping av gester, handlinger og væremåter kan,
men behøver ikke være, en bevisst handling.

No label smoothing The reemergence of gestures, actions and ways of
behaving may, but does not necessarily, be an inten-
tional act.

0.1 The appreciation of gestures, actions and ways of
behaving can, but does not have to be, a conscious
act.

0.3 The re-emergence of gestures, actions and ways of
behaving can, but does not need to be, a conscious
act.

Target Imitation of gestures, actions and manners may or
may not be a conscious act.

Table 5: An example translation (from the tatoeba set) for different values of label smoothing, the model is a
NorBERT3+GPT2cross−attention+encoder.

NorBERT3+GPT2cross−attention confuses "incor-
rectly predict" with "underestimate" which while
not exactly wrong (in certain contexts they can
be synonyms), here the meaning of the second
part is erroneous even though it is not very hard to
deduce.

5.3.2 Effects of label smoothing
To test the effects of label smoothing on
our NorBERT3+GPT2 model, we test 6 dif-
ferent values of label smoothing; 0, 0.1,
0.2, 0.3, 0.4, and 0.5. We take our best-
performing model from the previous experiment,
NorBERT3+GPT2cross−attention+encoder and train
it to fine-tune it with each value of label smoothing
using the combined training dataset and the hyper-
parameters found in Table 2. The results of this
experiment can be seen in Figure 1.

We see that having label smoothing has a mod-
erate but noticeable effect on the BLEU score. As
we increase the label smoothing, we increase our
BLEU score on the tatoeba and book datasets until
reaching a maximum at 0.3 label smoothing (54.9
for the former and 21.1 for the latter). After that
the BLEU score decreases, this is potentially due
to the model not being able to capture translation
as well or not being trained for enough epochs. For
the government and subtitles datasets, the model
trained with 0.2 label smoothing, but since the train-
ing data are in the style as these datasets this is less
informative on the translation ability of the model

as compared to the tatoeba and book datasets.
While the maximum is reached with a label

smoothing of 0.3, the largest improvement happens
when going from no label smoothing to 0.1 label
smoothing. For the tatoeba dataset, we have an ab-
solute increase of 1.4 in the BLEU score and for the
book dataset, the absolute increase is 0.5. This is
in line with what we would expect since the goal of
label smoothing is the reduce the over-confidence
of networks.

These improvements can also be seen when look-
ing at actual translations, Table 5 shows one such
example.

We see that all three translations are not perfect
and very similar. However, when there is no label
smoothing the model uses "intentional" instead of
"conscious" and uses "...may, but does not necessar-
ily, be..." rather than "...can, but does not have/need
to be,...". Both, especially using "intentional", give
a more formal/professional tone. Using 0.1 and 0.3
leads to translations with only one difference "re-
emergence" instead of "appreciation". In all three
cases, the sense of the translation is quite correct,
even if the wording is different.

6 Conclusion

As seen in Section 5 combining a pre-trained en-
coder and pre-trained decoder into an encoder-
decoder model can lead to a good neural machine
translation model. This is the case even when we

93

only fine-tune the added cross-attention while keep-
ing the rest of the model parameters frozen. This
hints that the model can leverage the language rep-
resentations of each model to generate good trans-
lations.

In addition, we saw that fine-tuning the decoder
would lead to either the same results or worst re-
sults than not fine-tuning it. While, for the encoder,
fine-tuning it leads to better results. We hypothe-
size this is due to the decoder already being good
at generating text in the target language and only
needing to integrate the cross-attentions to be able
to know what to generate rather than needing it to
model language.

Finally, even though we were using a relatively
small dataset with either a very specific style of
language (in the case of the government dataset) or
questionable translations (in the case of the subti-
tles dataset). We saw that we were able to create a
model that does reasonably well on a more general
dataset as compared to a model trained on a much
larger and varied dataset.

7 Future Works

In future works, we would like to explore four
different areas of interest:

• Using a higher quality and varied, but still
small, dataset to perform the fine-tuning. With
this, we could explore the potential of requir-
ing smaller amounts of higher-quality data to
be able to generate a good translation model.

• Comparing our model to a pre-trained model
with the same amount of parameters.

• Instead of using a pre-trained encoder and pre-
trained decoder, we would use the encoder
part of one encoder-decoder model and the de-
coder part of another encoder-decoder model.
Since the cross-attentions are already included
in the decoder, we could have a better transla-
tion model.

• Norwegian has a lot of variation due to the
wide range of dialects found in the country.
Therefore using Nynorsk data as well as Bok-
mål could prove useful for better translations.

References
Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie

Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind

Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Markus Freitag, Ricardo Rei, Nitika Mathur, Chi-kiu Lo,
Craig Stewart, Eleftherios Avramidis, Tom Kocmi,
George Foster, Alon Lavie, and André F. T. Martins.
2022. Results of WMT22 metrics shared task: Stop
using BLEU – neural metrics are better and more
robust. In Proceedings of the Seventh Conference
on Machine Translation (WMT), pages 46–68, Abu
Dhabi, United Arab Emirates (Hybrid). Association
for Computational Linguistics.

Kenji Imamura and Eiichiro Sumita. 2019. Recycling a
pre-trained bert encoder for neural machine transla-
tion. In Proceedings of the 3rd Workshop on Neural
Generation and Translation, pages 23–31.

Pierre Lison and Jörg Tiedemann. 2016. OpenSub-
titles2016: Extracting large parallel corpora from
movie and TV subtitles. In Proceedings of the Tenth
International Conference on Language Resources
and Evaluation (LREC’16), pages 923–929, Portorož,
Slovenia. European Language Resources Association
(ELRA).

Toan Q. Nguyen and Julian Salazar. 2019. Transformers
without tears: Improving the normalization of self-
attention.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th annual meeting of the Association for Computa-
tional Linguistics, pages 311–318.

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 186–
191, Brussels, Belgium. Association for Computa-
tional Linguistics.

Ofir Press, Noah A. Smith, and Mike Lewis. 2021.
Shortformer: Better language modeling using shorter
inputs.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya
Sutskever, et al. 2018. Improving language under-
standing by generative pre-training.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

94

David Samuel, Andrey Kutuzov, Samia Touileb, Erik
Velldal, Lilja Øvrelid, Egil Rønningstad, Elina Sigdel,
and Anna Palatkina. 2023. Norbench – a benchmark
for norwegian language models.

Noam Shazeer. 2020. Glu variants improve transformer.

Zewei Sun, Mingxuan Wang, and Lei Li. 2021. Multi-
lingual translation via grafting pre-trained language
models. arXiv preprint arXiv:2109.05256.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe,
Jon Shlens, and Zbigniew Wojna. 2016. Rethinking
the inception architecture for computer vision. In
Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 2818–2826.

Jörg Tiedemann. 2020. The tatoeba translation chal-
lenge – realistic data sets for low resource and multi-
lingual MT. In Proceedings of the Fifth Conference
on Machine Translation, pages 1174–1182, Online.
Association for Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need.

Rongxiang Weng, Heng Yu, Shujian Huang, Shanbo
Cheng, and Weihua Luo. 2020. Acquiring knowledge
from pre-trained model to neural machine translation.
In Proceedings of the AAAI conference on artificial
intelligence, volume 34, pages 9266–9273.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

95

96

