Best bias value

Here, training instances are represented with 2 features each (x = [xp, x1]) and labeled with 2
class labels (y = {black, red}):

X\
vt
L
x e 4
. o 0
* N e
* 2
‘& x s
R - .
P
s ’
2l o
/ /’.' = °
76 o o
L ° o
.

Xo



Best bias value

Here, training instances are represented with 2 features each (x = [xp, x1]) and labeled with 2
class labels (y = {black, red}):

X\
\7‘
-
% L 5
. £ ba
# - -
. - .
‘& x s
. e e
e s
= i
“x L7 g
/ /’.' = °
AT L0
L ° °
. :

Xo

» Parameters of f(x; W,b) = & - W + b define the hyperplane separating the instances.



Best bias value

Here, training instances are represented with 2 features each (x = [xp, x1]) and labeled with 2
class labels (y = {black, red}):

X\
\7‘
-
% L 5
. -_,ba
# - -
. - .
‘& x s
. e e
e s
= i
“x L7 g
/ /’.' = °
AT L0
L ° °
. :

Xo

» Parameters of f(x; W,b) = & - W + b define the hyperplane separating the instances.
» This decision boundary is actually our learned classifier.



Best bias value

Here, training instances are represented with 2 features each (x = [xp, x1]) and labeled with 2
class labels (y = {black, red}):

X\
\7‘
-
% L 5
. -_,ba
# - -
. - .
‘& x s
. e e
e s
= i
“x L7 g
/ /’.' = °
AT L0
L ° °
. :

Xo

» Parameters of f(x; W,b) = & - W + b define the hyperplane separating the instances.
» This decision boundary is actually our learned classifier.
» NB: the dataset on the plot is linearly separable.



Best bias value

Here, training instances are represented with 2 features each (x = [xp, x1]) and labeled with 2
class labels (y = {black, red}):

Xo

» Parameters of f(x; W,b) = & - W + b define the hyperplane separating the instances.
» This decision boundary is actually our learned classifier.

» NB: the dataset on the plot is linearly separable.

» Question: lines with 3 values of b are shown. Which is the best?



Common loss functions

1. Hinge (binary): L(y,y) = max(0,1 —y-9)




Common loss functions

1. Hinge (binary): L(y,y) = max(0,1—y-9)
2. Hinge (multi-class): L(9,y) = max(0,1 — (919 — Jp41))



Common loss functions

1. Hinge (binary): L(y,y) = max(0,1—y-9)
2. Hinge (multi-class): L(9,y) = max(0,1 — (919 — Jp41))
3. Log loss: L(§,y) = log(1 + exp(— (g — Ypx))



Common loss functions

= G2 I

Hinge (binary): L(y,y) = max(0,1—y - 9)

Hinge (multi-class): L(9,y) = max(0,1 — (919 — Jp4))

Log loss: L(9,y) = log(1 + exp(—( — Gix1))

Binary cross-entropy (logistic loss): L(y,y) = —y logy — (1 — y)log(1 — §)



Common loss functions

@i = o I

Hinge (binary): L(y,y) = max(0,1—y - 9)

Hinge (multi-class): L(9,y) = max(0,1 — (919 — Jp4))

Log loss: L(§, ) = log(1 + exp(—(d1g — 1))

Binary cross-entropy (logistic loss): L(y,y) = —y logy — (1 — y)log(1 — §)
Categorical cross-entropy (negative log-likelihood): L(§,y) = — > y[ilog(dyi)



Common loss functions

e el o> e Iy =

Hinge (binary): L(y,y) = max(0,1—y - 9)

Hinge (multi-class): L(9,y) = max(0,1 — (919 — Jp4))

Log loss: L(§, ) = log(1 + exp(—(d1g — 1))

Binary cross-entropy (logistic loss): L(y,y) = —y logy — (1 — y)log(1 — §)
Categorical cross-entropy (negative log-likelihood): L(g,y) = — Zy ilog (i)

Ranking losses, etc, etc...



Regularization

Regularization

» Sometimes, so as not to overfit, we pose restrictions on the possible 6.




Regularization

Regularization

» Sometimes, so as not to overfit, we pose restrictions on the possible 6.

» We would like 6 to be not only good in predictions, but also not too complex; it should be
‘lean’ and avoid large weights.



Regularization

Regularization
» Sometimes, so as not to overfit, we pose restrictions on the possible 6.

» We would like 6 to be not only good in predictions, but also not too complex; it should be
‘lean’ and avoid large weights.

Why do you think this is? Pause the video and think.



Regularization

Regularization

» Sometimes, so as not to overfit, we pose restrictions on the possible 6.

» We would like 6 to be not only good in predictions, but also not too complex; it should be
‘lean’ and avoid large weights.

Why do you think this is? Pause the video and think.

» We can live with some errors on the training data, if it gives more generalization power.



Regularization

Regularization

» Sometimes, so as not to overfit, we pose restrictions on the possible 6.

» We would like 6 to be not only good in predictions, but also not too complex; it should be
‘lean’ and avoid large weights.

Why do you think this is? Pause the video and think.
» We can live with some errors on the training data, if it gives more generalization power.

» For that, we minimize both the loss and the regularization term R(6):

0= argemin L(0) + AR(0) (1)

» The hyperparameter \ is regularization weight (how important is it).



Regularization

Regularization

» Sometimes, so as not to overfit, we pose restrictions on the possible 6.

» We would like 6 to be not only good in predictions, but also not too complex; it should be
‘lean’ and avoid large weights.

Why do you think this is? Pause the video and think.
» We can live with some errors on the training data, if it gives more generalization power.
» For that, we minimize both the loss and the regularization term R(6):
0 = argmin £(0) + AR(0) (1)
0
» The hyperparameter \ is regularization weight (how important is it).

» Common regularization terms:

1. Ly norm (Gaussian prior or weight decay);
2. Ly norm (sparse prior or lasso)



S

ef.,m»uuoo;o\o .

S

g
AR

NN

Error surfaces of convex and not-convex functions:

(O]
(U]
(4]
G
-
>
(7]
-
o
) -
| -
L

Non-convex function

Convex function



Error surface

Error surfaces of convex and not-convex functions:

Convex function Non-convex function
» Convex functions can be easily minimized with gradient methods, reaching the global
optimum.

» With non-convex functions, optimization can end up in a local optimum.



Error surface

Error surfaces of convex and not-convex functions:

o Al R

A
ﬂuu»gml\‘l‘ﬂ\\\
I

T

Convex function Non-convex function

» Convex functions can be easily minimized with gradient methods, reaching the global

optimum.
» With non-convex functions, optimization can end up in a local optimum.

» Linear and log-linear models as a rule have convex error functions.



» Are there non-linear functions that linear models can't deal with?



» Are there non-linear functions that linear models can't deal with?

» Yes, there are.



» Are there non-linear functions that linear models can't deal with?

» Yes, there are.
» One example is the XOR (‘excluding OR’) function:




» Are there non-linear functions that linear models can't deal with?

» Yes, there are.
» One example is the XOR (‘excluding OR’) function:

1 o x
0 * o
0 1

It is clearly not linearly separable.



Possible solutions

» We can transform the input so that it becomes linearly separable.




Possible solutions

» We can transform the input so that it becomes linearly separable.

» Linear transformations will not be able to do this.



Possible solutions

» We can transform the input so that it becomes linearly separable.
» Linear transformations will not be able to do this.

» We need non-linear transformations.



Possible solutions

» We can transform the input so that it becomes linearly separable.

» Linear transformations will not be able to do this.

» We need non-linear transformations.

For example, ¢(x1,x2) = [x1 + x2, X1 X x2] maps the instances to another representation and
makes the XOR problem linearly separable:

Y




