Here, training instances are represented with 2 features each $(x = [x_0, x_1])$ and labeled with 2 class labels $(y = \{black, red\})$:

Here, training instances are represented with 2 features each $(x = [x_0, x_1])$ and labeled with 2 class labels $(y = \{black, red\})$:

Parameters of $f(x;W,b) = x \cdot W + b$ define the hyperplane separating the instances.

Here, training instances are represented with 2 features each $(x = [x_0, x_1])$ and labeled with 2 class labels $(y = \{black, red\})$:

P Parameters of $f(x;W,b) = x \cdot W + b$ define the hyperplane separating the instances.

 \blacktriangleright This decision boundary is actually our learned classifier.

Here, training instances are represented with 2 features each $(x = [x_0, x_1])$ and labeled with 2 class labels $(y = \{black, red\})$:

- **P** Parameters of $f(x;W,b) = x \cdot W + b$ define the hyperplane separating the instances.
- \blacktriangleright This decision boundary is actually our learned classifier.
- \triangleright NB: the dataset on the plot is linearly separable.

Here, training instances are represented with 2 features each $(x = [x_0, x_1])$ and labeled with 2 class labels $(y = \{black, red\})$:

- \blacktriangleright Parameters of $f(x;W,b) = x \cdot W + b$ define the hyperplane separating the instances.
- \blacktriangleright This decision boundary is actually our learned classifier.
- \triangleright NB: the dataset on the plot is linearly separable.
- I **Question: lines with 3 values of** b **are shown. Which is the best?**

1. Hinge (binary): $L(\hat{y}, y) = max(0, 1 - y \cdot \hat{y})$

- 1. Hinge (binary): $L(\hat{y}, y) = max(0, 1 y \cdot \hat{y})$
- 2. Hinge (multi-class): $\; \mathcal{L}(\hat{\bm{y}}, \bm{y}) = max(0, 1 (\hat{\bm{y}}_{[t]} \hat{\bm{y}}_{[k]}))$

- 1. Hinge (binary): $L(\hat{y}, y) = max(0, 1 y \cdot \hat{y})$
- 2. Hinge (multi-class): $\; \mathcal{L}(\hat{\bm{y}}, \bm{y}) = max(0, 1 (\hat{\bm{y}}_{[t]} \hat{\bm{y}}_{[k]}))$
- 3. Log loss: $L(\hat{\bm{y}}, \bm{y}) = log(1 + exp(-(\hat{\bm{y}}_{[t]} \hat{\bm{y}}_{[k]}))$

- 1. Hinge (binary): $L(\hat{y}, y) = max(0, 1 y \cdot \hat{y})$
- 2. Hinge (multi-class): $\; \mathcal{L}(\hat{\bm{y}}, \bm{y}) = max(0, 1 (\hat{\bm{y}}_{[t]} \hat{\bm{y}}_{[k]}))$
- 3. Log loss: $L(\hat{\bm{y}}, \bm{y}) = log(1 + exp(-(\hat{\bm{y}}_{[t]} \hat{\bm{y}}_{[k]}))$
- 4. Binary cross-entropy (logistic loss): $L(\hat{y}, y) = -y \log \hat{y} (1 y) \log(1 \hat{y})$

- 1. Hinge (binary): $L(\hat{y}, y) = max(0, 1 y \cdot \hat{y})$
- 2. Hinge (multi-class): $\; \mathcal{L}(\hat{\bm{y}}, \bm{y}) = max(0, 1 (\hat{\bm{y}}_{[t]} \hat{\bm{y}}_{[k]}))$
- 3. Log loss: $L(\hat{\bm{y}}, \bm{y}) = log(1 + exp(-(\hat{\bm{y}}_{[t]} \hat{\bm{y}}_{[k]}))$
- 4. Binary cross-entropy (logistic loss): $L(\hat{y}, y) = -y \log \hat{y} (1 y) \log(1 \hat{y})$
- 5. Categorical cross-entropy (negative log-likelihood): $L(\hat{\bm{y}},\bm{y})=-\sum_{\bm{n}}$ $\sum\limits_i {{y_{[i]}}log(\hat y_{[i]})}$

- 1. Hinge (binary): $L(\hat{y}, y) = max(0, 1 y \cdot \hat{y})$
- 2. Hinge (multi-class): $\; \mathcal{L}(\hat{\bm{y}}, \bm{y}) = max(0, 1 (\hat{\bm{y}}_{[t]} \hat{\bm{y}}_{[k]}))$
- 3. Log loss: $L(\hat{\bm{y}}, \bm{y}) = log(1 + exp(-(\hat{\bm{y}}_{[t]} \hat{\bm{y}}_{[k]}))$
- 4. Binary cross-entropy (logistic loss): $L(\hat{y}, y) = -y \log \hat{y} (1 y) \log(1 \hat{y})$
- 5. Categorical cross-entropy (negative log-likelihood): $L(\hat{\bm{y}},\bm{y})=-\sum_{\bm{n}}$ $\sum\limits_i {{y_{[i]}}log(\hat y_{[i]})}$
- 6. Ranking losses, etc, etc...

Regularization

 \triangleright Sometimes, so as not to overfit, we pose restrictions on the possible θ .

- \triangleright Sometimes, so as not to overfit, we pose restrictions on the possible θ .
- \triangleright We would like θ to be not only good in predictions, but also not too complex; it should be 'lean' and avoid large weights.

- \triangleright Sometimes, so as not to overfit, we pose restrictions on the possible θ .
- \triangleright We would like θ to be not only good in predictions, but also not too complex; it should be 'lean' and avoid large weights.

Why do you think this is? Pause the video and think.

- \triangleright Sometimes, so as not to overfit, we pose restrictions on the possible θ .
- \triangleright We would like θ to be not only good in predictions, but also not too complex; it should be 'lean' and avoid large weights.

Why do you think this is? Pause the video and think.

 \triangleright We can live with some errors on the training data, if it gives more generalization power.

- \triangleright Sometimes, so as not to overfit, we pose restrictions on the possible θ .
- \triangleright We would like θ to be not only good in predictions, but also not too complex; it should be 'lean' and avoid large weights.

Why do you think this is? Pause the video and think.

- \triangleright We can live with some errors on the training data, if it gives more generalization power.
- For that, we minimize both the loss and the regularization term $R(\theta)$:

$$
\hat{\theta} = \underset{\theta}{\arg\min} \mathcal{L}(\theta) + \lambda R(\theta) \tag{1}
$$

I The hyperparameter λ is regularization weight (how important is it).

- \triangleright Sometimes, so as not to overfit, we pose restrictions on the possible θ .
- \triangleright We would like θ to be not only good in predictions, but also not too complex; it should be 'lean' and avoid large weights.

Why do you think this is? Pause the video and think.

- \triangleright We can live with some errors on the training data, if it gives more generalization power.
- For that, we minimize both the loss and the regularization term $R(\theta)$:

$$
\hat{\theta} = \underset{\theta}{\arg\min} \mathcal{L}(\theta) + \lambda R(\theta) \tag{1}
$$

- **I** The hyperparameter λ is regularization weight (how important is it).
- \blacktriangleright Common regularization terms:
	- 1. L_2 norm (Gaussian prior or weight decay);
	- 2. L_1 norm (sparse prior or lasso)

Error surface

Error surfaces of convex and not-convex functions:

Error surface

Error surfaces of convex and not-convex functions:

Convex function Convex function

 \triangleright Convex functions can be easily minimized with gradient methods, reaching the global optimum.

 \triangleright With non-convex functions, optimization can end up in a local optimum.

Error surface

Error surfaces of convex and not-convex functions:

Convex function Convex function

 \triangleright Convex functions can be easily minimized with gradient methods, reaching the global optimum.

- \triangleright With non-convex functions, optimization can end up in a local optimum.
- \blacktriangleright Linear and log-linear models as a rule have convex error functions.

 \triangleright Are there non-linear functions that linear models can't deal with?

- \triangleright Are there non-linear functions that linear models can't deal with?
- \blacktriangleright Yes, there are.

-
- \triangleright Are there non-linear functions that linear models can't deal with?
- \blacktriangleright Yes, there are.
- \triangleright One example is the XOR ('excluding OR') function:

-
- \triangleright Are there non-linear functions that linear models can't deal with?
- \blacktriangleright Yes, there are.
- \triangleright One example is the XOR ('excluding OR') function:

It is clearly not linearly separable.

 \triangleright We can transform the input so that it becomes linearly separable.

- \triangleright We can transform the input so that it becomes linearly separable.
- \blacktriangleright Linear transformations will not be able to do this.

- \triangleright We can transform the input so that it becomes linearly separable.
- \blacktriangleright Linear transformations will not be able to do this.
- \triangleright We need non-linear transformations.

- \triangleright We can transform the input so that it becomes linearly separable.
- \blacktriangleright Linear transformations will not be able to do this.
- \triangleright We need non-linear transformations.

For example, $\phi(x_1, x_2) = [x_1 + x_2, x_1 \times x_2]$ maps the instances to another representation and makes the XOR problem linearly separable:

