Best bias value

Here, training instances are represented with 2 features each (x = [xp, x1]) and labeled with 2
class labels (y = {black, red}):
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» Parameters of f(x; W,b) = & - W + b define the hyperplane separating the instances.
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» NB: the dataset on the plot is linearly separable.



Best bias value

Here, training instances are represented with 2 features each (x = [xp, x1]) and labeled with 2
class labels (y = {black, red}):

Xo

» Parameters of f(x; W,b) = & - W + b define the hyperplane separating the instances.
» This decision boundary is actually our learned classifier.

» NB: the dataset on the plot is linearly separable.

» Question: lines with 3 values of b are shown. Which is the best?
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Common loss functions
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Hinge (binary): L(y,y) = max(0,1—y - 9)

Hinge (multi-class): L(9,y) = max(0,1 — (919 — Jp4))

Log loss: L(§, ) = log(1 + exp(—(d1g — 1))

Binary cross-entropy (logistic loss): L(y,y) = —y logy — (1 — y)log(1 — §)
Categorical cross-entropy (negative log-likelihood): L(g,y) = — Zy ilog (i)

Ranking losses, etc, etc...
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Regularization

Regularization

» Sometimes, so as not to overfit, we pose restrictions on the possible 6.

» We would like 6 to be not only good in predictions, but also not too complex; it should be
‘lean’ and avoid large weights.

Why do you think this is? Pause the video and think.
» We can live with some errors on the training data, if it gives more generalization power.
» For that, we minimize both the loss and the regularization term R(6):
0 = argmin £(0) + AR(0) (1)
0
» The hyperparameter \ is regularization weight (how important is it).

» Common regularization terms:

1. Ly norm (Gaussian prior or weight decay);
2. Ly norm (sparse prior or lasso)
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Error surface

Error surfaces of convex and not-convex functions:

Convex function Non-convex function
» Convex functions can be easily minimized with gradient methods, reaching the global
optimum.

» With non-convex functions, optimization can end up in a local optimum.
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Error surfaces of convex and not-convex functions:

o Al R

A
ﬂuu»gml\‘l‘ﬂ\\\
I

T

Convex function Non-convex function

» Convex functions can be easily minimized with gradient methods, reaching the global

optimum.
» With non-convex functions, optimization can end up in a local optimum.

» Linear and log-linear models as a rule have convex error functions.
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» Yes, there are.
» One example is the XOR (‘excluding OR’) function:

1 o x
0 * o
0 1

It is clearly not linearly separable.
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Possible solutions

» We can transform the input so that it becomes linearly separable.

» Linear transformations will not be able to do this.

» We need non-linear transformations.

For example, ¢(x1,x2) = [x1 + x2, X1 X x2] maps the instances to another representation and
makes the XOR problem linearly separable:
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