
Best bias value
Here, training instances are represented with 2 features each (x = [x0, x1]) and labeled with 2
class labels (y = {black, red}):

I Parameters of f (x; W , b) = x ·W + b define the hyperplane separating the instances.
I This decision boundary is actually our learned classifier.
I NB: the dataset on the plot is linearly separable.
I Question: lines with 3 values of b are shown. Which is the best?
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Loss

Common loss functions
1. Hinge (binary): L(ŷ , y) = max(0, 1− y · ŷ)

2. Hinge (multi-class): L(ŷ,y) = max(0, 1− (ŷ[t] − ŷ[k]))
3. Log loss: L(ŷ,y) = log(1 + exp(−(ŷ[t] − ŷ[k]))
4. Binary cross-entropy (logistic loss): L(ŷ , y) = −y logŷ − (1− y)log(1− ŷ)
5. Categorical cross-entropy (negative log-likelihood): L(ŷ,y) = −

∑
i

y[i]log(ŷ[i])

6. Ranking losses, etc, etc...
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6. Ranking losses, etc, etc...

2



Loss

Common loss functions
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Regularization

Regularization
I Sometimes, so as not to overfit, we pose restrictions on the possible θ.

I We would like θ to be not only good in predictions, but also not too complex; it should be
‘lean’ and avoid large weights.

Why do you think this is? Pause the video and think.
I We can live with some errors on the training data, if it gives more generalization power.
I For that, we minimize both the loss and the regularization term R(θ):

θ̂ = arg min
θ
L(θ) + λR(θ) (1)

I The hyperparameter λ is regularization weight (how important is it).
I Common regularization terms:

1. L2 norm (Gaussian prior or weight decay);
2. L1 norm (sparse prior or lasso)
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Error surface

Error surfaces of convex and not-convex functions:

Convex function Non-convex function

I Convex functions can be easily minimized with gradient methods, reaching the global
optimum.

I With non-convex functions, optimization can end up in a local optimum.
I Linear and log-linear models as a rule have convex error functions.
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XOR
I Are there non-linear functions that linear models can’t deal with?

I Yes, there are.
I One example is the XOR (‘excluding OR’) function:

It is clearly not linearly separable.
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XOR

Possible solutions
I We can transform the input so that it becomes linearly separable.

I Linear transformations will not be able to do this.
I We need non-linear transformations.
For example, φ(x1, x2) = [x1 + x2, x1 × x2] maps the instances to another representation and
makes the XOR problem linearly separable:
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