– IN5550 – Neural Methods in Natural Language Processing

CNNs, Part 2: Convolutions

Erik Velldal

Language Technology Group (LTG) University of Oslo

1d CNNs for NLP

- Consider a sequence of words $w_{1:n} = w_1, \ldots, w_n$.
- Each word is represented by a d dimensional embedding $E_{[w_i]} = w_i$.

- A convolution corresponds to 'sliding' a window of size k across the sequence and applying a filter to each.
- Let $\oplus(w_{i:i+k-1}) = [w_i; w_{i+1}; \dots; w_{i+k-1}]$ be the concatenation of the embeddings w_i, \dots, w_{i+k-1} .
- ▶ The vector for the *i*th window is $x_i = \oplus(w_{i:i+k-1})$, where $x_i \in \mathbb{R}^{kd}$.

To apply a filter to a window x_i :

- \blacktriangleright compute its dot-product with a weight vector $oldsymbol{u} \in \mathbb{R}^{kd}$
- and then apply a non-linear activation g,
- resulting in a scalar value $p_i = g(\boldsymbol{x_i} \cdot \boldsymbol{u})$

To apply a filter to a window x_i :

- $lacksymbol{
 abla}$ compute its dot-product with a weight vector $oldsymbol{u} \in \mathbb{R}^{kd}$
- ▶ and then apply a non-linear activation g,
- resulting in a scalar value $p_i = g(\boldsymbol{x_i} \cdot \boldsymbol{u})$
- ▶ Typically use ℓ different filters, u_1, \ldots, u_ℓ .
- Can be arranged in a matrix $oldsymbol{U} \in \mathbb{R}^{kd imes \ell}$.
- Also include a bias vector $\boldsymbol{b} \in \mathbb{R}^{\ell}$.
- ► Gives an *l*-dimensional vector *p_i* summarizing the *i*th window: *p_i* = g(*x_i* · *U* + *b*)
- Ideally different dimensions captures different indicative information.

Convolutions on sequences

- Applying the convolutions over the text results in m vectors $p_{1:m}$.
- Each $p_i \in \mathbb{R}^{\ell}$ represents a particular k-gram in the input.
- Sensitive to the identity and order of tokens within the sub-sequence,
- but independent of its particular position within the sequence.

- What is m in $p_{1:m}$?
- ► For a given window size k and a sequence w₁,..., w_n, how many vectors p_i will be extracted?
- There are m = n k + 1 possible positions for the window.
- ► This is called a narrow convolution.

- What is m in $p_{1:m}$?
- ► For a given window size k and a sequence w₁,..., w_n, how many vectors p_i will be extracted?
- There are m = n k + 1 possible positions for the window.
- ► This is called a narrow convolution.
- Another strategy: pad with k-1 extra dummy-tokens on each side.
- Let's us slide the window beyond the boundaries of the sequence.
- We then get m = n + k 1 vectors p_i .
- Called a wide convolution.
- Necessary when using window-sizes that might be wider than the input.

- ► So far we've visualized inputs, filters, and filter outputs as sequences:
- ▶ What Goldberg (2017) calls the 'concatenation notation'.

- An alternative (and perhaps more common) view: 'stacking notation'.
- Imagine the n input embeddings stacked on top of each other, resulting in an n × d sentence matrix.

- Correspondingly, imagine each column uin the matrix $U \in \mathbb{R}^{kd \times \ell}$ be arranged as a $k \times d$ matrix.
- ► We can then slide ℓ different k × d filter matrices down the sentence matrix, computing matrix convolutions:
- ► Sum of element-wise multiplications.

- ▶ Now imagine the output vectors $p_{1:m}$ stacked in a matrix $P \in \mathbb{R}^{m imes \ell}$.
- ► Each *l*-dimensional row of *P* holds the features extracted for a given *k*-gram by different filters.
- ► Each *m*-dimensional column of *P* holds the features extracted across the sequence for a given filter.
- These columns are sometimes referred to as feature maps.

- ▶ Now imagine the output vectors $p_{1:m}$ stacked in a matrix $P \in \mathbb{R}^{m imes \ell}$.
- ► Each *l*-dimensional row of *P* holds the features extracted for a given *k*-gram by different filters.
- ► Each *m*-dimensional column of *P* holds the features extracted across the sequence for a given filter.
- These columns are sometimes referred to as feature maps.

- ▶ Now imagine the output vectors $p_{1:m}$ stacked in a matrix $P \in \mathbb{R}^{m imes \ell}$.
- ► Each *l*-dimensional row of *P* holds the features extracted for a given *k*-gram by different filters.
- ► Each *m*-dimensional column of *P* holds the features extracted across the sequence for a given filter.
- These columns are sometimes referred to as feature maps.

- ▶ Now imagine the output vectors $p_{1:m}$ stacked in a matrix $P \in \mathbb{R}^{m imes \ell}$.
- ► Each *l*-dimensional row of *P* holds the features extracted for a given *k*-gram by different filters.
- ► Each *m*-dimensional column of *P* holds the features extracted across the sequence for a given filter.
- These columns are sometimes referred to as feature maps.

- ▶ Now imagine the output vectors $p_{1:m}$ stacked in a matrix $P \in \mathbb{R}^{m imes \ell}$.
- ► Each *l*-dimensional row of *P* holds the features extracted for a given *k*-gram by different filters.
- ► Each *m*-dimensional column of *P* holds the features extracted across the sequence for a given filter.
- These columns are sometimes referred to as feature maps.

- ▶ Now imagine the output vectors $p_{1:m}$ stacked in a matrix $P \in \mathbb{R}^{m imes \ell}$.
- ► Each *l*-dimensional row of *P* holds the features extracted for a given *k*-gram by different filters.
- ► Each *m*-dimensional column of *P* holds the features extracted across the sequence for a given filter.
- These columns are sometimes referred to as feature maps.

- ▶ Now imagine the output vectors $p_{1:m}$ stacked in a matrix $P \in \mathbb{R}^{m imes \ell}$.
- ► Each *l*-dimensional row of *P* holds the features extracted for a given *k*-gram by different filters.
- ► Each *m*-dimensional column of *P* holds the features extracted across the sequence for a given filter.
- These columns are sometimes referred to as feature maps.

- ▶ Now imagine the output vectors $p_{1:m}$ stacked in a matrix $P \in \mathbb{R}^{m imes \ell}$.
- ► Each *l*-dimensional row of *P* holds the features extracted for a given *k*-gram by different filters.
- ► Each *m*-dimensional column of *P* holds the features extracted across the sequence for a given filter.
- These columns are sometimes referred to as feature maps.

- ▶ Now imagine the output vectors $p_{1:m}$ stacked in a matrix $P \in \mathbb{R}^{m imes \ell}$.
- ► Each *l*-dimensional row of *P* holds the features extracted for a given *k*-gram by different filters.
- ► Each *m*-dimensional column of *P* holds the features extracted across the sequence for a given filter.
- These columns are sometimes referred to as feature maps.

- ▶ Now imagine the output vectors $p_{1:m}$ stacked in a matrix $P \in \mathbb{R}^{m imes \ell}$.
- ► Each *l*-dimensional row of *P* holds the features extracted for a given *k*-gram by different filters.
- ► Each *m*-dimensional column of *P* holds the features extracted across the sequence for a given filter.
- These columns are sometimes referred to as feature maps.

▶ Next, in Part 3 of the CNN lecture we cover *pooling*.