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1d CNNs for NLP

» Consider a sequence of words wy., = wi,...,Wn,.

v

Each word is represented by a d dimensional embedding E,,,) = w;.
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» A convolution corresponds to ‘sliding’ a window of size k across the
sequence and applying a filter to each.

> Let ®(Wizitk—1) = [Wi; Wit1;...;Witk—1] be the concatenation of
the embeddings w;, ..., wiyr—1.

» The vector for the ith window is x; = ®(w;:i4+k—1), Where z; € R,
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Convolutions on sequences

To apply a filter to a window x;:
> compute its dot-product with a weight vector u € R*¢
» and then apply a non-linear activation g,

» resulting in a scalar value p; = g(x; - u)



Convolutions on sequences

To apply a filter to a window x;:
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compute its dot-product with a weight vector u € IR*¢
and then apply a non-linear activation g,

resulting in a scalar value p; = g(x; - u)

Typically use ¢ different filters, uq, ..., ug.
Can be arranged in a matrix U € RF¥¥¢,
Also include a bias vector b € R¥.

Gives an (-dimensional vector p; summarizing

the ith window: p; = g(x; - U + b)

Ideally different dimensions captures different

indicative information. DO 3088
the actual



Convolutions on sequences

» Applying the convolutions over the text results in m vectors p1.m,.
> Each p; € RY represents a particular k-gram in the input.
» Sensitive to the identity and order of tokens within the sub-sequence,

» but independent of its particular position within the sequence.
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Narrow vs. wide convolutions

» What is m in p1.m?

» For a given window size k£ and a sequence wy, ..., wy,, how many
vectors p; will be extracted?

» There are m = n — k + 1 possible positions for the window.

» This is called a narrow convolution.



Narrow vs. wide convolutions
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What is m in p1.n?

For a given window size k and a sequence wy, ..., w,, how many
vectors p; will be extracted?

There are m = n — k + 1 possible positions for the window.

This is called a narrow convolution.

Another strategy: pad with k¥ — 1 extra dummy-tokens on each side.
Let's us slide the window beyond the boundaries of the sequence.
We then get m = n + k — 1 vectors p;.

Called a wide convolution.

Necessary when using window-sizes that might be wider than the input.



Stacking view (1:3)

» So far we've visualized inputs, filters, and filter outputs as sequences:

> What Goldberg (2017) calls the ‘concatenation notation’.
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Stacking view (2:3)
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» Correspondingly, imagine each column u
in the matrix U € R*¥*¢ be arranged as
a k x d matrix.

» We can then slide ¢ different £ x d filter
matrices down the sentence matrix,
computing matrix convolutions:

» Sum of element-wise multiplications.



Stacking view (3:3)

» Now imagine the output vectors pi.,, stacked in a matrix P € R™*¢,

» Each /-dimensional row of P holds the features extracted for a given
k-gram by different filters.

» Each m-dimensional column of P holds the features extracted across
the sequence for a given filter.

» These columns are sometimes referred to as feature maps.
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the sequence for a given filter.

» These columns are sometimes referred to as feature maps.

*PAD* [0 @@ ®| - =
the [0 @ @ @ ———19!® ®|"PAD" the

........... 0
actual 9009 ® /.ﬁ 9 the actual

service @9 9O

| 20 ® | scrvi
rvi
ve/@88e| 88 rrce v
not| @O0 @| .;..“-. ot ver
very @99 ® Y

® © ® very good

g0l 0009 ® © ® good *PAD*

‘PAD* @90 O



Stacking view (3:3)

» Now imagine the output vectors pi.,, stacked in a matrix P € R™*¢,

» Each /-dimensional row of P holds the features extracted for a given
k-gram by different filters.

» Each m-dimensional column of P holds the features extracted across
the sequence for a given filter.

» These columns are sometimes referred to as feature maps.

“PAD* [0 00 ® .
0000 1@ "PAD" the

o000 /,..D '@ the actual

ng\t,lilg; 2000 ® © ® actual service
w1 000 ® ® © ® service was
not © 0 ® ® 99 @) s not
cry 000 @) ®® @ not very
good ®OO O @9 @ very g*ood *
® © ® good *PAD

‘PAD* @90 O



Stacking view (3:3)

» Now imagine the output vectors pi.,, stacked in a matrix P € R™*¢,

» Each /-dimensional row of P holds the features extracted for a given
k-gram by different filters.

» Each m-dimensional column of P holds the features extracted across
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Stacking view (3:3)

» Now imagine the output vectors pi.,, stacked in a matrix P € R™*¢,

» Each /-dimensional row of P holds the features extracted for a given

k-gram by different filters.

» Each m-dimensional column of P holds the features extracted across
the sequence for a given filter.

» These columns are sometimes referred to as feature maps.
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Stacking view (3:3)

» Now imagine the output vectors pi.,, stacked in a matrix P € R™*¢,

» Each /-dimensional row of P holds the features extracted for a given
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Stacking view (3:3)
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Stacking view (3:3)

» Now imagine the output vectors pi.,, stacked in a matrix P € R™*¢,

» Each /-dimensional row of P holds the features extracted for a given
k-gram by different filters.

» Each m-dimensional column of P holds the features extracted across
the sequence for a given filter.

» These columns are sometimes referred to as feature maps.
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» Now imagine the output vectors pi.,, stacked in a matrix P € R™*¢,

» Each /-dimensional row of P holds the features extracted for a given
k-gram by different filters.

» Each m-dimensional column of P holds the features extracted across
the sequence for a given filter.

» These columns are sometimes referred to as feature maps.
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Stacking view (3:3)

» Now imagine the output vectors pi.,, stacked in a matrix P € R™*¢,

» Each /-dimensional row of P holds the features extracted for a given
k-gram by different filters.

» Each m-dimensional column of P holds the features extracted across
the sequence for a given filter.

» These columns are sometimes referred to as feature maps.
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Next up: pooling

» Next, in Part 3 of the CNN lecture we cover pooling.



