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1d CNNs for NLP

I Consider a sequence of words w1:n = w1, . . . , wn.
I Each word is represented by a d dimensional embedding E[wi] = wi.

I A convolution corresponds to ‘sliding’ a window of size k across the
sequence and applying a filter to each.

I Let ⊕(wi:i+k−1) = [wi; wi+1; . . . ; wi+k−1] be the concatenation of
the embeddings wi, . . . , wi+k−1.

I The vector for the ith window is xi = ⊕(wi:i+k−1), where xi ∈ Rkd.

x1 −→
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Convolutions on sequences

To apply a filter to a window xi:
I compute its dot-product with a weight vector u ∈ Rkd

I and then apply a non-linear activation g,
I resulting in a scalar value pi = g(xi · u)

I Typically use ` different filters, u1, . . . , u`.
I Can be arranged in a matrix U ∈ Rkd×`.
I Also include a bias vector b ∈ R`.
I Gives an `-dimensional vector pi summarizing

the ith window: pi = g(xi ·U + b)
I Ideally different dimensions captures different

indicative information.
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Convolutions on sequences

I Applying the convolutions over the text results in m vectors p1:m.
I Each pi ∈ R` represents a particular k-gram in the input.
I Sensitive to the identity and order of tokens within the sub-sequence,
I but independent of its particular position within the sequence.
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Narrow vs. wide convolutions

I What is m in p1:m?
I For a given window size k and a sequence w1, . . . , wn, how many

vectors pi will be extracted?
I There are m = n− k + 1 possible positions for the window.
I This is called a narrow convolution.

I Another strategy: pad with k − 1 extra dummy-tokens on each side.
I Let’s us slide the window beyond the boundaries of the sequence.
I We then get m = n + k − 1 vectors pi.
I Called a wide convolution.
I Necessary when using window-sizes that might be wider than the input.
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Stacking view (1:3)

I So far we’ve visualized inputs, filters, and filter outputs as sequences:

I What Goldberg (2017) calls the ‘concatenation notation’.

I An alternative (and perhaps more
common) view: ‘stacking notation’.

I Imagine the n input embeddings stacked
on top of each other, resulting in an
n× d sentence matrix.
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Stacking view (2:3)

I Correspondingly, imagine each column u
in the matrix U ∈ Rkd×` be arranged as
a k × d matrix.

I We can then slide ` different k × d filter
matrices down the sentence matrix,
computing matrix convolutions:

I Sum of element-wise multiplications.
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Stacking view (3:3)
I Now imagine the output vectors p1:m stacked in a matrix P ∈ Rm×`.
I Each `-dimensional row of P holds the features extracted for a given

k-gram by different filters.
I Each m-dimensional column of P holds the features extracted across

the sequence for a given filter.
I These columns are sometimes referred to as feature maps.
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Next up: pooling

I Next, in Part 3 of the CNN lecture we cover pooling.
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