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Next step: pooling (1:2)

» The convolution layer results in m vectors p1.m,.
» Each p; € RY represents a particular k-gram in the input.
» m (the length of the feature maps) can vary depending on input length.

» Pooling combines these vectors into a single fixed-sized vector c.
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Next step: pooling (2:2)

» The fixed-sized vector ¢ (possibly in combination with other vectors) is
what gets passed to a downstream network for prediction.

» Want c to contain the most important information from p1.y,.

» Different strategies available for ‘sampling’ features.
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Pooling strategies

Max pooling

» Most common. AKA max-over-time pooling or 1-max pooling.

> clj] = argmaxp;j; Vj € [1,]]
1<i<m

» Picks the maximum value across each dimension (feature map).

K-max pooling

» Concatenate the k highest values for each dimension / filter.

Average pooling
1 m

> c=2 > P
i=1

» Average of all the filtered k-gram representations.




Dynamic pooling

» Combines with any of the strategies above.
» Perform pooling separately over r different regions of the input.
» Concatenate the r resulting vectors ¢y, ... c,.

» Allows us to retain positional information relevant to a given task (e.g.
based on document structure).
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Combines with any of the strategies above.

Perform pooling separately over r different regions of the input.
Concatenate the r resulting vectors ¢y, ... c,.

Allows us to retain positional information relevant to a given task (e.g.

based on document structure).

Note that pooling is not specific to CNNs: can also be used in
combination with other architectures, e.g. RNNs.



Multiple window sizes

» So far considered CNNs with ¢ filters for a single window size k.

» Typically, CNNs in NLP are applied with multiple window sizes, and
multiple filters for each.

» Pooled separately, with the results concatenated.
» Rather large window sizes often used:

» 2-5 is most typical, but even k > 20 is not uncommon.



Multiple window sizes

» So far considered CNNs with ¢ filters for a single window size k.

» Typically, CNNs in NLP are applied with multiple window sizes, and
multiple filters for each.

» Pooled separately, with the results concatenated.
» Rather large window sizes often used:
» 2-5 is most typical, but even k > 20 is not uncommon.

» With standard n-gram features, anything more than 3-grams quickly
become infeasible.

» CNNs represent large n-grams efficiently, without blowing up the
parameter space and without having to represent the whole vocabulary.

> (Related to the notion of ‘neuron’ in a CNN — will get back to this!)



Baseline architecture of Zhang et al. (2017)
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— Zhang et al. (2017)




