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Context and the receptive field
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» CNNs improve on CBOW in also capturing ordered context.
» But still rather limited; only relationships local to windows of size k.

» Due to long-range compositional effects in natural language semantics,
we'll often want to model as much context as feasible.

» One option is to just increase the filter size k.
» More powerful: a stack of convolution layers applied one after the other:

» Hierarchical convolutions.



Hierarchical convolutions

» Let p1.n = CONV’&b(wLn) be the result of applying a convolution
(with parameters U and b) across wi., with window-size k.

» Can have a succession of r layers that feed into each other:

pi:ml = CONvl;jll,bl (wl:n)

k
p%:mz = CONVU?{[,? (pi:ml)
p;:mr = CONV](CJTT,IJT (p;:_'nir_l)

> The vectors p7,,, capture increasingly larger effective windows.



Two-layer hierarchical convolution with £ = 2
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the actual service was not very good

» Two different but related effects of adding layers:

» Larger receptive field wrt the input at each step: convolutions of
successive layers see more of the input.

» Can learn more abstract feature combinations.



v

The stride size specifies by how much we shift a filter at each step.

So far we've considered convolutions with a stride size of 1: we slide
the window by increments of 1 across the word sequence.

But using larger strides is possible.
Can slide the window with increments of e.g. 2 or 3 words at the time.

A larger stride size leads to fewer applications of the filter and a shorter
output sequence pPi.m-



k = 3 and stride sizes 1, 2, 3

00000000 0000/0000 00000000 00000000000
k=3,5=3




Other ‘tricks’

» Dilated convolutions: skip some of the positions within the filters (or
equivalently, introduce zero weights).

» Gives a wider filter region but with the same number of parameters.
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» Dilated convolutions: skip some of the positions within the filters (or
equivalently, introduce zero weights).

» Gives a wider filter region but with the same number of parameters.

» Multi-channel CNNSs: each channel providing a different representation
of the input. Apply convolutions to each.

» Hierarchical convolutions can be combined with parameter tying:
» Reusing the same U and b across layers.

» Allows for using an unbounded number of layers, to extend the
receptive field to arbitrary-sized inputs.

» Skip-connections can be useful for deep CNNs:

» The output from one layer is passed to not only the next but also
subsequent layers (ResNets, Highway nets, DenseNets, .. .)



CNN use-cases

» While hugely successful in image processing, CNNs have had less
impact in NLP (typically also much more shallow networks).

» Main use; document and sentence classification (e.g. for topic or
polarity classification).

» Although they have also been applied to more ‘structured’ tasks like
aspect-based SA and relation extraction.

» As of today, CNNs often applied at the character-level, to generate
more robust word representations (typically concatenated with word
embeddings before being passed to an RNN).



Recap: CNN Pros and Cons (1:2)
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Convolutional networks can learn to represent large n-grams efficiently...
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...without blowing up the parameter space and without having to
represent the whole vocabulary.
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Parameter sharing (shared weights in all applications of a given filter)
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Multiple filters; act as specialized feature extractors.
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Convolutional networks can learn to represent large n-grams efficiently...

...without blowing up the parameter space and without having to
represent the whole vocabulary.

Parameter sharing (shared weights in all applications of a given filter)
Multiple filters; act as specialized feature extractors.
But not designed for modeling sequential language data:

do not offer a very natural way of modeling long-range and structured
dependencies.



Recap: CNN Pros and Cons (2:2)

» Lends itself well to GPU computations; optimized for matrix
convolutions.

» Easily parallelized: each ‘region’ that a convolutional filter operates on
is independent of the others; the entire input can be processed
concurrently.

» Each filter also independent.
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