— IN5550 -
Neural Methods in Natural Language Processing

CNNs, Part 4: Additional comments and advanced
options

Erik Velldal

Language Technology Group (LTG)
University of Oslo

Context and the receptive field

AVAN

0000 0000 0000 0000 0000 0000 000
the actual service was not very good

» CNNs improve on CBOW in also capturing ordered context.
» But still rather limited; only relationships local to windows of size k.

» Due to long-range compositional effects in natural language semantics,
we'll often want to model as much context as feasible.

» One option is to just increase the filter size k.
» More powerful: a stack of convolution layers applied one after the other:

» Hierarchical convolutions.

Hierarchical convolutions

» Let p1.n = CONV’&b(wLn) be the result of applying a convolution
(with parameters U and b) across wi., with window-size k.

» Can have a succession of r layers that feed into each other:

pi:ml = CONvl;jll,bl (wl:n)

k
p%:mz = CONVU?{[,? (pi:ml)
p;:mr = CONV](CJTT,IJT (p;:_'nir_l)

> The vectors p7,,, capture increasingly larger effective windows.

Two-layer hierarchical convolution with £ = 2

o
«* . oo 3

the actual service was not very good

» Two different but related effects of adding layers:

» Larger receptive field wrt the input at each step: convolutions of
successive layers see more of the input.

» Can learn more abstract feature combinations.

v

The stride size specifies by how much we shift a filter at each step.

So far we've considered convolutions with a stride size of 1: we slide
the window by increments of 1 across the word sequence.

But using larger strides is possible.
Can slide the window with increments of e.g. 2 or 3 words at the time.

A larger stride size leads to fewer applications of the filter and a shorter
output sequence pPi.m-

k = 3 and stride sizes 1, 2, 3

00000000 0000/0000 00000000 00000000000
k=3,5=3

Other ‘tricks’

» Dilated convolutions: skip some of the positions within the filters (or
equivalently, introduce zero weights).

» Gives a wider filter region but with the same number of parameters.

Other ‘tricks’

» Dilated convolutions: skip some of the positions within the filters (or
equivalently, introduce zero weights).

» Gives a wider filter region but with the same number of parameters.

» Multi-channel CNNSs: each channel providing a different representation
of the input. Apply convolutions to each.

Other ‘tricks’

» Dilated convolutions: skip some of the positions within the filters (or
equivalently, introduce zero weights).

» Gives a wider filter region but with the same number of parameters.

» Multi-channel CNNSs: each channel providing a different representation
of the input. Apply convolutions to each.

» Hierarchical convolutions can be combined with parameter tying:
» Reusing the same U and b across layers.

» Allows for using an unbounded number of layers, to extend the
receptive field to arbitrary-sized inputs.

Other ‘tricks’

» Dilated convolutions: skip some of the positions within the filters (or
equivalently, introduce zero weights).

» Gives a wider filter region but with the same number of parameters.

» Multi-channel CNNSs: each channel providing a different representation
of the input. Apply convolutions to each.

» Hierarchical convolutions can be combined with parameter tying:
» Reusing the same U and b across layers.

» Allows for using an unbounded number of layers, to extend the
receptive field to arbitrary-sized inputs.

» Skip-connections can be useful for deep CNNs:

» The output from one layer is passed to not only the next but also
subsequent layers (ResNets, Highway nets, DenseNets, .. .)

CNN use-cases

» While hugely successful in image processing, CNNs have had less
impact in NLP (typically also much more shallow networks).

» Main use; document and sentence classification (e.g. for topic or
polarity classification).

» Although they have also been applied to more ‘structured’ tasks like
aspect-based SA and relation extraction.

» As of today, CNNs often applied at the character-level, to generate
more robust word representations (typically concatenated with word
embeddings before being passed to an RNN).

Recap: CNN Pros and Cons (1:2)

v

Convolutional networks can learn to represent large n-grams efficiently...

v

...without blowing up the parameter space and without having to
represent the whole vocabulary.

v

Parameter sharing (shared weights in all applications of a given filter)

v

Multiple filters; act as specialized feature extractors.

Recap: CNN Pros and Cons (1:2)

v

v vyyVvyy

Convolutional networks can learn to represent large n-grams efficiently...

...without blowing up the parameter space and without having to
represent the whole vocabulary.

Parameter sharing (shared weights in all applications of a given filter)
Multiple filters; act as specialized feature extractors.
But not designed for modeling sequential language data:

do not offer a very natural way of modeling long-range and structured
dependencies.

Recap: CNN Pros and Cons (2:2)

» Lends itself well to GPU computations; optimized for matrix
convolutions.

» Easily parallelized: each ‘region’ that a convolutional filter operates on
is independent of the others; the entire input can be processed
concurrently.

» Each filter also independent.

10

Recap: CNN Pros and Cons (2:2)

Lends itself well to GPU computations; optimized for matrix
convolutions.

Easily parallelized: each ‘region’ that a convolutional filter operates on
is independent of the others; the entire input can be processed
concurrently.

Each filter also independent.

The cost of this is that we have to stack convolutions into deep layers
in order to ‘view' the entire input

Those layers are in fact calculated sequentially...

But the calculations at each layer happen concurrently and each
individual computation is small.

In practice, CNNs are much faster than RNNs.

10

Recap: CNN Pros and Cons (2:2)

Lends itself well to GPU computations; optimized for matrix
convolutions.

Easily parallelized: each ‘region’ that a convolutional filter operates on
is independent of the others; the entire input can be processed
concurrently.

Each filter also independent.

The cost of this is that we have to stack convolutions into deep layers
in order to ‘view' the entire input

Those layers are in fact calculated sequentially...

But the calculations at each layer happen concurrently and each
individual computation is small.

In practice, CNNs are much faster than RNNs.

10

