
– IN5550 –
Neural Methods in Natural Language Processing

CNNs, Part 4: Additional comments and advanced
options

Erik Velldal

Language Technology Group (LTG)
University of Oslo



Context and the receptive field

I CNNs improve on CBOW in also capturing ordered context.
I But still rather limited; only relationships local to windows of size k.
I Due to long-range compositional effects in natural language semantics,

we’ll often want to model as much context as feasible.
I One option is to just increase the filter size k.
I More powerful: a stack of convolution layers applied one after the other:
I Hierarchical convolutions.

2



Hierarchical convolutions

I Let p1:m = CONVk
U ,b(w1:n) be the result of applying a convolution

(with parameters U and b) across w1:n with window-size k.
I Can have a succession of r layers that feed into each other:

p1
1:m1

= CONVk1
U1,b1(w1:n)

p2
1:m2

= CONVk2
U2,b2(p1

1:m1
)

. . .

pr
1:mr

= CONVkr

Ur ,br (pr−1
1:mr−1

)

I The vectors pr
1:mr

capture increasingly larger effective windows.

3



Two-layer hierarchical convolution with k = 2

I Two different but related effects of adding layers:
I Larger receptive field wrt the input at each step: convolutions of

successive layers see more of the input.
I Can learn more abstract feature combinations.

4



Stride

I The stride size specifies by how much we shift a filter at each step.

I So far we’ve considered convolutions with a stride size of 1: we slide
the window by increments of 1 across the word sequence.

I But using larger strides is possible.

I Can slide the window with increments of e.g. 2 or 3 words at the time.

I A larger stride size leads to fewer applications of the filter and a shorter
output sequence p1:m.

5



k = 3 and stride sizes 1, 2, 3

6



Other ‘tricks’

I Dilated convolutions: skip some of the positions within the filters (or
equivalently, introduce zero weights).

I Gives a wider filter region but with the same number of parameters.

I Multi-channel CNNs: each channel providing a different representation
of the input. Apply convolutions to each.

I Hierarchical convolutions can be combined with parameter tying:
I Reusing the same U and b across layers.
I Allows for using an unbounded number of layers, to extend the

receptive field to arbitrary-sized inputs.

I Skip-connections can be useful for deep CNNs:
I The output from one layer is passed to not only the next but also

subsequent layers (ResNets, Highway nets, DenseNets, . . . )

7



Other ‘tricks’

I Dilated convolutions: skip some of the positions within the filters (or
equivalently, introduce zero weights).

I Gives a wider filter region but with the same number of parameters.

I Multi-channel CNNs: each channel providing a different representation
of the input. Apply convolutions to each.

I Hierarchical convolutions can be combined with parameter tying:
I Reusing the same U and b across layers.
I Allows for using an unbounded number of layers, to extend the

receptive field to arbitrary-sized inputs.

I Skip-connections can be useful for deep CNNs:
I The output from one layer is passed to not only the next but also

subsequent layers (ResNets, Highway nets, DenseNets, . . . )

7



Other ‘tricks’

I Dilated convolutions: skip some of the positions within the filters (or
equivalently, introduce zero weights).

I Gives a wider filter region but with the same number of parameters.

I Multi-channel CNNs: each channel providing a different representation
of the input. Apply convolutions to each.

I Hierarchical convolutions can be combined with parameter tying:
I Reusing the same U and b across layers.
I Allows for using an unbounded number of layers, to extend the

receptive field to arbitrary-sized inputs.

I Skip-connections can be useful for deep CNNs:
I The output from one layer is passed to not only the next but also

subsequent layers (ResNets, Highway nets, DenseNets, . . . )

7



Other ‘tricks’

I Dilated convolutions: skip some of the positions within the filters (or
equivalently, introduce zero weights).

I Gives a wider filter region but with the same number of parameters.

I Multi-channel CNNs: each channel providing a different representation
of the input. Apply convolutions to each.

I Hierarchical convolutions can be combined with parameter tying:
I Reusing the same U and b across layers.
I Allows for using an unbounded number of layers, to extend the

receptive field to arbitrary-sized inputs.

I Skip-connections can be useful for deep CNNs:
I The output from one layer is passed to not only the next but also

subsequent layers (ResNets, Highway nets, DenseNets, . . . )
7



CNN use-cases

I While hugely successful in image processing, CNNs have had less
impact in NLP (typically also much more shallow networks).

I Main use; document and sentence classification (e.g. for topic or
polarity classification).

I Although they have also been applied to more ‘structured’ tasks like
aspect-based SA and relation extraction.

I As of today, CNNs often applied at the character-level, to generate
more robust word representations (typically concatenated with word
embeddings before being passed to an RNN).

8



Recap: CNN Pros and Cons (1:2)

I Convolutional networks can learn to represent large n-grams efficiently...
I ...without blowing up the parameter space and without having to

represent the whole vocabulary.
I Parameter sharing (shared weights in all applications of a given filter)
I Multiple filters; act as specialized feature extractors.

I But not designed for modeling sequential language data:
I do not offer a very natural way of modeling long-range and structured

dependencies.

9



Recap: CNN Pros and Cons (1:2)

I Convolutional networks can learn to represent large n-grams efficiently...
I ...without blowing up the parameter space and without having to

represent the whole vocabulary.
I Parameter sharing (shared weights in all applications of a given filter)
I Multiple filters; act as specialized feature extractors.
I But not designed for modeling sequential language data:
I do not offer a very natural way of modeling long-range and structured

dependencies.

9



Recap: CNN Pros and Cons (2:2)

I Lends itself well to GPU computations; optimized for matrix
convolutions.

I Easily parallelized: each ‘region’ that a convolutional filter operates on
is independent of the others; the entire input can be processed
concurrently.

I Each filter also independent.

I The cost of this is that we have to stack convolutions into deep layers
in order to ‘view’ the entire input

I Those layers are in fact calculated sequentially...
I But the calculations at each layer happen concurrently and each

individual computation is small.
I In practice, CNNs are much faster than RNNs.

10



Recap: CNN Pros and Cons (2:2)

I Lends itself well to GPU computations; optimized for matrix
convolutions.

I Easily parallelized: each ‘region’ that a convolutional filter operates on
is independent of the others; the entire input can be processed
concurrently.

I Each filter also independent.
I The cost of this is that we have to stack convolutions into deep layers

in order to ‘view’ the entire input
I Those layers are in fact calculated sequentially...
I But the calculations at each layer happen concurrently and each

individual computation is small.
I In practice, CNNs are much faster than RNNs.

10



Recap: CNN Pros and Cons (2:2)

I Lends itself well to GPU computations; optimized for matrix
convolutions.

I Easily parallelized: each ‘region’ that a convolutional filter operates on
is independent of the others; the entire input can be processed
concurrently.

I Each filter also independent.
I The cost of this is that we have to stack convolutions into deep layers

in order to ‘view’ the entire input
I Those layers are in fact calculated sequentially...
I But the calculations at each layer happen concurrently and each

individual computation is small.
I In practice, CNNs are much faster than RNNs.

10


