IN5550: Neural Methods in Natural Language Processing

– IN5550 –

Neural Methods in Natural Language Processing Sustainability 2: Towards Green(er) NLP

Lilja Øvrelid

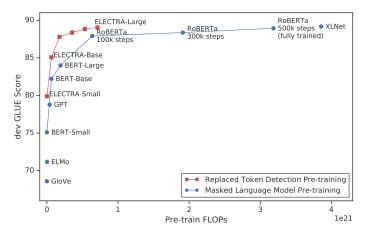
(With thanks to Jeremy Barnes)

How can we mitigate the negative effects of large LMs?

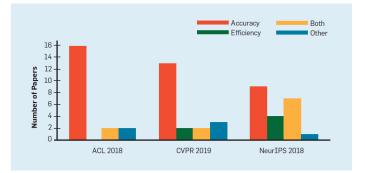
- Enhance reporting of computational budgets
- Efficiency as a core evaluation metric

* from Schwartz et al (2020): Green AI

Improved reporting



* from Clark et al (2020): ELECTRA



* from Schwartz et al (2020): Green AI

What is made more efficient?

- ► Training
- Inference
- Model selection

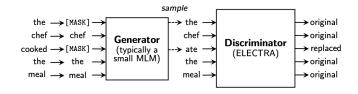
How do we measure it?

- Space
- Time
- Energy

Efficient training

ELECTRA (Clark et al, 2020)

- Modifies pre-training objective
- Trained to distinguish "real" input tokens vs "fake" input tokens generated by another neural network
- Strong results even when trained on a single GPU.



* from Clark et al (2020): ELECTRA

To avoid retraining lots of models

- We can share the trained models
- ► Nordic Language Processing Laboratory (NLPL) is a good example

Huggingface

- But it's important to get things right
 - ► METADATA!!!
 - ► same format for all models

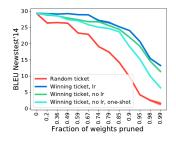
What if we can reduce the size of these giant models?

 Often, overparameterized transformer models lead to better performance, even with less data

- Often, overparameterized transformer models lead to better performance, even with less data
- Lottery-ticket hypothesis: for large enough models, there is a small chance that random initialization will lead to a submodel that already has good weights for the task

- Often, overparameterized transformer models lead to better performance, even with less data
- Lottery-ticket hypothesis: for large enough models, there is a small chance that random initialization will lead to a submodel that already has good weights for the task
- But interestingly, you can often remove a large number of the parameters for only a small decrease in performance

- Often, overparameterized transformer models lead to better performance, even with less data
- Lottery-ticket hypothesis: for large enough models, there is a small chance that random initialization will lead to a submodel that already has good weights for the task
- But interestingly, you can often remove a large number of the parameters for only a small decrease in performance



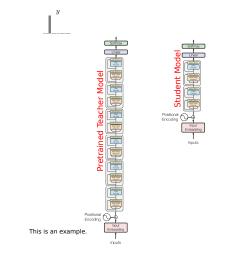
Reduce model size?

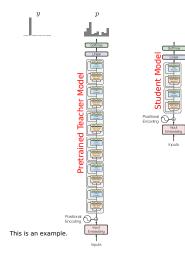
Reduce model size?

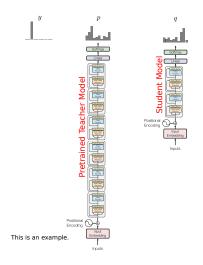
		Compression	Performance	Speedup	Model	Evaluation
	BERT-base (Devlin et al., 2019)	$\times 1$	100%	$\times 1$	BERT ₁₂	All GLUE tasks, SQuAD
	BERT-small	×3.8	91%	-	$BERT_4^{\dagger}$	All GLUE tasks
_	DistilBERT (Sanh et al., 2019)	×1.5	90% [§]	×1.6	BERT ₆	All GLUE tasks, SQuAD
	BERT ₆ -PKD (Sun et al., 2019a)	×1.6	98%	$\times 1.9$	BERT ₆	No WNLI, CoLA, STS-B; RACE
	BERT ₃ -PKD (Sun et al., 2019a)	$\times 2.4$	92%	×3.7	$BERT_3$	No WNLI, CoLA, STS-B; RACE
	Aguilar et al. (2019), Exp. 3	×1.6	93%	-	$BERT_6$	CoLA, MRPC, QQP, RTE
	BERT-48 (Zhao et al., 2019)	$\times 62$	87%	$\times 77$	BERT ₁₂ *†	MNLI, MRPC, SST-2
ioi	BERT-192 (Zhao et al., 2019)	×5.7	93%	$\times 22$	BERT ₁₂ * [†]	MNLI, MRPC, SST-2
Distillation	TinyBERT (Jiao et al., 2019)	×7.5	96%	$\times 9.4$	BERT_4^\dagger	No WNLI; SQuAD
	MobileBERT (Sun et al., 2020)	$\times 4.3$	100%	$\times 4$	$BERT_{24}^{\dagger}$	No WNLI; SQuAD
	PD (Turc et al., 2019)	$\times 1.6$	98%	$\times 2.5^{\ddagger}$	$BERT_6^{\dagger}$	No WNLI, CoLA and STS-B
	WaLDORf (Tian et al., 2019)	$\times 4.4$	93%	$\times 9$	BERT ₈ †∥	SQuAD
	MiniLM (Wang et al., 2020b)	$\times 1.65$	99%	$\times 2$	BERT ₆	No WNLI, STS-B, MNLI _{mm} ; SQuAD
	MiniBERT(Tsai et al., 2019)	$\times 6^{**}$	98%	$\times 27^{**}$	$mBERT_3^{\dagger}$	CoNLL-18 POS and morphology
	BiLSTM-soft (Tang et al., 2019)	$\times 110$	91%	$ imes 434^{\ddagger}$	$BiLSTM_1$	MNLI, QQP, SST-2
Quanti- zation	Q-BERT-MP (Shen et al., 2019)	×13	98%¶	-	BERT ₁₂	MNLI, SST-2, CoNLL-03, SQuAD
Quantization	BERT-QAT (Zafrir et al., 2019)	$\times 4$	99%	_	BERT ₁₂	No WNLI, MNLI; SQuAD
Q E	GOBO (Zadeh and Moshovos, 2020)	$\times 9.8$	99%	-	BERT ₁₂	MNLI
	McCarley et al. (2020), ff2	$\times 2.2^{\ddagger}$	98% [‡]	$\times 1.9^{\ddagger}$	BERT ₂₄	SQuAD, Natural Questions
Pruning	RPP (Guo et al., 2019)	$\times 1.7^{\ddagger}$	99% [‡]	-	BERT ₂₄	No WNLI, STS-B; SQuAD
5	Soft MvP (Sanh et al., 2020)	×33	94%¶	_	BERT ₁₂	MNLI, QQP, SQuAD
d.	IMP (Chen et al., 2020), rewind 50%	$\times 1.4 - 2.5$	94-100%	-	BERT ₁₂	No MNLI-mm; SQuAD
	ALBERT-base (Lan et al., 2020)	$\times 9$	97%	-	$\text{BERT}_{12}^{\dagger}$	MNLI, SST-2
er	ALBERT-xxlarge (Lan et al., 2020)	×0.47	107%	-	BERT ₁₂ [†]	MNLI, SST-2
Other	BERT-of-Theseus (Xu et al., 2020)	$\times 1.6$	98%	$\times 1.9$	BERT ₆	No WNLI
-	PoWER-BERT (Goyal et al., 2020)	N/A	99%	$\times 2-4.5$	BERT ₁₂	No WNLI; RACE

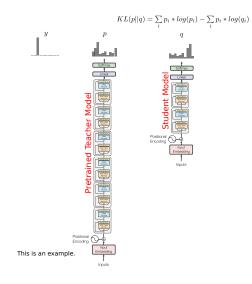
From Rogers et al. (2020) A Primer in BERTology: What We Know About How BERT Works.

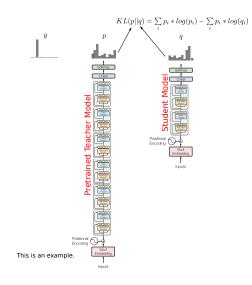
Reduce model size?











Head pruning

Performance = 93.7

Performance = 93.7

Performance = 93.0

But how can we NLPers contribute to sustainability?

But how can we NLPers contribute to sustainability?

When possible use pre-trained models

- ► When possible use pre-trained models
- If you train a strong model, similarly make it available to the community.

- When possible use pre-trained models
- If you train a strong model, similarly make it available to the community.
- Try to reduce the amount of hyperparameter tuning we do (for example, by working with models that are more robust to hyperparameters)

- When possible use pre-trained models
- If you train a strong model, similarly make it available to the community.
- Try to reduce the amount of hyperparameter tuning we do (for example, by working with models that are more robust to hyperparameters)
- Improved reporting, take into account efficiency

- When possible use pre-trained models
- If you train a strong model, similarly make it available to the community.
- Try to reduce the amount of hyperparameter tuning we do (for example, by working with models that are more robust to hyperparameters)
- Improved reporting, take into account efficiency
 - budget/performance curves

- When possible use pre-trained models
- If you train a strong model, similarly make it available to the community.
- Try to reduce the amount of hyperparameter tuning we do (for example, by working with models that are more robust to hyperparameters)
- Improved reporting, take into account efficiency
 - budget/performance curves

Model	Train / Infer FLOPs	Speedup	Params	Train Time + Hardware	GLUE
ELMo	3.3e18 / 2.6e10	19x / 1.2x	96M	14d on 3 GTX 1080 GPUs	71.2
GPT	4.0e19 / 3.0e10	1.6x / 0.97x	117M	25d on 8 P6000 GPUs	78.8
BERT-Small	1.4e18 / 3.7e9	45x / 8x	14M	4d on 1 V100 GPU	75.1
BERT-Base	6.4e19 / 2.9e10	1x / 1x	110M	4d on 16 TPUv3s	82.2
ELECTRA-Small	1.4e18 / 3.7e9	45x / 8x	14M	4d on 1 V100 GPU	79.9
50% trained	7.1e17 / 3.7e9	90x / 8x	14M	2d on 1 V100 GPU	79.0
25% trained	3.6e17 / 3.7e9	181x / 8x	14M	1d on 1 V100 GPU	77.7
12.5% trained	1.8e17 / 3.7e9	361x / 8x	14M	12h on 1 V100 GPU	76.0
6.25% trained	8.9e16 / 3.7e9	722x / 8x	14M	6h on 1 V100 GPU	74.1
ELECTRA-Base	6.4e19 / 2.9e10	1x / 1x	110M	4d on 16 TPUv3s	85.1