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Towards Green NLP?

How can we mitigate the negative effects of large LMs?
» Enhance reporting of computational budgets

» Efficiency as a core evaluation metric

* from Schwartz et al (2020): Green Al



Improved reporting
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Beyond accuracy
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Efficient methods

What is made more efficient?

» Training

» |nference

» Model selection

How do we measure it?

» Space
> Time

» Energy



Efficient training

ELECTRA (Clark et al, 2020)

» Modifies pre-training objective

» Trained to distinguish "real" input tokens vs "fake" input tokens
generated by another neural network

» Strong results even when trained on a single GPU.
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Sharing is caring

To avoid retraining lots of models

» We can share the trained models
» Nordic Language Processing Laboratory (NLPL) is a good example
» Huggingface

» But it's important to get things right

> METADATAL!II
» same format for all models
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What if we can reduce the size of these giant models?
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Reduce model size?




Reduce model size?

Compression Performance Speedup  Model Evaluation
BERT-base (Devlin et al., 2019) x1 100% x1 BERT), All GLUE tasks, SQuAD
BERT-small x3.8 91% - BERTsf  All GLUE tasks
DistilBERT (Sanh et al., 2019) x1.5 90%" x1.6 BERT, All GLUE tasks, SQuAD
BERT-PKD (Sun et al., 2019a) x1.6 98% x1.9 BERTs No WNLI, CoLA, STS-B; RACE
BERT;-PKD (Sun et al., 2019a) x2.4 92% x3.7 BERT; No WNLI, CoLA, STS-B; RACE
Aguilar et al. (2019), Exp. 3 x1.6 93% - BERT, CoLA, MRPC, QQP, RTE
BERT-48 (Zhao et al., 2019) x62 87% x77 BERT;;*" MNLI, MRPC, SST-2
BERT-192 (Zhao et al., 2019) x5.7 93% x22 BERT;,*" MNLI, MRPC, SST-2
TinyBERT (Jiao et al., 2019) X715 96% x9.4 BERT,' No WNLI: SQuAD
MobileBERT (Sun et al., 2020) x4.3 100% x4 BERT,,'  No WNLI; SQuAD
PD (Turc et al., 2019) x1.6 98% x2.5¢  BERTs No WNLI, CoLA and STS-B
WaLDOR( (Tian et al., 2019) x4.4 93% x9 BERTj' SQuAD
MiniLM (Wang et al., 2020b) x1.65 99% x2 BERT, No WNLI, STS-B, MNLIyn; SQUAD
MiniBERT(Tsai et al., 2019) x6** 98% x27**  mBERT;" CoNLL-18 POS and morphology
BiLSTM-soft (Tang et al., 2019) x110 91% x434*  BILSTM; MNLI, QQP, SST-2
= Q-BERT-MP (Shen et al., 2019) x13 98%% - BERT» MNLLI, SST-2, CoNLL-03, SQUAD
S BERT-QAT (Zafrir et al., 2019) x4 99% - BERT» No WNLI, MNLI; SQuAD
GOBO (Zadeh and Moshovos, 2020) x9.8 99% - BERT;,  MNLI
o McCarley et al. (2020), ff2 x2.2F 98%*" x1.9"  BERTy, SQuAD, Natural Questions
E RPP (Guo et al., 2019) x 1.7 99%* - BERT2 No WNLI, STS-B; SQuAD
2  Soft MvP (Sanh et al., 2020) %33 94%* - BERT;,  MNLI, QQP, SQuAD
& IMP (Chen et al., 2020), rewind 50% x1.4-25 94-100% - BERT» No MNLI-mm; SQuAD
ALBERT-base (Lan et al., 2020) x9 97% - BERT;;' MNLI SST-2
8 ALBERT-xxlarge (Lan et al., 2020) x0.47 107% - BERT;;"  MNLI, SST-2
5 BERT-of-Theseus (Xu et al., 2020) x1.6 98% x1.9 BERT, No WNLI
PoWER-BERT (Goyal et al., 2020) N/A 99% x2-4.5 BERT)y No WNLI; RACE

From Rogers et al. (2020) A Primer in BERTology: What We Know About How BERT Works.



Reduce model size?
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Model distillation

Student Model
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Pretrained Teacher Model

This is an example.
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Model distillation

KL(pllg) = 3 pi = log(p:) — 3 pi * log(g:)
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Model distillation

KL(pllg) = 3> pi = log(pi) — 3 pi * log(a:)
y P q
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Head pruning

Performance = 93.7
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Performance = 93.7
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Head pruning

Performance = 93.0
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But how can we NLPers contribute to sustainability?
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» When possible use pre-trained models

» If you train a strong model, similarly make it available to the
community.
» Try to reduce the amount of hyperparameter tuning we do (for example,
by working with models that are more robust to hyperparameters)
» Improved reporting, take into account efficiency
» budget/performance curves

Model Train / Infer FLOPs  Speedup Params Train Time + Hardware GLUE
ELMo 3.3e18/2.6e10 19x/1.2x 96M 14d on 3 GTX 1080 GPUs  71.2
GPT 4.0e19/3.0e10 1.6x/097x 117TM 25d on 8 P6000 GPUs 78.8
BERT-Small 1.4e18/3.7¢9 45x / 8x 14M 4d on 1 V100 GPU 75.1
BERT-Base 6.4¢19/2.9e10 Ix/1x 110M 4d on 16 TPUv3s 822
ELECTRA-Small 1.4e18/3.7¢9 45x / 8x 14M 4d on 1 V100 GPU 79.9
50% trained 7.1e17/3.7¢9 90x / 8x 14M 2d on 1 V100 GPU 79.0
25% trained 3.6e17/3.7¢9 181x/8x 14M 1d on 1 V100 GPU 7.7
12.5% trained 1.8e17/3.7¢9 361x/8x 14M 12h on 1 V100 GPU 76.0
6.25% trained  8.9¢16/3.7¢9 722x / 8x 14M 6h on 1 V100 GPU 74.1
ELECTRA-Base  6.4¢19/2.9e10 Ix/1x 110M 4d on 16 TPUv3s 85.1
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