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Introduction

I am Andrey Kutuzov
I will do some of the lectures, covering the following topics:

I a review of supervised learning (introducing notation)
I linear classifiers and simple feed-forward neural networks
I multi-layer neural networks and their training
I language modeling and distributed word embeddings
I recurrent neural networks (RNNs) and contextualized embeddings
I am also partially responsible for the obligatory assignments:
1. Bag of Words Document Classification
2. ...
3. ...
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Introduction

Technicalities
I Familiarize yourself with the course infrastructure.

I Check the course page for messages.
I Test whether you can access https://github.uio.no/in5550/2023

I make sure to update your UiO GitHub profile with your photo, and star
the course repository :-)

I Most of machine learning revolves around linear algebra.
I We created a LinAlg cheat sheet for this course.

I Linked from the course page, adapted for the notation of [Goldberg, 2017].
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Basics of supervised machine learning

I Input 1: a training set of n training instances x1:n = x1, x2, . . . xn

I for example, e-mail messages.
I Input 2: corresponding ‘gold’ labels for these instances

y1:n = y1, y2, . . . yn
I for example, whether the message is spam (1) or not (0).

I The trained models allow to make label predictions for unseen instances.
I Generally: some program for mapping instances to labels.
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Basics of supervised machine learning

Recap on data split
I Recall: we want the model to make good predictions for unseen data.

I It should not overfit to the seen data.
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Basics of supervised machine learning

Remember: we want models that generalize
I Thus, the datasets are usually split into:

1. train data;

2. validation/development data (optional);
3. test/held-out data.
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Basics of supervised machine learning

I We want to find a function which makes good, generalizable predictions
for our task.

I Searching among all possible functions is unfeasible.
I To cope with that, we choose an inductive bias...
I ...and set some hypothesis class...
I ...to search only within this class.

8



Basics of supervised machine learning

I We want to find a function which makes good, generalizable predictions
for our task.

I Searching among all possible functions is unfeasible.

I To cope with that, we choose an inductive bias...
I ...and set some hypothesis class...
I ...to search only within this class.

8



Basics of supervised machine learning

I We want to find a function which makes good, generalizable predictions
for our task.

I Searching among all possible functions is unfeasible.
I To cope with that, we choose an inductive bias...

I ...and set some hypothesis class...
I ...to search only within this class.

8



Basics of supervised machine learning

I We want to find a function which makes good, generalizable predictions
for our task.

I Searching among all possible functions is unfeasible.
I To cope with that, we choose an inductive bias...
I ...and set some hypothesis class...

I ...to search only within this class.

8



Basics of supervised machine learning

I We want to find a function which makes good, generalizable predictions
for our task.

I Searching among all possible functions is unfeasible.
I To cope with that, we choose an inductive bias...
I ...and set some hypothesis class...
I ...to search only within this class.

8



Basics of supervised machine learning

What do you think a good model would look like for this data?
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Basics of supervised machine learning

Linear functions: a popular hypothesis class
(move on to sub-lecture 2.2)
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