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Linear classifiers

Simple linear function

f (x; W , b) = x ·W + b (1)

θ = W , b (2)

I Function input:
I feature vector x ∈ Rdin ;
I each training instance is represented with din features;
I for example, some properties of the documents.

I Function parameters θ:
I matrix W ∈ Rdin×dout

I dout is the dimensionality of the desired prediction (number of classes)
I bias vector b ∈ Rdout

I bias ‘shifts’ the function output to some direction.
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Linear classifiers

Training of a linear classifier

f (x; W , b) = x ·W + b

θ = W , b

I Training is finding the optimal θ.

I ‘Optimal’ means ‘producing predictions ŷ closest to the gold labels y
on our n training instances’.

I Ideally, ŷ = y
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Linear classifiers
Here, training instances are represented with 2 features each (x = [x0, x1])
and labeled with 2 class labels (y = {black, red}):

I Parameters of f (x; W , b) = x ·W + b define the line (or hyperplane)
separating the instances.

I This decision boundary is actually our learned classifier.
I NB: the dataset on the plot is linearly separable.
I Question: lines with 3 values of b are shown. Which is the best?
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Linear classifiers

What would be a general representation of text?

Suppose you don’t want to choose a ton of features by hand,
and you don’t care about word order

Bag of words
I Each word from a pre-defined vocabulary D can be a separate feature.
I How many times the word a appears in the document i?

I or a binary flag {1, 0} of whether a appeared in i at all or not.
I This schema is called ‘bag of words’ (BoW).

I for example, if we have 1000 words in the vocabulary:
I xi ∈ R1000

I xi = [20, 16, 0, 10, 0, . . . , 3]
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Linear classifiers

I Bag-of-Words feature vector of x can be interpreted as a sum of
one-hot vectors (o) for each token in it:

I D extracted from the text above contains 10 words (lowercased): {‘-’,
‘by’, ‘in’, ‘most’, ‘norway’, ‘road’, ‘the’, ‘tourists’, ‘troll’, ‘visited’}.

I o0 = [0, 0, 0, 0, 0, 0, 1, 0, 0, 0]
I o1 = [0, 0, 0, 0, 0, 0, 0, 0, 1, 0]
I etc...
I i = [1, 1, 1, 1, 1, 2, 2, 1, 1, 1] (‘the’ and ‘road ’ mentioned 2 times)
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Linear classifiers

Can we interpret the different parts of a learned model as representations
of the data?

I Each of n instances (documents) is represented by a vector of features
(x ∈ Rdin).

I Inversely, each feature can be represented by a vector of instances
(documents) it appears in (feature ∈ Rn).

I Together these learned representations form a W matrix, part of θ.
I Thus, it contains data both about the instances and their features (more

about this later).
I Feature engineering is deciding what features of the instances we will

use during the training.
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Linear classifiers

f (x; W , b) = x ·W + b

Output of binary classification
Binary decision (dout = 1):

I ‘Is this message spam or not? ’
I W is a vector, b is a scalar.
I The prediction ŷ is also a scalar: either 1 (‘yes’) or −1 (‘no’).
I NB: the model can output any number, but we convert all negatives to
−1 and all positives to 1 (sign function).

θ = (W ∈ Rdin , b ∈ R1)
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Linear classifiers
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Linear classifiers

f (x; W , b) = x ·W + b

Output of multi-class classification

Multi-class decision (dout = k)
I ‘Which languages appear in this tweet? ’
I W is a matrix, b is a vector of k components.
I The prediction ŷ is also a one-hot vector of k components.
I The component corresponding to the correct language has the value of

1, others are zeros, for example:
ŷ = [0, 0, 1, 0] (for k = 4)

θ = (W ∈ Rdin×dout , b ∈ Rdout )
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I The prediction ŷ is also a one-hot vector of k components.
I The component corresponding to the correct language has the value of

1, others are zeros, for example:
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Linear classifiers

Log-linear classification
If we care about how confident is the classifier about each decision:

I Map the predictions to the range of [0, 1]...
I ...by a squashing function, for example, sigmoid:

ŷ = σ(f (x)) = 1
1 + e−(f (x)) (3)

I The result is the probability of the prediction!

σ(x)
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Linear classifiers
I For multi-class cases, log-linear models produce probabilities for all

classes, for example:
ŷ = [0.4, 0.1, 0.9, 0.5] (for k = 4)

I We choose the one with the highest score:

ŷ = arg max
i

ŷ[i] = ŷ[2] (4)

I But often it is more convenient to transform scores into a probability
distribution, using the softmax function:

ŷ = softmax(xW + b) (5)

ŷ[i] = e(xW +b)[i]∑
j e(xW +b)[j]

(6)

I ŷ = softmax([0.4, 0.1, 0.9, 0.5]) = [0.22, 0.16, 0.37, 0.25]
I (all scores sum to 1)
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