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Simple linear function

fz;W,b) =z -W +b

O=W.b (2)

» Function input:
» feature vector & € R%:
» each training instance is represented with d;, features;

> for example, some properties of the documents.
» Function parameters 6:
> matrix W € Rn*dout
» dou: is the dimensionality of the desired prediction (number of classes)
> bias vector b € R%u
» bias ‘shifts’ the function output to some direction.
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Training of a linear classifier
fle; W,b)=x-W +b
0=W.,b

» Training is finding the optimal 6.

» ‘Optimal’ means ‘producing predictions 4 closest to the gold labels y
on our n training instances’.

> Ideally, § =y



Linear classifiers

Here, training instances are represented with 2 features each (x = [xo, x1])
and labeled with 2 class labels (y = {black, red}):
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» Parameters of f(x; W,b) = « - W + b define the line (or hyperplane)
separating the instances.
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Here, training instances are represented with 2 features each (x = [xo, x1])
and labeled with 2 class labels (y = {black, red}):
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separating the instances.
» This decision boundary is actually our learned classifier.
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Here, training instances are represented with 2 features each (x = [xo, x1])
and labeled with 2 class labels (y = {black, red}):
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» Parameters of f(x; W,b) = « - W + b define the line (or hyperplane)
separating the instances.

» This decision boundary is actually our learned classifier.

» NB: the dataset on the plot is linearly separable.



Linear classifiers

Here, training instances are represented with 2 features each (x = [xo, x1])
and labeled with 2 class labels (y = {black, red}):

Xo

» Parameters of f(x; W,b) = « - W + b define the line (or hyperplane)
separating the instances.

» This decision boundary is actually our learned classifier.

» NB: the dataset on the plot is linearly separable.

» Question: lines with 3 values of b are shown. Which is the best?
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What would be a general representation of text?

Suppose you don't want to choose a ton of features by hand,
and you don't care about word order

Bag of words

» Each word from a pre-defined vocabulary D can be a separate feature.
» How many times the word a appears in the document 7

» or a binary flag {1,0} of whether a appeared in i at all or not.
» This schema is called ‘bag of words’ (BoW).

> for example, if we have 1000 words in the vocabulary:
> ;€ JR1000

> z; =[20,16,0,10,0,...,3]
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» Bag-of-Words feature vector of x can be interpreted as a sum of

one-hot vectors (o) for each token in it:

» D extracted from the text above contains 10 words (lowercased): {*“’,

‘by’, ‘in’, ‘most’, ‘norway’, ‘road’, ‘the’, ‘tourists’, ‘troll’, ‘visited'}.
0® = [0,0,0,0,0,0,1,0,0,0]
o! = [0,0,0,0,0,0,0,0,1,0]
etc...
1=11,1,1,1,1,2,2,1,1,1] (‘the’ and ‘road’ mentioned 2 times)

vvyyvyy
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Can we interpret the different parts of a learned model as representations
of the data?

» Each of n instances (documents) is represented by a vector of features
(x € R9n).

» Inversely, each feature can be represented by a vector of instances
(documents) it appears in (feature € R").

» Together these learned representations form a W matrix, part of 6.
» Thus, it contains data both about the instances and their features (more
about this later).
» Feature engineering is deciding what features of the instances we will
use during the training.
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fle; W,b)=x-W +b

Output of classification

Binary decision (doyr = 1):

» ‘Is this message spam or not?’

» W is a vector, b is a scalar.

» The prediction ¢ is also a scalar: either 1 (‘yes’) or —1 (‘no’).

» NB: the model can output any number, but we convert all negatives to

—1 and all positives to 1 (sign function).

0 =(W cR% becR!)
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fle; Wby =x-W +1b

W b i
- [oJoJ1]1]1] + 0.5 =sign(1.5) =1

[Sf-]o]-]o] =

10
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fl; W,b)=a-W +b

Output of classification
Multi-class decision (doyr = k)

» ‘Which languages appear in this tweet?’
> W is a matrix, b is a vector of k components.
» The prediction § is also a one-hot vector of k components.

» The component corresponding to the correct language has the value of
1, others are zeros, for example:
9 =1[0,0,1,0] (for k = 4)

0 — (W e RdinXdout’ b c IRdcut)

11
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Log-linear classification

If we care about how confident is the classifier about each decision:
> Map the predictions to the range of [0, 1]...

» _..by a squashing function, for example, sigmoid:

B 1
T 11 e (@)

» The result is the probability of the prediction!

y = o(f(x))

1

13
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Linear classifiers

» For multi-class cases, log-linear models produce probabilities for all
classes, for example:
9 =[0.4,0.1,0.9,0.5] (for k = 4)

» We choose the one with the highest score:

y = argmax g = 9y (4)

» But often it is more convenient to transform scores into a probability
distribution, using the softmax function:

9 = softmax(xW + b) (5)
e(mW+b)[,]
Y] = W (6)

> 4 = softmax([0.4,0.1,0.9,0.5]) = [0.22,0.16,0.37,0.25]
> (all scores sum to 1)

14



Linear classifiers

w b Y
oJoJ1fif1
[1jojaj1ji] + [o]oJ1f=[2]2]4]
i]1joJ1]1

softmax

[ 1]1].8]

15



	Linear classifiers

