IN5550: Neural Methods in Natural Language Processing Sub-lecture 2.2 Linear classifiers

Andrey Kutuzov

University of Oslo

31 January 2023

Contents

Simple linear function

$$
f(x;W,b) = x \cdot W + b \tag{1}
$$

$$
\theta = \boldsymbol{W}, \boldsymbol{b} \tag{2}
$$

\blacktriangleright Function input:

- \blacktriangleright feature vector $x \in \mathbb{R}^{d_{in}}$;
- each training instance is represented with d_{in} features;
- \blacktriangleright for example, some properties of the documents.

Simple linear function

$$
f(x;W,b) = x \cdot W + b \tag{1}
$$

$$
\theta = \boldsymbol{W}, \boldsymbol{b} \tag{2}
$$

\blacktriangleright Function input:

- \blacktriangleright feature vector $x \in \mathbb{R}^{d_{in}}$;
- each training instance is represented with d_{in} features;
- \blacktriangleright for example, some properties of the documents.

F Function parameters θ :

- **IF** matrix $W \in \mathbb{R}^{d_{in} \times d_{out}}$
	- \bullet d_{out} is the dimensionality of the desired prediction (number of classes)
- \blacktriangleright bias vector $\mathbf{b} \in \mathbb{R}^{d_{out}}$
	- \blacktriangleright bias 'shifts' the function output to some direction.

Training of a linear classifier

$$
f(\boldsymbol{x}; \boldsymbol{W}, \boldsymbol{b}) = \boldsymbol{x} \cdot \boldsymbol{W} + \boldsymbol{b}
$$

$$
\theta = \boldsymbol{W}, \boldsymbol{b}
$$

I Training is finding the optimal θ .

Training of a linear classifier

$$
f(\boldsymbol{x}; \boldsymbol{W}, \boldsymbol{b}) = \boldsymbol{x} \cdot \boldsymbol{W} + \boldsymbol{b}
$$

$$
\theta = \boldsymbol{W}, \boldsymbol{b}
$$

- I Training is finding the optimal *θ*.
- ▶ 'Optimal' means 'producing predictions \hat{y} closest to the gold labels *y* on our n training instances'.

Training of a linear classifier

$$
f(\boldsymbol{x}; \boldsymbol{W}, \boldsymbol{b}) = \boldsymbol{x} \cdot \boldsymbol{W} + \boldsymbol{b}
$$

$$
\theta = \boldsymbol{W}, \boldsymbol{b}
$$

- I Training is finding the optimal *θ*.
- ▶ 'Optimal' means 'producing predictions \hat{y} closest to the gold labels *y* on our n training instances'.
- \blacktriangleright Ideally, $\hat{y} = y$

Parameters of $f(x;W,b) = x \cdot W + b$ define the line (or hyperplane) separating the instances.

- Parameters of $f(x;W,b) = x \cdot W + b$ define the line (or hyperplane) separating the instances.
- \triangleright This decision boundary is actually our learned classifier.

- \blacktriangleright Parameters of $f(x;W,b) = x \cdot W + b$ define the line (or hyperplane) separating the instances.
- \triangleright This decision boundary is actually our learned classifier.
- \triangleright NB: the dataset on the plot is linearly separable.

- \blacktriangleright Parameters of $f(x;W,b) = x \cdot W + b$ define the line (or hyperplane) separating the instances.
- \triangleright This decision boundary is actually our learned classifier.
- \triangleright NB: the dataset on the plot is linearly separable.
- I **Question: lines with 3 values of** b **are shown. Which is the best?**

What would be a general representation of text?

What would be a general representation of text? Suppose you don't want to choose a ton of features by hand,

Bag of words

 \triangleright Each word from a pre-defined vocabulary D can be a separate feature.

- \triangleright Each word from a pre-defined vocabulary D can be a separate feature.
- \blacktriangleright How many times the word a appears in the document i?
	- \triangleright or a binary flag $\{1,0\}$ of whether a appeared in *i* at all or not.

- \triangleright Each word from a pre-defined vocabulary D can be a separate feature.
- \blacktriangleright How many times the word a appears in the document i?
	- \triangleright or a binary flag $\{1,0\}$ of whether a appeared in *i* at all or not.
- \blacktriangleright This schema is called 'bag of words' (BoW).
	- \triangleright for example, if we have 1000 words in the vocabulary:
	- \blacktriangleright $x_i \in \mathbb{R}^{1000}$

- \triangleright Each word from a pre-defined vocabulary D can be a separate feature.
- \blacktriangleright How many times the word a appears in the document i?
	- \triangleright or a binary flag $\{1,0\}$ of whether a appeared in *i* at all or not.
- \blacktriangleright This schema is called 'bag of words' (BoW).
	- \triangleright for example, if we have 1000 words in the vocabulary:
	- \blacktriangleright $x_i \in \mathbb{R}^{1000}$
	- \blacktriangleright $x_i = [20, 16, 0, 10, 0, \ldots, 3]$

 \blacktriangleright Bag-of-Words feature vector of x can be interpreted as a sum of one-hot vectors (*o*) for each token in it:

- \triangleright Bag-of-Words feature vector of x can be interpreted as a sum of one-hot vectors (*o*) for each token in it:
	- \triangleright D extracted from the text above contains 10 words (lowercased): $\frac{1}{2}$, 'by', 'in', 'most', 'norway', 'road', 'the', 'tourists', 'troll', 'visited'}.

- \triangleright Bag-of-Words feature vector of x can be interpreted as a sum of one-hot vectors (*o*) for each token in it:
	- \triangleright D extracted from the text above contains 10 words (lowercased): $\frac{1}{2}$, 'by', 'in', 'most', 'norway', 'road', 'the', 'tourists', 'troll', 'visited'}.
	- \bullet $o^0 = [0, 0, 0, 0, 0, 0, 1, 0, 0, 0]$

- \blacktriangleright Bag-of-Words feature vector of x can be interpreted as a sum of one-hot vectors (*o*) for each token in it:
	- \triangleright D extracted from the text above contains 10 words (lowercased): $\frac{1}{2}$, 'by', 'in', 'most', 'norway', 'road', 'the', 'tourists', 'troll', 'visited'}.
	- \bullet $o^0 = [0, 0, 0, 0, 0, 0, 1, 0, 0, 0]$
	- \bullet $o^1 = [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0]$
	- \blacktriangleright etc...

- \blacktriangleright Bag-of-Words feature vector of x can be interpreted as a sum of one-hot vectors (*o*) for each token in it:
	- \triangleright D extracted from the text above contains 10 words (lowercased): $\{-\}$ 'by', 'in', 'most', 'norway', 'road', 'the', 'tourists', 'troll', 'visited'}.
	- \bullet $o^0 = [0, 0, 0, 0, 0, 0, 1, 0, 0, 0]$
	- \bullet $o^1 = [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0]$
	- \blacktriangleright etc...
	- \bullet $i = [1, 1, 1, 1, 1, 2, 2, 1, 1, 1]$ ('the' and 'road' mentioned 2 times)

 \blacktriangleright Each of *n* instances (documents) is represented by a vector of features $(x \in \mathbb{R}^{d_{in}})$.

- \blacktriangleright Each of *n* instances (documents) is represented by a vector of features $(x \in \mathbb{R}^{d_{in}})$.
- \blacktriangleright Inversely, each feature can be represented by a vector of instances (documents) it appears in $(\textit{feature} \in \mathbb{R}^n)$.

- \blacktriangleright Each of *n* instances (documents) is represented by a vector of features $(x \in \mathbb{R}^{d_{in}})$.
- \blacktriangleright Inversely, each feature can be represented by a vector of instances (documents) it appears in $(\textit{feature} \in \mathbb{R}^n)$.
- \blacktriangleright Together these learned representations form a W matrix, part of θ .
	- \blacktriangleright Thus, it contains data both about the instances and their features (more about this later).

- \blacktriangleright Each of *n* instances (documents) is represented by a vector of features $(x \in \mathbb{R}^{d_{in}})$.
- \blacktriangleright Inversely, each feature can be represented by a vector of instances (documents) it appears in $(\textit{feature} \in \mathbb{R}^n)$.
- \blacktriangleright Together these learned representations form a W matrix, part of θ .
	- \blacktriangleright Thus, it contains data both about the instances and their features (more about this later).
- \triangleright Feature engineering is deciding what features of the instances we will use during the training.

$$
f(\bm{x};\bm{W},\bm{b})=\bm{x}\cdot\bm{W}+\bm{b}
$$

Output of binary classification

$$
f(\bm{x};\bm{W},\bm{b})=\bm{x}\cdot\bm{W}+\bm{b}
$$

Output of binary classification

Binary decision $(d_{out} = 1)$:

 \blacktriangleright 'Is this message spam or not?'

$$
f(\bm{x};\bm{W},\bm{b})=\bm{x}\cdot\bm{W}+\bm{b}
$$

Output of binary classification

- \blacktriangleright 'Is this message spam or not?'
- \blacktriangleright *W* is a vector, *b* is a scalar.

$$
f(\boldsymbol{x};\boldsymbol{W},\boldsymbol{b})=\boldsymbol{x}\cdot\boldsymbol{W}+\boldsymbol{b}
$$

Output of binary classification

- \blacktriangleright 'Is this message spam or not?'
- \blacktriangleright *W* is a vector, *b* is a scalar.
- \triangleright The prediction \hat{y} is also a scalar: either 1 ('yes') or -1 ('no').

$$
f(\boldsymbol{x};\boldsymbol{W},\boldsymbol{b})=\boldsymbol{x}\cdot\boldsymbol{W}+\boldsymbol{b}
$$

Output of binary classification

- \blacktriangleright 'Is this message spam or not?'
- \blacktriangleright *W* is a vector, *b* is a scalar.
- **F** The prediction \hat{y} is also a scalar: either 1 ('yes') or −1 ('no').
- \triangleright NB: the model can output any number, but we convert all negatives to -1 and all positives to 1 (sign function).

$$
\theta=(\pmb{W}\in\mathbb{R}^{d_{in}},\pmb{b}\in\mathbb{R}^1)
$$

$$
f(x;W,b) = x \cdot W + b
$$

$$
f(\boldsymbol{x};\boldsymbol{W},\boldsymbol{b})=\boldsymbol{x}\cdot\boldsymbol{W}+\boldsymbol{b}
$$

Output of multi-class classification

$$
f(x;W,b) = x \cdot W + b
$$

Output of multi-class classification

$$
f(x;W,b) = x \cdot W + b
$$

Output of multi-class classification

Multi-class decision $(d_{out} = k)$

 \blacktriangleright 'Which languages appear in this tweet?'

$$
f(\boldsymbol{x};\boldsymbol{W},\boldsymbol{b})=\boldsymbol{x}\cdot\boldsymbol{W}+\boldsymbol{b}
$$

Output of multi-class classification

- \blacktriangleright 'Which languages appear in this tweet?'
- \blacktriangleright *W* is a matrix, *b* is a vector of *k* components.

$$
f(\boldsymbol{x};\boldsymbol{W},\boldsymbol{b})=\boldsymbol{x}\cdot\boldsymbol{W}+\boldsymbol{b}
$$

Output of multi-class classification

- \blacktriangleright 'Which languages appear in this tweet?'
- \blacktriangleright *W* is a matrix, *b* is a vector of *k* components.
- \blacktriangleright The prediction \hat{v} is also a one-hot vector of k components.

$$
f(\boldsymbol{x};\boldsymbol{W},\boldsymbol{b})=\boldsymbol{x}\cdot\boldsymbol{W}+\boldsymbol{b}
$$

Output of multi-class classification

- \blacktriangleright 'Which languages appear in this tweet?'
- \blacktriangleright *W* is a matrix, *b* is a vector of *k* components.
- \blacktriangleright The prediction \hat{v} is also a one-hot vector of k components.
- \blacktriangleright The component corresponding to the correct language has the value of 1, others are zeros, for example:

$$
\hat{y} = [0, 0, 1, 0] \text{ (for } k = 4)
$$

$$
\theta = (\bm{W} \in \mathbb{R}^{d_{in} \times d_{out}}, \bm{b} \in \mathbb{R}^{d_{out}})
$$

$$
f(x;W,b) = x\cdot W + b
$$

Log-linear classification

If we care about how confident is the classifier about each decision:

Log-linear classification

If we care about how confident is the classifier about each decision:

 \blacktriangleright Map the predictions to the range of $[0, 1]...$

Log-linear classification

If we care about how confident is the classifier about each decision:

- \blacktriangleright Map the predictions to the range of $[0, 1]...$
- \blacktriangleright ...by a squashing function, for example, sigmoid:

$$
\hat{y} = \sigma(f(x)) = \frac{1}{1 + e^{-(f(x))}}
$$
\n(3)

The result is the probability of the prediction!

-
- \blacktriangleright For multi-class cases, log-linear models produce probabilities for all classes, for example:

$$
\hat{y} = [0.4, 0.1, 0.9, 0.5] \text{ (for } k = 4)
$$

- ▶ For multi-class cases, log-linear models produce probabilities for all classes, for example: $\hat{y} = [0.4, 0.1, 0.9, 0.5]$ (for $k = 4$)
- \triangleright We choose the one with the highest score:

$$
\hat{\mathbf{y}} = \arg\max_{i} \hat{\mathbf{y}}_{[i]} = \hat{\mathbf{y}}_{[2]} \tag{4}
$$

- ▶ For multi-class cases, log-linear models produce probabilities for all classes, for example: $\hat{y} = [0.4, 0.1, 0.9, 0.5]$ (for $k = 4$)
- \triangleright We choose the one with the highest score:

$$
\hat{\mathbf{y}} = \arg\max_{i} \hat{\mathbf{y}}_{[i]} = \hat{\mathbf{y}}_{[2]} \tag{4}
$$

 \triangleright But often it is more convenient to transform scores into a probability distribution, using the softmax function:

$$
\hat{\boldsymbol{y}} = \text{softmax}(\boldsymbol{x}\boldsymbol{W} + \boldsymbol{b})
$$
(5)

$$
\hat{\boldsymbol{y}}_{[i]} = \frac{e^{(\boldsymbol{x}\boldsymbol{W} + \boldsymbol{b})_{[i]}}}{\sum_{j} e^{(\boldsymbol{x}\boldsymbol{W} + \boldsymbol{b})_{[j]}}}
$$
(6)

- ▶ For multi-class cases, log-linear models produce probabilities for all classes, for example: $\hat{y} = [0.4, 0.1, 0.9, 0.5]$ (for $k = 4$)
- \triangleright We choose the one with the highest score:

$$
\hat{\mathbf{y}} = \arg\max_{i} \hat{\mathbf{y}}_{[i]} = \hat{\mathbf{y}}_{[2]} \tag{4}
$$

But often it is more convenient to transform scores into a probability distribution, using the softmax function:

$$
\hat{\boldsymbol{y}} = \text{softmax}(\boldsymbol{x}\boldsymbol{W} + \boldsymbol{b})
$$
(5)

$$
\hat{\boldsymbol{y}}_{[i]} = \frac{e^{(\boldsymbol{x}\boldsymbol{W} + \boldsymbol{b})_{[i]}}}{\sum_{j} e^{(\boldsymbol{x}\boldsymbol{W} + \boldsymbol{b})_{[j]}}}
$$
(6)

 $\hat{y} = \hat{y} = \text{softmax}([0.4, 0.1, 0.9, 0.5]) = [0.22, 0.16, 0.37, 0.25])$ \blacktriangleright (all scores sum to 1)

