IN5550: Neural Methods in Natural Language Processing Sub-lecture 2.3 Training as optimization

Andrey Kutuzov

University of Oslo

31 January 2023

Contents

 \blacktriangleright The goal of the training is to find the optimal values of parameters in θ .

-
- \blacktriangleright The goal of the training is to find the optimal values of parameters in θ .
- Formally, it means to minimize the loss $\mathcal{L}(\theta)$ on training or development dataset.

-
- \triangleright The goal of the training is to find the optimal values of parameters in θ .
- Formally, it means to minimize the loss $\mathcal{L}(\theta)$ on training or development dataset.
- ▶ Conceptually, loss is a measure of how 'far away' the model predictions *y*ˆ are from gold labels *y*.

-
- \triangleright The goal of the training is to find the optimal values of parameters in θ .
- Formally, it means to minimize the loss $\mathcal{L}(\theta)$ on training or development dataset.
- ▶ Conceptually, loss is a measure of how 'far away' the model predictions *y*ˆ are from gold labels *y*.
- It can be any function $\mathcal{L}(\hat{\bm{y}}, \bm{y})$ returning a scalar value:
	- \blacktriangleright for example, $\mathcal{L} = (\bm{y} \hat{\bm{y}})^2$ (square error)

-
- \triangleright The goal of the training is to find the optimal values of parameters in θ .
- Formally, it means to minimize the loss $\mathcal{L}(\theta)$ on training or development dataset.
- \triangleright Conceptually, loss is a measure of how 'far away' the model predictions *y*ˆ are from gold labels *y*.
- It can be any function $\mathcal{L}(\hat{\bm{y}}, \bm{y})$ returning a scalar value:
	- \blacktriangleright for example, $\mathcal{L} = (\bm{y} \hat{\bm{y}})^2$ (square error)
- \blacktriangleright It is averaged over all training instances and gives us estimation of the model 'fitness'.

- \triangleright The goal of the training is to find the optimal values of parameters in θ .
- Formally, it means to minimize the loss $\mathcal{L}(\theta)$ on training or development dataset.
- \triangleright Conceptually, loss is a measure of how 'far away' the model predictions *y*ˆ are from gold labels *y*.
- It can be any function $\mathcal{L}(\hat{\bm{y}}, \bm{y})$ returning a scalar value:
	- \blacktriangleright for example, $\mathcal{L} = (\bm{y} \hat{\bm{y}})^2$ (square error)
- \blacktriangleright It is averaged over all training instances and gives us estimation of the model 'fitness'.
- \blacktriangleright $\hat{\theta}$ is the best set of parameters:

$$
\hat{\theta} = \underset{\theta}{\arg\min} \mathcal{L}(\theta) \tag{1}
$$

 \blacktriangleright Let's take a simple example

- \blacktriangleright Let's take a simple example
- \blacktriangleright Predicting the price of a home from its size

- \blacktriangleright Let's take a simple example
- \blacktriangleright Predicting the price of a home from its size
- \blacktriangleright What kind of problem is this?

- \blacktriangleright Let's take a simple example
- \blacktriangleright Predicting the price of a home from its size
- \triangleright What kind of problem is this? Regression.

- \blacktriangleright Let's take a simple example
- \blacktriangleright Predicting the price of a home from its size
- \triangleright What kind of problem is this? Regression.
- \triangleright WHITEBOARD EXAMPLE

 \blacktriangleright regression

- \blacktriangleright regression
- \blacktriangleright classification

- \blacktriangleright regression
- \blacktriangleright classification
- \blacktriangleright ranking

- \blacktriangleright regression
- \blacktriangleright classification
- \blacktriangleright ranking
- \blacktriangleright structured prediction

Given x, predict y

1. It depends on your task...

- 1. It depends on your task...
	- \blacktriangleright regression

- 1. It depends on your task...
	- \blacktriangleright regression mean absolute error, mean squared error, ...

- 1. It depends on your task...
	- \triangleright regression mean absolute error, mean squared error, ...
	- \blacktriangleright classification

- 1. It depends on your task...
	- \triangleright regression mean absolute error, mean squared error, ...
	- \triangleright classification hinge-loss, cross-entropy, ...

- 1. It depends on your task...
	- \triangleright regression mean absolute error, mean squared error, ...
	- \triangleright classification hinge-loss, cross-entropy, ...
	- \blacktriangleright ranking

- 1. It depends on your task...
	- \triangleright regression mean absolute error, mean squared error, ...
	- \triangleright classification hinge-loss, cross-entropy, ...
	- \triangleright ranking ranking loss, triplet loss

- 1. It depends on your task...
	- \triangleright regression mean absolute error, mean squared error, ...
	- \triangleright classification hinge-loss, cross-entropy, ...
	- \triangleright ranking ranking loss, triplet loss
- 2. A mix of theoretical and practical desires often determine your final choice
	- \blacktriangleright For classification, we often use some variant of...

- 1. It depends on your task...
	- \triangleright regression mean absolute error, mean squared error, ...
	- \triangleright classification hinge-loss, cross-entropy, ...
	- \triangleright ranking ranking loss, triplet loss
- 2. A mix of theoretical and practical desires often determine your final choice
	- \blacktriangleright For classification, we often use some variant of...
	- \blacktriangleright ... hinge-loss (max margin)

- 1. It depends on your task...
	- \triangleright regression mean absolute error, mean squared error, ...
	- \triangleright classification hinge-loss, cross-entropy, ...
	- \triangleright ranking ranking loss, triplet loss
- 2. A mix of theoretical and practical desires often determine your final choice
	- \blacktriangleright For classification, we often use some variant of...
	- \blacktriangleright ... hinge-loss (max margin)
	- \blacktriangleright ... cross-entropy loss

1. Hinge (binary): $L(\hat{y}, y) = max(0, 1 - y \cdot \hat{y})$

- 1. Hinge (binary): $L(\hat{y}, y) = max(0, 1 y \cdot \hat{y})$
- 2. Hinge (multi-class): $\; \mathcal{L}(\hat{\bm{y}}, \bm{y}) = max(0, 1 (\hat{\bm{y}}_{[t]} \hat{\bm{y}}_{[k]}))$

- 1. Hinge (binary): $L(\hat{y}, y) = max(0, 1 y \cdot \hat{y})$
- 2. Hinge (multi-class): $\; \mathcal{L}(\hat{\bm{y}}, \bm{y}) = max(0, 1 (\hat{\bm{y}}_{[t]} \hat{\bm{y}}_{[k]}))$
- 3. Log loss: $L(\hat{\bm{y}}, \bm{y}) = log(1 + exp(-(\hat{\bm{y}}_{[t]} \hat{\bm{y}}_{[k]}))$

- 1. Hinge (binary): $L(\hat{y}, y) = max(0, 1 y \cdot \hat{y})$
- 2. Hinge (multi-class): $\; \mathcal{L}(\hat{\bm{y}}, \bm{y}) = max(0, 1 (\hat{\bm{y}}_{[t]} \hat{\bm{y}}_{[k]}))$
- 3. Log loss: $L(\hat{\bm{y}}, \bm{y}) = log(1 + exp(-(\hat{\bm{y}}_{[t]} \hat{\bm{y}}_{[k]}))$
- 4. Binary cross-entropy (logistic loss):

 $L(\hat{y}, y) = -y \log \hat{y} - (1 - y) \log(1 - \hat{y})$

- 1. Hinge (binary): $L(\hat{y}, y) = max(0, 1 y \cdot \hat{y})$
- 2. Hinge (multi-class): $\; \mathcal{L}(\hat{\bm{y}}, \bm{y}) = max(0, 1 (\hat{\bm{y}}_{[t]} \hat{\bm{y}}_{[k]}))$
- 3. Log loss: $L(\hat{\bm{y}}, \bm{y}) = log(1 + exp(-(\hat{\bm{y}}_{[t]} \hat{\bm{y}}_{[k]}))$
- 4. Binary cross-entropy (logistic loss): $L(\hat{y}, y) = -y \log \hat{y} - (1 - y) \log(1 - \hat{y})$
- 5. Categorical cross-entropy (negative log-likelihood): $\mathcal{L}(\hat{\bm{y}}, \bm{y}) = -\sum_{\bm{x}} \bm{x}^{\bm{x}}$ $\sum\limits_i {{y_{[i]}}{\log _{\left({\hat y_{[i]}} \right)}}}$

- 1. Hinge (binary): $L(\hat{y}, y) = max(0, 1 y \cdot \hat{y})$
- 2. Hinge (multi-class): $\; \mathcal{L}(\hat{\bm{y}}, \bm{y}) = max(0, 1 (\hat{\bm{y}}_{[t]} \hat{\bm{y}}_{[k]}))$
- 3. Log loss: $L(\hat{\bm{y}}, \bm{y}) = log(1 + exp(-(\hat{\bm{y}}_{[t]} \hat{\bm{y}}_{[k]}))$
- 4. Binary cross-entropy (logistic loss): $L(\hat{y}, y) = -y \log \hat{y} - (1 - y) \log(1 - \hat{y})$
- 5. Categorical cross-entropy (negative log-likelihood): $\mathcal{L}(\hat{\bm{y}}, \bm{y}) = -\sum_{\bm{x}} \bm{x}^{\bm{x}}$ $\sum\limits_i {{y_{[i]}}{\log _{\left({\hat y_{[i]}} \right)}}}$
- 6. Ranking losses, etc, etc...

Regularization

 \triangleright Sometimes, so as not to overfit, we pose restrictions on the possible θ .

- Sometimes, so as not to overfit, we pose restrictions on the possible θ .
- \triangleright We would like θ to be not only good in predictions, but also not too complex; it should be 'lean' and avoid large weights.

- Sometimes, so as not to overfit, we pose restrictions on the possible θ .
- \triangleright We would like θ to be not only good in predictions, but also not too complex; it should be 'lean' and avoid large weights. Why do you think this is? Pause the video and think.

- Sometimes, so as not to overfit, we pose restrictions on the possible θ .
- \triangleright We would like θ to be not only good in predictions, but also not too complex; it should be 'lean' and avoid large weights. Why do you think this is? Pause the video and think.
- \triangleright We can live with some errors on the training data, if it gives more generalization power.

Regularization

- Sometimes, so as not to overfit, we pose restrictions on the possible θ .
- \triangleright We would like θ to be not only good in predictions, but also not too complex; it should be 'lean' and avoid large weights. Why do you think this is? Pause the video and think.
- \triangleright We can live with some errors on the training data, if it gives more generalization power.
- For that, we minimize both the loss and the regularization term $R(\theta)$:

$$
\hat{\theta} = \underset{\theta}{\arg\min} \mathcal{L}(\theta) + \lambda R(\theta) \tag{2}
$$

I The hyperparameter λ is regularization weight (how important is it).

- Sometimes, so as not to overfit, we pose restrictions on the possible θ .
- \triangleright We would like θ to be not only good in predictions, but also not too complex; it should be 'lean' and avoid large weights. Why do you think this is? Pause the video and think.
- \triangleright We can live with some errors on the training data, if it gives more generalization power.
- For that, we minimize both the loss and the regularization term $R(\theta)$:

$$
\hat{\theta} = \underset{\theta}{\arg\min} \mathcal{L}(\theta) + \lambda R(\theta) \tag{2}
$$

- **I** The hyperparameter λ is regularization weight (how important is it).
- \blacktriangleright Common regularization terms:
	- 1. L_2 norm (Gaussian prior or weight decay);
	- 2. L_1 norm (sparse prior or lasso)

Now we can measure model performance. How can we change our parameters *θ* to improve?

1. We could just randomly change some of the parameters and see if the result is better (hill climbing algorithm)...

- 1. We could just randomly change some of the parameters and see if the result is better (hill climbing algorithm)...
- 2. or we could be smarter about it (gradient-based methods).

Optimizing with gradient

 $\blacktriangleright \hat{\theta} = \arg \min$ *θ* $\left(\mathcal{L}(\theta)+\lambda R(\theta)\right)$ is an optimization problem.

- $\blacktriangleright \hat{\theta} = \arg \min (\mathcal{L}(\theta) + \lambda R(\theta))$ is an optimization problem. *θ*
- Commonly solved using gradient methods:
	- 1. compute the loss,

- $\blacktriangleright \hat{\theta} = \arg \min (\mathcal{L}(\theta) + \lambda R(\theta))$ is an optimization problem. *θ*
- \triangleright Commonly solved using gradient methods:
	- 1. compute the loss,
	- 2. compute gradient of θ parameters with respect to the loss,

- $\blacktriangleright \hat{\theta} = \arg \min (\mathcal{L}(\theta) + \lambda R(\theta))$ is an optimization problem. *θ*
- Commonly solved using gradient methods:
	- 1. compute the loss,
	- 2. compute gradient of θ parameters with respect to the loss,
	- 3. (gradient here is the collection of partial derivatives, one for each parameter of *θ*)

- $\blacktriangleright \hat{\theta} = \arg \min (\mathcal{L}(\theta) + \lambda R(\theta))$ is an optimization problem. *θ*
- \triangleright Commonly solved using gradient methods:
	- 1. compute the loss,
	- 2. compute gradient of θ parameters with respect to the loss,
	- 3. (gradient here is the collection of partial derivatives, one for each parameter of *θ*)
	- 4. move the parameters in the opposite direction (to decrease the loss),

- $\blacktriangleright \hat{\theta} = \arg \min (\mathcal{L}(\theta) + \lambda R(\theta))$ is an optimization problem. *θ*
- \triangleright Commonly solved using gradient methods:
	- 1. compute the loss,
	- 2. compute gradient of θ parameters with respect to the loss,
	- 3. (gradient here is the collection of partial derivatives, one for each parameter of *θ*)
	- 4. move the parameters in the opposite direction (to decrease the loss),
	- 5. repeat until the optimum is found (the derivative is 0) or until the pre-defined number of iterations (epochs) is achieved.

Optimizing with gradient

- $\blacktriangleright \hat{\theta} = \arg \min (\mathcal{L}(\theta) + \lambda R(\theta))$ is an optimization problem. *θ*
- \triangleright Commonly solved using gradient methods:
	- 1. compute the loss,
	- 2. compute gradient of θ parameters with respect to the loss,
	- 3. (gradient here is the collection of partial derivatives, one for each parameter of *θ*)
	- 4. move the parameters in the opposite direction (to decrease the loss),
	- 5. repeat until the optimum is found (the derivative is 0) or until the pre-defined number of iterations (epochs) is achieved.

Convexity

- \triangleright Convex functions: a single optimum point.
- \triangleright Non-convex functions: multiple optimum points.

Error surfaces of convex and not-convex functions:

Error surfaces of convex and not-convex functions:

Convex function Non-convex function

- \triangleright Convex functions can be easily minimized with gradient methods, reaching the global optimum.
- \triangleright With non-convex functions, optimization can end up in a local optimum.

Error surfaces of convex and not-convex functions:

Convex function Non-convex function

- \triangleright Convex functions can be easily minimized with gradient methods, reaching the global optimum.
- \triangleright With non-convex functions, optimization can end up in a local optimum.
- Linear and log-linear models as a rule have convex error functions.

 \triangleright SGD samples one instance from the training set and computes the error of the gradient on it,

- ▶ SGD samples one instance from the training set and computes the error of the gradient on it,
- \blacktriangleright then θ is updated in the opposite direction,

- \triangleright SGD samples one instance from the training set and computes the error of the gradient on it,
- \blacktriangleright then θ is updated in the opposite direction,
- \blacktriangleright the update is scaled by the learning rate n (can be decaying over the training time),

- ▶ SGD samples one instance from the training set and computes the error of the gradient on it,
- \blacktriangleright then θ is updated in the opposite direction,
- \blacktriangleright the update is scaled by the learning rate n (can be decaying over the training time),
- \blacktriangleright repeat until convergence.

- \triangleright SGD samples one instance from the training set and computes the error of the gradient on it,
- \blacktriangleright then θ is updated in the opposite direction,
- \blacktriangleright the update is scaled by the learning rate n (can be decaying over the training time),
- \blacktriangleright repeat until convergence.

Instead of one instance, batches can be used (more stable and computationally efficient).

Other gradient-based optimizers:

- \blacktriangleright Momentum
- \blacktriangleright AdaGrad
- \blacktriangleright RMSProp
- \blacktriangleright Adam
- \blacktriangleright AdamW
- \blacktriangleright etc...

All implemented in the libraries we are going to use: $PyTorch$, Scikit-Learn, TensorFlow, Keras, etc.

Other gradient-based optimizers:

- \blacktriangleright Momentum
- \blacktriangleright AdaGrad
- \blacktriangleright RMSProp
- \blacktriangleright Adam
- \blacktriangleright AdamW
- \blacktriangleright etc...

All implemented in the libraries we are going to use: $PyTorch$, Scikit-Learn, TensorFlow, Keras, etc.

So far so good. But what are the limitations of linear models? See the next sub-lecture 2.4!