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Training as optimization

I The goal of the training is to find the optimal values of parameters in θ.

I Formally, it means to minimize the loss L(θ) on training or development
dataset.

I Conceptually, loss is a measure of how ‘far away’ the model predictions
ŷ are from gold labels y.

I It can be any function L(ŷ,y) returning a scalar value:
I for example, L = (y − ŷ)2 (square error)

I It is averaged over all training instances and gives us estimation of the
model ‘fitness’.

I θ̂ is the best set of parameters:

θ̂ = arg min
θ
L(θ) (1)
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Training as optimization

What is the intuition behind a loss function?

I Let’s take a simple example
I Predicting the price of a home from its size
I What kind of problem is this? Regression.
I WHITEBOARD EXAMPLE
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Predicting the price of a home from its size
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Training as optimization

What are the main classes of NLP tasks?

I regression
I classification
I ranking
I structured prediction
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Training as optimization
Given x,           predict y

A sentence

That's great!!!!!

How positive is it

(from 1-10)

9.5

regression

(scalar)

A sentence

That's great!!!!!

Pos. or Neg.?

Positive

A tweet

That was fun.
Vale la pena!

Which langs.?

English
Spanish

multi-class
classification

A question

What is the most
expensive

spice in the world? 

A ranked list
of searches

1) Saffron-is-expensive
2) Truffles-are-crazy

ranking

A sentence

I read a book

Its syntactic parse
S

VP

NP

N VBD DET NN

I read a book

structured
prediction

(many choices)

binary

(two choices)
classification

(ranked list
of available

choices)

(millions of
choices)
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Training as optimization

How do you choose a loss function?

1. It depends on your task...
I regression - mean absolute error, mean squared error, ...
I classification - hinge-loss, cross-entropy, ...
I ranking - ranking loss, triplet loss

2. A mix of theoretical and practical desires often determine your final
choice
I For classification, we often use some variant of...
I ... hinge-loss (max margin)
I ... cross-entropy loss
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Training as optimization

Common loss functions
1. Hinge (binary): L(ŷ , y) = max(0, 1− y · ŷ)

2. Hinge (multi-class): L(ŷ,y) = max(0, 1− (ŷ[t] − ŷ[k]))
3. Log loss: L(ŷ,y) = log(1 + exp(−(ŷ[t] − ŷ[k]))
4. Binary cross-entropy (logistic loss):

L(ŷ , y) = −y logŷ − (1− y)log(1− ŷ)
5. Categorical cross-entropy (negative log-likelihood):

L(ŷ,y) = −
∑
i

y[i]log(ŷ[i])

6. Ranking losses, etc, etc...
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Training as optimization

Regularization
I Sometimes, so as not to overfit, we pose restrictions on the possible θ.

I We would like θ to be not only good in predictions, but also not too
complex; it should be ‘lean’ and avoid large weights.

Why do you think this is? Pause the video and think.
I We can live with some errors on the training data, if it gives more

generalization power.
I For that, we minimize both the loss and the regularization term R(θ):

θ̂ = arg min
θ
L(θ) + λR(θ) (2)

I The hyperparameter λ is regularization weight (how important is it).
I Common regularization terms:

1. L2 norm (Gaussian prior or weight decay);
2. L1 norm (sparse prior or lasso)
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Training as optimization

Now we can measure model performance. How can we
change our parameters θ to improve?
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Training as optimization

1. We could just randomly change some of the parameters and see if the
result is better (hill climbing algorithm)...

2. or we could be smarter about it (gradient-based methods).
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Training as optimization

Optimizing with gradient
I θ̂ = arg min

θ
(L(θ) + λR(θ)) is an optimization problem.

I Commonly solved using gradient methods:
1. compute the loss,
2. compute gradient of θ parameters with respect to the loss,
3. (gradient here is the collection of partial derivatives, one for each

parameter of θ)
4. move the parameters in the opposite direction (to decrease the loss),
5. repeat until the optimum is found (the derivative is 0) or until the

pre-defined number of iterations (epochs) is achieved.

Convexity
I Convex functions: a single optimum point.
I Non-convex functions: multiple optimum points.
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Training as optimization
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Training as optimization

Initial Parameters

13



Training as optimization

gradient
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Training as optimization

update parameters
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Training as optimization

global minimum
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Training as optimization

Error surfaces of convex and not-convex functions:

Convex function Non-convex function

I Convex functions can be easily minimized with gradient methods,
reaching the global optimum.

I With non-convex functions, optimization can end up in a local optimum.
I Linear and log-linear models as a rule have convex error functions.
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Training as optimization

Stochastic gradient descent (SGD)

I SGD samples one instance from the training set and computes the error
of the gradient on it,

I then θ is updated in the opposite direction,
I the update is scaled by the learning rate n (can be decaying over the

training time),
I repeat until convergence.

Instead of one instance, batches can be used (more stable and
computationally efficient).
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Training as optimization

Other gradient-based optimizers:
I Momentum
I AdaGrad
I RMSProp
I Adam
I AdamW
I etc...
All implemented in the libraries we are going to use: PyTorch, Scikit-Learn,
TensorFlow, Keras, etc.

So far so good. But what are the limitations of linear models? See the
next sub-lecture 2.4!
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