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Advantages and limitations of linear models

I Linear classifiers are efficient and effective.

I They are interpretable to a degree: you can find the most important features by looking at
the weights

I Can be used on their own (often enough in practice)...
I ...or as building blocks for non-linear neural classifiers.

Unfortunately, linear models can represent only linear relations in the data
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Advantages and limitations of linear models
I Are there non-linear functions that linear models can’t deal with?

I Yes, there are.
I One example is the XOR (‘excluding OR’) function:

It is clearly not linearly separable.
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Advantages and limitations of linear models

Possible solutions
I We can transform the input so that it becomes linearly separable.

I Linear transformations will not be able to do this.
I We need non-linear transformations.
For example, φ(x1, x2) = [x1 + x2, x1 × x2] maps the instances to another representation and
makes the XOR problem linearly separable:
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Advantages and limitations of linear models

I But how to find the transformation function φ suitable for the task at hand?

I Often, this implies mapping instances to a higher-dimensional space, making it even more
difficult to choose φ manually.

I Support Vector Machines (SVM) classifiers handle this to some extent...
[Cortes and Vapnik, 1995]

I ...but they scale linearly in time on the size of the training data (slow!).
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Advantages and limitations of linear models

Training mapping functions
I Idea: leave it for the algorithm to train a suitable representation mapping function!

φ(x) = g(xW ′ + b′) (1)
ŷ = φ(x)W + b (2)

I ...where g is a non-linear activation function, and W ′, b′ are its trainable parameters.
I The equation above defines a simple multi-layer perceptron (MLP): our first neural model.
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Going deeply non-linear: multi-layered perceptrons

Perceptron with 2 hidden layers
7



Going deeply non-linear: multi-layered perceptrons

The nature of perceptrons
I Input data goes through successive transformations at each layer.

I The transformations are linear, but followed with a non-linear activation at each hidden
layer.

I At the last layer, the prediction ŷ is produced.
I Representation functions and the linear classifiers are trained simultaneously.

Important: neural networks with hidden layers can theoretically approximate any
function [Leshno et al., 1993].
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Going deeply non-linear: multi-layered perceptrons

A simple feed-forward neural network. More next week!
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What’s next?

Q&A session, January 31
I Ask questions about the pre-recorded lectures published on January 27
I Group work and discussions
I ...

Next week: Training Deep Neural Networks
I More on multi-layer perceptrons and feed-forward neural networks.
I Are they really like brain?
I Common activation functions.
I Regularizing neural networks with dropout.
I Computation graphs.
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What’s next?

Obligatory assignment
I The first obligatory assignment will be out on January 31!
I Due February 15.
I Look it up on the course page.

Group session February 1st
I Hands-on: PyTorch basics
I Hands-on: Data loading and linear model building with PyTorch.
I Make sure you have access to Fox !
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