IN5550: Neural Methods in Natural Language Processing Sub-lecture 3.1 Multi-layered neural networks

Andrey Kutuzov

University of Oslo

7 February 2023

[Obligatory assignment](#page-1-0)

Time to get your hands dirty!

- \triangleright Obligatory assignment 1 is published.
- \triangleright Will work on related topics at the group sessions February 8 and 15.

 $IN5550 - Spring 2023$ 1. Bag of Words Document Classification

UiO Language Technology Group

Deadline: 16 February, at 21:59 (Devilry)

Goals

- 1. Learn how to use the Fox cluster to train deep learning models.
- 2. Get familiar with the $PyTorch$ library
- 3. Learn how to use $PvTorch$ to train and evaluate neural classifiers in NLP tasks.

[Obligatory assignment](#page-1-0)

'Machines of this character can behave in a very complicated manner when the number of units is large.'

> Alan Turing, 'Intelligent Machinery' [\[Turing, 1948\]](#page-50-0)

Brain metaphor

 \blacktriangleright Why 'artificial neural networks'?

- \blacktriangleright Why 'artificial neural networks'?
- \blacktriangleright ...because it seems neurons in human brain act similarly:

- \blacktriangleright Why 'artificial neural networks'?
- \blacktriangleright ... because it seems neurons in human brain act. similarly:
	- \blacktriangleright Connected into a large network,

- \blacktriangleright Why 'artificial neural networks'?
- \blacktriangleright ... because it seems neurons in human brain act. similarly:
	- \blacktriangleright Connected into a large network,
	- \blacktriangleright each neuron accepts electrical signals (inputs) from other neurons,

- \blacktriangleright Why 'artificial neural networks'?
- \blacktriangleright ... because it seems neurons in human brain act. similarly:
	- \triangleright Connected into a large network,
	- \blacktriangleright each neuron accepts electrical signals (inputs) from other neurons,
	- \blacktriangleright processes (weighs) them differently, depending on their source,

- \blacktriangleright Why 'artificial neural networks'?
- \bullet ...because it seems neurons in human brain act. similarly:
	- \triangleright Connected into a large network,
	- \blacktriangleright each neuron accepts electrical signals (inputs) from other neurons,
	- \blacktriangleright processes (weighs) them differently, depending on their source,
	- \triangleright and then passes own electrical signals (outputs) to other neurons;

- \blacktriangleright Why 'artificial neural networks'?
- \bullet ...because it seems neurons in human brain act. similarly:
	- \triangleright Connected into a large network,
	- \blacktriangleright each neuron accepts electrical signals (inputs) from other neurons,
	- \triangleright processes (weighs) them differently, depending on their source,
	- \triangleright and then passes own electrical signals (outputs) to other neurons;
	- \blacktriangleright depending on input signals, a neuron can be more or less activated,

- \blacktriangleright Why 'artificial neural networks'?
- \bullet ...because it seems neurons in human brain act. similarly:
	- \triangleright Connected into a large network,
	- \blacktriangleright each neuron accepts electrical signals (inputs) from other neurons,
	- \triangleright processes (weighs) them differently, depending on their source,
	- \triangleright and then passes own electrical signals (outputs) to other neurons;
	- \blacktriangleright depending on input signals, a neuron can be more or less activated,
	- \blacktriangleright ... or completely relaxed ('silent');

- \blacktriangleright Why 'artificial neural networks'?
- \bullet because it seems neurons in human brain act similarly:
	-
	- \triangleright Connected into a large network,
 \triangleright each neuron accepts electrical signals (inputs) from other neurons,
	- \triangleright processes (weighs) them differently, depending on their source,
	- \triangleright and then passes own electrical signals (outputs) to other neurons;
	- \blacktriangleright depending on input signals, a neuron can be more or **■ I ... or completely relaxed ('silent');**

	■ ... or completely relaxed ('silent');

	■ the whole system is distributed across many neurons.
	-
	-

...But brain metaphor is not optimal

 \triangleright Although the first neural networks were based loosely on knowledge of neural activation at the time, we have long abandoned any real connection to neuroscience.

...But brain metaphor is not optimal

- \triangleright Although the first neural networks were based loosely on knowledge of neural activation at the time, we have long abandoned any real connection to neuroscience.
- Intermient Thus, it's less cool but more convenient to think about artificial neural networks in terms of linear algebra concepts:

...But brain metaphor is not optimal

- \triangleright Although the first neural networks were based loosely on knowledge of neural activation at the time, we have long abandoned any real connection to neuroscience.
- Intermient Thus, it's less cool but more convenient to think about artificial neural networks in terms of linear algebra concepts:
	- \blacktriangleright vectors.
	- \blacktriangleright matrices.
	- \blacktriangleright sequential algebraic operations on them.

Recall the equation for a linear classifier:

$$
\hat{y} = x \cdot W(+b) \tag{1}
$$

Recall the equation for a linear classifier:

$$
\hat{y} = x \cdot W(+b) \tag{1}
$$

Suppose we have 4 features, binary classification task and no bias term *b*:

Recall the equation for a linear classifier:

$$
\hat{y} = x \cdot W(+b) \tag{1}
$$

Suppose we have 4 features, binary classification task and no bias term *b*:

input feature vector x is multiplied by the weights W ;

Recall the equation for a linear classifier:

$$
\hat{y} = x \cdot W(+b) \tag{1}
$$

Suppose we have 4 features, binary classification task and no bias term *b*:

- input feature vector x is multiplied by the weights W ;
- In here, *W* is a vector, so the result is a scalar value \hat{y}_1 .

- In fact this is already a simple neural network...
- \blacktriangleright with one neuron Σ as a computational unit.

- \blacktriangleright In fact this is already a simple neural network...
- \blacktriangleright with one neuron Σ as a computational unit.
- I *Σ* takes 4 input values and returns their weighted sum as output value.

"It was long and a bit boring"

Sentiment analysis with only one neuron and binary bag-of-words.

- \blacktriangleright This is a linear architecture
	- $\hat{y} = x \cdot W$
- \blacktriangleright We can make this classifier predict vectors instead of scalars...

- \blacktriangleright This is a linear architecture
	- $\hat{y} = x \cdot W$
- \blacktriangleright We can make this classifier predict vectors instead of scalars...
	- \blacktriangleright ...by making W a matrix;
	- \blacktriangleright ...and thus using a row of several neurons, instead of only one.

Additionally we can stack classifiers...

 \triangleright by feeding the prediction of one classifier to another one:

- \triangleright by feeding the prediction of one classifier to another one:
- $\hat{\mathbf{y}} = (\mathbf{x} \cdot \mathbf{W}^{\mathbf{0}}) \cdot \mathbf{W}^{\mathbf{1}}$

- \triangleright by feeding the prediction of one classifier to another one:
- $\hat{\mathbf{y}} = (\mathbf{x} \cdot \mathbf{W}^{\mathbf{0}}) \cdot \mathbf{W}^{\mathbf{1}}$
- \blacktriangleright $\hat{y} = ((x \cdot W^0) \cdot W^1) \cdot W^2$

- \triangleright by feeding the prediction of one classifier to another one:
- $\hat{\mathbf{y}} = (\mathbf{x} \cdot \mathbf{W}^{\mathbf{0}}) \cdot \mathbf{W}^{\mathbf{1}}$
- \blacktriangleright $\hat{y} = ((x \cdot W^0) \cdot W^1) \cdot W^2$
- \blacktriangleright ...etc. Can be arbitrarily deep

- \triangleright by feeding the prediction of one classifier to another one:
- $\hat{\mathbf{y}} = (\mathbf{x} \cdot \mathbf{W}^{\mathbf{0}}) \cdot \mathbf{W}^{\mathbf{1}}$
- \blacktriangleright $\hat{y} = ((x \cdot W^0) \cdot W^1) \cdot W^2$
- \blacktriangleright ...etc. Can be arbitrarily deep
- \triangleright each subsequent row of neurons (layer) is a vector;

- \triangleright by feeding the prediction of one classifier to another one:
- $\hat{\mathbf{y}} = (\mathbf{x} \cdot \mathbf{W}^{\mathbf{0}}) \cdot \mathbf{W}^{\mathbf{1}}$
- \blacktriangleright $\hat{y} = ((x \cdot W^0) \cdot W^1) \cdot W^2$
- \blacktriangleright ...etc. Can be arbitrarily deep
- \triangleright each subsequent row of neurons (layer) is a vector;
- \blacktriangleright it is multiplied by the next weight matrix (shapes must match).

Additionally we can stack classifiers...

- \triangleright by feeding the prediction of one classifier to another one:
- $\hat{\mathbf{y}} = (\mathbf{x} \cdot \mathbf{W}^{\mathbf{0}}) \cdot \mathbf{W}^{\mathbf{1}}$
- \blacktriangleright $\hat{y} = ((x \cdot W^0) \cdot W^1) \cdot W^2$
- \blacktriangleright ...etc. Can be arbitrarily deep
- \triangleright each subsequent row of neurons (layer) is a vector;
- \blacktriangleright it is multiplied by the next weight matrix (shapes must match).

Can even use both multiple neurons and multiple layers.

Looks much like a 'deep neural network'

Stacked linear classifier with multiple computational units at each layer:

$$
h = x \cdot W^{0}
$$

\n
$$
f = h \cdot W^{1}
$$

\n
$$
\hat{y} = f \cdot W^{2}
$$

\n(2)
\n(3)
\n(4)

 \blacktriangleright But any stack of linear classifiers is still a linear classifier :-(

- \triangleright But any stack of linear classifiers is still a linear classifier :- (
- \triangleright Still can't handle XOR and other non-linear problems.

Non-linear transformations of the input data make the desired difference.

Differentiable non-linear transformations (activations) are the core reason of deep learning's substantial results, including in NLP.

- Differentiable non-linear transformations (activations) are the core reason of deep learning's substantial results, including in NLP.
- \blacktriangleright They help induce good input data representations.

- \triangleright Differentiable non-linear transformations (activations) are the core reason of deep learning's substantial results, including in NLP.
- \blacktriangleright They help induce good input data representations.
- \blacktriangleright These representations are processed with a linear classifier in the end.

- \triangleright Differentiable non-linear transformations (activations) are the core reason of deep learning's substantial results, including in NLP.
- \blacktriangleright They help induce good input data representations.
- \blacktriangleright These representations are processed with a linear classifier in the end.

Popular activation functions

 \triangleright Sigmoid (logistic function): $\sigma(\bm{x}) = \frac{1}{1+e^{-\bm{x}}} \rightarrow [0,1]$

- \triangleright Differentiable non-linear transformations (activations) are the core reason of deep learning's substantial results, including in NLP.
- \blacktriangleright They help induce good input data representations.
- \blacktriangleright These representations are processed with a linear classifier in the end.

Popular activation functions

 \triangleright Sigmoid (logistic function): $\sigma(\bm{x}) = \frac{1}{1+e^{-\bm{x}}} \rightarrow [0,1]$

I REctified Linear Unit (ReLU) [\[Glorot et al., 2011\]](#page-50-1):

$$
\mathit{relu}(x) = \begin{cases} x, & \text{if } x \geq 0 \\ 0, & \text{otherwise} \end{cases} \rightarrow [0,\infty]
$$

- \triangleright Differentiable non-linear transformations (activations) are the core reason of deep learning's substantial results, including in NLP.
- \blacktriangleright They help induce good input data representations.
- \blacktriangleright These representations are processed with a linear classifier in the end.

Popular activation functions

- \triangleright Sigmoid (logistic function): $\sigma(\bm{x}) = \frac{1}{1+e^{-\bm{x}}} \rightarrow [0,1]$
- **I** REctified Linear Unit (ReLU) [\[Glorot et al., 2011\]](#page-50-1):

$$
\mathit{relu}(x) = \begin{cases} x, & \text{if } x \geq 0 \\ 0, & \text{otherwise} \end{cases} \rightarrow [0,\infty]
$$

Hyperbolic tangent:

$$
\tanh(x)=\frac{e^{2x}-1}{e^{2x}+1}\rightarrow[-1,1]
$$

Popular activation functions...

The only difference between this deep neural network and a stack of linear classifiers: non-linearities (\int) between linear transformations.

The only difference between this deep neural network and a stack of linear classifiers: non-linearities (\int) between linear transformations.

In the next sub-lecture 3.2: why 'feed-forward' and 'fully connected'?

量 Glorot, X., Bordes, A., and Bengio, Y. (2011).

Deep sparse rectifier neural networks.

In Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, pages 315–323.

晶 Turing, A. (1948).

Intelligent machinery.

Technical report, National Physical Laboratory.