
IN5550: Neural Methods in
Natural Language Processing

Sub-lecture 3.1
Multi-layered neural networks

Andrey Kutuzov

University of Oslo

7 February 2023



Contents

1 Obligatory assignment

2 Multi-layered neural networks

1



Obligatory assignment

Time to get your hands dirty!
I Obligatory assignment 1 is published.
I Will work on related topics at the group sessions February 8 and 15.

2



Contents

1 Obligatory assignment

2 Multi-layered neural networks

2



Multi-layered neural networks

‘Machines of this character can behave in a
very complicated manner when the number
of units is large.’

Alan Turing, ‘Intelligent Machinery’
[Turing, 1948]

3



Multi-layered neural networks

Brain metaphor

I Why ‘artificial neural networks’?

I ...because it seems neurons in human brain act
similarly:
I Connected into a large network,
I each neuron accepts electrical signals (inputs) from

other neurons,
I processes (weighs) them differently, depending on

their source,
I and then passes own electrical signals (outputs) to

other neurons;
I depending on input signals, a neuron can be more or

less activated,
I ... or completely relaxed (‘silent’);
I the whole system is distributed across many neurons.

4



Multi-layered neural networks

Brain metaphor

I Why ‘artificial neural networks’?
I ...because it seems neurons in human brain act

similarly:

I Connected into a large network,
I each neuron accepts electrical signals (inputs) from

other neurons,
I processes (weighs) them differently, depending on

their source,
I and then passes own electrical signals (outputs) to

other neurons;
I depending on input signals, a neuron can be more or

less activated,
I ... or completely relaxed (‘silent’);
I the whole system is distributed across many neurons.

4



Multi-layered neural networks

Brain metaphor

I Why ‘artificial neural networks’?
I ...because it seems neurons in human brain act

similarly:
I Connected into a large network,

I each neuron accepts electrical signals (inputs) from
other neurons,

I processes (weighs) them differently, depending on
their source,

I and then passes own electrical signals (outputs) to
other neurons;

I depending on input signals, a neuron can be more or
less activated,

I ... or completely relaxed (‘silent’);
I the whole system is distributed across many neurons.

4



Multi-layered neural networks

Brain metaphor

I Why ‘artificial neural networks’?
I ...because it seems neurons in human brain act

similarly:
I Connected into a large network,
I each neuron accepts electrical signals (inputs) from

other neurons,

I processes (weighs) them differently, depending on
their source,

I and then passes own electrical signals (outputs) to
other neurons;

I depending on input signals, a neuron can be more or
less activated,

I ... or completely relaxed (‘silent’);
I the whole system is distributed across many neurons.

4



Multi-layered neural networks

Brain metaphor

I Why ‘artificial neural networks’?
I ...because it seems neurons in human brain act

similarly:
I Connected into a large network,
I each neuron accepts electrical signals (inputs) from

other neurons,
I processes (weighs) them differently, depending on

their source,

I and then passes own electrical signals (outputs) to
other neurons;

I depending on input signals, a neuron can be more or
less activated,

I ... or completely relaxed (‘silent’);
I the whole system is distributed across many neurons.

4



Multi-layered neural networks

Brain metaphor

I Why ‘artificial neural networks’?
I ...because it seems neurons in human brain act

similarly:
I Connected into a large network,
I each neuron accepts electrical signals (inputs) from

other neurons,
I processes (weighs) them differently, depending on

their source,
I and then passes own electrical signals (outputs) to

other neurons;

I depending on input signals, a neuron can be more or
less activated,

I ... or completely relaxed (‘silent’);
I the whole system is distributed across many neurons.

4



Multi-layered neural networks

Brain metaphor

I Why ‘artificial neural networks’?
I ...because it seems neurons in human brain act

similarly:
I Connected into a large network,
I each neuron accepts electrical signals (inputs) from

other neurons,
I processes (weighs) them differently, depending on

their source,
I and then passes own electrical signals (outputs) to

other neurons;
I depending on input signals, a neuron can be more or

less activated,

I ... or completely relaxed (‘silent’);
I the whole system is distributed across many neurons.

4



Multi-layered neural networks

Brain metaphor

I Why ‘artificial neural networks’?
I ...because it seems neurons in human brain act

similarly:
I Connected into a large network,
I each neuron accepts electrical signals (inputs) from

other neurons,
I processes (weighs) them differently, depending on

their source,
I and then passes own electrical signals (outputs) to

other neurons;
I depending on input signals, a neuron can be more or

less activated,
I ... or completely relaxed (‘silent’);

I the whole system is distributed across many neurons.

4



Multi-layered neural networks

Brain metaphor

I Why ‘artificial neural networks’?
I ...because it seems neurons in human brain act

similarly:
I Connected into a large network,
I each neuron accepts electrical signals (inputs) from

other neurons,
I processes (weighs) them differently, depending on

their source,
I and then passes own electrical signals (outputs) to

other neurons;
I depending on input signals, a neuron can be more or

less activated,
I ... or completely relaxed (‘silent’);
I the whole system is distributed across many neurons.

4



Multi-layered neural networks

...But brain metaphor is not optimal

I Although the first neural networks were based loosely on knowledge of neural activation at
the time, we have long abandoned any real connection to neuroscience.

I Thus, it’s less cool but more convenient to think about artificial neural networks in terms of
linear algebra concepts:
I vectors,
I matrices,
I sequential algebraic operations on them.

5



Multi-layered neural networks

...But brain metaphor is not optimal

I Although the first neural networks were based loosely on knowledge of neural activation at
the time, we have long abandoned any real connection to neuroscience.

I Thus, it’s less cool but more convenient to think about artificial neural networks in terms of
linear algebra concepts:

I vectors,
I matrices,
I sequential algebraic operations on them.

5



Multi-layered neural networks

...But brain metaphor is not optimal

I Although the first neural networks were based loosely on knowledge of neural activation at
the time, we have long abandoned any real connection to neuroscience.

I Thus, it’s less cool but more convenient to think about artificial neural networks in terms of
linear algebra concepts:
I vectors,
I matrices,
I sequential algebraic operations on them.

5



Multi-layered neural networks

The most basic neuron...

6



Multi-layered neural networks
Recall the equation for a linear classifier:

ŷ = x ·W (+b) (1)

Suppose we have 4 features, binary classification task and no bias term b:

I input feature vector x is multiplied by the weights W ;
I here, W is a vector, so the result is a scalar value ŷ1.

7



Multi-layered neural networks
Recall the equation for a linear classifier:

ŷ = x ·W (+b) (1)

Suppose we have 4 features, binary classification task and no bias term b:

I input feature vector x is multiplied by the weights W ;
I here, W is a vector, so the result is a scalar value ŷ1.

7



Multi-layered neural networks
Recall the equation for a linear classifier:

ŷ = x ·W (+b) (1)

Suppose we have 4 features, binary classification task and no bias term b:

I input feature vector x is multiplied by the weights W ;

I here, W is a vector, so the result is a scalar value ŷ1.

7



Multi-layered neural networks
Recall the equation for a linear classifier:

ŷ = x ·W (+b) (1)

Suppose we have 4 features, binary classification task and no bias term b:

I input feature vector x is multiplied by the weights W ;
I here, W is a vector, so the result is a scalar value ŷ1. 7



Multi-layered neural networks

I In fact this is already a simple neural network...
I with one neuron Σ as a computational unit.
I Σ takes 4 input values and returns their weighted sum as output value.

8



Multi-layered neural networks

I In fact this is already a simple neural network...
I with one neuron Σ as a computational unit.

I Σ takes 4 input values and returns their weighted sum as output value.

8



Multi-layered neural networks

I In fact this is already a simple neural network...
I with one neuron Σ as a computational unit.
I Σ takes 4 input values and returns their weighted sum as output value.

8



Multi-layered neural networks

Sentiment analysis with only one neuron and binary bag-of-words.
9



Multi-layered neural networks

Stack of linear classifiers
I This is a linear architecture

ŷ = x ·W
I We can make this classifier predict vectors instead of scalars...

I ...by making W a matrix;
I ...and thus using a row of several neurons, instead of only one.

10



Multi-layered neural networks

Stack of linear classifiers
I This is a linear architecture

ŷ = x ·W
I We can make this classifier predict vectors instead of scalars...

I ...by making W a matrix;
I ...and thus using a row of several neurons, instead of only one.

10



Multi-layered neural networks

Stack of linear classifiers
Additionally we can stack classifiers...

I by feeding the prediction of one classifier to another one:
I ŷ = (x ·W 0) ·W 1

I ŷ = ((x ·W 0) ·W 1) ·W 2

I ...etc. Can be arbitrarily deep
I each subsequent row of neurons (layer) is a vector;
I it is multiplied by the next weight matrix (shapes must match).
Can even use both multiple neurons and multiple layers.

11



Multi-layered neural networks

Stack of linear classifiers
Additionally we can stack classifiers...
I by feeding the prediction of one classifier to another one:

I ŷ = (x ·W 0) ·W 1

I ŷ = ((x ·W 0) ·W 1) ·W 2

I ...etc. Can be arbitrarily deep
I each subsequent row of neurons (layer) is a vector;
I it is multiplied by the next weight matrix (shapes must match).
Can even use both multiple neurons and multiple layers.

11



Multi-layered neural networks

Stack of linear classifiers
Additionally we can stack classifiers...
I by feeding the prediction of one classifier to another one:
I ŷ = (x ·W 0) ·W 1

I ŷ = ((x ·W 0) ·W 1) ·W 2

I ...etc. Can be arbitrarily deep
I each subsequent row of neurons (layer) is a vector;
I it is multiplied by the next weight matrix (shapes must match).
Can even use both multiple neurons and multiple layers.

11



Multi-layered neural networks

Stack of linear classifiers
Additionally we can stack classifiers...
I by feeding the prediction of one classifier to another one:
I ŷ = (x ·W 0) ·W 1

I ŷ = ((x ·W 0) ·W 1) ·W 2

I ...etc. Can be arbitrarily deep
I each subsequent row of neurons (layer) is a vector;
I it is multiplied by the next weight matrix (shapes must match).
Can even use both multiple neurons and multiple layers.

11



Multi-layered neural networks

Stack of linear classifiers
Additionally we can stack classifiers...
I by feeding the prediction of one classifier to another one:
I ŷ = (x ·W 0) ·W 1

I ŷ = ((x ·W 0) ·W 1) ·W 2

I ...etc. Can be arbitrarily deep

I each subsequent row of neurons (layer) is a vector;
I it is multiplied by the next weight matrix (shapes must match).
Can even use both multiple neurons and multiple layers.

11



Multi-layered neural networks

Stack of linear classifiers
Additionally we can stack classifiers...
I by feeding the prediction of one classifier to another one:
I ŷ = (x ·W 0) ·W 1

I ŷ = ((x ·W 0) ·W 1) ·W 2

I ...etc. Can be arbitrarily deep
I each subsequent row of neurons (layer) is a vector;

I it is multiplied by the next weight matrix (shapes must match).
Can even use both multiple neurons and multiple layers.

11



Multi-layered neural networks

Stack of linear classifiers
Additionally we can stack classifiers...
I by feeding the prediction of one classifier to another one:
I ŷ = (x ·W 0) ·W 1

I ŷ = ((x ·W 0) ·W 1) ·W 2

I ...etc. Can be arbitrarily deep
I each subsequent row of neurons (layer) is a vector;
I it is multiplied by the next weight matrix (shapes must match).

Can even use both multiple neurons and multiple layers.

11



Multi-layered neural networks

Stack of linear classifiers
Additionally we can stack classifiers...
I by feeding the prediction of one classifier to another one:
I ŷ = (x ·W 0) ·W 1

I ŷ = ((x ·W 0) ·W 1) ·W 2

I ...etc. Can be arbitrarily deep
I each subsequent row of neurons (layer) is a vector;
I it is multiplied by the next weight matrix (shapes must match).
Can even use both multiple neurons and multiple layers.

11



Multi-layered neural networks

Looks much like a ‘deep neural network’
Stacked linear classifier with multiple computational units at each layer:

h = x ·W 0 (2)
f = h ·W 1 (3)
ŷ = f ·W 2 (4)

12



Multi-layered neural networks

Looks much like a ‘deep neural network’
Stacked linear classifier with multiple computational units at each layer:

h = x ·W 0 (2)
f = h ·W 1 (3)
ŷ = f ·W 2 (4)

12



Multi-layered neural networks

I But any stack of linear classifiers is still a linear classifier :-(

I Still can’t handle XOR and other non-linear problems.

13



Multi-layered neural networks

I But any stack of linear classifiers is still a linear classifier :-(
I Still can’t handle XOR and other non-linear problems.

13



Multi-layered neural networks

Non-linear transformations of the input data make the desired difference.

14



Multi-layered neural networks
I Differentiable non-linear transformations (activations) are the core reason of deep learning’s

substantial results, including in NLP.

I They help induce good input data representations.
I These representations are processed with a linear classifier in the end.

Popular activation functions
I Sigmoid (logistic function):
σ(x) = 1

1+e−x → [0, 1]
I REctified Linear Unit (ReLU) [Glorot et al., 2011]:

relu(x) =
{

x, if x ≥ 0
0, otherwise

→ [0,∞]

I Hyperbolic tangent:

tanh(x) = e2x − 1
e2x + 1 → [−1, 1]

15



Multi-layered neural networks
I Differentiable non-linear transformations (activations) are the core reason of deep learning’s

substantial results, including in NLP.
I They help induce good input data representations.

I These representations are processed with a linear classifier in the end.

Popular activation functions
I Sigmoid (logistic function):
σ(x) = 1

1+e−x → [0, 1]
I REctified Linear Unit (ReLU) [Glorot et al., 2011]:

relu(x) =
{

x, if x ≥ 0
0, otherwise

→ [0,∞]

I Hyperbolic tangent:

tanh(x) = e2x − 1
e2x + 1 → [−1, 1]

15



Multi-layered neural networks
I Differentiable non-linear transformations (activations) are the core reason of deep learning’s

substantial results, including in NLP.
I They help induce good input data representations.
I These representations are processed with a linear classifier in the end.

Popular activation functions
I Sigmoid (logistic function):
σ(x) = 1

1+e−x → [0, 1]
I REctified Linear Unit (ReLU) [Glorot et al., 2011]:

relu(x) =
{

x, if x ≥ 0
0, otherwise

→ [0,∞]

I Hyperbolic tangent:

tanh(x) = e2x − 1
e2x + 1 → [−1, 1]

15



Multi-layered neural networks
I Differentiable non-linear transformations (activations) are the core reason of deep learning’s

substantial results, including in NLP.
I They help induce good input data representations.
I These representations are processed with a linear classifier in the end.

Popular activation functions
I Sigmoid (logistic function):
σ(x) = 1

1+e−x → [0, 1]

I REctified Linear Unit (ReLU) [Glorot et al., 2011]:

relu(x) =
{

x, if x ≥ 0
0, otherwise

→ [0,∞]

I Hyperbolic tangent:

tanh(x) = e2x − 1
e2x + 1 → [−1, 1]

15



Multi-layered neural networks
I Differentiable non-linear transformations (activations) are the core reason of deep learning’s

substantial results, including in NLP.
I They help induce good input data representations.
I These representations are processed with a linear classifier in the end.

Popular activation functions
I Sigmoid (logistic function):
σ(x) = 1

1+e−x → [0, 1]
I REctified Linear Unit (ReLU) [Glorot et al., 2011]:

relu(x) =
{

x, if x ≥ 0
0, otherwise

→ [0,∞]

I Hyperbolic tangent:

tanh(x) = e2x − 1
e2x + 1 → [−1, 1]

15



Multi-layered neural networks
I Differentiable non-linear transformations (activations) are the core reason of deep learning’s

substantial results, including in NLP.
I They help induce good input data representations.
I These representations are processed with a linear classifier in the end.

Popular activation functions
I Sigmoid (logistic function):
σ(x) = 1

1+e−x → [0, 1]
I REctified Linear Unit (ReLU) [Glorot et al., 2011]:

relu(x) =
{

x, if x ≥ 0
0, otherwise

→ [0,∞]

I Hyperbolic tangent:

tanh(x) = e2x − 1
e2x + 1 → [−1, 1]

15



Multi-layered neural networks

Popular activation functions...

...and their derivatives.

16



Multi-layered neural networks

The only difference between this deep neural network and a stack of linear classifiers:
non-linearities (

∫
) between linear transformations.

In the next sub-lecture 3.2: why ‘feed-forward’ and ‘fully connected’?

17



Multi-layered neural networks

The only difference between this deep neural network and a stack of linear classifiers:
non-linearities (

∫
) between linear transformations.

In the next sub-lecture 3.2: why ‘feed-forward’ and ‘fully connected’? 17



References I

Glorot, X., Bordes, A., and Bengio, Y. (2011).
Deep sparse rectifier neural networks.
In Proceedings of the Fourteenth International Conference on Artificial Intelligence and
Statistics, pages 315–323.

Turing, A. (1948).
Intelligent machinery.
Technical report, National Physical Laboratory.

18


	Obligatory assignment
	Multi-layered neural networks
	References

