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Obligatory assignment

Time to get your hands dirty!
I Obligatory assignment 1 is published.
I Will work on related topics at the group sessions February 8 and 15.
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Multi-layered neural networks

‘Machines of this character can behave in a
very complicated manner when the number
of units is large.’

Alan Turing, ‘Intelligent Machinery’
[Turing, 1948]
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Multi-layered neural networks

Brain metaphor

I Why ‘artificial neural networks’?

I ...because it seems neurons in human brain act
similarly:
I Connected into a large network,
I each neuron accepts electrical signals (inputs) from

other neurons,
I processes (weighs) them differently, depending on

their source,
I and then passes own electrical signals (outputs) to

other neurons;
I depending on input signals, a neuron can be more or

less activated,
I ... or completely relaxed (‘silent’);
I the whole system is distributed across many neurons.
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Multi-layered neural networks

...But brain metaphor is not optimal

I Although the first neural networks were based loosely on knowledge of neural activation at
the time, we have long abandoned any real connection to neuroscience.

I Thus, it’s less cool but more convenient to think about artificial neural networks in terms of
linear algebra concepts:
I vectors,
I matrices,
I sequential algebraic operations on them.
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Multi-layered neural networks

The most basic neuron...
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Multi-layered neural networks
Recall the equation for a linear classifier:

ŷ = x ·W (+b) (1)

Suppose we have 4 features, binary classification task and no bias term b:

I input feature vector x is multiplied by the weights W ;
I here, W is a vector, so the result is a scalar value ŷ1.
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Multi-layered neural networks

I In fact this is already a simple neural network...
I with one neuron Σ as a computational unit.
I Σ takes 4 input values and returns their weighted sum as output value.
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Multi-layered neural networks

Sentiment analysis with only one neuron and binary bag-of-words.
9



Multi-layered neural networks

Stack of linear classifiers
I This is a linear architecture

ŷ = x ·W
I We can make this classifier predict vectors instead of scalars...

I ...by making W a matrix;
I ...and thus using a row of several neurons, instead of only one.
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Multi-layered neural networks

Stack of linear classifiers
Additionally we can stack classifiers...

I by feeding the prediction of one classifier to another one:
I ŷ = (x ·W 0) ·W 1

I ŷ = ((x ·W 0) ·W 1) ·W 2

I ...etc. Can be arbitrarily deep
I each subsequent row of neurons (layer) is a vector;
I it is multiplied by the next weight matrix (shapes must match).
Can even use both multiple neurons and multiple layers.
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I ŷ = (x ·W 0) ·W 1
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Multi-layered neural networks

Looks much like a ‘deep neural network’
Stacked linear classifier with multiple computational units at each layer:

h = x ·W 0 (2)
f = h ·W 1 (3)
ŷ = f ·W 2 (4)
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Multi-layered neural networks

I But any stack of linear classifiers is still a linear classifier :-(

I Still can’t handle XOR and other non-linear problems.
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Multi-layered neural networks

Non-linear transformations of the input data make the desired difference.
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Multi-layered neural networks
I Differentiable non-linear transformations (activations) are the core reason of deep learning’s

substantial results, including in NLP.

I They help induce good input data representations.
I These representations are processed with a linear classifier in the end.

Popular activation functions
I Sigmoid (logistic function):
σ(x) = 1

1+e−x → [0, 1]
I REctified Linear Unit (ReLU) [Glorot et al., 2011]:

relu(x) =
{

x, if x ≥ 0
0, otherwise

→ [0,∞]

I Hyperbolic tangent:

tanh(x) = e2x − 1
e2x + 1 → [−1, 1]
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Multi-layered neural networks

Popular activation functions...

...and their derivatives.
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Multi-layered neural networks

The only difference between this deep neural network and a stack of linear classifiers:
non-linearities (

∫
) between linear transformations.

In the next sub-lecture 3.2: why ‘feed-forward’ and ‘fully connected’?
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