
IN5550: Neural Methods in
Natural Language Processing

Sub-lecture 3.2
Basic deep learning

Andrey Kutuzov

University of Oslo

7 February 2023



Contents

1 Enters deep learning

1



Enters deep learning

What exactly is ‘deep’ in deep neural networks?

2



Enters deep learning

What exactly is ‘deep’ in deep neural networks?
I Input data goes through successive transformations φ at each layer.

I The transformations themselves are still linear...
I ...but followed with some non-linear operation g at each layer.
I At the last layer, the prediction ŷ is produced.
I The whole system is trained simultaneously.

φ(x) = g(x ·W ′) (1)
ŷ = φ(x) ·W (2)

3



Enters deep learning

What exactly is ‘deep’ in deep neural networks?
I Input data goes through successive transformations φ at each layer.
I The transformations themselves are still linear...

I ...but followed with some non-linear operation g at each layer.
I At the last layer, the prediction ŷ is produced.
I The whole system is trained simultaneously.

φ(x) = g(x ·W ′) (1)
ŷ = φ(x) ·W (2)

3



Enters deep learning

What exactly is ‘deep’ in deep neural networks?
I Input data goes through successive transformations φ at each layer.
I The transformations themselves are still linear...
I ...but followed with some non-linear operation g at each layer.

I At the last layer, the prediction ŷ is produced.
I The whole system is trained simultaneously.

φ(x) = g(x ·W ′) (1)
ŷ = φ(x) ·W (2)

3



Enters deep learning

What exactly is ‘deep’ in deep neural networks?
I Input data goes through successive transformations φ at each layer.
I The transformations themselves are still linear...
I ...but followed with some non-linear operation g at each layer.
I At the last layer, the prediction ŷ is produced.

I The whole system is trained simultaneously.

φ(x) = g(x ·W ′) (1)
ŷ = φ(x) ·W (2)

3



Enters deep learning

What exactly is ‘deep’ in deep neural networks?
I Input data goes through successive transformations φ at each layer.
I The transformations themselves are still linear...
I ...but followed with some non-linear operation g at each layer.
I At the last layer, the prediction ŷ is produced.
I The whole system is trained simultaneously.

φ(x) = g(x ·W ′) (1)
ŷ = φ(x) ·W (2)

3



Enters deep learning

Feed-forward neural networks
I ‘Feed-forward neural network’ is a more precise name for a multi-layer perceptron with

non-linearities.

I A network in which the neurons/units are connected without cycles.
I Outputs from neurons in each layer are passed to neurons in the next layer, multiplied by

the correspondent weights.
I A non-linear function is applied element-wise after each layer.
I No outputs are passed back to previous layers.

1. The first layer contains input units,
2. the last layer contains output units,
3. all layers in between (hidden layers) contain hidden units, which form hidden

representations of the input data.

4



Enters deep learning

Feed-forward neural networks
I ‘Feed-forward neural network’ is a more precise name for a multi-layer perceptron with

non-linearities.
I A network in which the neurons/units are connected without cycles.

I Outputs from neurons in each layer are passed to neurons in the next layer, multiplied by
the correspondent weights.

I A non-linear function is applied element-wise after each layer.
I No outputs are passed back to previous layers.

1. The first layer contains input units,
2. the last layer contains output units,
3. all layers in between (hidden layers) contain hidden units, which form hidden

representations of the input data.

4



Enters deep learning

Feed-forward neural networks
I ‘Feed-forward neural network’ is a more precise name for a multi-layer perceptron with

non-linearities.
I A network in which the neurons/units are connected without cycles.
I Outputs from neurons in each layer are passed to neurons in the next layer, multiplied by

the correspondent weights.

I A non-linear function is applied element-wise after each layer.
I No outputs are passed back to previous layers.

1. The first layer contains input units,
2. the last layer contains output units,
3. all layers in between (hidden layers) contain hidden units, which form hidden

representations of the input data.

4



Enters deep learning

Feed-forward neural networks
I ‘Feed-forward neural network’ is a more precise name for a multi-layer perceptron with

non-linearities.
I A network in which the neurons/units are connected without cycles.
I Outputs from neurons in each layer are passed to neurons in the next layer, multiplied by

the correspondent weights.
I A non-linear function is applied element-wise after each layer.

I No outputs are passed back to previous layers.

1. The first layer contains input units,
2. the last layer contains output units,
3. all layers in between (hidden layers) contain hidden units, which form hidden

representations of the input data.

4



Enters deep learning

Feed-forward neural networks
I ‘Feed-forward neural network’ is a more precise name for a multi-layer perceptron with

non-linearities.
I A network in which the neurons/units are connected without cycles.
I Outputs from neurons in each layer are passed to neurons in the next layer, multiplied by

the correspondent weights.
I A non-linear function is applied element-wise after each layer.
I No outputs are passed back to previous layers.

1. The first layer contains input units,
2. the last layer contains output units,
3. all layers in between (hidden layers) contain hidden units, which form hidden

representations of the input data.

4



Enters deep learning

Feed-forward neural networks
I ‘Feed-forward neural network’ is a more precise name for a multi-layer perceptron with

non-linearities.
I A network in which the neurons/units are connected without cycles.
I Outputs from neurons in each layer are passed to neurons in the next layer, multiplied by

the correspondent weights.
I A non-linear function is applied element-wise after each layer.
I No outputs are passed back to previous layers.

1. The first layer contains input units,

2. the last layer contains output units,
3. all layers in between (hidden layers) contain hidden units, which form hidden

representations of the input data.

4



Enters deep learning

Feed-forward neural networks
I ‘Feed-forward neural network’ is a more precise name for a multi-layer perceptron with

non-linearities.
I A network in which the neurons/units are connected without cycles.
I Outputs from neurons in each layer are passed to neurons in the next layer, multiplied by

the correspondent weights.
I A non-linear function is applied element-wise after each layer.
I No outputs are passed back to previous layers.

1. The first layer contains input units,
2. the last layer contains output units,

3. all layers in between (hidden layers) contain hidden units, which form hidden
representations of the input data.

4



Enters deep learning

Feed-forward neural networks
I ‘Feed-forward neural network’ is a more precise name for a multi-layer perceptron with

non-linearities.
I A network in which the neurons/units are connected without cycles.
I Outputs from neurons in each layer are passed to neurons in the next layer, multiplied by

the correspondent weights.
I A non-linear function is applied element-wise after each layer.
I No outputs are passed back to previous layers.

1. The first layer contains input units,
2. the last layer contains output units,
3. all layers in between (hidden layers) contain hidden units, which form hidden

representations of the input data.

4



Enters deep learning

I Feed-forward network with 2 hidden layers;
I Before the transition to the ln+1, the output vector of ln goes through a non-linear function

(instead of simple weighted sum).
I Fully-connected: transitions between layers are linear transformations:

I each neuron in the layer ln is connected to each neuron in the layer ln+1

I ... mathematically, a vector-matrix multiplication xn ·W n = xn+1

I NB: not all neural architectures are fully connected (more on that in the next lectures).
I Question: total number of trainable weights in this network?

5



Enters deep learning

I Feed-forward network with 2 hidden layers;

I Before the transition to the ln+1, the output vector of ln goes through a non-linear function
(instead of simple weighted sum).

I Fully-connected: transitions between layers are linear transformations:
I each neuron in the layer ln is connected to each neuron in the layer ln+1

I ... mathematically, a vector-matrix multiplication xn ·W n = xn+1

I NB: not all neural architectures are fully connected (more on that in the next lectures).
I Question: total number of trainable weights in this network?

5



Enters deep learning

I Feed-forward network with 2 hidden layers;
I Before the transition to the ln+1, the output vector of ln goes through a non-linear function

(instead of simple weighted sum).

I Fully-connected: transitions between layers are linear transformations:
I each neuron in the layer ln is connected to each neuron in the layer ln+1

I ... mathematically, a vector-matrix multiplication xn ·W n = xn+1

I NB: not all neural architectures are fully connected (more on that in the next lectures).
I Question: total number of trainable weights in this network?

5



Enters deep learning

I Feed-forward network with 2 hidden layers;
I Before the transition to the ln+1, the output vector of ln goes through a non-linear function

(instead of simple weighted sum).
I Fully-connected: transitions between layers are linear transformations:

I each neuron in the layer ln is connected to each neuron in the layer ln+1

I ... mathematically, a vector-matrix multiplication xn ·W n = xn+1

I NB: not all neural architectures are fully connected (more on that in the next lectures).
I Question: total number of trainable weights in this network?

5



Enters deep learning

I Feed-forward network with 2 hidden layers;
I Before the transition to the ln+1, the output vector of ln goes through a non-linear function

(instead of simple weighted sum).
I Fully-connected: transitions between layers are linear transformations:

I each neuron in the layer ln is connected to each neuron in the layer ln+1

I ... mathematically, a vector-matrix multiplication xn ·W n = xn+1

I NB: not all neural architectures are fully connected (more on that in the next lectures).
I Question: total number of trainable weights in this network?

5



Enters deep learning

I Feed-forward network with 2 hidden layers;
I Before the transition to the ln+1, the output vector of ln goes through a non-linear function

(instead of simple weighted sum).
I Fully-connected: transitions between layers are linear transformations:

I each neuron in the layer ln is connected to each neuron in the layer ln+1

I ... mathematically, a vector-matrix multiplication xn ·W n = xn+1

I NB: not all neural architectures are fully connected (more on that in the next lectures).
I Question: total number of trainable weights in this network?

5



Enters deep learning

I Feed-forward network with 2 hidden layers;
I Before the transition to the ln+1, the output vector of ln goes through a non-linear function

(instead of simple weighted sum).
I Fully-connected: transitions between layers are linear transformations:

I each neuron in the layer ln is connected to each neuron in the layer ln+1

I ... mathematically, a vector-matrix multiplication xn ·W n = xn+1

I NB: not all neural architectures are fully connected (more on that in the next lectures).

I Question: total number of trainable weights in this network?

5



Enters deep learning

I Feed-forward network with 2 hidden layers;
I Before the transition to the ln+1, the output vector of ln goes through a non-linear function

(instead of simple weighted sum).
I Fully-connected: transitions between layers are linear transformations:

I each neuron in the layer ln is connected to each neuron in the layer ln+1

I ... mathematically, a vector-matrix multiplication xn ·W n = xn+1

I NB: not all neural architectures are fully connected (more on that in the next lectures).
I Question: total number of trainable weights in this network?

5



Enters deep learning

I Bias is added trivially to each layer (often except the last one).

I Then, such a neural network is described with:

ŷ = g2(g1(x ·W 1 + b1)) ·W 2 + b2) ·W 3 (3)

I x ∈ R4,W 1 ∈ R4×6, b1 ∈ R6,W 2 ∈ R6×5, b1 ∈ R5,W 3 ∈ R5×3

I g1, g2 are non-linear activation functions.

6



Enters deep learning

I Bias is added trivially to each layer (often except the last one).
I Then, such a neural network is described with:

ŷ = g2(g1(x ·W 1 + b1)) ·W 2 + b2) ·W 3 (3)

I x ∈ R4,W 1 ∈ R4×6, b1 ∈ R6,W 2 ∈ R6×5, b1 ∈ R5,W 3 ∈ R5×3

I g1, g2 are non-linear activation functions.
6



Enters deep learning

Feed-forward network with one hidden layer and bias
(from Jurafsky and Martin, 2023)

Thus, what is ‘deep’? Multiple layers and non-linearities between them.

7



Enters deep learning

Feed-forward network with one hidden layer and bias
(from Jurafsky and Martin, 2023)

Thus, what is ‘deep’?

Multiple layers and non-linearities between them.

7



Enters deep learning

Feed-forward network with one hidden layer and bias
(from Jurafsky and Martin, 2023)

Thus, what is ‘deep’? Multiple layers and non-linearities between them.
7



Enters deep learning

Important: feed forward neural networks with multiple layers and non-linear
transformations can theoretically approximate any function (given enough layers and
neurons).

[Leshno et al., 1993].

8



Enters deep learning

Unfortunately, that gives no guarantees to real word problems:

I Is such a network learnable?
I Can we approximate the true function given only limited amounts of training data?
I Anyway, MLPs are still good baselines for many tasks.

9



Enters deep learning

Unfortunately, that gives no guarantees to real word problems:
I Is such a network learnable?

I Can we approximate the true function given only limited amounts of training data?
I Anyway, MLPs are still good baselines for many tasks.

9



Enters deep learning

Unfortunately, that gives no guarantees to real word problems:
I Is such a network learnable?
I Can we approximate the true function given only limited amounts of training data?

I Anyway, MLPs are still good baselines for many tasks.

9



Enters deep learning

Unfortunately, that gives no guarantees to real word problems:
I Is such a network learnable?
I Can we approximate the true function given only limited amounts of training data?
I Anyway, MLPs are still good baselines for many tasks.

9



Enters deep learning

Network parameters
I Like in linear classifiers, weights and biases are parameters of the network;
I a.k.a. θ;

I the aim of the training is to learn optimal values for θ.
I Unlike in linear classifiers, the error/loss function is usually not convex...
I ...but gradient-based optimizers still work well in practice.
I NB: one can balance between the number of layers and their sizes (number of neurons).
I Different layers learn different hidden representations

I eliminates the need to manually design feature combinations:
I the network is able to learn that ‘not’ and ‘good ’ co-occurrence in a text is a powerful feature

in itself...
I ...and reflect this in its hidden representations.

10



Enters deep learning

Network parameters
I Like in linear classifiers, weights and biases are parameters of the network;
I a.k.a. θ;
I the aim of the training is to learn optimal values for θ.

I Unlike in linear classifiers, the error/loss function is usually not convex...
I ...but gradient-based optimizers still work well in practice.
I NB: one can balance between the number of layers and their sizes (number of neurons).
I Different layers learn different hidden representations

I eliminates the need to manually design feature combinations:
I the network is able to learn that ‘not’ and ‘good ’ co-occurrence in a text is a powerful feature

in itself...
I ...and reflect this in its hidden representations.

10



Enters deep learning

Network parameters
I Like in linear classifiers, weights and biases are parameters of the network;
I a.k.a. θ;
I the aim of the training is to learn optimal values for θ.
I Unlike in linear classifiers, the error/loss function is usually not convex...

I ...but gradient-based optimizers still work well in practice.
I NB: one can balance between the number of layers and their sizes (number of neurons).
I Different layers learn different hidden representations

I eliminates the need to manually design feature combinations:
I the network is able to learn that ‘not’ and ‘good ’ co-occurrence in a text is a powerful feature

in itself...
I ...and reflect this in its hidden representations.

10



Enters deep learning

Network parameters
I Like in linear classifiers, weights and biases are parameters of the network;
I a.k.a. θ;
I the aim of the training is to learn optimal values for θ.
I Unlike in linear classifiers, the error/loss function is usually not convex...
I ...but gradient-based optimizers still work well in practice.

I NB: one can balance between the number of layers and their sizes (number of neurons).
I Different layers learn different hidden representations

I eliminates the need to manually design feature combinations:
I the network is able to learn that ‘not’ and ‘good ’ co-occurrence in a text is a powerful feature

in itself...
I ...and reflect this in its hidden representations.

10



Enters deep learning

Network parameters
I Like in linear classifiers, weights and biases are parameters of the network;
I a.k.a. θ;
I the aim of the training is to learn optimal values for θ.
I Unlike in linear classifiers, the error/loss function is usually not convex...
I ...but gradient-based optimizers still work well in practice.
I NB: one can balance between the number of layers and their sizes (number of neurons).

I Different layers learn different hidden representations
I eliminates the need to manually design feature combinations:
I the network is able to learn that ‘not’ and ‘good ’ co-occurrence in a text is a powerful feature

in itself...
I ...and reflect this in its hidden representations.

10



Enters deep learning

Network parameters
I Like in linear classifiers, weights and biases are parameters of the network;
I a.k.a. θ;
I the aim of the training is to learn optimal values for θ.
I Unlike in linear classifiers, the error/loss function is usually not convex...
I ...but gradient-based optimizers still work well in practice.
I NB: one can balance between the number of layers and their sizes (number of neurons).
I Different layers learn different hidden representations

I eliminates the need to manually design feature combinations:

I the network is able to learn that ‘not’ and ‘good ’ co-occurrence in a text is a powerful feature
in itself...

I ...and reflect this in its hidden representations.

10



Enters deep learning

Network parameters
I Like in linear classifiers, weights and biases are parameters of the network;
I a.k.a. θ;
I the aim of the training is to learn optimal values for θ.
I Unlike in linear classifiers, the error/loss function is usually not convex...
I ...but gradient-based optimizers still work well in practice.
I NB: one can balance between the number of layers and their sizes (number of neurons).
I Different layers learn different hidden representations

I eliminates the need to manually design feature combinations:
I the network is able to learn that ‘not’ and ‘good ’ co-occurrence in a text is a powerful feature

in itself...

I ...and reflect this in its hidden representations.

10



Enters deep learning

Network parameters
I Like in linear classifiers, weights and biases are parameters of the network;
I a.k.a. θ;
I the aim of the training is to learn optimal values for θ.
I Unlike in linear classifiers, the error/loss function is usually not convex...
I ...but gradient-based optimizers still work well in practice.
I NB: one can balance between the number of layers and their sizes (number of neurons).
I Different layers learn different hidden representations

I eliminates the need to manually design feature combinations:
I the network is able to learn that ‘not’ and ‘good ’ co-occurrence in a text is a powerful feature

in itself...
I ...and reflect this in its hidden representations.

10



Enters deep learning

There is a cool interactive visualization from Andrei Karpathy (Stanford) which can give you
some clue about how different variables in deep networks interact and influence learned
decision boundaries.

Let’s look at it to develop intuitions.

https://cs.stanford.edu/people/karpathy/convnetjs/demo/
classify2d.html

11

https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html
https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html


Enters deep learning

Play with the demo (will discuss at the Q&A / group session as well)
1. Use a 2 layer linear classifier for the spiral data (change ‘tanh’ to ‘linear ’ for all layers).

What happens?

2. Add more neurons (‘num_neurons’=20)
3. Add more layers (copy and paste them). What changes?
4. Then try a 2 layer non-linear classifier (change to ‘tanh’). Any difference?
5. Add more non-linear layers. What happens?
6. Add more neurons. Any changes?
7. Try using different non-linearities (‘sigmoid ’, ‘tanh’, ‘relu’). What differences do you notice?

The next sub-lecture 3.3: practicalities of training deep neural nets.

12



Enters deep learning

Play with the demo (will discuss at the Q&A / group session as well)
1. Use a 2 layer linear classifier for the spiral data (change ‘tanh’ to ‘linear ’ for all layers).

What happens?
2. Add more neurons (‘num_neurons’=20)

3. Add more layers (copy and paste them). What changes?
4. Then try a 2 layer non-linear classifier (change to ‘tanh’). Any difference?
5. Add more non-linear layers. What happens?
6. Add more neurons. Any changes?
7. Try using different non-linearities (‘sigmoid ’, ‘tanh’, ‘relu’). What differences do you notice?

The next sub-lecture 3.3: practicalities of training deep neural nets.

12



Enters deep learning

Play with the demo (will discuss at the Q&A / group session as well)
1. Use a 2 layer linear classifier for the spiral data (change ‘tanh’ to ‘linear ’ for all layers).

What happens?
2. Add more neurons (‘num_neurons’=20)
3. Add more layers (copy and paste them). What changes?

4. Then try a 2 layer non-linear classifier (change to ‘tanh’). Any difference?
5. Add more non-linear layers. What happens?
6. Add more neurons. Any changes?
7. Try using different non-linearities (‘sigmoid ’, ‘tanh’, ‘relu’). What differences do you notice?

The next sub-lecture 3.3: practicalities of training deep neural nets.

12



Enters deep learning

Play with the demo (will discuss at the Q&A / group session as well)
1. Use a 2 layer linear classifier for the spiral data (change ‘tanh’ to ‘linear ’ for all layers).

What happens?
2. Add more neurons (‘num_neurons’=20)
3. Add more layers (copy and paste them). What changes?
4. Then try a 2 layer non-linear classifier (change to ‘tanh’). Any difference?

5. Add more non-linear layers. What happens?
6. Add more neurons. Any changes?
7. Try using different non-linearities (‘sigmoid ’, ‘tanh’, ‘relu’). What differences do you notice?

The next sub-lecture 3.3: practicalities of training deep neural nets.

12



Enters deep learning

Play with the demo (will discuss at the Q&A / group session as well)
1. Use a 2 layer linear classifier for the spiral data (change ‘tanh’ to ‘linear ’ for all layers).

What happens?
2. Add more neurons (‘num_neurons’=20)
3. Add more layers (copy and paste them). What changes?
4. Then try a 2 layer non-linear classifier (change to ‘tanh’). Any difference?
5. Add more non-linear layers. What happens?

6. Add more neurons. Any changes?
7. Try using different non-linearities (‘sigmoid ’, ‘tanh’, ‘relu’). What differences do you notice?

The next sub-lecture 3.3: practicalities of training deep neural nets.

12



Enters deep learning

Play with the demo (will discuss at the Q&A / group session as well)
1. Use a 2 layer linear classifier for the spiral data (change ‘tanh’ to ‘linear ’ for all layers).

What happens?
2. Add more neurons (‘num_neurons’=20)
3. Add more layers (copy and paste them). What changes?
4. Then try a 2 layer non-linear classifier (change to ‘tanh’). Any difference?
5. Add more non-linear layers. What happens?
6. Add more neurons. Any changes?

7. Try using different non-linearities (‘sigmoid ’, ‘tanh’, ‘relu’). What differences do you notice?

The next sub-lecture 3.3: practicalities of training deep neural nets.

12



Enters deep learning

Play with the demo (will discuss at the Q&A / group session as well)
1. Use a 2 layer linear classifier for the spiral data (change ‘tanh’ to ‘linear ’ for all layers).

What happens?
2. Add more neurons (‘num_neurons’=20)
3. Add more layers (copy and paste them). What changes?
4. Then try a 2 layer non-linear classifier (change to ‘tanh’). Any difference?
5. Add more non-linear layers. What happens?
6. Add more neurons. Any changes?
7. Try using different non-linearities (‘sigmoid ’, ‘tanh’, ‘relu’). What differences do you notice?

The next sub-lecture 3.3: practicalities of training deep neural nets.

12



Enters deep learning

Play with the demo (will discuss at the Q&A / group session as well)
1. Use a 2 layer linear classifier for the spiral data (change ‘tanh’ to ‘linear ’ for all layers).

What happens?
2. Add more neurons (‘num_neurons’=20)
3. Add more layers (copy and paste them). What changes?
4. Then try a 2 layer non-linear classifier (change to ‘tanh’). Any difference?
5. Add more non-linear layers. What happens?
6. Add more neurons. Any changes?
7. Try using different non-linearities (‘sigmoid ’, ‘tanh’, ‘relu’). What differences do you notice?

The next sub-lecture 3.3: practicalities of training deep neural nets.

12



References I

Leshno, M., Lin, V. Y., Pinkus, A., and Schocken, S. (1993).
Multilayer feedforward networks with a nonpolynomial activation function can approximate
any function.
Neural Networks, 6(6):861–867.

13


	Enters deep learning
	References

