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Practicalities

How deep should our networks be?
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Practicalities

It depends...
I ...on what your task is?

I Computer vision often uses models that are hundreds of layers deep
I The number of layers in NLP varies between 1-2 up to 24 (BERT, [Devlin et al., 2019]) or even

78 (Turing-NLG).
I The strongest NLP models are still growing in depth, but it’s not entirely clear how much

extreme depth benefits.
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Practicalities

The deeper and larger the model, the more capacity (parameters), the more complex functions
it can approximate.
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Practicalities

Vanishing Gradients

I As a gradient flows through deep neural networks, it can tend towards zero (vanishing
gradient)

I Recall the sigmoid function and its derivative...

I Back-propagation computes the gradients by the chain rule ...
I You are effectively multiplying n of these small numbers to compute gradients for the early

layers of an n-layer network
I The size of the gradient decreases exponentially with n
I The model learns very slow, or stops learning completely.
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Practicalities

Exploding Gradients

I If instead you have a non-linearity whose derivatives can take larger values...
I the gradients can become overly large (explode) and training updates will make overly large

changes to parameters.
I Learning becomes highly unstable and in practice it is impossible to optimize well
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Practicalities

How can we solve these problems?
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Practicalities

1. Choose the non-linearity of your hidden layers wisely

I relu > tanh > sigmoid
I many new options: maxout, gelu, elu, geglu [Shazeer, 2020]

2. Be careful with initialization parameters
3. Make the network shallower
4. Step-wise training (first train lower then further layers)
5. Batch normalization
6. Scheduled learning rate
7. Use special gradient-preserving architectures (LSTM, GRU, coming soon)
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Practicalities

Optimization
I Which optimization algorithm to use?

I SGD works well but may be slow to converge
I AdaGrad, AdamW, etc are good alternatives
I Depending on the task, SGD may still perform better

from t o r ch import optim

op t im i z e r = optim .SGD(model . params ( ) , l r =0.01)
o p t im i z e r = optim .AdamW(model . params ( ) , l r =0.01)
o p t im i z e r = optim . Adagrad ( model . params ( ) , l r =0.01)
o p t im i z e r = optim . LBFGS(model . params ( ) , l r =1)
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Practicalities

Initialization
I We normally randomly initialize the parameters θ

I ... but the magnitude of the random values still has a large impact on the learning process
I Xavier initialization:

W v U
[
−

√
6√

din + dout
,+

√
6√

din + dout

]
(1)

I He initialization:

W v N (µ, σ), σ =
√

2
din

(2)

I In PyTorch, the initialization depends on the kind of layer that you are instantiating. Have
a look at the documentation: https://pytorch.org/docs/stable/nn.init.html
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Practicalities

Restarts and Ensembles
I since we are using random initializations, we may want to check various initializations

I you can then report the average model accuracy across all restarts
I gives an idea of model stability
I Ensembles often increase prediction accuracy
I Note: use a fixed random seed for reproducibility when comparing different data or

hyper-parameters.
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Practicalities

Shuffling
I The order in which the training examples are presented is important
I It is recommended to shuffle the training data before each training epoch
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Practicalities

Learning rate
I Large learning rates will prevent convergence
I Small learning rates will take too long to converge
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Practicalities

Minibatch size
I When using batch SGD, you have to decide on batch size
I Large batches are sometimes helpful (depends on task)
I Also computationally efficient
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Practicalities

Regularization
I Like in linear models, we need regularization to avoid over-fitting;

I most popular options for deep neural networks:
1. L2 norm (weight decay);
2. Dropout [Srivastava et al., 2014] (very effective).

Dropout simply zeroes out neurons in the layers (e.g., 50%) in each forward pass randomly:
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Practicalities

So how many different hyper-parameters can we possibly have for deep
feed-forward neural networks?
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Practicalities

1. Depth (number of hidden layers)

2. Width (number of neurons per hidden layer)
3. Non-linearity
4. Initialization strategy
5. Normalization (dropout, l2, batch norm)
6. Optimization algorithm (SGD, Adam, AdaGrad)
7. Learning rate (initial, annealing, warmup, decay etc.)
8. Batch size
9. etc...
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Practicalities

How can we possibly choose the best values for all of these?
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Practicalities

Most common strategies:
I Grid search...
I Random search...
I Bayesian search...

I ...black magic
(a.k.a. ‘trials and errors’).
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Practicalities

How is that all implemented in code?
Computation graph (sub-lecture 3.4).
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