
IN5550: Neural Methods in
Natural Language Processing

Sub-lecture 3.3
Practicalities and hyper-parameters

Andrey Kutuzov

University of Oslo

7 February 2023

Contents

1 Practicalities

1

Practicalities

How deep should our networks be?

2

Practicalities

It depends...
I ...on what your task is?

I Computer vision often uses models that are hundreds of layers deep
I The number of layers in NLP varies between 1-2 up to 24 (BERT, [Devlin et al., 2019]) or even

78 (Turing-NLG).
I The strongest NLP models are still growing in depth, but it’s not entirely clear how much

extreme depth benefits.

3

Practicalities

It depends...
I ...on what your task is?

I Computer vision often uses models that are hundreds of layers deep

I The number of layers in NLP varies between 1-2 up to 24 (BERT, [Devlin et al., 2019]) or even
78 (Turing-NLG).

I The strongest NLP models are still growing in depth, but it’s not entirely clear how much
extreme depth benefits.

3

Practicalities

It depends...
I ...on what your task is?

I Computer vision often uses models that are hundreds of layers deep
I The number of layers in NLP varies between 1-2 up to 24 (BERT, [Devlin et al., 2019]) or even

78 (Turing-NLG).
I The strongest NLP models are still growing in depth, but it’s not entirely clear how much

extreme depth benefits.

3

Practicalities

The deeper and larger the model, the more capacity (parameters), the more complex functions
it can approximate.

4

Practicalities

The deeper and larger the model, the more capacity (parameters), the more complex functions
it can approximate.

4

Practicalities

Vanishing Gradients

I As a gradient flows through deep neural networks, it can tend towards zero (vanishing
gradient)

I Recall the sigmoid function and its derivative...

I Back-propagation computes the gradients by the chain rule ...
I You are effectively multiplying n of these small numbers to compute gradients for the early

layers of an n-layer network
I The size of the gradient decreases exponentially with n
I The model learns very slow, or stops learning completely.

5

Practicalities

Vanishing Gradients
I As a gradient flows through deep neural networks, it can tend towards zero (vanishing

gradient)

I Recall the sigmoid function and its derivative...

I Back-propagation computes the gradients by the chain rule ...
I You are effectively multiplying n of these small numbers to compute gradients for the early

layers of an n-layer network
I The size of the gradient decreases exponentially with n
I The model learns very slow, or stops learning completely.

5

Practicalities

Vanishing Gradients
I As a gradient flows through deep neural networks, it can tend towards zero (vanishing

gradient)
I Recall the sigmoid function and its derivative...

I Back-propagation computes the gradients by the chain rule ...

I You are effectively multiplying n of these small numbers to compute gradients for the early
layers of an n-layer network

I The size of the gradient decreases exponentially with n
I The model learns very slow, or stops learning completely.

5

Practicalities

Vanishing Gradients
I As a gradient flows through deep neural networks, it can tend towards zero (vanishing

gradient)
I Recall the sigmoid function and its derivative...

I Back-propagation computes the gradients by the chain rule ...
I You are effectively multiplying n of these small numbers to compute gradients for the early

layers of an n-layer network

I The size of the gradient decreases exponentially with n
I The model learns very slow, or stops learning completely.

5

Practicalities

Vanishing Gradients
I As a gradient flows through deep neural networks, it can tend towards zero (vanishing

gradient)
I Recall the sigmoid function and its derivative...

I Back-propagation computes the gradients by the chain rule ...
I You are effectively multiplying n of these small numbers to compute gradients for the early

layers of an n-layer network
I The size of the gradient decreases exponentially with n

I The model learns very slow, or stops learning completely.

5

Practicalities

Vanishing Gradients
I As a gradient flows through deep neural networks, it can tend towards zero (vanishing

gradient)
I Recall the sigmoid function and its derivative...

I Back-propagation computes the gradients by the chain rule ...
I You are effectively multiplying n of these small numbers to compute gradients for the early

layers of an n-layer network
I The size of the gradient decreases exponentially with n
I The model learns very slow, or stops learning completely.

5

Practicalities

Exploding Gradients

I If instead you have a non-linearity whose derivatives can take larger values...
I the gradients can become overly large (explode) and training updates will make overly large

changes to parameters.
I Learning becomes highly unstable and in practice it is impossible to optimize well

6

Practicalities

Exploding Gradients
I If instead you have a non-linearity whose derivatives can take larger values...

I the gradients can become overly large (explode) and training updates will make overly large
changes to parameters.

I Learning becomes highly unstable and in practice it is impossible to optimize well

6

Practicalities

Exploding Gradients
I If instead you have a non-linearity whose derivatives can take larger values...
I the gradients can become overly large (explode) and training updates will make overly large

changes to parameters.

I Learning becomes highly unstable and in practice it is impossible to optimize well

6

Practicalities

Exploding Gradients
I If instead you have a non-linearity whose derivatives can take larger values...
I the gradients can become overly large (explode) and training updates will make overly large

changes to parameters.
I Learning becomes highly unstable and in practice it is impossible to optimize well

6

Practicalities

How can we solve these problems?

7

Practicalities

1. Choose the non-linearity of your hidden layers wisely

I relu > tanh > sigmoid
I many new options: maxout, gelu, elu, geglu [Shazeer, 2020]

2. Be careful with initialization parameters
3. Make the network shallower
4. Step-wise training (first train lower then further layers)
5. Batch normalization
6. Scheduled learning rate
7. Use special gradient-preserving architectures (LSTM, GRU, coming soon)

8

Practicalities

1. Choose the non-linearity of your hidden layers wisely
I relu > tanh > sigmoid

I many new options: maxout, gelu, elu, geglu [Shazeer, 2020]

2. Be careful with initialization parameters
3. Make the network shallower
4. Step-wise training (first train lower then further layers)
5. Batch normalization
6. Scheduled learning rate
7. Use special gradient-preserving architectures (LSTM, GRU, coming soon)

8

Practicalities

1. Choose the non-linearity of your hidden layers wisely
I relu > tanh > sigmoid
I many new options: maxout, gelu, elu, geglu [Shazeer, 2020]

2. Be careful with initialization parameters
3. Make the network shallower
4. Step-wise training (first train lower then further layers)
5. Batch normalization
6. Scheduled learning rate
7. Use special gradient-preserving architectures (LSTM, GRU, coming soon)

8

Practicalities

1. Choose the non-linearity of your hidden layers wisely
I relu > tanh > sigmoid
I many new options: maxout, gelu, elu, geglu [Shazeer, 2020]

2. Be careful with initialization parameters

3. Make the network shallower
4. Step-wise training (first train lower then further layers)
5. Batch normalization
6. Scheduled learning rate
7. Use special gradient-preserving architectures (LSTM, GRU, coming soon)

8

Practicalities

1. Choose the non-linearity of your hidden layers wisely
I relu > tanh > sigmoid
I many new options: maxout, gelu, elu, geglu [Shazeer, 2020]

2. Be careful with initialization parameters
3. Make the network shallower

4. Step-wise training (first train lower then further layers)
5. Batch normalization
6. Scheduled learning rate
7. Use special gradient-preserving architectures (LSTM, GRU, coming soon)

8

Practicalities

1. Choose the non-linearity of your hidden layers wisely
I relu > tanh > sigmoid
I many new options: maxout, gelu, elu, geglu [Shazeer, 2020]

2. Be careful with initialization parameters
3. Make the network shallower
4. Step-wise training (first train lower then further layers)

5. Batch normalization
6. Scheduled learning rate
7. Use special gradient-preserving architectures (LSTM, GRU, coming soon)

8

Practicalities

1. Choose the non-linearity of your hidden layers wisely
I relu > tanh > sigmoid
I many new options: maxout, gelu, elu, geglu [Shazeer, 2020]

2. Be careful with initialization parameters
3. Make the network shallower
4. Step-wise training (first train lower then further layers)
5. Batch normalization

6. Scheduled learning rate
7. Use special gradient-preserving architectures (LSTM, GRU, coming soon)

8

Practicalities

1. Choose the non-linearity of your hidden layers wisely
I relu > tanh > sigmoid
I many new options: maxout, gelu, elu, geglu [Shazeer, 2020]

2. Be careful with initialization parameters
3. Make the network shallower
4. Step-wise training (first train lower then further layers)
5. Batch normalization
6. Scheduled learning rate

7. Use special gradient-preserving architectures (LSTM, GRU, coming soon)

8

Practicalities

1. Choose the non-linearity of your hidden layers wisely
I relu > tanh > sigmoid
I many new options: maxout, gelu, elu, geglu [Shazeer, 2020]

2. Be careful with initialization parameters
3. Make the network shallower
4. Step-wise training (first train lower then further layers)
5. Batch normalization
6. Scheduled learning rate
7. Use special gradient-preserving architectures (LSTM, GRU, coming soon)

8

Practicalities

Optimization
I Which optimization algorithm to use?

I SGD works well but may be slow to converge
I AdaGrad, AdamW, etc are good alternatives
I Depending on the task, SGD may still perform better

from t o r ch import optim

op t im i z e r = optim .SGD(model . params () , l r =0.01)
o p t im i z e r = optim .AdamW(model . params () , l r =0.01)
o p t im i z e r = optim . Adagrad (model . params () , l r =0.01)
o p t im i z e r = optim . LBFGS(model . params () , l r =1)

9

Practicalities

Optimization
I Which optimization algorithm to use?
I SGD works well but may be slow to converge

I AdaGrad, AdamW, etc are good alternatives
I Depending on the task, SGD may still perform better

from t o r ch import optim

op t im i z e r = optim .SGD(model . params () , l r =0.01)
o p t im i z e r = optim .AdamW(model . params () , l r =0.01)
o p t im i z e r = optim . Adagrad (model . params () , l r =0.01)
o p t im i z e r = optim . LBFGS(model . params () , l r =1)

9

Practicalities

Optimization
I Which optimization algorithm to use?
I SGD works well but may be slow to converge
I AdaGrad, AdamW, etc are good alternatives

I Depending on the task, SGD may still perform better

from t o r ch import optim

op t im i z e r = optim .SGD(model . params () , l r =0.01)
o p t im i z e r = optim .AdamW(model . params () , l r =0.01)
o p t im i z e r = optim . Adagrad (model . params () , l r =0.01)
o p t im i z e r = optim . LBFGS(model . params () , l r =1)

9

Practicalities

Optimization
I Which optimization algorithm to use?
I SGD works well but may be slow to converge
I AdaGrad, AdamW, etc are good alternatives
I Depending on the task, SGD may still perform better

from t o r ch import optim

op t im i z e r = optim .SGD(model . params () , l r =0.01)
o p t im i z e r = optim .AdamW(model . params () , l r =0.01)
o p t im i z e r = optim . Adagrad (model . params () , l r =0.01)
o p t im i z e r = optim . LBFGS(model . params () , l r =1)

9

Practicalities

Optimization
I Which optimization algorithm to use?
I SGD works well but may be slow to converge
I AdaGrad, AdamW, etc are good alternatives
I Depending on the task, SGD may still perform better

from t o r ch import optim

op t im i z e r = optim .SGD(model . params () , l r =0.01)
o p t im i z e r = optim .AdamW(model . params () , l r =0.01)
o p t im i z e r = optim . Adagrad (model . params () , l r =0.01)
o p t im i z e r = optim . LBFGS(model . params () , l r =1)

9

Practicalities

Initialization
I We normally randomly initialize the parameters θ

I ... but the magnitude of the random values still has a large impact on the learning process
I Xavier initialization:

W v U
[
−

√
6√

din + dout
,+

√
6√

din + dout

]
(1)

I He initialization:

W v N (µ, σ), σ =
√

2
din

(2)

I In PyTorch, the initialization depends on the kind of layer that you are instantiating. Have
a look at the documentation: https://pytorch.org/docs/stable/nn.init.html

10

https://pytorch.org/docs/stable/nn.init.html

Practicalities

Initialization
I We normally randomly initialize the parameters θ
I ... but the magnitude of the random values still has a large impact on the learning process

I Xavier initialization:
W v U

[
−

√
6√

din + dout
,+

√
6√

din + dout

]
(1)

I He initialization:

W v N (µ, σ), σ =
√

2
din

(2)

I In PyTorch, the initialization depends on the kind of layer that you are instantiating. Have
a look at the documentation: https://pytorch.org/docs/stable/nn.init.html

10

https://pytorch.org/docs/stable/nn.init.html

Practicalities

Initialization
I We normally randomly initialize the parameters θ
I ... but the magnitude of the random values still has a large impact on the learning process
I Xavier initialization:

W v U
[
−

√
6√

din + dout
,+

√
6√

din + dout

]
(1)

I He initialization:

W v N (µ, σ), σ =
√

2
din

(2)

I In PyTorch, the initialization depends on the kind of layer that you are instantiating. Have
a look at the documentation: https://pytorch.org/docs/stable/nn.init.html

10

https://pytorch.org/docs/stable/nn.init.html

Practicalities

Initialization
I We normally randomly initialize the parameters θ
I ... but the magnitude of the random values still has a large impact on the learning process
I Xavier initialization:

W v U
[
−

√
6√

din + dout
,+

√
6√

din + dout

]
(1)

I He initialization:

W v N (µ, σ), σ =
√

2
din

(2)

I In PyTorch, the initialization depends on the kind of layer that you are instantiating. Have
a look at the documentation: https://pytorch.org/docs/stable/nn.init.html

10

https://pytorch.org/docs/stable/nn.init.html

Practicalities

Initialization
I We normally randomly initialize the parameters θ
I ... but the magnitude of the random values still has a large impact on the learning process
I Xavier initialization:

W v U
[
−

√
6√

din + dout
,+

√
6√

din + dout

]
(1)

I He initialization:

W v N (µ, σ), σ =
√

2
din

(2)

I In PyTorch, the initialization depends on the kind of layer that you are instantiating. Have
a look at the documentation: https://pytorch.org/docs/stable/nn.init.html

10

https://pytorch.org/docs/stable/nn.init.html

Practicalities

Restarts and Ensembles
I since we are using random initializations, we may want to check various initializations

I you can then report the average model accuracy across all restarts
I gives an idea of model stability
I Ensembles often increase prediction accuracy
I Note: use a fixed random seed for reproducibility when comparing different data or

hyper-parameters.

11

Practicalities

Restarts and Ensembles
I since we are using random initializations, we may want to check various initializations
I you can then report the average model accuracy across all restarts

I gives an idea of model stability
I Ensembles often increase prediction accuracy
I Note: use a fixed random seed for reproducibility when comparing different data or

hyper-parameters.

11

Practicalities

Restarts and Ensembles
I since we are using random initializations, we may want to check various initializations
I you can then report the average model accuracy across all restarts
I gives an idea of model stability

I Ensembles often increase prediction accuracy
I Note: use a fixed random seed for reproducibility when comparing different data or

hyper-parameters.

11

Practicalities

Restarts and Ensembles
I since we are using random initializations, we may want to check various initializations
I you can then report the average model accuracy across all restarts
I gives an idea of model stability
I Ensembles often increase prediction accuracy

I Note: use a fixed random seed for reproducibility when comparing different data or
hyper-parameters.

11

Practicalities

Restarts and Ensembles
I since we are using random initializations, we may want to check various initializations
I you can then report the average model accuracy across all restarts
I gives an idea of model stability
I Ensembles often increase prediction accuracy
I Note: use a fixed random seed for reproducibility when comparing different data or

hyper-parameters.

11

Practicalities

Shuffling
I The order in which the training examples are presented is important
I It is recommended to shuffle the training data before each training epoch

12

Practicalities

Learning rate
I Large learning rates will prevent convergence
I Small learning rates will take too long to converge

13

Practicalities

Minibatch size
I When using batch SGD, you have to decide on batch size
I Large batches are sometimes helpful (depends on task)
I Also computationally efficient

14

Practicalities

Regularization
I Like in linear models, we need regularization to avoid over-fitting;

I most popular options for deep neural networks:
1. L2 norm (weight decay);
2. Dropout [Srivastava et al., 2014] (very effective).

Dropout simply zeroes out neurons in the layers (e.g., 50%) in each forward pass randomly:

15

Practicalities

Regularization
I Like in linear models, we need regularization to avoid over-fitting;
I most popular options for deep neural networks:

1. L2 norm (weight decay);

2. Dropout [Srivastava et al., 2014] (very effective).

Dropout simply zeroes out neurons in the layers (e.g., 50%) in each forward pass randomly:

15

Practicalities

Regularization
I Like in linear models, we need regularization to avoid over-fitting;
I most popular options for deep neural networks:

1. L2 norm (weight decay);
2. Dropout [Srivastava et al., 2014] (very effective).

Dropout simply zeroes out neurons in the layers (e.g., 50%) in each forward pass randomly:

15

Practicalities

Regularization
I Like in linear models, we need regularization to avoid over-fitting;
I most popular options for deep neural networks:

1. L2 norm (weight decay);
2. Dropout [Srivastava et al., 2014] (very effective).

Dropout simply zeroes out neurons in the layers (e.g., 50%) in each forward pass randomly:

15

Practicalities

So how many different hyper-parameters can we possibly have for deep
feed-forward neural networks?

16

Practicalities

1. Depth (number of hidden layers)

2. Width (number of neurons per hidden layer)
3. Non-linearity
4. Initialization strategy
5. Normalization (dropout, l2, batch norm)
6. Optimization algorithm (SGD, Adam, AdaGrad)
7. Learning rate (initial, annealing, warmup, decay etc.)
8. Batch size
9. etc...

17

Practicalities

1. Depth (number of hidden layers)
2. Width (number of neurons per hidden layer)

3. Non-linearity
4. Initialization strategy
5. Normalization (dropout, l2, batch norm)
6. Optimization algorithm (SGD, Adam, AdaGrad)
7. Learning rate (initial, annealing, warmup, decay etc.)
8. Batch size
9. etc...

17

Practicalities

1. Depth (number of hidden layers)
2. Width (number of neurons per hidden layer)
3. Non-linearity

4. Initialization strategy
5. Normalization (dropout, l2, batch norm)
6. Optimization algorithm (SGD, Adam, AdaGrad)
7. Learning rate (initial, annealing, warmup, decay etc.)
8. Batch size
9. etc...

17

Practicalities

1. Depth (number of hidden layers)
2. Width (number of neurons per hidden layer)
3. Non-linearity
4. Initialization strategy

5. Normalization (dropout, l2, batch norm)
6. Optimization algorithm (SGD, Adam, AdaGrad)
7. Learning rate (initial, annealing, warmup, decay etc.)
8. Batch size
9. etc...

17

Practicalities

1. Depth (number of hidden layers)
2. Width (number of neurons per hidden layer)
3. Non-linearity
4. Initialization strategy
5. Normalization (dropout, l2, batch norm)

6. Optimization algorithm (SGD, Adam, AdaGrad)
7. Learning rate (initial, annealing, warmup, decay etc.)
8. Batch size
9. etc...

17

Practicalities

1. Depth (number of hidden layers)
2. Width (number of neurons per hidden layer)
3. Non-linearity
4. Initialization strategy
5. Normalization (dropout, l2, batch norm)
6. Optimization algorithm (SGD, Adam, AdaGrad)

7. Learning rate (initial, annealing, warmup, decay etc.)
8. Batch size
9. etc...

17

Practicalities

1. Depth (number of hidden layers)
2. Width (number of neurons per hidden layer)
3. Non-linearity
4. Initialization strategy
5. Normalization (dropout, l2, batch norm)
6. Optimization algorithm (SGD, Adam, AdaGrad)
7. Learning rate (initial, annealing, warmup, decay etc.)

8. Batch size
9. etc...

17

Practicalities

1. Depth (number of hidden layers)
2. Width (number of neurons per hidden layer)
3. Non-linearity
4. Initialization strategy
5. Normalization (dropout, l2, batch norm)
6. Optimization algorithm (SGD, Adam, AdaGrad)
7. Learning rate (initial, annealing, warmup, decay etc.)
8. Batch size
9. etc...

17

Practicalities

How can we possibly choose the best values for all of these?

18

Practicalities

Most common strategies:
I Grid search...
I Random search...
I Bayesian search...

I ...black magic
(a.k.a. ‘trials and errors’).

19

Practicalities

Most common strategies:
I Grid search...
I Random search...
I Bayesian search...
I ...black magic

(a.k.a. ‘trials and errors’).

19

Practicalities

Most common strategies:
I Grid search...
I Random search...
I Bayesian search...
I ...black magic

(a.k.a. ‘trials and errors’).

19

Practicalities

How is that all implemented in code?
Computation graph (sub-lecture 3.4).

20

References I

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2019).
BERT: Pre-training of deep bidirectional transformers for language understanding.
In Proceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short
Papers), pages 4171–4186, Minneapolis, Minnesota. Association for Computational
Linguistics.

Shazeer, N. (2020).
GLU variants improve transformer.
CoRR, abs/2002.05202.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. (2014).
Dropout: a simple way to prevent neural networks from overfitting.
The Journal of Machine Learning Research, 15(1):1929–1958.

21

	Practicalities
	References

