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Computation graphs

Neural networks are just differentiable parameterized functions:

I so we can use the same gradient-based optimization that we already saw (SGD, etc)
I But we have to calculate the gradient

I potentially error prone and needs to be repeated for every change in model
configuration/number of hidden layers/activation function/loss function, etc

I The good news is that we can use reverse-mode automatic differentiation (i.e.
back-propagation) to automatically calculate the gradients

I This means that instead of spending lots of your time deriving gradients by hand, you can
use all that time to explore model options.
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Computation graphs
I These days, deep neural networks are usually trained using the computation graph

abstraction:

I representation of the process of computing a mathematical expression;
I allows to construct arbitrary deep and complex network architectures;
I computation is broken down into separate operations;
I each operation and variable is a node in a graph:

directed acyclic graph (DAG)
Question: what does this graph produce when a = 2, b = 1?
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Computation graphs

Training basics
I Similar to linear classifiers, deep NNs are trained by gradient calculation (SGD, etc)

I Two main stages:
1. Forward pass (compute predictions for given inputs);

I move forward along the graph from input to output and compute the loss.
2. Backward pass (compute gradients with respect to the loss)

I move backwards along the graph from the resulting loss through all the layers to the input.
I How exactly they are performed is dependent on which nodes are there in the graph.
I Operations, parameters and variables are nodes in a DAG.
I The whole graph should be differentiable.
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Computation graphs

Think over before the Q&A session / lab session:
I How many total layers are there in this computation

graph?

I How many hidden layers?
I What is the shape of its output?
I How can you describe what this architecture

does?
I Any NLP task for which it can be used?
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Computation graphs

Forward pass
I Go over all nodes starting from the input;

I apply the operations sequentially;
I produce the output up to the final scalar loss-node.

Loss calculation
I Loss functions are as a rule the same as with linear models;
I cross-entropy is arguably the dominant one: L(ŷ , y) = −y log(ŷ) − (1 − y)log(1 − ŷ)
I NB: the output should be squashed by sigmoid or like.
I ...however, new loss functions are also being introduced:

I e.g., Von Mises-Fisher loss [Kumar and Tsvetkov, 2018], etc.
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Computation graphs

Backward pass
I In simple linear classifiers, we compute the partial derivatives of model parameters with

respect to the loss...

I ...in multi-layer networks it is the same...
I ...but the number of parameters can be crazy big.
I Gradient is computed using a special algorithm:
I back-propagation a.k.a reverse differentiation [Rumelhart et al., 1986];
I propagating loss values backwards through all layers...
I ...religiously computing derivatives at each.
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Computation graphs

Backward pass
I Back-propagation is very efficient in terms of computation speed, but very error-prone if

done manually...

I ... fortunately, automatic tools for gradient computation with backprop do exist and are
well-developed!
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Neural network toolkits

Software libraries
No lack of open-source deep learning toolkits:

I Static graph construction (compile then run):
I TensorFlow by Google [Abadi et al., 2015] (https://tensorflow.org)

I Dynamic graph construction (run on the fly, a new graph for each sample):
I PyTorch by Facebook [Paszke et al., 2017] (https://pytorch.org/)

I (TensorFlow 2 added support for dynamic graphs as well)

Every tech giant wants to introduce its own ‘definitive deep learning library’. The field is very
competitive.

9
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Neural network toolkits

This course
I IN5550 is currently based on PyTorch library...

I ...since it is more flexible and arguably easier to learn.

I We are going to use well-established architectures...
I ...so everything can be done via PyTorch.
I Makes it easy to use deep learning elements in your code.
I https://pytorch.org/
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Next week trailer

Dense representations of textual features
I One-hot VS dense encodings of linguistic entities.

I Making the discrete world continuous.
I Preliminaries for word embeddings.

I Yay! Word2vec!
I Stay tuned!
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