IN5550: Neural Methods in Natural Language Processing Sub-lecture 3.4 Computation graphs

Andrey Kutuzov

University of Oslo

7 February 2023

 \triangleright so we can use the same gradient-based optimization that we already saw (SGD, etc)

- \triangleright so we can use the same gradient-based optimization that we already saw (SGD, etc)
- \triangleright But we have to calculate the gradient
	- \triangleright potentially error prone and needs to be repeated for every change in model configuration/number of hidden layers/activation function/loss function, etc

- \triangleright so we can use the same gradient-based optimization that we already saw (SGD, etc)
- \triangleright But we have to calculate the gradient
	- **•** potentially error prone and needs to be repeated for every change in model configuration/number of hidden layers/activation function/loss function, etc
- \blacktriangleright The good news is that we can use reverse-mode automatic differentiation (i.e. back-propagation) to automatically calculate the gradients

- \triangleright so we can use the same gradient-based optimization that we already saw (SGD, etc)
- \triangleright But we have to calculate the gradient
	- **•** potentially error prone and needs to be repeated for every change in model configuration/number of hidden layers/activation function/loss function, etc
- \blacktriangleright The good news is that we can use reverse-mode automatic differentiation (i.e. back-propagation) to automatically calculate the gradients
- \blacktriangleright This means that instead of spending lots of your time deriving gradients by hand, you can use all that time to explore model options.

 \triangleright These days, deep neural networks are usually trained using the computation graph abstraction:

-
- \triangleright These days, deep neural networks are usually trained using the computation graph abstraction:
- \blacktriangleright representation of the process of computing a mathematical expression;

-
- \triangleright These days, deep neural networks are usually trained using the computation graph abstraction:
- \blacktriangleright representation of the process of computing a mathematical expression;
- \blacktriangleright allows to construct arbitrary deep and complex network architectures;

-
- \triangleright These days, deep neural networks are usually trained using the computation graph abstraction:
- \blacktriangleright representation of the process of computing a mathematical expression;
- \blacktriangleright allows to construct arbitrary deep and complex network architectures;
- \triangleright computation is broken down into separate operations;

-
- \triangleright These days, deep neural networks are usually trained using the computation graph abstraction:
- \triangleright representation of the process of computing a mathematical expression;
- \blacktriangleright allows to construct arbitrary deep and complex network architectures;
- \triangleright computation is broken down into separate operations;
- \triangleright each operation and variable is a node in a graph:

- \triangleright These days, deep neural networks are usually trained using the computation graph abstraction:
- \triangleright representation of the process of computing a mathematical expression;
- \blacktriangleright allows to construct arbitrary deep and complex network architectures;
- \triangleright computation is broken down into separate operations;
- \triangleright each operation and variable is a node in a graph:

directed acyclic graph (DAG)

- \triangleright These days, deep neural networks are usually trained using the computation graph abstraction:
- \triangleright representation of the process of computing a mathematical expression;
- \blacktriangleright allows to construct arbitrary deep and complex network architectures;
- \triangleright computation is broken down into separate operations;
- \triangleright each operation and variable is a node in a graph:

directed acyclic graph (DAG) Question: **what does this graph produce when** $a = 2, b = 1$?

▶ Similar to linear classifiers, deep NNs are trained by gradient calculation (SGD, etc)

- ▶ Similar to linear classifiers, deep NNs are trained by gradient calculation (SGD, etc)
- \blacktriangleright Two main stages:

- \triangleright Similar to linear classifiers, deep NNs are trained by gradient calculation (SGD, etc)
- \blacktriangleright Two main stages:
	- 1. Forward pass (compute predictions for given inputs);
		- \blacktriangleright move forward along the graph from input to output and compute the loss.

- \triangleright Similar to linear classifiers, deep NNs are trained by gradient calculation (SGD, etc)
- \blacktriangleright Two main stages:
	- 1. Forward pass (compute predictions for given inputs);
		- \blacktriangleright move forward along the graph from input to output and compute the loss.
	- 2. Backward pass (compute gradients with respect to the loss)
		- \triangleright move backwards along the graph from the resulting loss through all the layers to the input.

- \triangleright Similar to linear classifiers, deep NNs are trained by gradient calculation (SGD, etc)
- \blacktriangleright Two main stages:
	- 1. Forward pass (compute predictions for given inputs);
		- \blacktriangleright move forward along the graph from input to output and compute the loss.
	- 2. Backward pass (compute gradients with respect to the loss)
		- \triangleright move backwards along the graph from the resulting loss through all the layers to the input.
- \blacktriangleright How exactly they are performed is dependent on which nodes are there in the graph.

- \triangleright Similar to linear classifiers, deep NNs are trained by gradient calculation (SGD, etc)
- \blacktriangleright Two main stages:
	- 1. Forward pass (compute predictions for given inputs);
		- \blacktriangleright move forward along the graph from input to output and compute the loss.
	- 2. Backward pass (compute gradients with respect to the loss)
		- \triangleright move backwards along the graph from the resulting loss through all the layers to the input.
- How exactly they are performed is dependent on which nodes are there in the graph.
- I Operations, parameters and variables are nodes in a DAG.

- \triangleright Similar to linear classifiers, deep NNs are trained by gradient calculation (SGD, etc)
- \blacktriangleright Two main stages:
	- 1. Forward pass (compute predictions for given inputs);
		- \blacktriangleright move forward along the graph from input to output and compute the loss.
	- 2. Backward pass (compute gradients with respect to the loss)
		- \triangleright move backwards along the graph from the resulting loss through all the layers to the input.
- How exactly they are performed is dependent on which nodes are there in the graph.
- \triangleright Operations, parameters and variables are nodes in a DAG.
- \blacktriangleright The whole graph should be differentiable.

Think over before the Q&A session / lab session:

 \blacktriangleright How many total layers are there in this computation graph?

- \blacktriangleright How many total layers are there in this computation graph?
- \blacktriangleright How many hidden layers?

- \blacktriangleright How many total layers are there in this computation graph?
- \blacktriangleright How many hidden layers?
- \blacktriangleright What is the shape of its output?

- \blacktriangleright How many total layers are there in this computation graph?
- \blacktriangleright How many hidden layers?
- \blacktriangleright What is the shape of its output?
- ▶ How can you describe what this architecture **does?**

- \blacktriangleright How many total layers are there in this computation graph?
- \blacktriangleright How many hidden layers?
- \blacktriangleright What is the shape of its output?
- ▶ How can you describe what this architecture **does?**
- \blacktriangleright Any NLP task for which it can be used?

 \triangleright Go over all nodes starting from the input;

- \triangleright Go over all nodes starting from the input;
- \blacktriangleright apply the operations sequentially;

- \triangleright Go over all nodes starting from the input;
- \blacktriangleright apply the operations sequentially;
- \triangleright produce the output up to the final scalar loss-node.

- \triangleright Go over all nodes starting from the input;
- \blacktriangleright apply the operations sequentially;
- \triangleright produce the output up to the final scalar loss-node.

Loss calculation

- \blacktriangleright Loss functions are as a rule the same as with linear models;
- \triangleright cross-entropy is arguably the dominant one: $L(\hat{y}, y) = -y \log(\hat{y}) (1 y) \log(1 \hat{y})$
- \triangleright NB: the output should be squashed by sigmoid or like.

- \triangleright Go over all nodes starting from the input;
- \blacktriangleright apply the operations sequentially;
- \triangleright produce the output up to the final scalar loss-node.

Loss calculation

- \blacktriangleright Loss functions are as a rule the same as with linear models;
- \triangleright cross-entropy is arguably the dominant one: $L(\hat{y}, y) = -y \log(\hat{y}) (1 y) \log(1 \hat{y})$
- NB: the output should be squashed by sigmoid or like.
- \blacktriangleright ...however, new loss functions are also being introduced:
	- \blacktriangleright e.g., Von Mises-Fisher loss [\[Kumar and Tsvetkov, 2018\]](#page-55-0), etc.

 \blacktriangleright In simple linear classifiers, we compute the partial derivatives of model parameters with respect to the loss...

- \triangleright In simple linear classifiers, we compute the partial derivatives of model parameters with respect to the loss...
- \blacktriangleright ...in multi-layer networks it is the same...

- \blacktriangleright In simple linear classifiers, we compute the partial derivatives of model parameters with respect to the loss...
- \blacktriangleright ...in multi-layer networks it is the same...
- \blacktriangleright ...but the number of parameters can be crazy big.

- \triangleright In simple linear classifiers, we compute the partial derivatives of model parameters with respect to the loss...
- \blacktriangleright ...in multi-layer networks it is the same...
- \blacktriangleright ...but the number of parameters can be crazy big.
- \triangleright Gradient is computed using a special algorithm:
- **back-propagation a.k.a reverse differentiation** [\[Rumelhart et al., 1986\]](#page-56-0);

- In simple linear classifiers, we compute the partial derivatives of model parameters with respect to the loss...
- \blacktriangleright ...in multi-layer networks it is the same...
- \blacktriangleright ...but the number of parameters can be crazy big.
- \triangleright Gradient is computed using a special algorithm:
- **back-propagation a.k.a reverse differentiation** [\[Rumelhart et al., 1986\]](#page-56-0);
- propagating loss values backwards through all layers...
- \blacktriangleright ...religiously computing derivatives at each.

Backward pass

 \triangleright Back-propagation is very efficient in terms of computation speed, but very error-prone if done manually...

Backward pass

 \triangleright Back-propagation is very efficient in terms of computation speed, but very error-prone if done manually...

Backward pass

 \triangleright Back-propagation is very efficient in terms of computation speed, but very error-prone if done manually...

... fortunately, automatic tools for gradient computation with *backprop* do exist and are well-developed!

Software libraries

Software libraries

- \triangleright Static graph construction (compile then run):
	- ▶ TensorFlow by Google [\[Abadi et al., 2015\]](#page-55-1) (<https://tensorflow.org>)

Software libraries

- \triangleright Static graph construction (compile then run):
	- ▶ TensorFlow by Google [\[Abadi et al., 2015\]](#page-55-1) (<https://tensorflow.org>)
- \triangleright Dynamic graph construction (run on the fly, a new graph for each sample):
	- ▶ PyTorch by Facebook [\[Paszke et al., 2017\]](#page-55-2) (<https://pytorch.org/>)

Software libraries

- \triangleright Static graph construction (compile then run):
	- ▶ TensorFlow by Google [\[Abadi et al., 2015\]](#page-55-1) (<https://tensorflow.org>)
- \triangleright Dynamic graph construction (run on the fly, a new graph for each sample):
	- I PyTorch by Facebook [\[Paszke et al., 2017\]](#page-55-2) (<https://pytorch.org/>)
		- \triangleright (TensorFlow 2 added support for dynamic graphs as well)

Software libraries

No lack of open-source deep learning toolkits:

- \triangleright Static graph construction (compile then run):
	- \triangleright TensorFlow by Google [\[Abadi et al., 2015\]](#page-55-1) (<https://tensorflow.org>)
- \triangleright Dynamic graph construction (run on the fly, a new graph for each sample):
	- ▶ PyTorch by Facebook [\[Paszke et al., 2017\]](#page-55-2) (<https://pytorch.org/>)
		- \triangleright (TensorFlow 2 added support for dynamic graphs as well)

Every tech giant wants to introduce its own 'definitive deep learning library'. The field is very competitive.

This course

 \blacktriangleright IN5550 is currently based on PyTorch library...

This course

- \blacktriangleright IN5550 is currently based on PyTorch library...
- \blacktriangleright ...since it is more flexible and arguably easier to learn.

This course

- \blacktriangleright IN5550 is currently based on PyTorch library...
- \blacktriangleright ...since it is more flexible and arguably easier to learn.

 \blacktriangleright We are going to use well-established architectures...

This course

- \blacktriangleright IN5550 is currently based on PyTorch library...
- \blacktriangleright ...since it is more flexible and arguably easier to learn.

- \blacktriangleright We are going to use well-established architectures...
- \triangleright ...so everything can be done via PyTorch.

This course

- \blacktriangleright IN5550 is currently based on PyTorch library...
- \blacktriangleright ...since it is more flexible and arguably easier to learn.

- \blacktriangleright We are going to use well-established architectures...
- \triangleright ...so everything can be done via PyTorch.
- \blacktriangleright Makes it easy to use deep learning elements in your code.
- ▶ <https://pytorch.org/>

 \triangleright One-hot VS dense encodings of linguistic entities.

- \triangleright One-hot VS dense encodings of linguistic entities.
- \blacktriangleright Making the discrete world continuous.

- \triangleright One-hot VS dense encodings of linguistic entities.
- \blacktriangleright Making the discrete world continuous.
- \triangleright Preliminaries for word embeddings.
	- ▶ Yay! Word2vec!

- \triangleright One-hot VS dense encodings of linguistic entities.
- \blacktriangleright Making the discrete world continuous.
- \blacktriangleright Preliminaries for word embeddings.
	- ▶ Yay! Word2vec!
- \triangleright Stay tuned!

References I

- 晶 Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., and Zheng, X. (2015). TensorFlow: Large-scale machine learning on heterogeneous systems. Software available from tensorflow.org.
- 量 Kumar, S. and Tsvetkov, Y. (2018). Von mises-fisher loss for training sequence to sequence models with continuous outputs. In International Conference on Learning Representations.
- Paszke, A., Gross, S., Chintala, S., and Chanan, G. (2017). 暈 Pytorch: Tensors and dynamic neural networks in Python with strong GPU acceleration.

F Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning representations by back-propagating errors. Nature, 323(6088):533.