IN5550: Neural Methods in Natural Language Processing Sub-lecture 4.1 One-hot and dense representations

Andrey Kutuzov

University of Oslo

14 February 2023

- Dense Representations of Linguistic Features
 - One-hot representations: let's recall
 - Dense representations (embeddings)

How to make the world continuous? Discrete and continuous variables

Representations

► In the obligatory 1, you train neural document classifiers...

- ► In the obligatory 1, you train neural document classifiers...
- ...using bags of words as features.

- ▶ In the obligatory 1, you train neural document classifiers...
- ...using bags of words as features.
- Documents are represented as sparse vocabulary vectors.

- ▶ In the obligatory 1, you train neural document classifiers...
- ...using bags of words as features.
- Documents are represented as sparse vocabulary vectors.
- Core elements of this representation are words,

- ▶ In the obligatory 1, you train neural document classifiers...
- …using bags of words as features.
- Documents are represented as sparse vocabulary vectors.
- Core elements of this representation are words,
- ▶ and they are in turn represented with one-hot vectors.

BOW feature vector of the document i can be interpreted as a sum of one-hot vectors (o) for each token in it:

- BOW feature vector of the document i can be interpreted as a sum of one-hot vectors (o) for each token in it:
 - Vocabulary V from the picture above contains 10 words (lowercased): ['-', 'by', 'in', 'most', 'norway', 'road', 'the', 'tourists', 'troll', 'visited'].

- BOW feature vector of the document i can be interpreted as a sum of one-hot vectors (o) for each token in it:
 - Vocabulary V from the picture above contains 10 words (lowercased):
 - ['-', 'by', 'in', 'most', 'norway', 'road', 'the', 'tourists', 'troll', 'visited'].
 - $o^0 = [0, 0, 0, 0, 0, 0, 1, 0, 0, 0]$ ('The')

- BOW feature vector of the document i can be interpreted as a sum of one-hot vectors (o) for each token in it:
 - ► Vocabulary V from the picture above contains 10 words (lowercased):
 - ['-', 'by', 'in', 'most', 'norway', 'road', 'the', 'tourists', 'troll', 'visited'].
 - $o_{1}^{0} = [0, 0, 0, 0, 0, 0, 1, 0, 0, 0]$ ('The')
 - $o^1 = [0, 0, 0, 0, 0, 0, 0, 0, 1, 0]$ ('Troll')
 - ▶ etc...

- BOW feature vector of the document i can be interpreted as a sum of one-hot vectors (o) for each token in it:
 - Vocabulary V from the picture above contains 10 words (lowercased): ['-', 'by', 'in', 'most', 'norway', 'road', 'the', 'tourists', 'troll', 'visited'].
 - $o^0 = [0, 0, 0, 0, 0, 0, 1, 0, 0, 0]$ ('The')
 - $o^1 = [0, 0, 0, 0, 0, 0, 0, 0, 1, 0]$ ('Troll')
 - ▶ etc...
 - ▶ i = [1, 1, 1, 1, 1, 2, 2, 1, 1, 1] ('the' and 'road' occurred 2 times)

► The network is trained on words represented with integer identifiers:

- ► '*the*' is the word number 6 in the vocabulary
- 'most' is the word number 3 in the vocabulary
- *visited*' is the word number 9 in the vocabulary
- ► etc.

► The network is trained on words represented with integer identifiers:

- *'the'* is the word number 6 in the vocabulary
- 'most' is the word number 3 in the vocabulary
- *visited*' is the word number 9 in the vocabulary
- ► etc.
- ► Such features are discrete (categorical).
 - ► a.k.a. one-hot.

The network is trained on words represented with integer identifiers:

- ► '*the*' is the word number 6 in the vocabulary
- 'most' is the word number 3 in the vocabulary
- 'visited' is the word number 9 in the vocabulary
- ► etc.
- ► Such features are discrete (categorical).
 - ▶ a.k.a. one-hot.
- Each word is a feature on its own, completely independent from other words.

The network is trained on words represented with integer identifiers:

- *'the'* is the word number 6 in the vocabulary
- 'most' is the word number 3 in the vocabulary
- *visited*' is the word number 9 in the vocabulary
- ► etc.
- Such features are discrete (categorical).
 - ▶ a.k.a. one-hot.
- Each word is a feature on its own, completely independent from other words.
- ► Other NLP tasks: categorical features for PoS tags, dependency labels, etc.

► Features for words are extremely sparse:

- Features for words are extremely sparse:
 - ▶ the feature 'word form' can take any of tens or hundreds of thousands categorical values...

- Features for words are extremely sparse:
 - ▶ the feature 'word form' can take any of tens or hundreds of thousands categorical values...
 - ...each absolutely unique and not related to each other.

- Features for words are extremely sparse:
 - ▶ the feature 'word form' can take any of tens or hundreds of thousands categorical values...
 - ...each absolutely unique and not related to each other.
- Classifiers have to learn weight matrices with dim = |V|.

- Features for words are extremely sparse:
 - ▶ the feature 'word form' can take any of tens or hundreds of thousands categorical values...
 - ...each absolutely unique and not related to each other.
- Classifiers have to learn weight matrices with dim = |V|.
- ► Not efficient:
 - ▶ A 50-words text is $x \in \mathbb{R}^{100000}$, because 100K words in our vocabulary!

- Features for words are extremely sparse:
 - ▶ the feature 'word form' can take any of tens or hundreds of thousands categorical values...
 - …each absolutely unique and not related to each other.
- Classifiers have to learn weight matrices with dim = |V|.
- ► Not efficient:
 - ▶ A 50-words text is $x \in \mathbb{R}^{100000}$, because 100K words in our vocabulary!
- ► A bit easier for other linguistic entities (parts of speech, etc)...

- Features for words are extremely sparse:
 - ▶ the feature 'word form' can take any of tens or hundreds of thousands categorical values...
 - …each absolutely unique and not related to each other.
- Classifiers have to learn weight matrices with dim = |V|.
- ► Not efficient:
 - ▶ A 50-words text is $x \in \mathbb{R}^{100000}$, because 100K words in our vocabulary!
- ► A bit easier for other linguistic entities (parts of speech, etc)...
- ...but their feature combinations yield millions of resulting features.

- Features for words are extremely sparse:
 - ▶ the feature 'word form' can take any of tens or hundreds of thousands categorical values...
 - …each absolutely unique and not related to each other.
- Classifiers have to learn weight matrices with dim = |V|.
- ► Not efficient:
 - ▶ A 50-words text is $x \in \mathbb{R}^{100000}$, because 100K words in our vocabulary!
- ► A bit easier for other linguistic entities (parts of speech, etc)...
- ...but their feature combinations yield millions of resulting features.
- It's very difficult to learn good weights for them all.

- Features for words are extremely sparse:
 - ▶ the feature 'word form' can take any of tens or hundreds of thousands categorical values...
 - …each absolutely unique and not related to each other.
- Classifiers have to learn weight matrices with dim = |V|.
- ► Not efficient:
 - ▶ A 50-words text is $x \in \mathbb{R}^{100000}$, because 100K words in our vocabulary!
- ► A bit easier for other linguistic entities (parts of speech, etc)...
- ...but their feature combinations yield millions of resulting features.
- It's very difficult to learn good weights for them all.
- Feature extraction step haunted NLP practitioners for several decades.

Core Features + Feature Combinations								
		As McGwire	neared , fans	went wild				
[went]	[VBD]	[As]	[ADP]	[went]				
[VERB]	[As]	[IN]	[went, VBD]	[As, ADP]				
[went, As]	[VBD, ADP]	[went, VERB]	[As, IN]	[went, As]				
[VERB, IN]	[VBD, As, ADP]	[went, As, ADP]	[went, VBD, ADP]	[went, VBD, As]				
[ADJ. *, ADP]	[VBD, *, ADP]	[VBD, ADJ, ADP]	[VBD, ADJ, *]	[NNS, *, ADP]				
[NNS, VBD, ADP]	[NNS, VBD, *]	[ADJ, ADP, NNP]	[VBD, ADP, NNP]	[VBD, ADJ, NNP]				
[NNS, ADP, NNP]	[NNS, VBD, NNP]	[went, left, 5]	[VBD, left, 5]	[As, left, 5]				
[ADP, left, 5]	[VERB, As, IN]	[went, As, IN]	[went, VERB, IN]	[went, VERB, As]				
[JJ, *, IN]	[VERB, *, IN]	[VERB, JJ, IN]	[VERB, JJ, *]	[NOUN, *, IN]				
[NOUN, VERB, IN]	[NOUN, VERB, *]	[JJ, IN, NOUN]	[VERB, IN, NOUN]	[VERB, JJ, NOUN]				
[NOUN, IN, NOUN]	[NOUN, VERB, NOUN]	[went, left, 5]	[VERB, left, 5]	[As, left, 5]				
[IN, left, 5]	[went, VBD, As, ADP]	[VBD, ADJ, *, ADP]	[NNS, VBD, *, ADP]	[VBD, ADJ, ADP, NNP]				
[NNS, VBD, ADP, NNP]	[went, VBD, left, 5]	[As, ADP, left, 5]	[went, As, left, 5]	[VBD, ADP, left, 5]				
[went, VERB, As, IN]	[VERB, JJ, *, IN]	[NOUN, VERB, *, IN]	[VERB, JJ, IN, NOUN]	[NOUN, VERB, IN, NOUN]				
[went, VERB, left, 5]	[As, IN, left, 5]	[went, As, left, 5]	[VERB, IN, left, 5]	[VBD, As, ADP, left, 5]				
[went, As, ADP, left, 5]	[went, VBD, ADP, left, 5]	[went, VBD, As, left, 5]	[ADJ, *, ADP, left, 5]	[VBD, *, ADP, left, 5]				
[VBD, ADJ, ADP, left, 5]	[VBD, ADJ, *, left, 5]	[NNS, *, ADP, left, 5]	[NNS, VBD, ADP, left, 5]	[NNS, VBD, *, left, 5]				
[ADJ, ADP, NNP, left, 5]	[VBD, ADP, NNP, left, 5]	[VBD, ADJ, NNP, left, 5]	[NNS, ADP, NNP, left, 5]	[NNS, VBD, NNP, left, 5]				
[VERB, As. IN, left, 5]	[went, As, IN, left, 5]	[went, VERB, IN, left, 5]	[went, VERB, As, left, 5]	[JJ, *, IN, left, 5]				
[VERB, *, IN, left, 5]	[VERB, JJ, IN, left, 5]	[VERB, JJ, *, left, 5]	[NOUN, *, IN, left, 5]	[NOUN, VERB, IN, left, 5]				

Feature model for parsing

Example from slides of Rush and Petrov (2012)

'Is the 1st word to the right *wild*, and the 3rd word to the left a *verb*?'

We can do better

► Is there a way to avoid using multitudes of discrete categorical features?

We can do better

- ► Is there a way to avoid using multitudes of discrete categorical features?
- ► Yes.
- ► Use dense continuous features.

Continuous representations

- ▶ We would like linguistic entities to be represented with some meaningful 'coordinates'.
- It would allow our models to understand whether entities (for example, words) are more or less similar with respect to the current task at hand.

- ► A vector is a sequence or an array of *n* real values:
 - [0, 1, 2, 4] is a vector with 4 components/entries ($\in \mathbb{R}^4$);
 - [200, 300, 1] is a vector with 3 components/entries ($\in \mathbb{R}^3$);

- ► A vector is a sequence or an array of *n* real values:
 - [0, 1, 2, 4] is a vector with 4 components/entries ($\in \mathbb{R}^4$);
 - [200, 300, 1] is a vector with 3 components/entries ($\in \mathbb{R}^3$);
- Components can be viewed as coordinates in an *n*-dimensional space;

- ► A vector is a sequence or an array of *n* real values:
 - [0, 1, 2, 4] is a vector with 4 components/entries ($\in \mathbb{R}^4$);
 - ▶ [200, 300, 1] is a vector with 3 components/entries ($\in \mathbb{R}^3$);
- Components can be viewed as coordinates in an *n*-dimensional space;
- then a vector is a point in this space.

- ► A vector is a sequence or an array of *n* real values:
 - [0, 1, 2, 4] is a vector with 4 components/entries ($\in \mathbb{R}^4$);
 - ▶ [200, 300, 1] is a vector with 3 components/entries ($\in \mathbb{R}^3$);
- Components can be viewed as coordinates in an *n*-dimensional space;
- then a vector is a point in this space.
- 3-dimensional space:

Feature embeddings

• Say we have a vocabulary of size |V|;

- Say we have a vocabulary of size |V|;
- ► Let's embed these words into a *d*-dimensional space.

- ► Say we have a vocabulary of size |V|;
- ► Let's embed these words into a *d*-dimensional space.
- $d \ll |V|$
- e.g., d = 100 for a vocabulary of 100 000 words.

- Say we have a vocabulary of size |V|;
- ► Let's embed these words into a *d*-dimensional space.
- $d \ll |V|$
- e.g., d = 100 for a vocabulary of 100 000 words.
- Each word is associated with its own *d*-dimensional embedding vector;

- Say we have a vocabulary of size |V|;
- ► Let's embed these words into a *d*-dimensional space.
- $d \ll |V|$
- e.g., d = 100 for a vocabulary of 100 000 words.
- Each word is associated with its own d-dimensional embedding vector;
- These embeddings are part of θ ;
- can be trained together with the rest of the network.

- ► Say we have a vocabulary of size |V|;
- ► Let's embed these words into a *d*-dimensional space.
- $d \ll |V|$
- e.g., d = 100 for a vocabulary of 100 000 words.
- Each word is associated with its own d-dimensional embedding vector;
- These embeddings are part of θ ;
- can be trained together with the rest of the network.

Your models in the Obligatory 1 implicitly do this during the training. This is representation learning.

Input_input: Inp	Input_input: InputLayer		input: output:		[(None, 2000)] [(None, 2000)]					
Input: Do		input:		(None, 2000)						
Input: Der		output:		(No	(None, 128)					
Output: D	onco	input:		(N	(None, 128)					
Output. D	ense	output:		()	Jone, 20)					

Representation learning

Word Embeddings

Representation learning

Word Embeddings

Q: what are the dimensionalities of word and PoS embeddings here?

Dimensionality of representations usually low (50-300).

- Dimensionality of representations usually low (50-300).
- ► Feature vectors are dense, not sparse (more computationally efficient).

- Dimensionality of representations usually low (50-300).
- ► Feature vectors are dense, not sparse (more computationally efficient).
- Generalization power: similar entities get similar embeddings (hopefully).
 - *town'* vector is closer to *'city'* vector than to *'banana'* vector (semantics);

- Dimensionality of representations usually low (50-300).
- ► Feature vectors are dense, not sparse (more computationally efficient).
- Generalization power: similar entities get similar embeddings (hopefully).
 - *town'* vector is closer to *'city'* vector than to *'banana'* vector (semantics);
 - ► NOUN vector is closer to ADJ vector than to VERB vector (grammar);

- Dimensionality of representations usually low (50-300).
- ► Feature vectors are dense, not sparse (more computationally efficient).
- Generalization power: similar entities get similar embeddings (hopefully).
 - *town'* vector is closer to 'city' vector than to 'banana' vector (semantics);
 - ► NOUN vector is closer to ADJ vector than to VERB vector (grammar);
 - iobj vector is closer to obj vector than to punct vector (syntax).

- Dimensionality of representations usually low (50-300).
- ► Feature vectors are dense, not sparse (more computationally efficient).
- Generalization power: similar entities get similar embeddings (hopefully).
 - *town'* vector is closer to 'city' vector than to 'banana' vector (semantics);
 - NOUN vector is closer to ADJ vector than to VERB vector (grammar);
 - iobj vector is closer to obj vector than to punct vector (syntax).
- Same features in different positions can share statistical strength:
 - A token 2 words to the right and a token 2 words to the left can be one and the same word. Would be good for the model to use this knowledge.
 - Not important for the Obligatory 1, but can be critical for other tasks.

Word vectors for English and Norwegian online

You can try the WebVectors service developed by our Language Technology group

Word vectors for English and Norwegian online

You can try the WebVectors service developed by our Language Technology group

http://vectors.nlpl.eu/explore/embeddings/

This word in other models

- British National Corpus
- Google News
- English Gigaword
- Norsk Aviskorpus

Show the raw vector of «computer» in model

