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How to make the world continuous?

(by Luis Fok on Quora)
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Dense Representations of Linguistic Features

Representations
I In the obligatory 1, you train neural document classifiers...

I ...using bags of words as features.
I Documents are represented as sparse vocabulary vectors.
I Core elements of this representation are words,
I and they are in turn represented with one-hot vectors.
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One-hot representations: let’s recall

I BOW feature vector of the document i can be interpreted as a sum of one-hot vectors (o)
for each token in it:

I Vocabulary V from the picture above contains 10 words (lowercased):
[‘-’, ‘by’, ‘in’, ‘most’, ‘norway’, ‘road’, ‘the’, ‘tourists’, ‘troll’, ‘visited’].

I o0 = [0, 0, 0, 0, 0, 0, 1, 0, 0, 0] (‘The’)
I o1 = [0, 0, 0, 0, 0, 0, 0, 0, 1, 0] (‘Troll’)
I etc...
I i = [1, 1, 1, 1, 1, 2, 2, 1, 1, 1] (‘the’ and ‘road ’ occurred 2 times)
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One-hot representations: let’s recall

I The network is trained on words represented with integer identifiers:
I ‘the’ is the word number 6 in the vocabulary
I ‘most’ is the word number 3 in the vocabulary
I ‘visited ’ is the word number 9 in the vocabulary
I etc.

I Such features are discrete (categorical).
I a.k.a. one-hot.

I Each word is a feature on its own, completely independent from other words.
I Other NLP tasks: categorical features for PoS tags, dependency labels, etc.
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One-hot representations: let’s recall

Why discrete features might be bad?
I Features for words are extremely sparse:

I the feature ‘word form’ can take any of tens or hundreds of thousands categorical values...
I ...each absolutely unique and not related to each other.

I Classifiers have to learn weight matrices with dim = |V |.
I Not efficient:

I A 50-words text is x ∈ R100000, because 100K words in our vocabulary!
I A bit easier for other linguistic entities (parts of speech, etc)...
I ...but their feature combinations yield millions of resulting features.
I It’s very difficult to learn good weights for them all.
I Feature extraction step haunted NLP practitioners for several decades.
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One-hot representations: let’s recall

Feature model for parsing
‘Is the 1st word to the right wild, and the 3rd word to the left a verb?’
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One-hot representations: let’s recall

We can do better
I Is there a way to avoid using multitudes of discrete categorical features?

I Yes.
I Use dense continuous features.
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Dense representations (embeddings)

Discrete representations Continuous representations

I We would like linguistic entities to be represented with some meaningful ‘coordinates’.
I It would allow our models to understand whether entities (for example, words) are more or

less similar with respect to the current task at hand.
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Dense representations (embeddings)

Vectors as coordinates
I A vector is a sequence or an array of n real values:

I [0, 1, 2, 4] is a vector with 4 components/entries (∈ R4);
I [200, 300, 1] is a vector with 3 components/entries (∈ R3);

I Components can be viewed as coordinates in an n-dimensional space;
I then a vector is a point in this space.

3-dimensional space:
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Dense representations (embeddings)

Feature embeddings
I Say we have a vocabulary of size |V |;

I Let’s embed these words into a d-dimensional space.
I d � |V |
I e.g., d = 100 for a vocabulary of 100 000 words.
I Each word is associated with its own d-dimensional embedding vector;
I These embeddings are part of θ;
I can be trained together with the rest of the network.

Your models in the Obligatory 1 implicitly do this during the training.
This is representation learning.
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Representation learning
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Representation learning

Sparse (a) and dense (b) feature representations for
‘the_DET dog’

(part of speech tagging task)

Q: what are the dimensionalities of word and PoS embeddings here?
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Dense representations (embeddings)

Main benefits of continuous features
I Dimensionality of representations usually low (50-300).

I Feature vectors are dense, not sparse (more computationally efficient).
I Generalization power: similar entities get similar embeddings (hopefully).

I ‘town’ vector is closer to ‘city ’ vector than to ‘banana’ vector (semantics);
I NOUN vector is closer to ADJ vector than to VERB vector (grammar);
I iobj vector is closer to obj vector than to punct vector (syntax).

I Same features in different positions can share statistical strength:
I A token 2 words to the right and a token 2 words to the left can be one and the same word.

Would be good for the model to use this knowledge.
I Not important for the Obligatory 1, but can be critical for other tasks.
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Demo web service

Word vectors for English and Norwegian online
You can try the WebVectors service developed by our Language Technology group

http://vectors.nlpl.eu/explore/embeddings/
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