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det

Il

<ROOT> Book me the morning flight
0 1 2 3 4 5

Example of dense features in parsing task

(see also the PoS tagging example in [Goldberg, 2017])

» One of the first neural dependency parsers with dense features is described in
[Chen and Manning, 2014].

» Conceptually it is a classic Arc-Standard transition-based parser.
» The difference is in the features it uses:

» Dense embeddings w, t,l € R for words, PoS tags and dependency labels;
> nowadays, we usually use R3% (or R7®) embeddings for words
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Parsing with dense representations and neural networks (simplified)

» Concatenated embeddings of words (z*), PoS tags («*) and dependency labels (') from
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Parsing with dense representations and neural networks (simplified)

» Concatenated embeddings of words (z*), PoS tags («*) and dependency labels (') from
the stack are given as input layer.

» 200-dimensional hidden layer represents the actual features used for predictions.
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Training the network

» Neural net in [Chen and Manning, 2014] is trained by gradually updating weights 6 in the hidden
layer and in all the embeddings:
» minimize the cross-entropy loss L(6)
» maximize the probability of correct transitions t; in a collection of n configurations;.
» |2 regularization (weight decay) with tunable \:

L(6) = — 3. log(t) + A1 @

» Most useful feature combinations are learned automatically in the hidden layer!

> Notably, the model employs the unusual cube activation function g(x) = =3
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When parsing (at inference time):
1.

ol g

Look at the current configuration;

lookup the necessary embeddings for %, x! and x!
feed them as input to the hidden layer;

compute softmax probabilities for all possible transitions;

apply the transition with the highest probability.

Word embeddings

» One can start with randomly initialized word embeddings.

» They will be pushed towards useful values during the training by back-propagation

» Or one can use pre-trained word vectors for initialization.

» More on this next week.
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The neural parser by Chen and Manning achieved excellent performance in 2014

» Labeled Attachment Score (LAS) 90.7 on English Penn TreeBank (PTB)

» MaltParser 88.7
» MSTParser 90.5

» 2 times faster than MaltParser;
» 100 times faster than MSTParser.

...started the widespread usage of dense representations in NLP.

Softmax layer:
p = softmax(Wah)
Hidden layer:

ho= Wz + Wizt + Wla' + by)?
Input layer: [+, 2! 2 U7 \ ‘
words POS tags arc labels
Stack Buffer
Configuration ROOT has_VBZ good_JJ ‘ ‘ control NN .. ‘
nsubj
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One-hot VS dense vectors

» Conceptually these two representations are similar...
» ...when used with deep neural networks.

> If you use sparse BoW as features (like in Obligatory 1), your first hidden layer size is most
certainly much smaller than the size of vocabulary;

» then it learns dense representations for the words anyway (in the first weight matrix).
» When using dense inputs outright, we simply make it explicit;

» It is also usually more efficient.



Combining embeddings

...@N effident methadt for Leaning hidh quoliry clistributdt veceo . -

s
waareh

Many features, one input vector

» Before feeding embeddings into network, one must somehow combine them.




Combining embeddings

...@N effident methadt for Leaning hidh quoliry clistributdt veceo . -

s
waareh

Many features, one input vector

» Before feeding embeddings into network, one must somehow combine them.
» Consider the focus word ‘learning’ above...

» ...and the context words in 2-token window to its right and left.



Combining embeddings

...@N effident methadt for Leaning hidh quoliry clistributdt veceo . -

s
waareh

Many features, one input vector

» Before feeding embeddings into network, one must somehow combine them.
» Consider the focus word ‘learning’ above...

» ...and the context words in 2-token window to its right and left.

» We want to somehow represent the focus word using only its context.



Combining embeddings

...@N effident methadt for Leaning hidh quoliry clistributdt veceo . -

s
waareh

Many features, one input vector

» Before feeding embeddings into network, one must somehow combine them.
» Consider the focus word ‘learning’ above...

» ...and the context words in 2-token window to its right and left.

» We want to somehow represent the focus word using only its context.

» Each unique word is assigned a dense vector:
> ‘method’ — a
> ‘for'’ = b
> ‘high’ — ¢
> ‘quality’ — d
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...QN effivent methat for learing high quabiry lisiributedt vecko . - -

jaws

waorch

What can be the input vector @ representing ‘learning’?

» We can concatenate:
x = [a; b; ¢; d]

» We can sum (the case for Obligatory 1):
r=a+b+c+d

» We can average:

T = a+b—£|1—c+d

» Various weights may be applied to the vectors...

> etc.

Question: what information is preserved only by concatenation?
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| want good vectors for my features!

» It is possible to treat feature embeddings as all other 6 parameters...

» _.and train them with the rest of the network...

» ..but then you must have enough supervised data to learn good representations.
» Especially difficult for words (too many of them!)

» Often a better solution is to get good pre-trained embeddings from elsewhere;
> ‘good' here means ‘similar entities have similar embeddings'.

» If only we had an auxiliary supervised task with more annotated data!
» This task could produce feature embeddings as a byproduct.

This is usually not the case :-(. What about unsupervised auxiliary tasks? Here comes
language modeling.
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