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Dense representations (embeddings)

Example of dense features in parsing task
(see also the PoS tagging example in [Goldberg, 2017])

I One of the first neural dependency parsers with dense features is described in
[Chen and Manning, 2014].

I Conceptually it is a classic Arc-Standard transition-based parser.
I The difference is in the features it uses:
I Dense embeddings w, t, l ∈ R50 for words, PoS tags and dependency labels;

I nowadays, we usually use R300 (or R768) embeddings for words
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Dense representations (embeddings)

Parsing with dense representations and neural networks (simplified)
I Concatenated embeddings of words (xw ), PoS tags (xt) and dependency labels (xl) from

the stack are given as input layer.
I 200-dimensional hidden layer represents the actual features used for predictions.
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Dense representations (embeddings)

Training the network
I Neural net in [Chen and Manning, 2014] is trained by gradually updating weights θ in the hidden

layer and in all the embeddings:

I minimize the cross-entropy loss L(θ)
I maximize the probability of correct transitions ti in a collection of n configurations;.
I L2 regularization (weight decay) with tunable λ:

L(θ) = −
n∑
i

log(ti) + λ

2 ‖θ‖ (1)

I Most useful feature combinations are learned automatically in the hidden layer!
I Notably, the model employs the unusual cube activation function g(x) = x3
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Dense representations (embeddings)

When parsing (at inference time):
1. Look at the current configuration;

2. lookup the necessary embeddings for xw , xt and xl ;
3. feed them as input to the hidden layer;
4. compute softmax probabilities for all possible transitions;
5. apply the transition with the highest probability.

Word embeddings
I One can start with randomly initialized word embeddings.

I They will be pushed towards useful values during the training by back-propagation
I Or one can use pre-trained word vectors for initialization.
I More on this next week.
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Dense representations (embeddings)

The neural parser by Chen and Manning achieved excellent performance in 2014
I Labeled Attachment Score (LAS) 90.7 on English Penn TreeBank (PTB)

I MaltParser 88.7
I MSTParser 90.5

I 2 times faster than MaltParser ;
I 100 times faster than MSTParser.
...started the widespread usage of dense representations in NLP.
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Dense representations (embeddings)

One-hot VS dense vectors
I Conceptually these two representations are similar...

I ...when used with deep neural networks.
I If you use sparse BoW as features (like in Obligatory 1), your first hidden layer size is most

certainly much smaller than the size of vocabulary;
I then it learns dense representations for the words anyway (in the first weight matrix).
I When using dense inputs outright, we simply make it explicit;
I It is also usually more efficient.
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Combining embeddings

Many features, one input vector
I Before feeding embeddings into network, one must somehow combine them.

I Consider the focus word ‘learning ’ above...
I ...and the context words in 2-token window to its right and left.
I We want to somehow represent the focus word using only its context.
I Each unique word is assigned a dense vector:

I ‘method ’ → a
I ‘for ’ → b
I ‘high’ → c
I ‘quality ’ → d
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Combining embeddings

What can be the input vector x representing ‘learning’?

I We can concatenate:
x = [a; b; c; d]

I We can sum (the case for Obligatory 1):
x = a + b + c + d

I We can average:
x = a+b+c+d

4
I Various weights may be applied to the vectors...
I etc.
Question: what information is preserved only by concatenation?
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Dense representations (embeddings)

I want good vectors for my features!
I It is possible to treat feature embeddings as all other θ parameters...

I ...and train them with the rest of the network...
I ...but then you must have enough supervised data to learn good representations.
I Especially difficult for words (too many of them!)
I Often a better solution is to get good pre-trained embeddings from elsewhere;

I ‘good ’ here means ‘similar entities have similar embeddings’.
I If only we had an auxiliary supervised task with more annotated data!
I This task could produce feature embeddings as a byproduct.

This is usually not the case :-(. What about unsupervised auxiliary tasks? Here comes
language modeling.
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