IN5550: Neural Methods in
Natural Language Processing

Sub-lecture 4.2
Using embeddings

Andrey Kutuzov

University of Oslo

14 February 2023




Contents

@ Dense representations (embeddings)
@ Combining embeddings
@ Sources of embeddings: external tasks



Dense representations (embeddings)

det

Il

<ROOT> Book me the morning flight
0 1 2 3 4 5

Example of dense features in parsing task

(see also the PoS tagging example in [Goldberg, 2017])



Dense representations (embeddings)

det

Il

<ROOT> Book me the morning flight
0 1 2 3 4 5

Example of dense features in parsing task

(see also the PoS tagging example in [Goldberg, 2017])

» One of the first neural dependency parsers with dense features is described in
[Chen and Manning, 2014].



Dense representations (embeddings)

det

root iobj amod
~len e
<ROOT> Book me the morning flight

0 1 2 3 4 5

Example of dense features in parsing task

(see also the PoS tagging example in [Goldberg, 2017])

» One of the first neural dependency parsers with dense features is described in
[Chen and Manning, 2014].

» Conceptually it is a classic Arc-Standard transition-based parser.



Dense representations (embeddings)

det

Il

<ROOT> Book me the morning flight
0 1 2 3 4 5

Example of dense features in parsing task

(see also the PoS tagging example in [Goldberg, 2017])

» One of the first neural dependency parsers with dense features is described in
[Chen and Manning, 2014].

» Conceptually it is a classic Arc-Standard transition-based parser.
» The difference is in the features it uses:

» Dense embeddings w, t,l € R for words, PoS tags and dependency labels;
> nowadays, we usually use R3% (or R7®) embeddings for words



Dense representations (embeddings)

Softmax layer:
p = softmax(Wah) ‘
Hidden layer:
h=(WPa" + Wizt + Wiz +by)?

Input layer: [z", ot 2t ‘ g /////////

words POS tags arc labels
Stack Buffer
Configuration ’ ROOT has_VBZ good_JJ ‘ ’ control NN ... ‘
nsubj
He PRP



Dense representations (embeddings)

Softmax layer:
p = softmax(Wah)
Hidden layer:

h=(Wya" + Wizt + Wial + b))
Input layer: [z", ot 2t . /"/////// ///////// \ ‘
words POS tags arc labels
Stack Buffer
Configuration ROOT has_VBZ good_JJ ‘ ‘ control NN ... ‘
nsubj
He PRP

Parsing with dense representations and neural networks (simplified)

» Concatenated embeddings of words (z*), PoS tags («*) and dependency labels (') from
the stack are given as input layer.



Dense representations (embeddings)

h = (W'z! +H x +H 2t 4+ by)?

Input layer: [z, 2! 2! : V3 7 ‘ ‘
words POS tags arc labels
Stack Buffer
Configuration ROOT has_VBZ good_JJ ‘ ‘ control NN ... ‘
nsubj
He PRP

Parsing with dense representations and neural networks (simplified)

» Concatenated embeddings of words (z*), PoS tags («*) and dependency labels (') from
the stack are given as input layer.

» 200-dimensional hidden layer represents the actual features used for predictions.



Dense representations (embeddings)

Training the network

» Neural net in [Chen and Manning, 2014] is trained by gradually updating weights 6 in the hidden
layer and in all the embeddings:




Dense representations (embeddings)

Training the network

» Neural net in [Chen and Manning, 2014] is trained by gradually updating weights 6 in the hidden
layer and in all the embeddings:

» minimize the cross-entropy loss L(6)




Dense representations (embeddings)

Training the network

» Neural net in [Chen and Manning, 2014] is trained by gradually updating weights 6 in the hidden
layer and in all the embeddings:
» minimize the cross-entropy loss L(6)
» maximize the probability of correct transitions t; in a collection of n configurations;.




Dense representations (embeddings)

Training the network

» Neural net in [Chen and Manning, 2014] is trained by gradually updating weights 6 in the hidden
layer and in all the embeddings:
» minimize the cross-entropy loss L(6)
» maximize the probability of correct transitions t; in a collection of n configurations;.
» |2 regularization (weight decay) with tunable \:

L(6) = — 3. log(t) + A1 @




Dense representations (embeddings)

Training the network

» Neural net in [Chen and Manning, 2014] is trained by gradually updating weights 6 in the hidden
layer and in all the embeddings:
» minimize the cross-entropy loss L(6)
» maximize the probability of correct transitions t; in a collection of n configurations;.
» |2 regularization (weight decay) with tunable \:

L(6) = — 3. log(t) + A1 @

» Most useful feature combinations are learned automatically in the hidden layer!



Dense representations (embeddings)

Training the network

» Neural net in [Chen and Manning, 2014] is trained by gradually updating weights 6 in the hidden
layer and in all the embeddings:
» minimize the cross-entropy loss L(6)
» maximize the probability of correct transitions t; in a collection of n configurations;.
» |2 regularization (weight decay) with tunable \:

L(6) = — 3. log(t) + A1 @

» Most useful feature combinations are learned automatically in the hidden layer!

> Notably, the model employs the unusual cube activation function g(x) = =3



Dense representations (embeddings)

When parsing (at inference time):

1. Look at the current configuration;



Dense representations (embeddings)

When parsing (at inference time):
1. Look at the current configuration;

2. lookup the necessary embeddings for %, ! and x!



Dense representations (embeddings)

When parsing (at inference time):

1. Look at the current configuration;

2. lookup the necessary embeddings for %, ! and x!
3. feed them as input to the hidden layer;




Dense representations (embeddings)

When parsing (at inference time):

1. Look at the current configuration;

2. lookup the necessary embeddings for %, ! and x!
3. feed them as input to the hidden layer;
4

. compute softmax probabilities for all possible transitions;




Dense representations (embeddings)

When parsing (at inference time):

1.

ol g

Look at the current configuration;

lookup the necessary embeddings for %, x! and x!
feed them as input to the hidden layer;

compute softmax probabilities for all possible transitions;

apply the transition with the highest probability.




Dense representations (embeddings)

When parsing (at inference time):
1.

ol g

Word embeddings

Look at the current configuration;

lookup the necessary embeddings for %, x! and x!
feed them as input to the hidden layer;

compute softmax probabilities for all possible transitions;

apply the transition with the highest probability.

» One can start with randomly initialized word embeddings.



Dense representations (embeddings)

When parsing (at inference time):
1.

ol g

Look at the current configuration;

lookup the necessary embeddings for %, x! and x!
feed them as input to the hidden layer;

compute softmax probabilities for all possible transitions;

apply the transition with the highest probability.

Word embeddings

» One can start with randomly initialized word embeddings.

» They will be pushed towards useful values during the training by back-propagation



Dense representations (embeddings)

When parsing (at inference time):
1.

ol g

Look at the current configuration;

lookup the necessary embeddings for %, x! and x!
feed them as input to the hidden layer;

compute softmax probabilities for all possible transitions;

apply the transition with the highest probability.

Word embeddings

» One can start with randomly initialized word embeddings.

» They will be pushed towards useful values during the training by back-propagation

» Or one can use pre-trained word vectors for initialization.



Dense representations (embeddings)

When parsing (at inference time):
1.

ol g

Look at the current configuration;

lookup the necessary embeddings for %, x! and x!
feed them as input to the hidden layer;

compute softmax probabilities for all possible transitions;

apply the transition with the highest probability.

Word embeddings

» One can start with randomly initialized word embeddings.

» They will be pushed towards useful values during the training by back-propagation

» Or one can use pre-trained word vectors for initialization.

» More on this next week.



Dense representations (embeddings)

The neural parser by Chen and Manning achieved excellent performance in 2014

» Labeled Attachment Score (LAS) 90.7 on English Penn TreeBank (PTB)




Dense representations (embeddings)

The neural parser by Chen and Manning achieved excellent performance in 2014

» Labeled Attachment Score (LAS) 90.7 on English Penn TreeBank (PTB)
> MaltParser 88.7




Dense representations (embeddings)

The neural parser by Chen and Manning achieved excellent performance in 2014

» Labeled Attachment Score (LAS) 90.7 on English Penn TreeBank (PTB)

» MaltParser 88.7
» MSTParser 90.5




Dense representations (embeddings)

The neural parser by Chen and Manning achieved excellent performance in 2014

» Labeled Attachment Score (LAS) 90.7 on English Penn TreeBank (PTB)

» MaltParser 88.7
» MSTParser 90.5

» 2 times faster than MaltParser;




Dense representations (embeddings)

The neural parser by Chen and Manning achieved excellent performance in 2014

» Labeled Attachment Score (LAS) 90.7 on English Penn TreeBank (PTB)

» MaltParser 88.7
» MSTParser 90.5

» 2 times faster than MaltParser;
» 100 times faster than MSTParser.




Dense representations (embeddings)

The neural parser by Chen and Manning achieved excellent performance in 2014

» Labeled Attachment Score (LAS) 90.7 on English Penn TreeBank (PTB)

» MaltParser 88.7
» MSTParser 90.5

» 2 times faster than MaltParser;
» 100 times faster than MSTParser.

...started the widespread usage of dense representations in NLP.

Softmax layer:
p = softmax(Wah)
Hidden layer:

ho= Wz + Wizt + Wla' + by)?
Input layer: [+, 2! 2 U7 \ ‘
words POS tags arc labels
Stack Buffer
Configuration ROOT has_VBZ good_JJ ‘ ‘ control NN .. ‘
nsubj
He_PRP



Dense representations (embeddings)

One-hot VS dense vectors

» Conceptually these two representations are similar...




Dense representations (embeddings)

One-hot VS dense vectors

» Conceptually these two representations are similar...

» ...when used with deep neural networks.



Dense representations (embeddings)

One-hot VS dense vectors

» Conceptually these two representations are similar...

» ...when used with deep neural networks.

> If you use sparse BoW as features (like in Obligatory 1), your first hidden layer size is most
certainly much smaller than the size of vocabulary;



Dense representations (embeddings)

One-hot VS dense vectors

» Conceptually these two representations are similar...

» ...when used with deep neural networks.

> If you use sparse BoW as features (like in Obligatory 1), your first hidden layer size is most
certainly much smaller than the size of vocabulary;

» then it learns dense representations for the words anyway (in the first weight matrix).



Dense representations (embeddings)

One-hot VS dense vectors

» Conceptually these two representations are similar...

» ...when used with deep neural networks.

> If you use sparse BoW as features (like in Obligatory 1), your first hidden layer size is most
certainly much smaller than the size of vocabulary;

» then it learns dense representations for the words anyway (in the first weight matrix).

» When using dense inputs outright, we simply make it explicit;



Dense representations (embeddings)

One-hot VS dense vectors

» Conceptually these two representations are similar...
» ...when used with deep neural networks.

> If you use sparse BoW as features (like in Obligatory 1), your first hidden layer size is most
certainly much smaller than the size of vocabulary;

» then it learns dense representations for the words anyway (in the first weight matrix).
» When using dense inputs outright, we simply make it explicit;

» It is also usually more efficient.



Combining embeddings

...@N effident methadt for Leaning hidh quoliry clistributdt veceo . -

s
waareh

Many features, one input vector

» Before feeding embeddings into network, one must somehow combine them.




Combining embeddings

...@N effident methadt for Leaning hidh quoliry clistributdt veceo . -

s
waareh

Many features, one input vector

» Before feeding embeddings into network, one must somehow combine them.
» Consider the focus word ‘learning’ above...

» ...and the context words in 2-token window to its right and left.



Combining embeddings

...@N effident methadt for Leaning hidh quoliry clistributdt veceo . -

s
waareh

Many features, one input vector

» Before feeding embeddings into network, one must somehow combine them.
» Consider the focus word ‘learning’ above...

» ...and the context words in 2-token window to its right and left.

» We want to somehow represent the focus word using only its context.



Combining embeddings

...@N effident methadt for Leaning hidh quoliry clistributdt veceo . -

s
waareh

Many features, one input vector

» Before feeding embeddings into network, one must somehow combine them.
» Consider the focus word ‘learning’ above...

» ...and the context words in 2-token window to its right and left.

» We want to somehow represent the focus word using only its context.

» Each unique word is assigned a dense vector:
> ‘method’ — a
> ‘for'’ = b
> ‘high’ — ¢
> ‘quality’ — d



Combining embeddings

...QN effivent methat for learing high quabiry lisiributedt vecko . - -

jaws

waorch

What can be the input vector @ representing ‘learning’?




Combining embeddings

...QN effivent methat for learing high quabiry lisiributedt vecko . - -

jaws

waorch

What can be the input vector @ representing ‘learning’?

» We can concatenate:
x = [a; b; ¢; d]



Combining embeddings

...QN effivent methat for learing high quabiry lisiributedt vecko . - -

jaws

waorch

What can be the input vector @ representing ‘learning’?

» We can concatenate:
x = [a; b; ¢; d]

» We can sum (the case for Obligatory 1):
r=a+b+c+d



Combining embeddings

...QN effivent methat for learing high quabiry lisiributedt vecko . - -

jaws

waorch

What can be the input vector @ representing ‘learning’?

» We can concatenate:
x = [a; b; ¢; d]

» We can sum (the case for Obligatory 1):
r=a+b+c+d

» We can average:

T = a+b—£|1—c+d



Combining embeddings

...QN effivent methat for learing high quabiry lisiributedt vecko . - -

Joos

What can be the input vector @ representing ‘learning’?

» We can concatenate:
x = [a; b; ¢; d]

» We can sum (the case for Obligatory 1):
r=a+b+c+d

» We can average:

T = a+b—£|1—c+d

» Various weights may be applied to the vectors...

> etc.



Combining embeddings

...QN effivent methat for learing high quabiry lisiributedt vecko . - -

jaws

waorch

What can be the input vector @ representing ‘learning’?

» We can concatenate:
x = [a; b; ¢; d]

» We can sum (the case for Obligatory 1):
r=a+b+c+d

» We can average:

T = a+b—£|1—c+d

» Various weights may be applied to the vectors...

> etc.

Question: what information is preserved only by concatenation?



Dense representations (embeddings)

| want good vectors for my features!

» It is possible to treat feature embeddings as all other 6 parameters...




Dense representations (embeddings)

| want good vectors for my features!

» It is possible to treat feature embeddings as all other 6 parameters...

» _.and train them with the rest of the network...



Dense representations (embeddings)

| want good vectors for my features!

» It is possible to treat feature embeddings as all other 6 parameters...
» _.and train them with the rest of the network...

» ..but then you must have enough supervised data to learn good representations.



Dense representations (embeddings)

| want good vectors for my features!

» It is possible to treat feature embeddings as all other 6 parameters...
» _.and train them with the rest of the network...
» ..but then you must have enough supervised data to learn good representations.

» Especially difficult for words (too many of them!)



Dense representations (embeddings)

want good vectors for my features!

It is possible to treat feature embeddings as all other 6 parameters...

...and train them with the rest of the network...

Especially difficult for words (too many of them!)

Often a better solution is to get good pre-trained embeddings from elsewhere;
> ‘good' here means ‘similar entities have similar embeddings'.

>
>
» ..but then you must have enough supervised data to learn good representations.
>
>



Dense representations (embeddings)

| want good vectors for my features!

» It is possible to treat feature embeddings as all other 6 parameters...

» _.and train them with the rest of the network...

» ..but then you must have enough supervised data to learn good representations.
» Especially difficult for words (too many of them!)
>

Often a better solution is to get good pre-trained embeddings from elsewhere;
> ‘good' here means ‘similar entities have similar embeddings'.

» If only we had an auxiliary supervised task with more annotated data!



Dense representations (embeddings)

| want good vectors for my features!

» It is possible to treat feature embeddings as all other 6 parameters...

» _.and train them with the rest of the network...

» ..but then you must have enough supervised data to learn good representations.
» Especially difficult for words (too many of them!)

» Often a better solution is to get good pre-trained embeddings from elsewhere;
> ‘good' here means ‘similar entities have similar embeddings'.

» If only we had an auxiliary supervised task with more annotated data!

» This task could produce feature embeddings as a byproduct.



Dense representations (embeddings)

| want good vectors for my features!

» It is possible to treat feature embeddings as all other 6 parameters...

» _.and train them with the rest of the network...

» ..but then you must have enough supervised data to learn good representations.
» Especially difficult for words (too many of them!)

» Often a better solution is to get good pre-trained embeddings from elsewhere;
> ‘good' here means ‘similar entities have similar embeddings'.

» If only we had an auxiliary supervised task with more annotated data!
» This task could produce feature embeddings as a byproduct.

This is usually not the case :-(. What about unsupervised auxiliary tasks? Here comes
language modeling.



References |

[4 Chen, D. and Manning, C. (2014).
A fast and accurate dependency parser using neural networks.
In Proceedings of the 2014 conference on empirical methods in natural language
processing (EMNLP), pages 740-750.

[4 Goldberg, Y. (2017).
Neural network methods for natural language processing.
Synthesis Lectures on Human Language Technologies, 10(1):1-309.

11



	Dense representations (embeddings)
	Combining embeddings
	Sources of embeddings: external tasks

	References

