
IN5550: Neural Methods in
Natural Language Processing

Sub-lecture 4.2
Using embeddings

Andrey Kutuzov

University of Oslo

14 February 2023



Contents

1 Dense representations (embeddings)
Combining embeddings
Sources of embeddings: external tasks

1



Dense representations (embeddings)

Example of dense features in parsing task
(see also the PoS tagging example in [Goldberg, 2017])

I One of the first neural dependency parsers with dense features is described in
[Chen and Manning, 2014].

I Conceptually it is a classic Arc-Standard transition-based parser.
I The difference is in the features it uses:
I Dense embeddings w, t, l ∈ R50 for words, PoS tags and dependency labels;

I nowadays, we usually use R300 (or R768) embeddings for words

2



Dense representations (embeddings)

Example of dense features in parsing task
(see also the PoS tagging example in [Goldberg, 2017])
I One of the first neural dependency parsers with dense features is described in

[Chen and Manning, 2014].

I Conceptually it is a classic Arc-Standard transition-based parser.
I The difference is in the features it uses:
I Dense embeddings w, t, l ∈ R50 for words, PoS tags and dependency labels;

I nowadays, we usually use R300 (or R768) embeddings for words

2



Dense representations (embeddings)

Example of dense features in parsing task
(see also the PoS tagging example in [Goldberg, 2017])
I One of the first neural dependency parsers with dense features is described in

[Chen and Manning, 2014].
I Conceptually it is a classic Arc-Standard transition-based parser.

I The difference is in the features it uses:
I Dense embeddings w, t, l ∈ R50 for words, PoS tags and dependency labels;

I nowadays, we usually use R300 (or R768) embeddings for words

2



Dense representations (embeddings)

Example of dense features in parsing task
(see also the PoS tagging example in [Goldberg, 2017])
I One of the first neural dependency parsers with dense features is described in

[Chen and Manning, 2014].
I Conceptually it is a classic Arc-Standard transition-based parser.
I The difference is in the features it uses:
I Dense embeddings w, t, l ∈ R50 for words, PoS tags and dependency labels;

I nowadays, we usually use R300 (or R768) embeddings for words
2



Dense representations (embeddings)

Parsing with dense representations and neural networks (simplified)
I Concatenated embeddings of words (xw ), PoS tags (xt) and dependency labels (xl) from

the stack are given as input layer.
I 200-dimensional hidden layer represents the actual features used for predictions.

3



Dense representations (embeddings)

Parsing with dense representations and neural networks (simplified)
I Concatenated embeddings of words (xw ), PoS tags (xt) and dependency labels (xl) from

the stack are given as input layer.

I 200-dimensional hidden layer represents the actual features used for predictions.

3



Dense representations (embeddings)

Parsing with dense representations and neural networks (simplified)
I Concatenated embeddings of words (xw ), PoS tags (xt) and dependency labels (xl) from

the stack are given as input layer.
I 200-dimensional hidden layer represents the actual features used for predictions.

3



Dense representations (embeddings)

Training the network
I Neural net in [Chen and Manning, 2014] is trained by gradually updating weights θ in the hidden

layer and in all the embeddings:

I minimize the cross-entropy loss L(θ)
I maximize the probability of correct transitions ti in a collection of n configurations;.
I L2 regularization (weight decay) with tunable λ:

L(θ) = −
n∑
i

log(ti) + λ

2 ‖θ‖ (1)

I Most useful feature combinations are learned automatically in the hidden layer!
I Notably, the model employs the unusual cube activation function g(x) = x3

4



Dense representations (embeddings)

Training the network
I Neural net in [Chen and Manning, 2014] is trained by gradually updating weights θ in the hidden

layer and in all the embeddings:
I minimize the cross-entropy loss L(θ)

I maximize the probability of correct transitions ti in a collection of n configurations;.
I L2 regularization (weight decay) with tunable λ:

L(θ) = −
n∑
i

log(ti) + λ

2 ‖θ‖ (1)

I Most useful feature combinations are learned automatically in the hidden layer!
I Notably, the model employs the unusual cube activation function g(x) = x3

4



Dense representations (embeddings)

Training the network
I Neural net in [Chen and Manning, 2014] is trained by gradually updating weights θ in the hidden

layer and in all the embeddings:
I minimize the cross-entropy loss L(θ)
I maximize the probability of correct transitions ti in a collection of n configurations;.

I L2 regularization (weight decay) with tunable λ:

L(θ) = −
n∑
i

log(ti) + λ

2 ‖θ‖ (1)

I Most useful feature combinations are learned automatically in the hidden layer!
I Notably, the model employs the unusual cube activation function g(x) = x3

4



Dense representations (embeddings)

Training the network
I Neural net in [Chen and Manning, 2014] is trained by gradually updating weights θ in the hidden

layer and in all the embeddings:
I minimize the cross-entropy loss L(θ)
I maximize the probability of correct transitions ti in a collection of n configurations;.
I L2 regularization (weight decay) with tunable λ:

L(θ) = −
n∑
i

log(ti) + λ

2 ‖θ‖ (1)

I Most useful feature combinations are learned automatically in the hidden layer!
I Notably, the model employs the unusual cube activation function g(x) = x3

4



Dense representations (embeddings)

Training the network
I Neural net in [Chen and Manning, 2014] is trained by gradually updating weights θ in the hidden

layer and in all the embeddings:
I minimize the cross-entropy loss L(θ)
I maximize the probability of correct transitions ti in a collection of n configurations;.
I L2 regularization (weight decay) with tunable λ:

L(θ) = −
n∑
i

log(ti) + λ

2 ‖θ‖ (1)

I Most useful feature combinations are learned automatically in the hidden layer!

I Notably, the model employs the unusual cube activation function g(x) = x3

4



Dense representations (embeddings)

Training the network
I Neural net in [Chen and Manning, 2014] is trained by gradually updating weights θ in the hidden

layer and in all the embeddings:
I minimize the cross-entropy loss L(θ)
I maximize the probability of correct transitions ti in a collection of n configurations;.
I L2 regularization (weight decay) with tunable λ:

L(θ) = −
n∑
i

log(ti) + λ

2 ‖θ‖ (1)

I Most useful feature combinations are learned automatically in the hidden layer!
I Notably, the model employs the unusual cube activation function g(x) = x3

4



Dense representations (embeddings)

When parsing (at inference time):
1. Look at the current configuration;

2. lookup the necessary embeddings for xw , xt and xl ;
3. feed them as input to the hidden layer;
4. compute softmax probabilities for all possible transitions;
5. apply the transition with the highest probability.

Word embeddings
I One can start with randomly initialized word embeddings.

I They will be pushed towards useful values during the training by back-propagation
I Or one can use pre-trained word vectors for initialization.
I More on this next week.

5



Dense representations (embeddings)

When parsing (at inference time):
1. Look at the current configuration;
2. lookup the necessary embeddings for xw , xt and xl ;

3. feed them as input to the hidden layer;
4. compute softmax probabilities for all possible transitions;
5. apply the transition with the highest probability.

Word embeddings
I One can start with randomly initialized word embeddings.

I They will be pushed towards useful values during the training by back-propagation
I Or one can use pre-trained word vectors for initialization.
I More on this next week.

5



Dense representations (embeddings)

When parsing (at inference time):
1. Look at the current configuration;
2. lookup the necessary embeddings for xw , xt and xl ;
3. feed them as input to the hidden layer;

4. compute softmax probabilities for all possible transitions;
5. apply the transition with the highest probability.

Word embeddings
I One can start with randomly initialized word embeddings.

I They will be pushed towards useful values during the training by back-propagation
I Or one can use pre-trained word vectors for initialization.
I More on this next week.

5



Dense representations (embeddings)

When parsing (at inference time):
1. Look at the current configuration;
2. lookup the necessary embeddings for xw , xt and xl ;
3. feed them as input to the hidden layer;
4. compute softmax probabilities for all possible transitions;

5. apply the transition with the highest probability.

Word embeddings
I One can start with randomly initialized word embeddings.

I They will be pushed towards useful values during the training by back-propagation
I Or one can use pre-trained word vectors for initialization.
I More on this next week.

5



Dense representations (embeddings)

When parsing (at inference time):
1. Look at the current configuration;
2. lookup the necessary embeddings for xw , xt and xl ;
3. feed them as input to the hidden layer;
4. compute softmax probabilities for all possible transitions;
5. apply the transition with the highest probability.

Word embeddings
I One can start with randomly initialized word embeddings.

I They will be pushed towards useful values during the training by back-propagation
I Or one can use pre-trained word vectors for initialization.
I More on this next week.

5



Dense representations (embeddings)

When parsing (at inference time):
1. Look at the current configuration;
2. lookup the necessary embeddings for xw , xt and xl ;
3. feed them as input to the hidden layer;
4. compute softmax probabilities for all possible transitions;
5. apply the transition with the highest probability.

Word embeddings
I One can start with randomly initialized word embeddings.

I They will be pushed towards useful values during the training by back-propagation
I Or one can use pre-trained word vectors for initialization.
I More on this next week.

5



Dense representations (embeddings)

When parsing (at inference time):
1. Look at the current configuration;
2. lookup the necessary embeddings for xw , xt and xl ;
3. feed them as input to the hidden layer;
4. compute softmax probabilities for all possible transitions;
5. apply the transition with the highest probability.

Word embeddings
I One can start with randomly initialized word embeddings.

I They will be pushed towards useful values during the training by back-propagation

I Or one can use pre-trained word vectors for initialization.
I More on this next week.

5



Dense representations (embeddings)

When parsing (at inference time):
1. Look at the current configuration;
2. lookup the necessary embeddings for xw , xt and xl ;
3. feed them as input to the hidden layer;
4. compute softmax probabilities for all possible transitions;
5. apply the transition with the highest probability.

Word embeddings
I One can start with randomly initialized word embeddings.

I They will be pushed towards useful values during the training by back-propagation
I Or one can use pre-trained word vectors for initialization.

I More on this next week.

5



Dense representations (embeddings)

When parsing (at inference time):
1. Look at the current configuration;
2. lookup the necessary embeddings for xw , xt and xl ;
3. feed them as input to the hidden layer;
4. compute softmax probabilities for all possible transitions;
5. apply the transition with the highest probability.

Word embeddings
I One can start with randomly initialized word embeddings.

I They will be pushed towards useful values during the training by back-propagation
I Or one can use pre-trained word vectors for initialization.
I More on this next week.

5



Dense representations (embeddings)

The neural parser by Chen and Manning achieved excellent performance in 2014
I Labeled Attachment Score (LAS) 90.7 on English Penn TreeBank (PTB)

I MaltParser 88.7
I MSTParser 90.5

I 2 times faster than MaltParser ;
I 100 times faster than MSTParser.
...started the widespread usage of dense representations in NLP.

6



Dense representations (embeddings)

The neural parser by Chen and Manning achieved excellent performance in 2014
I Labeled Attachment Score (LAS) 90.7 on English Penn TreeBank (PTB)

I MaltParser 88.7

I MSTParser 90.5
I 2 times faster than MaltParser ;
I 100 times faster than MSTParser.
...started the widespread usage of dense representations in NLP.

6



Dense representations (embeddings)

The neural parser by Chen and Manning achieved excellent performance in 2014
I Labeled Attachment Score (LAS) 90.7 on English Penn TreeBank (PTB)

I MaltParser 88.7
I MSTParser 90.5

I 2 times faster than MaltParser ;
I 100 times faster than MSTParser.
...started the widespread usage of dense representations in NLP.

6



Dense representations (embeddings)

The neural parser by Chen and Manning achieved excellent performance in 2014
I Labeled Attachment Score (LAS) 90.7 on English Penn TreeBank (PTB)

I MaltParser 88.7
I MSTParser 90.5

I 2 times faster than MaltParser ;

I 100 times faster than MSTParser.
...started the widespread usage of dense representations in NLP.

6



Dense representations (embeddings)

The neural parser by Chen and Manning achieved excellent performance in 2014
I Labeled Attachment Score (LAS) 90.7 on English Penn TreeBank (PTB)

I MaltParser 88.7
I MSTParser 90.5

I 2 times faster than MaltParser ;
I 100 times faster than MSTParser.

...started the widespread usage of dense representations in NLP.

6



Dense representations (embeddings)

The neural parser by Chen and Manning achieved excellent performance in 2014
I Labeled Attachment Score (LAS) 90.7 on English Penn TreeBank (PTB)

I MaltParser 88.7
I MSTParser 90.5

I 2 times faster than MaltParser ;
I 100 times faster than MSTParser.
...started the widespread usage of dense representations in NLP.

6



Dense representations (embeddings)

One-hot VS dense vectors
I Conceptually these two representations are similar...

I ...when used with deep neural networks.
I If you use sparse BoW as features (like in Obligatory 1), your first hidden layer size is most

certainly much smaller than the size of vocabulary;
I then it learns dense representations for the words anyway (in the first weight matrix).
I When using dense inputs outright, we simply make it explicit;
I It is also usually more efficient.

7



Dense representations (embeddings)

One-hot VS dense vectors
I Conceptually these two representations are similar...
I ...when used with deep neural networks.

I If you use sparse BoW as features (like in Obligatory 1), your first hidden layer size is most
certainly much smaller than the size of vocabulary;

I then it learns dense representations for the words anyway (in the first weight matrix).
I When using dense inputs outright, we simply make it explicit;
I It is also usually more efficient.

7



Dense representations (embeddings)

One-hot VS dense vectors
I Conceptually these two representations are similar...
I ...when used with deep neural networks.
I If you use sparse BoW as features (like in Obligatory 1), your first hidden layer size is most

certainly much smaller than the size of vocabulary;

I then it learns dense representations for the words anyway (in the first weight matrix).
I When using dense inputs outright, we simply make it explicit;
I It is also usually more efficient.

7



Dense representations (embeddings)

One-hot VS dense vectors
I Conceptually these two representations are similar...
I ...when used with deep neural networks.
I If you use sparse BoW as features (like in Obligatory 1), your first hidden layer size is most

certainly much smaller than the size of vocabulary;
I then it learns dense representations for the words anyway (in the first weight matrix).

I When using dense inputs outright, we simply make it explicit;
I It is also usually more efficient.

7



Dense representations (embeddings)

One-hot VS dense vectors
I Conceptually these two representations are similar...
I ...when used with deep neural networks.
I If you use sparse BoW as features (like in Obligatory 1), your first hidden layer size is most

certainly much smaller than the size of vocabulary;
I then it learns dense representations for the words anyway (in the first weight matrix).
I When using dense inputs outright, we simply make it explicit;

I It is also usually more efficient.

7



Dense representations (embeddings)

One-hot VS dense vectors
I Conceptually these two representations are similar...
I ...when used with deep neural networks.
I If you use sparse BoW as features (like in Obligatory 1), your first hidden layer size is most

certainly much smaller than the size of vocabulary;
I then it learns dense representations for the words anyway (in the first weight matrix).
I When using dense inputs outright, we simply make it explicit;
I It is also usually more efficient.

7



Combining embeddings

Many features, one input vector
I Before feeding embeddings into network, one must somehow combine them.

I Consider the focus word ‘learning ’ above...
I ...and the context words in 2-token window to its right and left.
I We want to somehow represent the focus word using only its context.
I Each unique word is assigned a dense vector:

I ‘method ’ → a
I ‘for ’ → b
I ‘high’ → c
I ‘quality ’ → d

8



Combining embeddings

Many features, one input vector
I Before feeding embeddings into network, one must somehow combine them.
I Consider the focus word ‘learning ’ above...
I ...and the context words in 2-token window to its right and left.

I We want to somehow represent the focus word using only its context.
I Each unique word is assigned a dense vector:

I ‘method ’ → a
I ‘for ’ → b
I ‘high’ → c
I ‘quality ’ → d

8



Combining embeddings

Many features, one input vector
I Before feeding embeddings into network, one must somehow combine them.
I Consider the focus word ‘learning ’ above...
I ...and the context words in 2-token window to its right and left.
I We want to somehow represent the focus word using only its context.

I Each unique word is assigned a dense vector:
I ‘method ’ → a
I ‘for ’ → b
I ‘high’ → c
I ‘quality ’ → d

8



Combining embeddings

Many features, one input vector
I Before feeding embeddings into network, one must somehow combine them.
I Consider the focus word ‘learning ’ above...
I ...and the context words in 2-token window to its right and left.
I We want to somehow represent the focus word using only its context.
I Each unique word is assigned a dense vector:

I ‘method ’ → a
I ‘for ’ → b
I ‘high’ → c
I ‘quality ’ → d

8



Combining embeddings

What can be the input vector x representing ‘learning’?

I We can concatenate:
x = [a; b; c; d]

I We can sum (the case for Obligatory 1):
x = a + b + c + d

I We can average:
x = a+b+c+d

4
I Various weights may be applied to the vectors...
I etc.
Question: what information is preserved only by concatenation?

9



Combining embeddings

What can be the input vector x representing ‘learning’?
I We can concatenate:

x = [a; b; c; d]

I We can sum (the case for Obligatory 1):
x = a + b + c + d

I We can average:
x = a+b+c+d

4
I Various weights may be applied to the vectors...
I etc.
Question: what information is preserved only by concatenation?

9



Combining embeddings

What can be the input vector x representing ‘learning’?
I We can concatenate:

x = [a; b; c; d]
I We can sum (the case for Obligatory 1):

x = a + b + c + d

I We can average:
x = a+b+c+d

4
I Various weights may be applied to the vectors...
I etc.
Question: what information is preserved only by concatenation?

9



Combining embeddings

What can be the input vector x representing ‘learning’?
I We can concatenate:

x = [a; b; c; d]
I We can sum (the case for Obligatory 1):

x = a + b + c + d

I We can average:
x = a+b+c+d

4

I Various weights may be applied to the vectors...
I etc.
Question: what information is preserved only by concatenation?

9



Combining embeddings

What can be the input vector x representing ‘learning’?
I We can concatenate:

x = [a; b; c; d]
I We can sum (the case for Obligatory 1):

x = a + b + c + d

I We can average:
x = a+b+c+d

4
I Various weights may be applied to the vectors...
I etc.

Question: what information is preserved only by concatenation?

9



Combining embeddings

What can be the input vector x representing ‘learning’?
I We can concatenate:

x = [a; b; c; d]
I We can sum (the case for Obligatory 1):

x = a + b + c + d

I We can average:
x = a+b+c+d

4
I Various weights may be applied to the vectors...
I etc.
Question: what information is preserved only by concatenation?

9



Dense representations (embeddings)

I want good vectors for my features!
I It is possible to treat feature embeddings as all other θ parameters...

I ...and train them with the rest of the network...
I ...but then you must have enough supervised data to learn good representations.
I Especially difficult for words (too many of them!)
I Often a better solution is to get good pre-trained embeddings from elsewhere;

I ‘good ’ here means ‘similar entities have similar embeddings’.
I If only we had an auxiliary supervised task with more annotated data!
I This task could produce feature embeddings as a byproduct.

This is usually not the case :-(. What about unsupervised auxiliary tasks? Here comes
language modeling.

10



Dense representations (embeddings)

I want good vectors for my features!
I It is possible to treat feature embeddings as all other θ parameters...
I ...and train them with the rest of the network...

I ...but then you must have enough supervised data to learn good representations.
I Especially difficult for words (too many of them!)
I Often a better solution is to get good pre-trained embeddings from elsewhere;

I ‘good ’ here means ‘similar entities have similar embeddings’.
I If only we had an auxiliary supervised task with more annotated data!
I This task could produce feature embeddings as a byproduct.

This is usually not the case :-(. What about unsupervised auxiliary tasks? Here comes
language modeling.

10



Dense representations (embeddings)

I want good vectors for my features!
I It is possible to treat feature embeddings as all other θ parameters...
I ...and train them with the rest of the network...
I ...but then you must have enough supervised data to learn good representations.

I Especially difficult for words (too many of them!)
I Often a better solution is to get good pre-trained embeddings from elsewhere;

I ‘good ’ here means ‘similar entities have similar embeddings’.
I If only we had an auxiliary supervised task with more annotated data!
I This task could produce feature embeddings as a byproduct.

This is usually not the case :-(. What about unsupervised auxiliary tasks? Here comes
language modeling.

10



Dense representations (embeddings)

I want good vectors for my features!
I It is possible to treat feature embeddings as all other θ parameters...
I ...and train them with the rest of the network...
I ...but then you must have enough supervised data to learn good representations.
I Especially difficult for words (too many of them!)

I Often a better solution is to get good pre-trained embeddings from elsewhere;
I ‘good ’ here means ‘similar entities have similar embeddings’.

I If only we had an auxiliary supervised task with more annotated data!
I This task could produce feature embeddings as a byproduct.

This is usually not the case :-(. What about unsupervised auxiliary tasks? Here comes
language modeling.

10



Dense representations (embeddings)

I want good vectors for my features!
I It is possible to treat feature embeddings as all other θ parameters...
I ...and train them with the rest of the network...
I ...but then you must have enough supervised data to learn good representations.
I Especially difficult for words (too many of them!)
I Often a better solution is to get good pre-trained embeddings from elsewhere;

I ‘good ’ here means ‘similar entities have similar embeddings’.

I If only we had an auxiliary supervised task with more annotated data!
I This task could produce feature embeddings as a byproduct.

This is usually not the case :-(. What about unsupervised auxiliary tasks? Here comes
language modeling.

10



Dense representations (embeddings)

I want good vectors for my features!
I It is possible to treat feature embeddings as all other θ parameters...
I ...and train them with the rest of the network...
I ...but then you must have enough supervised data to learn good representations.
I Especially difficult for words (too many of them!)
I Often a better solution is to get good pre-trained embeddings from elsewhere;

I ‘good ’ here means ‘similar entities have similar embeddings’.
I If only we had an auxiliary supervised task with more annotated data!

I This task could produce feature embeddings as a byproduct.

This is usually not the case :-(. What about unsupervised auxiliary tasks? Here comes
language modeling.

10



Dense representations (embeddings)

I want good vectors for my features!
I It is possible to treat feature embeddings as all other θ parameters...
I ...and train them with the rest of the network...
I ...but then you must have enough supervised data to learn good representations.
I Especially difficult for words (too many of them!)
I Often a better solution is to get good pre-trained embeddings from elsewhere;

I ‘good ’ here means ‘similar entities have similar embeddings’.
I If only we had an auxiliary supervised task with more annotated data!
I This task could produce feature embeddings as a byproduct.

This is usually not the case :-(. What about unsupervised auxiliary tasks? Here comes
language modeling.

10



Dense representations (embeddings)

I want good vectors for my features!
I It is possible to treat feature embeddings as all other θ parameters...
I ...and train them with the rest of the network...
I ...but then you must have enough supervised data to learn good representations.
I Especially difficult for words (too many of them!)
I Often a better solution is to get good pre-trained embeddings from elsewhere;

I ‘good ’ here means ‘similar entities have similar embeddings’.
I If only we had an auxiliary supervised task with more annotated data!
I This task could produce feature embeddings as a byproduct.

This is usually not the case :-(. What about unsupervised auxiliary tasks? Here comes
language modeling.

10



References I

Chen, D. and Manning, C. (2014).
A fast and accurate dependency parser using neural networks.
In Proceedings of the 2014 conference on empirical methods in natural language
processing (EMNLP), pages 740–750.

Goldberg, Y. (2017).
Neural network methods for natural language processing.
Synthesis Lectures on Human Language Technologies, 10(1):1–309.

11


	Dense representations (embeddings)
	Combining embeddings
	Sources of embeddings: external tasks

	References

