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Language modeling (LM)

Predicting the next word in the text given the previous words:

(XKCD)
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Language modeling task definition

Modeling linguistic sequences
I Task 1: to estimate probabilities of natural language sequences:

I ‘What is the probability of lazy dog?’
I ‘What is the probability of The quick brown fox jumps over the lazy dog?’
I ‘What is the probability of green colorless ideas sleep furiously?’

I Task 2: to estimate the probability of a word x to follow a word sequence S of length n:
I ‘What is the probability of seeing jumps after The quick brown fox?’

I These two tasks are mathematically equivalent.

P(w1:n) = P(w1)P(w2|w1)P(w3|w1:2)P(w4|w1:3)...P(wn|w1:n−1) (1)

I Any system able to yield P(x) given S is a language model (LM).
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Language modeling (LM)

Any language model is a text generator by definition

I feed a word into the LM
I get a probability distribution over what words are likely to come next
I sample from this distribution
I feed it right back in to get the next word
I repeat this process and you’re generating text!

Slightly rephrasing https://karpathy.github.io/2015/05/21/rnn-effectiveness/

We’ll see examples in this course.
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Language modeling task definition

Markov assumption
I Multiplying hundreds or thousands of probabilities is not feasible practically.

I Hence, the Markov assumption a.k.a. Markov property:
I the future of the system is dependent only on its present state, not all the past states.

I For LMs: we can take into account only the last n words to the left (n-gram models).
I It is a simplification, but it produces good results anyway.

Language modeling is widely used: text messaging, machine translation, chat-bots,
summarization...., representation learning!

5



Language modeling task definition

Markov assumption
I Multiplying hundreds or thousands of probabilities is not feasible practically.
I Hence, the Markov assumption a.k.a. Markov property:

I the future of the system is dependent only on its present state, not all the past states.

I For LMs: we can take into account only the last n words to the left (n-gram models).
I It is a simplification, but it produces good results anyway.

Language modeling is widely used: text messaging, machine translation, chat-bots,
summarization...., representation learning!

5



Language modeling task definition

Markov assumption
I Multiplying hundreds or thousands of probabilities is not feasible practically.
I Hence, the Markov assumption a.k.a. Markov property:

I the future of the system is dependent only on its present state, not all the past states.
I For LMs: we can take into account only the last n words to the left (n-gram models).

I It is a simplification, but it produces good results anyway.

Language modeling is widely used: text messaging, machine translation, chat-bots,
summarization...., representation learning!

5



Language modeling task definition

Markov assumption
I Multiplying hundreds or thousands of probabilities is not feasible practically.
I Hence, the Markov assumption a.k.a. Markov property:

I the future of the system is dependent only on its present state, not all the past states.
I For LMs: we can take into account only the last n words to the left (n-gram models).
I It is a simplification, but it produces good results anyway.

Language modeling is widely used: text messaging, machine translation, chat-bots,
summarization...., representation learning!

5



Language modeling task definition

Markov assumption
I Multiplying hundreds or thousands of probabilities is not feasible practically.
I Hence, the Markov assumption a.k.a. Markov property:

I the future of the system is dependent only on its present state, not all the past states.
I For LMs: we can take into account only the last n words to the left (n-gram models).
I It is a simplification, but it produces good results anyway.

Language modeling is widely used: text messaging, machine translation, chat-bots,
summarization...., representation learning!

5



Evaluation of language models

‘She is a researcher in natural language...

snow-boarding’?!
I am perplexed!

I One can compare LMs by their perplexity:
I how perplexed/surprised is the model by test word sequences
I the lower the better.

I For each of i word tokens in the test corpus:

ENTROPYi = − log2 LM (wi |w1:i−1)
PERPLEXITYi = 2ENTROPYi

(2)

I exponentiated negative log-likelihoods per token
I For corpus perplexity, you simply average token perplexities.
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Traditional approach to LM

Old way: extract probabilities from corpus counts
1. Take a large enough corpus;

2. count all word sequences of length, say, 3;
I (longer contexts usually better)

3. use maximum likelihood estimate for each word m from V occurring at the position i :
P̂ ((wi = m) |wi−2:i) = #(wi−2:i+1)

#(wi−2:i )
4. where # are corpus counts.
5. Probabilities for all seen words given previous bigrams:

P̂ ((w3 = jumps) |[brown, fox ]) = 1
3

6. because in your training corpus:
I ‘brown fox jumps’,
I ‘brown fox barks’,
I ‘brown fox barks’,

7. if the previous bigram is unknown, fall back to the frequency-based method.
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Traditional approach to LM

Many shortcomings
I Sequence not seen in the training data? P̂ = 0

I There are ways to deal with unseen events...
I but they are tricky...
I ...and do not scale well to larger n-grams.

I Unseen events become more frequent as one increases k;
I number of possible word combinations is |V |k ;
I for the vocabulary of 10 000 words and 5-grams: 100005.
I Number of parameters increases exponentially with increasing k.
I Words are discrete features:

I Representation power not shared between similar words
I If we saw ‘fox eats’ and ‘dog eats’ 1000 times each, but never saw ‘wolf eats’, the probability

of ‘wolf eats’ will still be 0.

Deep learning comes to help in the next sub-lecture 4.4!
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