IN5550: Neural Methods in Natural Language Processing Sub-lecture 4.4 Deep learning and language models

Andrey Kutuzov

University of Oslo

14 February 2023

[Neural LM and word embeddings](#page-22-0)

[Next group session: February 15](#page-30-0)

[Next week lecture trailer](#page-32-0)

[New way: neural language modeling](#page-1-0)

In Neural LM model proposed in [\[Bengio et al., 2003\]](#page-35-0):

- I Neural LM model proposed in [\[Bengio et al., 2003\]](#page-35-0):
- \triangleright concatenate learned embeddings of the previous k words;

- I Neural LM model proposed in [\[Bengio et al., 2003\]](#page-35-0):
- \triangleright concatenate learned embeddings of the previous k words;
- \blacktriangleright this concatenation is fed into a feed-forward neural network...

- I Neural LM model proposed in [\[Bengio et al., 2003\]](#page-35-0):
- \triangleright concatenate learned embeddings of the previous k words;
- \blacktriangleright this concatenation is fed into a feed-forward neural network...
- \blacktriangleright ...with hidden layers and non-linearities;

- I Neural LM model proposed in [\[Bengio et al., 2003\]](#page-35-0):
- \triangleright concatenate learned embeddings of the previous k words;
- \blacktriangleright this concatenation is fed into a feed-forward neural network...
- \blacktriangleright ...with hidden layers and non-linearities;
- \triangleright cross-entropy loss, the next words as the gold predictions.

- I Neural LM model proposed in [\[Bengio et al., 2003\]](#page-35-0):
- \triangleright concatenate learned embeddings of the previous k words;
- \blacktriangleright this concatenation is fed into a feed-forward neural network...
- \blacktriangleright ...with hidden layers and non-linearities;
- \triangleright cross-entropy loss, the next words as the gold predictions.
- \triangleright Output probability distribution over possible next words across the vocabulary V (using softmax and the second embedding matrix).

- I Neural LM model proposed in [\[Bengio et al., 2003\]](#page-35-0):
- \triangleright concatenate learned embeddings of the previous k words;
- I this concatenation is fed into a feed-forward neural network...
- \blacktriangleright ...with hidden layers and non-linearities;
- \triangleright cross-entropy loss, the next words as the gold predictions.
- \triangleright Output probability distribution over possible next words across the vocabulary V (using softmax and the second embedding matrix).
- Input and output vocabularies can be different.

Bengio et al. 2001. 2003: Schwenk et al. "Connectionist language modelling for large vocabulary continuous speech recognition", ICASSP 20021

Feedforward neural LM moving through the text of 'The Hobbit'

(from Jurafsky and Martin, 2019)

The world is changing fast

 \triangleright Modern state-of-the-art neural language models are mostly based on recurrent or transformer architectures.

The world is changing fast

- ► Modern state-of-the-art neural language models are mostly based on recurrent or transformer architectures.
- \triangleright This online demo uses transformer-based GPT-2 [\[Radford et al., 2019\]](#page-35-1) for language generation:
	- \blacktriangleright <https://talktotransformer.com/>

The world is changing fast

- ► Modern state-of-the-art neural language models are mostly based on recurrent or transformer architectures.
- \triangleright This online demo uses transformer-based GPT-2 [\[Radford et al., 2019\]](#page-35-1) for language generation:
	- \blacktriangleright <https://talktotransformer.com/>
- \triangleright (and of course you are aware of ChatGPT)
- \blacktriangleright More on that in the next lectures.

Benefits

 \triangleright Outperform non-neural LMs as measured by perplexity.

- \triangleright Outperform non-neural LMs as measured by perplexity.
- \triangleright Scale well: higher k leads to linear increase in the parameters number...

- \triangleright Outperform non-neural LMs as measured by perplexity.
- \triangleright Scale well: higher k leads to linear increase in the parameters number...
- \blacktriangleright ...in traditional LMs it was exponential.

- \triangleright Outperform non-neural LMs as measured by perplexity.
- \triangleright Scale well: higher k leads to linear increase in the parameters number...
- \blacktriangleright ...in traditional LMs it was exponential.
- \triangleright Words in different positions share statistical strength.

- \triangleright Outperform non-neural LMs as measured by perplexity.
- \triangleright Scale well: higher k leads to linear increase in the parameters number...
- \blacktriangleright ...in traditional LMs it was exponential.
- \triangleright Words in different positions share statistical strength.
- \triangleright Generalizations to unseen data: similar words get similar representations:
	- \triangleright 'fox eats': seen 1000 times; 'dog eats': seen 1000 times; 'wolf eats': seen 0 times; $\hat{P}([wolf, eats]) \gg 0$, because 'wolf' is similar to 'fox' and 'dog'.

- \triangleright Outperform non-neural LMs as measured by perplexity.
- \triangleright Scale well: higher k leads to linear increase in the parameters number...
- \blacktriangleright ...in traditional LMs it was exponential.
- \triangleright Words in different positions share statistical strength.
- \triangleright Generalizations to unseen data: similar words get similar representations:
	- \triangleright 'fox eats': seen 1000 times; 'dog eats': seen 1000 times; 'wolf eats': seen 0 times; $\hat{P}(\text{[woff, eats]}) \gg 0$, because 'wolf' is similar to 'fox' and 'dog'.
- \blacktriangleright Can easily add more hidden layers.

- \triangleright Outperform non-neural LMs as measured by perplexity.
- \triangleright Scale well: higher k leads to linear increase in the parameters number...
- \blacktriangleright ...in traditional LMs it was exponential.
- \triangleright Words in different positions share statistical strength.
- \triangleright Generalizations to unseen data: similar words get similar representations:
	- \triangleright 'fox eats': seen 1000 times; 'dog eats': seen 1000 times; 'wolf eats': seen 0 times; $\hat{P}(\text{[woff, eats]}) \gg 0$, because 'wolf' is similar to 'fox' and 'dog'.
- \blacktriangleright Can easily add more hidden layers.

Shortcomings

Expensive softmax over V in the output layer.

- \triangleright Outperform non-neural LMs as measured by perplexity.
- \triangleright Scale well: higher k leads to linear increase in the parameters number...
- \blacktriangleright ...in traditional LMs it was exponential.
- \triangleright Words in different positions share statistical strength.
- \triangleright Generalizations to unseen data: similar words get similar representations:
	- \triangleright 'fox eats': seen 1000 times; 'dog eats': seen 1000 times; 'wolf eats': seen 0 times; $\hat{P}([wolf, eats]) \gg 0$, because 'wolf' is similar to 'fox' and 'dog'.
- \blacktriangleright Can easily add more hidden layers.

Shortcomings

- Expensive softmax over V in the output layer.
- Increasing the output $|V|$ can significantly slow down the network.

- \triangleright Outperform non-neural LMs as measured by perplexity.
- \triangleright Scale well: higher k leads to linear increase in the parameters number...
- \blacktriangleright ...in traditional LMs it was exponential.
- \triangleright Words in different positions share statistical strength.
- \triangleright Generalizations to unseen data: similar words get similar representations:
	- \triangleright 'fox eats': seen 1000 times; 'dog eats': seen 1000 times; 'wolf eats': seen 0 times; $\hat{P}([wolf, eats]) \gg 0$, because 'wolf' is similar to 'fox' and 'dog'.
- \blacktriangleright Can easily add more hidden layers.

Shortcomings

- Expensive softmax over V in the output layer.
- Increasing the output $|V|$ can significantly slow down the network.
- \blacktriangleright There are ways to deal with this (more next week).

[Neural LM and word embeddings](#page-22-0)

[Next group session: February 15](#page-30-0)

[Next week lecture trailer](#page-32-0)

I 'Generalizations: similar words get similar representations in the embedding layer'

- \triangleright 'Generalizations: similar words get similar representations in the embedding layer'
- \triangleright Yes: the neural LM learns representations for words as a byproduct of the training process.

- \triangleright 'Generalizations: similar words get similar representations in the embedding layer'
- \triangleright Yes: the neural LM learns representations for words as a byproduct of the training process.
- \blacktriangleright These representations are similar for semantically similar words.

- \triangleright 'Generalizations: similar words get similar representations in the embedding layer'
- \triangleright Yes: the neural LM learns representations for words as a byproduct of the training process.
- \blacktriangleright These representations are similar for semantically similar words.
- But this is exactly what we need: good word embeddings from an auxiliary unsupervised (or semi-supervised) task.

- \triangleright 'Generalizations: similar words get similar representations in the embedding layer'
- \triangleright Yes: the neural LM learns representations for words as a byproduct of the training process.
- \blacktriangleright These representations are similar for semantically similar words.
- But this is exactly what we need: good word embeddings from an auxiliary unsupervised (or semi-supervised) task.
- \blacktriangleright Language models are trained on raw texts, no manual annotation needed.

- \triangleright 'Generalizations: similar words get similar representations in the embedding layer'
- \triangleright Yes: the neural LM learns representations for words as a byproduct of the training process.
- \blacktriangleright These representations are similar for semantically similar words.
- But this is exactly what we need: good word embeddings from an auxiliary unsupervised (or semi-supervised) task.
- \blacktriangleright Language models are trained on raw texts, no manual annotation needed.
- \triangleright And we have lots of raw texts.
- ► Language modeling is a tool to provide good embeddings for other tasks

- **F** 'Generalizations: similar words get similar representations in the embedding laver'
- \triangleright Yes: the neural LM learns representations for words as a byproduct of the training process.
- \blacktriangleright These representations are similar for semantically similar words.
- ► But this is exactly what we need: good word embeddings from an auxiliary unsupervised (or semi-supervised) task.
- \blacktriangleright Language models are trained on raw texts, no manual annotation needed.
- \triangleright And we have lots of raw texts.
- ▶ Language modeling is a tool to provide good embeddings for other tasks

How come that we can get good word embeddings without any manual supervision? Will see next week!

Contents

[New way: neural language modeling](#page-1-0)

[Neural LM and word embeddings](#page-22-0)

[Next week lecture trailer](#page-32-0)

 \blacktriangleright Working with word embeddings

Contents

- [New way: neural language modeling](#page-1-0)
- [Neural LM and word embeddings](#page-22-0)
- [Next group session: February 15](#page-30-0)
- [Next week lecture trailer](#page-32-0)

 \triangleright Obligatory 1 results

Distributional hypothesis and distributed word embeddings

- \blacktriangleright Distributional hypothesis: 'Meaning is context'
- ▶ Word2vec revolution.
- \blacktriangleright Training word embeddings on large text corpora.
- F Bengio, Y., Ducharme, R., and Vincent, P. (2003). A neural probabilistic language model. Journal of Machine Learning Research, 3:1137–1155.
- F Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and Sutskever, I. (2019). Language models are unsupervised multitask learners. Technical report, OpenAI Blog.