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Corpus vocabulary is V.
Each word a is represented with a vector @ € R!V/.
a components are mapped to all other words in V/, its contexts (b, ¢, d...z).

Values of components are frequencies of words co-occurrences: ab, ac, ad, etc, resulting in
a square ‘co-occurence matrix’.

Words are vectors or points in a multi-dimensional ‘semantic space’.
Contexts are axes (dimensions) in this space.

Dimensions of a word vector are interpretable: they are associated with particular context
words...

...or other types of contexts: documents, sentences, even characters.

Interpretability is an important property of sparse representations (could be employed in the
Obligatory 11!).
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In this toy example, |V| = 300. Co-occurrence frequencies are normalized.
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Can we prove that tomatoes are more similar to cucumbers than to philosophy?
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Vector similarity
Semantic similarity between words is measured by the cosine of the angle between their
corresponding vectors (takes values from -1 to 1).

w1 - w2
cos(wi,w2) = Twilwa] (1)

(dot product of unit-normalized vectors)
» Similarity lowers as the angle between word vectors grows.

» Similarity grows as the angle lessens.

ya N » Vectors point at the same direction: cos =1
£ -,.--‘m\:'"‘.‘ » Vectors are orthogonal: cos =0
cos®) | » Vectors point at the opposite directions: cos = —1
cos(tomato, philosophy) = 0.09

cos(cucumber, philosophy) = 0.16
cos(tomato, cucumber) = 0.66
Question: why not simply use dot product?
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If one can measure similarity between words, one can rank words by similarity to a target word!

Nearest semantic associates/neighbors

Hippocampus
(English Wikipedia co-occurrences):

1. cortex 0.83
2. amygdala 0.82 @ amygdala
3. cerebellum 0.78 i
e Whine @ hypothalamus
4. neuron 0.76 @ rainstem
@ cortex
5. gyrus 0.75 @ cersbelum
6 @ neuron

(these words have the same

co-occurrences as ‘hippocampus’)
These lists themselves describe the ‘hippocampus’ meaning to a large extent.

Question: what do the edges in the graph denote?
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Curse of dimensionality
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In explicit count-based models, we can end up with very high-dimensional vectors (the size
of vocabulary).

These vectors are very sparse.

One can reduce vector sizes to some reasonable values, and still preserve meaningful
relations between them.

» e.g., by factorizing the co-occurrence matrix, using PCA or other dimensionality reduction
techniques.

Can even reduce to the dimensionality of 2 or 1.

Such reduced ‘implicit’ vectors are usually dense and have much more rights to be called
‘word embeddings’.

NB: still nothing ‘neural’ or ‘deep’ here!
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High-dimensional word vectors reduced to 2 dimensions by the t-SNE algorithm
[Van der Maaten and Hinton, 2008]

Vector components (x and y) are not directly interpretable any more, of course.
An ‘explicit’ model turned to an ‘implicit’ one. Semantic information is distributed across the

remaining dimensions.
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Distributional models of this kind are known as count-based: Latent Semantic Indexing (LSI),
Latent Semantic Analysis (LSA), etc.

How to construct a count-based model

1. compile full co-occurrence matrix on the corpus;

2. scale absolute frequencies with positive point-wise mutual information (PPMI) association
measure;

3. factorize the matrix with singular value decomposition (SVD) or Principal Components
Analysis (PCA) to reduce dimensionality to d < |V/|.

4. Semantically similar words are still represented with similar vectors...
5. ...but the matrix is no longer square, the number of columns is d and each row a € RY.
6. The word vectors are now dense and small: embedded in the d-dimensional space.

For more details, see [Bullinaria and Levy, 2007] and [Goldberg, 2017].
But where is machine learning and neural networks? See sub-lecture 5.3!



References |

[4 Bullinaria, J. A. and Levy, J. P. (2007).
Extracting semantic representations from word co-occurrence statistics: A computational

study.
Behavior research methods, 39(3):510-526.

[4 Goldberg, Y. (2017).
Neural network methods for natural language processing.
Synthesis Lectures on Human Language Technologies, 10(1):1-309.

[d Van der Maaten, L. and Hinton, G. (2008).
Visualizing data using t-SNE.
Journal of Machine Learning Research, 9(2579-2605):85.

11



	Count-based (`explicit') vector space models
	Word embeddings
	References

