IN5550: Neural Methods in Natural Language Processing Sub-lecture 5.2 Count-based (explicit) vector semantic models

Andrey Kutuzov

University of Oslo

21 February 2023

Meaning is represented with vectors derived from frequency of word co-occurrences in some corpus.

 \triangleright Corpus vocabulary is V.

- \triangleright Corpus vocabulary is V.
- \blacktriangleright Each word *a* is represented with a vector $\boldsymbol{a} \in \mathbb{R}^{|V|}.$

- \triangleright Corpus vocabulary is V.
- \blacktriangleright Each word *a* is represented with a vector $\boldsymbol{a} \in \mathbb{R}^{|V|}.$
- \triangleright *a* components are mapped to all other words in V, its contexts (b, c, d...z).

- \triangleright Corpus vocabulary is V.
- \blacktriangleright Each word *a* is represented with a vector $\boldsymbol{a} \in \mathbb{R}^{|V|}.$
- \triangleright *a* components are mapped to all other words in V, its contexts $(b, c, d...z)$.
- \triangleright Values of components are frequencies of words co-occurrences: ab, ac, ad, etc, resulting in a square 'co-occurence matrix'.

- \triangleright Corpus vocabulary is V.
- \blacktriangleright Each word *a* is represented with a vector $\boldsymbol{a} \in \mathbb{R}^{|V|}.$
- \triangleright *a* components are mapped to all other words in V, its contexts $(b, c, d...z)$.
- \triangleright Values of components are frequencies of words co-occurrences: ab, ac, ad, etc, resulting in a square 'co-occurence matrix'.
- \triangleright Words are vectors or points in a multi-dimensional 'semantic space'.

- \triangleright Corpus vocabulary is V.
- \blacktriangleright Each word *a* is represented with a vector $\boldsymbol{a} \in \mathbb{R}^{|V|}.$
- \triangleright *a* components are mapped to all other words in V, its contexts $(b, c, d...z)$.
- \triangleright Values of components are frequencies of words co-occurrences: ab, ac, ad, etc, resulting in a square 'co-occurence matrix'.
- ▶ Words are vectors or points in a multi-dimensional 'semantic space'.
- \triangleright Contexts are axes (dimensions) in this space.

- \triangleright Corpus vocabulary is V.
- \blacktriangleright Each word *a* is represented with a vector $\boldsymbol{a} \in \mathbb{R}^{|V|}.$
- \triangleright *a* components are mapped to all other words in V, its contexts $(b, c, d...z)$.
- \triangleright Values of components are frequencies of words co-occurrences: ab, ac, ad, etc, resulting in a square 'co-occurence matrix'.
- ▶ Words are vectors or points in a multi-dimensional 'semantic space'.
- \triangleright Contexts are axes (dimensions) in this space.
- \triangleright Dimensions of a word vector are interpretable: they are associated with particular context words...
- \blacktriangleright ...or other types of contexts: documents, sentences, even characters.

- \triangleright Corpus vocabulary is V.
- \blacktriangleright Each word *a* is represented with a vector $\boldsymbol{a} \in \mathbb{R}^{|V|}.$
- \triangleright *a* components are mapped to all other words in V, its contexts $(b, c, d...z)$.
- \triangleright Values of components are frequencies of words co-occurrences: ab, ac, ad, etc, resulting in a square 'co-occurence matrix'.
- ▶ Words are vectors or points in a multi-dimensional 'semantic space'.
- \triangleright Contexts are axes (dimensions) in this space.
- \triangleright Dimensions of a word vector are interpretable: they are associated with particular context words...
- \blacktriangleright ...or other types of contexts: documents, sentences, even characters.
- \triangleright Interpretability is an important property of sparse representations (could be employed in the Obligatory 1!).

300-D vector of 'tomato'

In this toy example, $|V| = 300$. Co-occurrence frequencies are normalized.

300-D vector of 'cucumber'

In this toy example, $|V| = 300$. Co-occurrence frequencies are normalized.

300-D vector of 'philosophy'

300-D vector of 'philosophy'

Can we prove that tomatoes are more similar to cucumbers than to philosophy?

Semantic similarity between words is measured by the cosine of the angle between their corresponding vectors (takes values from -1 to 1).

Semantic similarity between words is measured by the cosine of the angle between their corresponding vectors (takes values from -1 to 1).

$$
cos(w\textbf{1},w\textbf{2})=\frac{w\textbf{1}\cdot w\textbf{2}}{|w\textbf{1}||w\textbf{2}|}
$$

(dot product of unit-normalized vectors)

(1)

Semantic similarity between words is measured by the cosine of the angle between their corresponding vectors (takes values from -1 to 1).

$$
cos(w_1, w_2) = \frac{w_1 \cdot w_2}{|w_1||w_2|} \tag{1}
$$

(dot product of unit-normalized vectors)

 \triangleright Similarity lowers as the angle between word vectors grows.

Semantic similarity between words is measured by the cosine of the angle between their corresponding vectors (takes values from -1 to 1).

$$
cos(w_1, w_2) = \frac{w_1 \cdot w_2}{|w_1||w_2|} \tag{1}
$$

- \triangleright Similarity lowers as the angle between word vectors grows.
- \triangleright Similarity grows as the angle lessens.

Semantic similarity between words is measured by the cosine of the angle between their corresponding vectors (takes values from -1 to 1).

$$
cos(w\mathbf{1},w\mathbf{2}) = \frac{w\mathbf{1} \cdot w\mathbf{2}}{|w\mathbf{1}||w\mathbf{2}|}
$$
(1)

- \triangleright Similarity grows as the angle lessens.
- \triangleright Vectors point at the same direction: $cos = 1$
- \blacktriangleright Vectors are orthogonal: $cos = 0$

Semantic similarity between words is measured by the cosine of the angle between their corresponding vectors (takes values from -1 to 1).

$$
cos(w\mathbf{1},w\mathbf{2}) = \frac{w\mathbf{1} \cdot w\mathbf{2}}{|w\mathbf{1}||w\mathbf{2}|}
$$
(1)

- \triangleright Similarity grows as the angle lessens.
- \triangleright Vectors point at the same direction: $cos = 1$
- \triangleright Vectors are orthogonal: $cos = 0$
- \triangleright Vectors point at the opposite directions: $cos = -1$

Semantic similarity between words is measured by the cosine of the angle between their corresponding vectors (takes values from -1 to 1).

$$
cos(w_1, w_2) = \frac{w_1 \cdot w_2}{|w_1||w_2|} \tag{1}
$$

- \triangleright Similarity grows as the angle lessens.
- \triangleright Vectors point at the same direction: $cos = 1$
- \triangleright Vectors are orthogonal: $cos = 0$
- \triangleright Vectors point at the opposite directions: $cos = -1$ cos(tomato*,* philosophy) = 0*.*09

Semantic similarity between words is measured by the cosine of the angle between their corresponding vectors (takes values from -1 to 1).

$$
cos(w\mathbf{1},w\mathbf{2}) = \frac{w\mathbf{1}\cdot w\mathbf{2}}{|w\mathbf{1}||w\mathbf{2}|}
$$
(1)

- \triangleright Similarity lowers as the angle between word vectors grows.
- \triangleright Similarity grows as the angle lessens.
- \triangleright Vectors point at the same direction: $cos = 1$
- \triangleright Vectors are orthogonal: $cos = 0$
- \triangleright Vectors point at the opposite directions: $cos = -1$ cos(tomato*,* philosophy) = 0*.*09 $cos(cuchmber, philosophy) = 0.16$

Semantic similarity between words is measured by the cosine of the angle between their corresponding vectors (takes values from -1 to 1).

$$
cos(w\mathbf{1},w\mathbf{2}) = \frac{w\mathbf{1}\cdot w\mathbf{2}}{|w\mathbf{1}||w\mathbf{2}|}
$$
(1)

(dot product of unit-normalized vectors)

- \triangleright Similarity lowers as the angle between word vectors grows.
- \triangleright Similarity grows as the angle lessens.
- \triangleright Vectors point at the same direction: $cos = 1$
- \triangleright Vectors are orthogonal: $cos = 0$
- \triangleright Vectors point at the opposite directions: $cos = -1$

cos(tomato*,* philosophy) = 0*.*09 $cos(cuchmber, philosophy) = 0.16$ cos(tomato*,* cucumber) = 0*.*66

Question: why not simply use dot product?

If one can measure similarity between words, one can rank words by similarity to a target word!

If one can measure similarity between words, one can rank words by similarity to a target word!

Nearest semantic associates/neighbors

If one can measure similarity between words, one can rank words by similarity to a target word!

Nearest semantic associates/neighbors

Hippocampus (English Wikipedia co-occurrences):

If one can measure similarity between words, one can rank words by similarity to a target word!

Nearest semantic associates/neighbors

Hippocampus

(English Wikipedia co-occurrences):

1. cortex 0.83

If one can measure similarity between words, one can rank words by similarity to a target word!

Nearest semantic associates/neighbors

Hippocampus

(English Wikipedia co-occurrences):

- 1. cortex 0.83
- 2. amygdala 0.82

If one can measure similarity between words, one can rank words by similarity to a target word!

Nearest semantic associates/neighbors

Hippocampus

(English Wikipedia co-occurrences):

- 1. cortex 0.83
- 2. amygdala 0.82
- 3. cerebellum 0.78

If one can measure similarity between words, one can rank words by similarity to a target word!

Nearest semantic associates/neighbors

Hippocampus

(English Wikipedia co-occurrences):

- 1. cortex 0.83
- 2. amygdala 0.82
- 3. cerebellum 0.78
- 4. neuron 0.76

If one can measure similarity between words, one can rank words by similarity to a target word!

Nearest semantic associates/neighbors

Hippocampus

(English Wikipedia co-occurrences):

- 1. cortex 0.83
- 2. amygdala 0.82
- 3. cerebellum 0.78
- 4. neuron 0.76
- 5. gyrus 0.75

6. ...

(these words have the same co-occurrences as 'hippocampus')

If one can measure similarity between words, one can rank words by similarity to a target word!

Nearest semantic associates/neighbors

Hippocampus

(English Wikipedia co-occurrences):

- 1. cortex 0.83
- 2. amygdala 0.82
- 3. cerebellum 0.78
- 4. neuron 0.76
- 5. gyrus 0.75

6. ...

(these words have the same

co-occurrences as 'hippocampus')

These lists themselves describe the 'hippocampus' meaning to a large extent.

If one can measure similarity between words, one can rank words by similarity to a target word!

Nearest semantic associates/neighbors

Hippocampus

(English Wikipedia co-occurrences):

- 1. cortex 0.83
- 2. amygdala 0.82
- 3. cerebellum 0.78
- 4. neuron 0.76
- 5. gyrus 0.75

6. ...

amygdala hippocampus hypothalamus brainste cortex caraballum neuron

(these words have the same

co-occurrences as 'hippocampus') These lists themselves describe the 'hippocampus' meaning to a large extent. **Question: what do the edges in the graph denote?**

Curse of dimensionality

 \blacktriangleright In explicit count-based models, we can end up with very high-dimensional vectors (the size of vocabulary).

- \blacktriangleright In explicit count-based models, we can end up with very high-dimensional vectors (the size of vocabulary).
- \blacktriangleright These vectors are very sparse.

- \blacktriangleright In explicit count-based models, we can end up with very high-dimensional vectors (the size of vocabulary).
- \blacktriangleright These vectors are very sparse.
- \triangleright One can reduce vector sizes to some reasonable values, and still preserve meaningful relations between them.

- In explicit count-based models, we can end up with very high-dimensional vectors (the size of vocabulary).
- \blacktriangleright These vectors are very sparse.
- \triangleright One can reduce vector sizes to some reasonable values, and still preserve meaningful relations between them.
	- \triangleright e.g., by factorizing the co-occurrence matrix, using PCA or other dimensionality reduction techniques.

- In explicit count-based models, we can end up with very high-dimensional vectors (the size of vocabulary).
- \blacktriangleright These vectors are very sparse.
- \triangleright One can reduce vector sizes to some reasonable values, and still preserve meaningful relations between them.
	- \triangleright e.g., by factorizing the co-occurrence matrix, using PCA or other dimensionality reduction techniques.
- \blacktriangleright Can even reduce to the dimensionality of 2 or 1.
- \triangleright Such reduced 'implicit' vectors are usually dense and have much more rights to be called 'word embeddings'.
- \triangleright NB: still nothing 'neural' or 'deep' here!

An extreme case: 2-dimensional word embeddings:

High-dimensional word vectors reduced to 2 dimensions by the t-SNE algorithm

[\[Van der Maaten and Hinton, 2008\]](#page-49-0)

An extreme case: 2-dimensional word embeddings:

High-dimensional word vectors reduced to 2 dimensions by the t-SNE algorithm

[\[Van der Maaten and Hinton, 2008\]](#page-49-0)

Vector components $(x \text{ and } y)$ are not directly interpretable any more, of course. An 'explicit' model turned to an 'implicit' one. Semantic information is distributed across the remaining dimensions.

Distributional models of this kind are known as count-based: Latent Semantic Indexing (LSI), Latent Semantic Analysis (LSA), etc.

Distributional models of this kind are known as count-based: Latent Semantic Indexing (LSI), Latent Semantic Analysis (LSA), etc.

How to construct a count-based model

1. compile full co-occurrence matrix on the corpus;

Distributional models of this kind are known as count-based: Latent Semantic Indexing (LSI), Latent Semantic Analysis (LSA), etc.

- 1. compile full co-occurrence matrix on the corpus;
- 2. scale absolute frequencies with positive point-wise mutual information (PPMI) association measure;

Distributional models of this kind are known as count-based: Latent Semantic Indexing (LSI), Latent Semantic Analysis (LSA), etc.

- 1. compile full co-occurrence matrix on the corpus;
- 2. scale absolute frequencies with positive point-wise mutual information (PPMI) association measure;
- 3. factorize the matrix with singular value decomposition (SVD) or Principal Components Analysis (PCA) to reduce dimensionality to $d \ll |V|$.

Distributional models of this kind are known as count-based: Latent Semantic Indexing (LSI), Latent Semantic Analysis (LSA), etc.

- 1. compile full co-occurrence matrix on the corpus;
- 2. scale absolute frequencies with positive point-wise mutual information (PPMI) association measure;
- 3. factorize the matrix with singular value decomposition (SVD) or Principal Components Analysis (PCA) to reduce dimensionality to $d \ll |V|$.
- 4. Semantically similar words are still represented with similar vectors...

Distributional models of this kind are known as count-based: Latent Semantic Indexing (LSI), Latent Semantic Analysis (LSA), etc.

- 1. compile full co-occurrence matrix on the corpus;
- 2. scale absolute frequencies with positive point-wise mutual information (PPMI) association measure;
- 3. factorize the matrix with singular value decomposition (SVD) or Principal Components Analysis (PCA) to reduce dimensionality to $d \ll |V|$.
- 4. Semantically similar words are still represented with similar vectors...
- 5. …but the matrix is no longer square, the number of columns is d and each row $\boldsymbol{a}\in\mathbb{R}^{d}$.
- 6. The word vectors are now dense and small: embedded in the d -dimensional space.

Distributional models of this kind are known as count-based: Latent Semantic Indexing (LSI), Latent Semantic Analysis (LSA), etc.

How to construct a count-based model

- 1. compile full co-occurrence matrix on the corpus;
- 2. scale absolute frequencies with positive point-wise mutual information (PPMI) association measure;
- 3. factorize the matrix with singular value decomposition (SVD) or Principal Components Analysis (PCA) to reduce dimensionality to $d \ll |V|$.
- 4. Semantically similar words are still represented with similar vectors...
- 5. …but the matrix is no longer square, the number of columns is d and each row $\boldsymbol{a}\in\mathbb{R}^{d}$.
- 6. The word vectors are now dense and small: embedded in the d -dimensional space.

For more details, see [\[Bullinaria and Levy, 2007\]](#page-49-1) and [\[Goldberg, 2017\]](#page-49-2).

Distributional models of this kind are known as count-based: Latent Semantic Indexing (LSI), Latent Semantic Analysis (LSA), etc.

How to construct a count-based model

- 1. compile full co-occurrence matrix on the corpus;
- 2. scale absolute frequencies with positive point-wise mutual information (PPMI) association measure;
- 3. factorize the matrix with singular value decomposition (SVD) or Principal Components Analysis (PCA) to reduce dimensionality to $d \ll |V|$.
- 4. Semantically similar words are still represented with similar vectors...
- 5. …but the matrix is no longer square, the number of columns is d and each row $\boldsymbol{a}\in\mathbb{R}^{d}$.
- 6. The word vectors are now dense and small: embedded in the d -dimensional space.

For more details, see [\[Bullinaria and Levy, 2007\]](#page-49-1) and [\[Goldberg, 2017\]](#page-49-2). But where is machine learning and neural networks? See sub-lecture 5.3! F Bullinaria, J. A. and Levy, J. P. (2007).

Extracting semantic representations from word co-occurrence statistics: A computational study.

Behavior research methods, 39(3):510–526.

Goldberg, Y. (2017). 冨 Neural network methods for natural language processing. Synthesis Lectures on Human Language Technologies, 10(1):1–309.

Van der Maaten, L. and Hinton, G. (2008). 讀 Visualizing data using t-SNE. Journal of Machine Learning Research, 9(2579-2605):85.