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Count-based (‘explicit’) vector space models
Meaning is represented with vectors derived from frequency of word co-occurrences in some
corpus.

I Corpus vocabulary is V .
I Each word a is represented with a vector a ∈ R|V |.
I a components are mapped to all other words in V , its contexts (b, c, d ...z).
I Values of components are frequencies of words co-occurrences: ab, ac, ad , etc, resulting in

a square ‘co-occurence matrix’.
I Words are vectors or points in a multi-dimensional ‘semantic space’.
I Contexts are axes (dimensions) in this space.
I Dimensions of a word vector are interpretable: they are associated with particular context

words...
I ...or other types of contexts: documents, sentences, even characters.
I Interpretability is an important property of sparse representations (could be employed in the

Obligatory 1!).
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Count-based (‘explicit’) vector space models

300-D vector of ‘tomato’

In this toy example, |V | = 300. Co-occurrence frequencies are normalized.
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Count-based (‘explicit’) vector space models

300-D vector of ‘cucumber’

In this toy example, |V | = 300. Co-occurrence frequencies are normalized.
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Count-based (‘explicit’) vector space models

300-D vector of ‘philosophy’

Can we prove that tomatoes are more similar to cucumbers than to philosophy?
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Vector similarity
Semantic similarity between words is measured by the cosine of the angle between their
corresponding vectors (takes values from -1 to 1).

cos(w1, w2) = w1 ·w2

|w1||w2|
(1)

(dot product of unit-normalized vectors)

I Similarity lowers as the angle between word vectors grows.
I Similarity grows as the angle lessens.
I Vectors point at the same direction: cos = 1
I Vectors are orthogonal: cos = 0
I Vectors point at the opposite directions: cos = −1
cos(tomato, philosophy) = 0.09
cos(cucumber , philosophy) = 0.16
cos(tomato, cucumber) = 0.66

Question: why not simply use dot product?
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Vector similarity
If one can measure similarity between words, one can rank words by similarity to a target word!

Nearest semantic associates/neighbors

Hippocampus
(English Wikipedia co-occurrences):
1. cortex 0.83
2. amygdala 0.82
3. cerebellum 0.78
4. neuron 0.76
5. gyrus 0.75
6. ...
(these words have the same
co-occurrences as ‘hippocampus’)

These lists themselves describe the ‘hippocampus’ meaning to a large extent.
Question: what do the edges in the graph denote?
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Word embeddings

Curse of dimensionality

I In explicit count-based models, we can end up with very high-dimensional vectors (the size
of vocabulary).

I These vectors are very sparse.
I One can reduce vector sizes to some reasonable values, and still preserve meaningful

relations between them.
I e.g., by factorizing the co-occurrence matrix, using PCA or other dimensionality reduction

techniques.
I Can even reduce to the dimensionality of 2 or 1.
I Such reduced ‘implicit’ vectors are usually dense and have much more rights to be called

‘word embeddings’.
I NB: still nothing ‘neural’ or ‘deep’ here!
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Word embeddings
An extreme case: 2-dimensional word embeddings:

High-dimensional word vectors reduced to 2 dimensions by the t-SNE algorithm
[Van der Maaten and Hinton, 2008]

Vector components (x and y) are not directly interpretable any more, of course.
An ‘explicit’ model turned to an ‘implicit’ one. Semantic information is distributed across the
remaining dimensions.
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Word embeddings
Distributional models of this kind are known as count-based: Latent Semantic Indexing (LSI),
Latent Semantic Analysis (LSA), etc.

How to construct a count-based model
1. compile full co-occurrence matrix on the corpus;
2. scale absolute frequencies with positive point-wise mutual information (PPMI) association

measure;
3. factorize the matrix with singular value decomposition (SVD) or Principal Components

Analysis (PCA) to reduce dimensionality to d � |V |.
4. Semantically similar words are still represented with similar vectors...
5. ...but the matrix is no longer square, the number of columns is d and each row a ∈ Rd .
6. The word vectors are now dense and small: embedded in the d-dimensional space.

For more details, see [Bullinaria and Levy, 2007] and [Goldberg, 2017].
But where is machine learning and neural networks? See sub-lecture 5.3!
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6. The word vectors are now dense and small: embedded in the d-dimensional space.

For more details, see [Bullinaria and Levy, 2007] and [Goldberg, 2017].

But where is machine learning and neural networks? See sub-lecture 5.3!
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