
Proceedings of the Sixth

IN5550 Workshop on Neural

Natural Language Processing

(WNNLP 2024)

Andrey Kutuzov, David Samuel, Vladislav Mikhailov,
Roxana Pop and Sondre Wold (editors)

June 03, 2024

University of Oslo, Norway

Published by

Language Technology Group

Department of Informatics

University of Oslo

Preface

We are delighted to present the proceedings of the Sixth IN5550 Teaching Workshop
on Neural Natural Language Processing (WNNLP 2024). Spurred by great
advancements in neural approaches to NLP, this is the sixth in a series of successful
annual workshops, each showcasing some of the best efforts made by MSc and
PhD students completing the IN5550 class — all tackling modern research tasks
related to deep learning in NLP.

The workshop received 21 submissions (by 31 authors), of which all have been
accepted for publication as part of the WNNLP 2024 proceedings (this volume).
This constitutes a two-fold increase in comparison to WNNLP 2023, reflecting
the rising interest to neural approaches in natural language understanding and
generation.

The Programme Committee has selected the paper Fact or Fiction? Exploring
Diverse Approaches to Fact Verification with Language Models, by Tobias Opsahl,
for the WNNLP 2024 Best Paper award. In this paper, the author applied novel
methods (especially for subgraph extraction) not suggested in the track description.
It allowed to outperform state of the art significantly.

The IN5550 course offered three obligatory assignments throughout the semester,
with leader-boards of the best-performing submissions published for all of them.
This year, the Outstanding Coursework award goes to Vebjørn Haug K̊asene,
whose submissions were among the best (ranked as either the first or the second)
in each of the three leader-boards.

Congratulations to all the award recipients (and runners-up)!
This workshop would not have been possible without the assistance of the

reviewers in our Program Committee, whose careful and constructive feedback has
been an important element in improving the submitted papers. All the members
of the Program Committee are listed on the next page.

And of course, we extend warmest thanks to all the participants of this workshop,
who spent many a sleepless nights working on the projects that made WNNLP
2024 an exciting and stimulating event!

WNNLP 2024 Committee
Oslo; June 03, 2024

i

Programme Committee

Aleksandar Davidov
Andreas Poole
Andrey Kutuzov
Arezo Shakeri
Dans Reinicans
David Samuel
Dennis Adelved
Eirik Eggset
Erling Midtgard
Fernando Vallecillos Ruiz
Jonas Sebulon Frydenberg
Lise Chen
Louis Give
Lucas Georges Gabriel Charpentier
Magnus Jørgenv̊ag
Magnus Sandem Dhelie
Maria Antonietta Bruno
Mariia Fedorova
Marthe Løken Midtgaard
Mathias Strømberg Durkis
Peder August Darre Fasting
Petter Mæhlum
Rayyan Syed
Roxana Pop
Sander Finnset Ørnes
Sindre Bjørndal-Riis
Solveig Helene Willoch
Sondre Wold
Sushant Gautam
Taras Andrushko
Timo Zaoral
Tobias Opsahl
Torkild Finne
Vebjørn Haug K̊asene
Victoria Handford
Victoria Ovedie Chruickshank Langø
Vladislav Mikhailov
Zoia Butenko

Scandinavian Language Identification track Chairs

David Samuel and Petter Mæhlum

Pretraining Tiny Language Models track Chair

Lucas Georges Gabriel Charpentier

i

Fact-Checking with Graph Evidence track Chairs

Roxana Pop and Sondre Wold

Artificial Text Detection track Chair

Vladislav Mikhailov

Predicting a Prompt from a Generated Text track Chair

Andrey Kutuzov

General Chair

Andrey Kutuzov

3

i

Contents

1 Scandinavian Language Identification track 1
1.1 Enhancing Language Identification Models: Insights from Annotated

Sentences and Baseline Model Analysis
(Victoria Ovedie Chruickshank Langø, Lise Chen, Mathias Strømberg
Durkis) . 2

1.2 Optimizing the Performance and Reducing Complexity of Simple Neural
Classifiers for Scandinavian Language Identification
(Magnus Jørgenv̊ag) . 13

1.3 Fine-Tuning Language Identification Models for Scandinavian Languages:
Insights and Comparisons
(Arezo Shakeri) . 23

1.4 Improving Scandinavian Language Identification
(Jonas Sebulon Frydenberg) . 31

1.5 Successes and Downfalls: Error Analysis of Scandinavian Language Iden-
tification
(Marthe Løken Midtgaard, Victoria Handford, Solveig Helene Willoch) . 41

1.6 Transformers do (not) outperform FastText on Scandinavian language
identification
(Mariia Fedorova) . 51

2 Pretraining Tiny Language Models track 59
2.1 An empirical study of recent optimizers in tiny language models

(Sander Finnset Ørnes) . 60
2.2 From bad babies to good language students? - An experiment of training

tiny language models on ESL data
(Erling Midtgard) . 71

2.3 Parameter Sharing for Tiny Language Models
(Eirik Eggset, Torkild Finne, Rayyan Syed) 85

2.4 TinyLM: Back to basics
(Peder August Darre Fasting, Vebjørn Haug K̊asene) 95

2.5 Curriculum Learning in Tiny Language Models
(Magnus Sandem Dhelie) . 103

3 Fact-Checking with Graph Evidence track 111
3.1 Enhancing Fact Verification with Hybrid Models: Integrating Graph

Neural Networks and BERT Using the FactKG Dataset
(Aleksandar Davidov) . 112

3.2 FactGenius: Combining Zero-Shot Prompting and Fuzzy Relation Mining
to Improve Fact Verification with Knowledge Graphs
(Sushant Gautam) . 121

3.3 Fact or Fiction? Exploring Diverse Approaches to Fact Verification with
Language Models
(Tobias Opsahl) . 131

4 Artificial Text Detection track 139
4.1 Cutting Down to Size: Efficient AI for Artificial Text Detection

(Fernando Vallecillos Ruiz) . 140

ii

4.2 Impact of Domain Variability in Training Data for Monolingual Artificial
Text Detection
(Dans Reinicans) . 149

4.3 Overfitting in Artificial Text Detection: Expanding on the SemEval-2024
Workshop Task 8
(Sindre Bjørndal-Riis) . 155

4.4 Using Statistical Features to Improve the Performance of Large Language
Models in Artificial Text Detection
(Andreas Poole) . 163

4.5 Zero-shot Artificial Text Detection Using Instruct Fine-Tuned LLMs
(Zoia Butenko, Taras Andrushko) . 171

5 Predicting a Prompt from a Generated Text track 179
5.1 Exploring Prompt Prediction: Methods, Performance, and Challenges

(Dennis Adelved) . 180
5.2 Uncovering Hidden Intentions: Exploring Prompt Recovery for Deeper

Insights into Generated Texts
(Louis Give, Timo Zaoral, Maria Antonietta Bruno) 205

iii

iv

1 Scandinavian Language Identification track

1

Enhancing Language Identification Models: Insights from Annotated
Sentences and Baseline Model Analysis

Victoria Ovedie Chruickshank Langø
Institute of Informatics

University of Oslo
victocla@uio.no

Lise Chen
Institute of Informatics

University of Oslo
liseche@uio.no

Mathias Strømberg Durkis
Institute of Informatics

University of Oslo
mathisdu@uio.no

Abstract

This paper addresses a common issue in lan-
guage identification models: their reduced ac-
curacy in predicting languages in short sen-
tences. Using a multilabel dataset with Nor-
wegian Bokmål, Norwegian Nynorsk, Swedish,
and Danish, we evaluated the performance of
three well-known language identification mod-
els, namely OpenLID, FastText, and NLLB (No
Language Left Behind). Our analysis reveals
that, although the models generally perform
well, they struggle with accurately predicting
languages in shorter sentences. We identify this
gap and propose the development of models op-
timized for short sentences. This paper details
our evaluation methodology, findings, and the
framework for enhancing prediction accuracy
in minimal text scenarios.

1 Introduction

Language identification (LID) involves determin-
ing the language of spoken or written content
without prior knowledge of the speaker or writer’s
identity (Muthusamy et al., 1994, 33). Humans
excel at identifying languages they know or
noting similarities to familiar languages within
moments of exposure. Similarly, effective LID
systems exploit these distinctive linguistic traits to
accurately identify languages, a task that remains
challenging, especially in multilingual and noisy
environments.

To evaluate the effectiveness of existing lan-
guage identification models, we selected three
LID models to serve as baselines and utilized a
multi-label evaluation script on a dataset consisting
of 6,976 sentences, each labeled with one or
more languages. After processing the sentences
through the models, we manually annotated each
of the 2,336 incorrectly predicted sentences as
either "wrong language" or "ambiguous." This
detailed annotation process helped us gain a deeper

understanding of the specific types of sentences
the models were struggling with.

Our evaluation highlighted the models’ partic-
ular struggles with shorter sentences, leading us
to analyze each misprediction in detail. These in-
sights underscored the need for enhanced model
performance on short sentences, prompting our re-
search to develop more precise models. This paper
addresses this gap through the following contribu-
tions:

• Evaluation of the performance of existing lan-
guage identification models on a multilabeled
dataset.

• Identification and analysis of specific chal-
lenges these models face with shorter sen-
tences.

• Annotation and examination of inaccuracies
in predictions to understand their causes.

• Proposal and outline of the development of
new models to improve accuracy in language
identification for short sentences.

2 Background and Related Work

This section provides an overview of the baseline
models used in language identification tasks, specif-
ically focusing on three baseline models: OpenLID,
FastText, and NLLB. While our primary contribu-
tion is an error analysis of language identification
models, we acknowledge the foundational work
that has informed the development and evaluation
of language identification systems.

Baseline Models:

• OpenLID: As part of efforts to develop ro-
bust and scalable systems for identifying spo-
ken languages, OpenLID has been trained us-
ing an open dataset provided in their publi-
cation (Burchell et al., 2023). This dataset

2

also served to train a FastText-based language
identification model, where embeddings gen-
erated from FastText are utilized as inputs to a
multiclass linear classifier. Notably, OpenLID
employs the same hyperparameters as those
used in the NLLB model, ensuring consis-
tency and comparability between the models
(Burchell et al., 2023; Team et al., 2022).

• FastText: A text classification model devel-
oped by Facebook AI, FastText excels in han-
dling large volumes of text efficiently, using
bag-of-words and n-gram features to predict
the language of textual content (Joulin et al.,
2016).

• NLLB: An ambitious model aiming to provide
translation capabilities across a wide array of
languages, including low-resource languages,
emphasizing its utility in broadening the ap-
plicability of language technologies to under-
served languages (Team et al., 2022).

3 Methodology

3.1 Evaluation Datasets
The main evaluation dataset is derived from the test
splits of the Universal Dependencies (UD) (Uni-
versal Dependencies, 2024) treebanks for Norwe-
gian Bokmål, Norwegian Nynorsk, Swedish, and
Danish. To enhance the evaluation, we used a
dataset with additional labels for sentences that
could belong to multiple languages (Samuel, 2024).
For instance, a sentence like “Hvordan går det?”
could be both Bokmål and Danish, but not Nynorsk
or Swedish. This manually filtered evaluation
dataset ensures comprehensive testing of the mod-
els’ ability to distinguish between closely related
languages.

3.2 Annotation Process
Although our models do not predict multiple labels,
we utilized this multilabel dataset to better under-
stand the nature of the mispredictions. Initially, we
aimed to see the types of errors the models made
and discovered that some sentences were ambigu-
ous. This prompted us to manually annotate each
misprediction, providing deeper insights into the
specific types of errors the models were making
(Langø et al., 2024). For instance, the phrase “Ag-
gresjon og alvor” is labeled as ‘nn’ in the dataset,
yet a model’s prediction of ‘nb’ is also plausible
given the ambiguity in language usage. The text

samples that were labeled “Error” were taken out
of our analysis.
For the classification of the languages, as our
team consists of three fluent Norwegian speakers
with knowledge about the other Scandinavian lan-
guages, we used our previous knowledge, and sup-
plemented with dictionaries. For Norwegian Bok-
mål and Norwegian Nynorsk, we employed two
sources: orbøkene.no (Språkrådet and University
of Bergen, 2024) and the LEXIN dictionary (Oslo
Metropolitan University, 2024). For Danish, we
used Den Danske Ordbog (Det Danske Sprog- og
Litteraturselskab, 2024), in addition to Cambridge
Dictionary (Cambridge University Press, 2023) for
comparisons between Bokmål and Danish. For
Swedish, we used Svenska Akademiens Ordböcker
(Svenska Akademien, 2024). Notably, Swedish
was distinguished more readily from the other lan-
guages, a trend that is consistent across the predic-
tion matrices (Tables 1, 2, and 3); all three models
accurately predicted Swedish with high reliability.

This annotation process was designed not just to
assess the overall performance of the models, but to
gain deeper insights into the specific errors occur-
ring in language identification. NLLB incorrectly
predicted 390 samples, OpenLID 529 samples, and
FastText 1,417 samples, totaling 2,336 misclassi-
fied samples.

The process aimed to provide a granular under-
standing of the predictive challenges faced by the
models, enhancing our interpretation of their per-
formance.

4 Results and Analysis From Annotation

4.1 Baseline Model Performance
• OpenLID: Achieved an F1-score of 92.39%.

Common misclassifications were between
Norwegian Bokmål and Norwegian Nynorsk.

• NLLB: Achieved an F1-score of 93.21%.
Similar misclassification patterns to OpenLID
but with fewer errors.

• FastText: Achieved an F1-score of 76.74%.
Showed significant misclassification issues
overall, especially when compared to Open-
LID and NLLB.

4.2 Misclassification Analysis
The misclassification matrices for OpenLID,
NLLB, and FastText reveal insights into their per-
formance. All models struggled particularly with

3

Norwegian Bokmål and Norwegian Nynorsk, re-
flecting the linguistic similarities between these lan-
guages. The FastText model also had difficulty dis-
tinguishing between Danish and Norwegian Bok-
mål.

Table 1: OpenLID Misclassification Matrix

Target \Predicted nb nn da sv other
nb - 78 63 16 51
nn 146 - 32 14 17
da 35 1 - 3 6
sv 2 1 2 - 4

other 13 20 14 15 -

Table 2: NLLB Misclassification Matrix

Target \Predicted nb nn da sv other
nb - 26 40 11 62
nn 60 - 12 11 60
da 5 1 - 1 47
sv 2 2 2 - 28

other 49 29 32 26 -

Table 3: FastText Misclassification Matrix

Target \Predicted nb nn da sv other
nb - 26 304 72 112
nn 574 - 115 61 106
da 29 1 - 12 54
sv 9 1 2 - 42

other 27 3 27 6 -

4.2.1 OpenLID Model Analysis
OpenLID frequently misclassified Norwegian Bok-
mål as Norwegian Nynorsk, Danish and ’Other’
languages, indicating confusion between closely
related Scandinavian languages and broader cate-
gories.

4.2.2 NLLB Model Analysis
NLLB showed improved predictions compared to
OpenLID, with generally fewer misclassifications.
However, it struggled with the ’Other’ category.

4.2.3 FastText Model Analysis
FastText exhibited significant misclassification is-
sues, especially between Norwegian Bokmål and
Norwegian Nynorsk, as well as Danish and Norwe-
gian Bokmål.

4.2.4 General Observations
All models struggled with closely related languages
such as Norwegian Bokmål, Nynorsk, and Danish,
yet they all performed well in predicting Swedish
text samples. NLLB generally outperformed the

others, suggesting better model architecture or
training methodologies.

4.3 Detailed Error Analysis

From our annotation, we discovered that OpenLID
has a significantly higher number of ambiguous
predictions compared to NLLB and FastText, as
shown in Figure 1. This suggests that OpenLID’s
accuracy might be underestimated when evaluated
against standard evaluation metrics, as many of
its errors are due to the inherent ambiguity of the
sentences rather than outright mispredictions.

4.3.1 Mean Length Analysis
To further understand the challenges faced by the
models, we analyzed the mean length of text sam-
ples for wrong predictions and ambiguous predic-
tions. The mean length of sentences in the overall
evaluation dataset is 13.30.

The following tables summarizes the mean
lengths for each model and prediction type and
the number of mispredictions by sentence length
range:

Table 4: Mean Length of Text Samples for Wrong and
Ambiguous Predictions

Model Prediction Type Mean Length Amount
OpenLID Wrong prediction 6.84 345
OpenLID Ambiguous 4.97 168

NLLB Wrong prediction 6.67 302
NLLB Ambiguous 4.01 69

FastText Wrong prediction 12.19 1347
FastText Ambiguous 6.98 64

Table 5: Number of Mispredictions by Sentence Length
Range

Sentence Length OpenLID NLLB FastText
1-5 303 222 377

6-10 129 91 370
11-15 54 43 272
16-20 15 11 189

21- 13 9 203

As depicted in Table 5, all models struggle with
shorter sentences, with the highest number of mis-
predictions occurring in the 1-5 word range. Fast-
Text shows the most significant difficulty across all
sentence lengths, particularly in the 6-10 and 21-
word ranges. OpenLID and NLLB, while perform-
ing better overall, still show a notable number of
mispredictions for shorter sentences.

These results indicate that improving model
performance for shorter sentences is crucial for

4

Figure 1: Combined Distribution of Error Types

enhancing overall language identification accu-
racy. While FastText has a high number of mis-
predictions across all lengths, OpenLID and NLLB
show that even higher-performing models face chal-
lenges with minimal text inputs.

These findings highlight some challenges in
language identification models, particularly with
shorter sentences. Linguistic similarities be-
tween languages, such as Norwegian Bokmål and
Nynorsk, make it difficult for models to distinguish
between them. Shorter sentences provide limited
context, which reduces the amount of information
available for accurate language identification. Ad-
ditionally, the architecture of the models plays a
role; models like FastText, which are less sophisti-
cated than OpenLID and NLLB, struggle more with
these tasks. Finally, ambiguity in language use,
where sentences or phrases can belong to multiple
languages, further complicates the identification
process. We found several examples of sentences
that contained only one word or a company name
originating from one of the Scandinavian languages
but with a more international name. Examples in-
clude "NTB", "Scanpix", "Aschehoug", and even
simple words like "Ja" proved challenging for some
models to classify accurately. These factors col-
lectively contribute to the models’ difficulties with
short sentences, emphasizing the need for improved
model architectures and more nuanced training data
to enhance performance in these scenarios.

5 Hypothesis and Future Experiments

Our analysis of the misclassification patterns and
the influence of text length on prediction accuracy
has led us to hypothesize that training models on
datasets filtered for shorter sentences might im-
prove their performance on minimal text inputs.
Specifically, we propose to:

• Train OpenLID with the same hyperparame-
ters as the original (Burchell et al., 2023) on
more Scandinavian data, using both the gold
dataset and a version filtered for shorter sen-
tences (under 6 words).

• Fine-tune XLM-R (’FacebookAI/xlm-roberta-
base’) from Hugging Face (Conneau et al.,
2019)) on additional Scandinavian data, uti-
lizing both the gold dataset and the filtered
dataset. Integrate the predictions from both
the fine-tuned XLM-R model and OpenLID
(Burchell et al., 2023). The combined pre-
dictions are then used to determine the final
language classification.

• Fine-tune mBERT (’google-bert/bert-
base-multilingual-cased’ from Hugging
Face (Devlin et al., 2018)) and XLM-R
(’FacebookAI/xlm-roberta-base’ from Hug-
ging Face (Conneau et al., 2019)) on more
Scandinavian data, using both the gold dataset
and the filtered dataset.

5

5.1 Methodology for Testing the Hypothesis

5.1.1 Motivation
OpenLID

We chose to experiment with OpenLID, despite
it being a baseline model, mainly due to its strong
performance in language identification, particularly
with Scandinavian languages. Additionally, it pre-
dicted a higher number of ambiguous words com-
pared to the other models, suggesting that the accu-
racy metrics could have been the highest, instead of
NLLB. Our goal was to see if adding both filtered
and unfiltered datasets could further improve its
accuracy, especially for short sentences. By testing
different dataset configurations, we aimed to en-
hance OpenLID’s precision and better understand
its capabilities with minimal text inputs.

OpenLID With XLM-R
This approach aims to leverage OpenLID’s ro-

bustness and XLM-R’s contextual understanding to
enhance overall accuracy. Using OpenLID as the
base model, we fine-tune XLM-R on the datasets
to provide more reliable predictions in areas where
OpenLID alone is insufficient.

mBERT and XLM-R
mBERT and XLM-R are well-known multilin-

gual transformer models, with XLM-R intended
as an improvement over mBERT (Conneau et al.,
2019). By fine-tuning these models, we hope to
see how using more up-to-date transformer-based
language models with existing multilingual
capabilities perform with both unfiltered and
filtered datasets.

We selected these models because we wanted
to cover a spectrum of approaches from simple
to more complex, allowing us to identify the
specific advantages and limitations of each. This
can help in understanding how different models
respond to the challenges posed by short sentences
and ambiguous language use, which can aid
in the development of more effective language
identification systems.

5.1.2 Classification Architecture of OpenLID
With XLM-R

The model applies a softmax to the five predictions
with the highest probability values from both the
fine-tuned XLM-R and the base OpenLID model.
We then apply weights of 0.7 to OpenLID’s pre-
dictions and 0.3 to XLM-R’s predictions, respec-
tively, to combine them effectively. After weight-

ing the predictions, we aggregate them to produce
a final prediction for each input sentence. This
final prediction is determined by the highest com-
bined weighted score, ensuring that both models
contribute to the decision while prioritizing predic-
tions from OpenLID.

5.1.3 Datasets
We will use the following datasets for training and
evaluation:

• Gold Dataset: The gold training/validation
data from Universal Dependencies treebanks
for Norwegian Bokmål, Norwegian Nynorsk,
Swedish, and Danish.

• Filtered Dataset: A subset of the gold dataset
consisting only of sentences with 6 words or
fewer, created by filtering the original dataset.
The approach using OpenLID together with
XLM-R uses a filtered gold dataset without
quotes (sentences containing quotation marks
or otherwise signifying quotation with phrases
like "she said" or similar) and sentences longer
than 6 words.

• Silver Dataset: A balanced dataset created us-
ing machine translation to decouple semantics
from language, ensuring coverage of various
domains.

5.1.4 Training and Evaluation
For training, we used the gold training/validation
data from the UD treebanks. Additionally, we used
the silver training data by using machine transla-
tion to decouple semantics from language. This
approach ensures that the dataset is balanced in
terms of sentence count and domain coverage for
each language. The silver dataset addresses poten-
tial biases in the gold dataset and helps improve the
robustness of the models.

• OpenLID: Trained with the same hyperpa-
rameters as the original, on both the gold
dataset and the filtered dataset.

• mBERT: Fine-tuned on the gold dataset and
the filtered dataset.

• XLM-R: Fine-tuned on the gold dataset and
the filtered dataset.

• OpenLID and XLM-R: Fine-tuned on the
gold dataset, the filtered dataset, and the silver
dataset.

6

5.1.5 Expected Outcomes
From an evaluation of both mBERT and XLM-R
without fine-tuning, the performance metrics were
around 30-40% for all metrics. We expect that
training models on the filtered dataset will result
in:

• Improved accuracy and F1 scores for shorter
sentences.

• Increased mean length of mispredictions, due
to an increased number of correct classifica-
tions on the short sentences.

• A shift in the distribution of error types, with
fewer wrong predictions and more ambiguous
predictions, reflecting better handling of short,
ambiguous sentences.

6 Findings From Experiments

6.1 OpenLID
Among the OpenLID models, the best-performing
one was trained on the gold dataset filtered for
shorter sentences. This model achieved the high-
est accuracy and F1 scores, indicating improved
performance on minimal text inputs. Specifically,
the analysis of mispredictions revealed that for this
model, the mean sentence length for "Wrong Lan-
guage" predictions was 8.36, with a total count of
354, while the mean sentence length for "Ambigu-
ous" predictions was 4.10, with a total count of
51.

Compared to the previous model, the new Open-
LID model’s "Wrong Language" predictions had
a slightly higher mean sentence length of 8.36, up
from 6.84 with a similar total count of 354 from
the previous 345. For "Ambiguous" predictions,
the new model had a lower mean sentence length
of 4.10 from 4.97 and a significantly reduced total
count of 51 from the previous 168, indicating better
handling of ambiguous cases. These results suggest
that the new OpenLID model, trained on shorter
sentences, can maintain high accuracy while effec-
tively managing ambiguity in language identifica-
tion.

6.2 OpenLID With a Fine-tuned XLM-R
In our experiments with OpenLID and XLM-R, we
tested four different configurations. The results are
detailed in Table 7. The configurations included
training on the gold dataset, the gold dataset fil-
tered, the gold and silver datasets, and the gold and

silver datasets filtered (with some adjustments, see
5.1.3). Among these, the best-performing model
was trained on the filtered gold dataset. This model
achieved the highest accuracy and F1 score, indicat-
ing improved performance on minimal text inputs.
Specifically, the analysis of mispredictions revealed
that for this model, the mean sentence length for
"Wrong Language" predictions was 8.51, with a
total count of 197, while the mean sentence length
for "Ambiguous" predictions was 8.46, with a total
count of 220. Compared to the previous model, the
new model’s "Wrong Language" predictions had a
higher mean sentence length, increasing from 6.84
to 8.51, and a lower total count, decreasing from
345 to 197. For "Ambiguous" predictions, the new
model had a higher mean sentence length of 8.46
and a higher ambiguous count, increasing from 168
to 220. The results suggest that filtering the gold
dataset improves the overall quality of the training
data, leading to better performance metrics such as
accuracy and F1 scores. This is in accordance with
the expected results. The error analysis indicates
that the model is now more effective at handling
shorter sentences and making fewer "Wrong Lan-
guage" predictions.

6.3 Fine-tuned mBERT and XLM-R
The fine-tuning of mBERT and XLM-R gave us the
best performance metrics out of all our approaches
(see Table 7). mBERT-gold provided the best per-
formance and shortest sentences of all the models
we trained (97.28% loose accuracy, 96.91% loose
macro F1, 96.24% loose macro MCC, sentence to-
tal mean length of 6.48, see Table 7), while XLM-
R-gold-short produced the longest sentences (8.79,
see Table 7) of all the models we trained, while still
achieving adequate performance. This shows that
XLM-R handles short sentences efficiently when
given a filtered dataset. In addition, this simple
"fine-tuning a multi-lingual transformer model" ap-
proach used the least GPU resources (see Table 8).

The fine-tuning of the mBERT and XLM-R mod-
els achieved better performance than our baseline
models. However, since we were not able to fine-
tune them in a way that gave us better performance
when training on shorter sentences, the expected
outcomes were not entirely confirmed.

6.4 Ambiguities of sentence length
It is perhaps less probable that long sentences
are ambiguous. They may contain more unique
markers of language, making it logical that well-

7

Table 6: Number of Mispredictions by Sentence Length Range with filtered gold dataset an % difference

Sentence Length OpenLID OpenLID XLM-R mBERT and XLM-R
1-5 194 189 105

6-10 108 106 49
11-15 58 65 21
16-20 27 34 8

21- 19 23 3

performing models are not as good with shorter
sentences because these are more likely to be am-
biguous. The large portion of ambiguous sen-
tences among the wrong predictions of the best-
performing mBERT model may support this (59
out of 186 valid records being ambiguous, see 10).
We also achieved the longest sentences of all the
models with adequate performance with XLM-R
gold short. However, it performs worse than the
same model trained on more data (XLM-R gold),
indicating that the reason for the increase in mean
length is because it is a worse model, and the mean
length of the wrong predictions will then approxi-
mate the mean length of the evaluated dataset.

6.5 Overall Findings
Our experiments provided several insights into the
perfomance and optimization of language identifi-
cation models, particularly in handling short sen-
tences. The key findings from our analysis are as
follows:

6.5.1 Effectiveness of OpenLID and
Fine-Tuned Models

Despite being a baseline model, OpenLID showed
significant improvements when trained on a filtered
dataset of shorter sentences, achieving the highest
accuracy and F1 scores among its variants. The
analysis revealed that OpenLID’s simpler archi-
tecture benefits from targeted data subsets, effec-
tively managing ambiguity and reducing mispre-
dictions. Fine-tuned models, particularly mBERT
and XLM-R, demonstrated superior performance
overall. mBERT, trained on the gold dataset, was
good at handling short sentences, while XLM-R,
trained on the filtered dataset, displayed the longest
mean sentence length for mispredictions. This sug-
gests that while complex models like mBERT and
XLM-R can capture intricate patterns in the data,
OpenLID’s simpler structure can achieve high per-
formance with optimized training data.

6.5.2 Impact on Filtered Datasets
Training on filtered datasets containing shorter sen-
tences did not consistently enhance performance

across all models. For more complex but well-
performing transformer models, having a larger
and more comprehensive dataset was more benefi-
cial. This might suggest the need to have enough
data to reach the point of diminishing returns, but
also that high-performing models might be sensi-
tive to the reduced context in short sentences. The
effectiveness of filtered datasets may depend on the
model architecture and its capacity to learn from
limited data.

6.5.3 Correlation Between Mean Sentence
Length and Performance

The assumption that an increase in mean length
would reflect better classification of short sen-
tences was not conclusively supported. Our best-
performing model the mBERT gold model had the
shortest sentences of all the models we trained, but
it also performs better overall, and a good portion
of the misclassified sentences are actually correct
(see 7). Considering that this approach gave us
the best performance, we might ask ourselves if
it is a reasonable goal to aim for a higher mean
length of predictions when training on shorter sen-
tences. This suggests that there is a more complex
relationship than described in this paper between
mean sentence length and performance. As Table
6 shows, there were still a significant number of
mispredictions among shorter sentences.

6.6 Limitations
• Training on Combined Datasets: We did

not train the mBERT and XLM-R models on
a combined dataset of both gold and silver
data. Training on both datasets might have
provided more comprehensive coverage and
improved the models’ robustness.

• Multi-Label Classification: Ideally, our mod-
els would support multi-label classification,
as a portion of the errors in the current mod-
els are due to ambiguous sentences that can
belong to multiple languages. Implement-
ing multi-label classification could reduce the
number of misclassifications.

8

Table 7: Loose Metrics on test.jsonl

Model Loose Accu-
racy (%)

Loose Macro
F1 (%)

Loose Macro
MCC (%)

Sentence Total
Mean Length

FastText 79.69 76.74 75.38 11.65
NLLB 94.41 93.21 91.90 6.14
OpenLID 93.51 92.39 91.00 7.48

OpenLID Variants

OpenLID with gold short 94.01 93.02 91.72 7.63
OpenLID with gold 93.82 92.76 91.44 7.54
OpenLID with gold and silver short 93.84 92.74 91.39 7.73
OpenLID with gold and silver 39.74 32.61 34.92 14.41

mBERT Variants

mbert-gold 97.28 96.91 96.24 6.48
mbert-gold-short 96.07 95.77 94.87 7.86

XLM-R Variants

xlm-r-gold 96.93 96.72 95.98 6.88
xlm-r-gold-short 96.33 96.05 95.20 8.79

OpenLID with XLM-R Variants

OpenLID_xlm-roberta-base_gold short 94.31 93.60 92.32 7.72
OpenLID_xlm-roberta-base_gold 94.27 93.52 92.24 7.71
OpenLID_xlm-roberta-base_gold_silver 94.02 93.14 91.82 8.20
OpenLID_xlm-roberta-base_gold_silver short 94.19 93.27 91.97 7.70

Note: "short" refers to filtered data with sentences of 6 words or fewer. "Sentence Total Mean Length" is the mean
length of the wrongly predicted sentences on test.jsonl.

• Dataset Quality: There are some errors in
the dataset used for evaluation. These inaccu-
racies can affect the training process and the
final evaluation metrics of the models. Ensur-
ing higher quality and more accurately labeled
data could improve model performance.

• Short Sentence Focus: While our primary fo-
cus was on improving performance for shorter
sentences, this emphasis might have led to
less optimal performance for longer sentences.
A balanced approach that ensures good perfor-
mance across all sentence lengths is needed,
especially because one ideally wants to have
good LID overall, not just on short sentences.

• Long Mean Sentence Length Focus: Focus-
ing on the mean sentence length for wrongly
classified predictions being long may not be
the best marker for a model being better at
classifying short sentences, and if it is, it
might be highly architecture dependent. Be-
cause longer sentences are more likely to con-
tain unique markers for language, the mean
sentence length for mispredictions should per-
haps even be low. We did achieve better per-
formance together with longer mean sentence

length for wrong predictions for some of the
models, but our best-performing models had
a short mean sentence length. Perhaps an
approach that focuses on good performance
across all sentence lengths is more useful.

• Ambiguity Handling: Although we catego-
rized ambiguous predictions, further work is
needed to develop methods for better handling
and resolving ambiguities in language iden-
tification. For example, during annotation,
we observed that company names like ’As-
chehoug’ were often predicted as ’Other.’ De-
spite ’Aschehoug’ being a Norwegian com-
pany, the name itself does not inherently ap-
pear Norwegian, making it understandable
why the model might classify it as a non-
Scandinavian language.

• Scandinavian Language Focus: Our re-
search was limited to Scandinavian languages.
The findings and proposed models may not
generalize well to other language families
with different linguistic characteristics.

9

7 Conclusion

Our study addressed the challenge of predicting lan-
guages in short sentences using OpenLID, FastText,
and NLLB models. While these models generally
performed well, OpenLID and NLLB struggled
with short sentences, and FastText did not perform
very well overall. By filtering datasets for shorter
sentences, we aimed to improve this aspect.

OpenLID showed significant improvement with
filtered datasets, achieving both higher accuracy
and F1 scores and a higher mean sentence length
than its baseline OpenLID, but the model was not
capture more context of shorter sentences based on
a filtered dataset.

Fine-tuned models, especially mBERT and
XLM-R, demonstrated superior performance.
XLM-R handled short sentences effectively, while
mBERT needed unfiltered datasets to get the best
results.

Our findings indicate that while training on
shorter sentences can enhance some models, the re-
lationship between mean sentence length and clas-
sification accuracy is complex.

Future work should focus on developing mod-
els optimized for various sentence lengths and ex-
ploring the balance between comprehensive and
targeted datasets to enhance language identifica-
tion performance. Additionally, investigating why
OpenLID and XLM-R seemingly improved in pre-
dicting shorter sentences, while mBERT did not,
could provide valuable insights and potentially lead
to the development of a superior language iden-
tification model capable of accurately predicting
sentences with minimal context.

References
Laurie Burchell, Alexandra Birch, Nikolay Bogoychev,

and Kenneth Heafield. 2023. An open dataset and
model for language identification. In Proceedings
of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers),
pages 865–879, Toronto, Canada. Association for
Computational Linguistics.

Cambridge University Press. 2023. Cambridge dictio-
nary. Accessed: 2024-05-10.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2019. Unsupervised
cross-lingual representation learning at scale. CoRR,
abs/1911.02116.

Det Danske Sprog- og Litteraturselskab. 2024. Den
danske ordbog: Moderne dansk sprog. Accessed:
2024-05-16.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: pre-training of
deep bidirectional transformers for language under-
standing. CoRR, arXiv:1810.04805.

Armand Joulin, Edouard Grave, Piotr Bojanowski, and
Tomas Mikolov. 2016. Bag of tricks for efficient text
classification. Preprint, arXiv:1607.01759.

Victoria Langø, Lise Chen, and Mathias Strømberg
Durkis. 2024. Annotated mispredictions. GitHub.
Accessed: 2024-05-21.

Y.K. Muthusamy, E. Barnard, and R.A. Cole. 1994.
Reviewing automatic language identification. IEEE
Signal Processing Magazine, 11(4):33–41.

Oslo Metropolitan University. 2024. Lexin dictionary.
Accessed: 2024-05-10.

David Samuel. 2024. Scandinavian language identifica-
tion dataset. GitHub. Accessed: 2024-05-10.

Språkrådet and University of Bergen. 2024. ord-
bøkene.no: Bokmålsordboka og nynorskordboka.
Accessed: 2024-05-16.

Svenska Akademien. 2024. Svenska akademiens ord-
böcker. Accessed: 2024-05-16.

NLLB Team, Marta R. Costa-jussà, James Cross, Onur
Çelebi, Maha Elbayad, Kenneth Heafield, Kevin Hef-
fernan, Elahe Kalbassi, Janice Lam, Daniel Licht,
Jean Maillard, Anna Sun, Skyler Wang, Guillaume
Wenzek, Al Youngblood, Bapi Akula, Loic Bar-
rault, Gabriel Mejia Gonzalez, Prangthip Hansanti,
John Hoffman, Semarley Jarrett, Kaushik Ram
Sadagopan, Dirk Rowe, Shannon Spruit, Chau
Tran, Pierre Andrews, Necip Fazil Ayan, Shruti
Bhosale, Sergey Edunov, Angela Fan, Cynthia
Gao, Vedanuj Goswami, Francisco Guzmán, Philipp
Koehn, Alexandre Mourachko, Christophe Rop-
ers, Safiyyah Saleem, Holger Schwenk, and Jeff
Wang. 2022. No language left behind: Scal-
ing human-centered machine translation. Preprint,
arXiv:2207.04672.

Universal Dependencies. 2024. Universal dependencies.
Accessed: 2024-05-10.

A Appendix

10

Table 8: Overview of models

Model
Name

Training Set Validation
Set

GPU Training Time

OpenLID lid201 and gold-
train

* NVIDIA A100 65 minutes and
6 seconds

OpenLID lid201 and gold-
train short

* NVIDIA A100 66 minutes and
7 seconds

OpenLID lid201, gold-
train, silver-
train short

* NVIDIA A100 65 minutes and
4 seconds

OpenLID lid201, gold-
train, silver-
train

* NVIDIA A100 65 minutes and
6 seconds

mbert-gold gold_train gold_dev NVIDIA
GeForce RTX
3090

16 minutes 41
seconds

mbert-gold-
short

gold_train_short gold_dev_short NVIDIA
GeForce RTX
3090

3 minutes 10
seconds

xlm-r-gold gold_train gold_dev NVIDIA
GeForce RTX
3090

15 minutes 14
seconds

xlm-r-gold-
short

gold_train_short gold_dev_short NVIDIA
GeForce RTX
3090

3 minutes 26
seconds

OpenLID_xlm-
roberta-
base_gold_short

gold_short gold_dev NVIDIA A100 5 minutes 35
seconds

OpenLID_xlm-
roberta-
base_gold

gold gold_dev NVIDIA A100 5 minutes 1 sec-
ond

OpenLID_xlm-
roberta-
base_gold_silver_short

gold_silver_short gold_dev NVIDIA A100 7 minutes 1 sec-
ond

OpenLID_xlm-
roberta-
base_gold_silver

gold_silver gold_dev NVIDIA A100 60 minutes 35
seconds

11

Table 9: Model Hyperparameters

OpenLID mbert-gold OpenLID_xlm-
r_gold_short

Learning Rate 0.8 5e-5 0.00001
Batch Size - 16 16
Epochs 2 3 5
Optimizer/Loss Softmax AdamW AdamW
Scheduler - Linear Linear
Warm-up Steps - 0 500
Scheduler Training Steps - 8715 (all steps) -
Embedding Dimension 256 - -
Min Word Occurrences 1000 - -
Char N-grams 2-5 - -
Word N-grams 1 - -
Bucket Size 1,000,000 - -
Threads 68 - -

Table 10: Misclassified Sentences Statistics for Evalua-
tion on test.jsonl

Model Total
Records

Valid Records Wrong Language Ambiguous

Mean Length Total Count Mean Length Total Count

mbert-
gold

211 186 6.07 127 6.81 59

OpenLID
(Gold
short)

423 406 8.36 354 4.10 51

OpenLID
xlm-
r_gold_short

432 417 8.51 197 8.46 220

Note: Valid records are sentences where the label is
correct for the given sentence. Invalid records are sen-
tences where the label does not correspond to the actual
language of the sentence.

12

Optimizing the Performance and Reducing Complexity of Simple Neural
Classifiers for Scandinavian Language Identification

Magnus Jørgenvåg
magnjorg@uio.no

Abstract

In practice, it is beneficial for language identi-
fication models to have fast inference and low
complexity to speed up data collection. Nev-
ertheless, current low-complexity models fail
when it comes to classifying languages that are
closely related to each other, like Norwegian,
Danish, and Swedish. Fine-tuning a Trans-
former model may lead to a significant im-
provement in performance, but at the expense
of longer inference times and increased com-
plexity. In this report, we explore techniques to
shrink the performance gap between complex
Transformer models and simpler neural classi-
fiers in Scandinavian language identification.
Our best-performing approach shows that the
performance of simple neural classifiers can
be improved by distilling knowledge from a
BERT-like teacher model. By distilling knowl-
edge from a fine-tuned Scandi-NLI to a BiGRU
model, we can improve F1-score from 0.930 to
0.950 on our validation set, while obtaining a
model size that is roughly one-seventh of the
best-performing baseline.

1 Introduction

In the context of the recent innovations in
Language Technology, a misconception is that
language identification (LID) is a simple task.
This is true in many cases where the languages
considered are largely different from each other,
which can be efficiently solved with simple
machine-learning techniques. This is the case for
successful models like fastText (Joulin et al., 2016)
and NLLB (Joakim Nivre and Tyers, 2017), which
are all trained on a large set of different languages.

However, this problem becomes more complex
when considering similar languages, like Norwe-
gian, Swedish, and Danish. Such languages have
many overlapping features in terms of grammar,
vocabulary, and syntax which could be difficult
for automated systems to distinguish. Moreover,

many of today’s methods are too generalized to
recognize more intricate relationships between
linguistically similar languages.

To address this issue, researchers have been
able to improve accuracy in more complicated
language identification problems by fine-tuning
Transformer-based models (Tonja et al., 2022).
Even though these methods can achieve state-of-
the-art performance in these tasks, the challenge
of long inference time and high model complexity
remains. These limitations result in these models
being useless for most practical applications where
a language is required to be identified quickly.

To bridge the gap between poor performance and
high complexity, we explore three methods of im-
proving the performance of simple neural classi-
fiers in Scandinavian LID 1: fine-tuning, data aug-
mentation and knowledge distillation. Our first
approach involves fine-tuning a simple neural clas-
sifier on a small Scandinavian dataset. For this task,
we consider the fastText model, which provides ef-
ficient classification of 294 languages (Joulin et al.,
2016). Secondly, we investigate if performance can
be improved by increasing the size and variability
of our training set by training a BiGRU. Lastly, we
fine-tune Scandi-NLI, a BERT-based model, which
achieves state-of-the-art performance in this field.
Furthermore, we implement a technique to distill
knowledge from this model to a simple one-layer
BiGRU.

1The written languages considered are Norwegian Bokmål,
Norwegian Nynorsk, Danish and Swedish

113

2 Related work

2.1 Language identification

The earliest work formulating the LID task as a
statistical problem was in 1965 by (Mustonen,
1965), who applied discriminant analysis to
distinguish languages like English, Swedish
and Finnish by a word-level. This was done
by defining a list of character-based features
typical for a particular language while computing
the compatibility through a set of if-statements
(Jauhiainen et al., 2018).

In the 70s, the first known machine-learning
approaches were applied to language identification
by (Nakamura, 1971) and (M. D, 1974). These
initial methods were mainly based on occurance
rates of characters and words in each language,
by applying character Bigrams and later Bayesian
models (Jauhiainen et al., 2018). Compared to
the early rule-based methods, machine learning
techniques introduced the advantage of not having
to define the linguistic nuances of each language,
which is a tedious process even for experts.

In earlier work, this problem is mostly approached
by simple neural classifiers. The fastText model
(Joulin et al., 2016) from Facebook’s AI research
group has been proven to be effective for a wide
range of language identification tasks, despite only
being composed of a single hidden layer with
N-gram features as input. Additionally, several ex-
tensions like OpenLID (Burchell et al., 2023) and
No Language Left Behind (NLLB) (Joakim Nivre
and Tyers, 2017) have been developed to improve
accuracy and address low variability in language
data (201 languages for OpenLID). These models
benefit by performing well on a wide range of
languages, despite having low complexity and
inference time. Nevertheless, as there is large
variability between the languages in the training
data, the model tends to ignore high-level features
that are viable when distinguishing highly similar
languages.

Recently, researchers have experimented with
fine-tuning Transformer models containing cross-
lingual dependencies for LID, like XLM-RoBERTa
(Conneau et al., 2019) and BERT-multilingual
(Devlin et al., 2018a). These methods have
increased the performance in more complex LID
tasks like spoken language identification (Nie et al.,

2022) and offensive language identification (Alavi
et al., 2021). Despite this, the long inference time
and large size of BERT-like models make them
impractical in real-world applications that requires
high speed.

2.2 Knowledge distillation
The concept of knowledge distillation was first
introduced by (Hinton et al., 2015) in 2015 where
they established a technique of compressing
knowledge from a more complex teacher model
to a simpler student model. There are several
variations of this method, where some methods
infer knowledge between intermediate layers
(Romero et al., 2015), while others explore
the relationship between feature maps (Yim
et al., 2017). The vanilla approach is known as
response-based knowledge distillation, where
knowledge is distilled from the last output layer.
In particular, this is done by minimizing the soft
logits between the student and teacher during
training (Gou et al., 2021).

Recently, researchers have applied this method
in the context of BERT models. A successful
example is provided in the DistilBERT paper
(Sanh et al., 2020), where they were able to
reduce the size of the model by 40% and increase
inference by 60% by applying a technique called
self-distillation. Furthermore, (Tang et al., 2019)
proved that a single-layer BiLSTM could achieve
comparable performance to a BERT model by
applying the response-based technique. Moreover,
they were able to reduce the number of parameters
by 99%, while achieving 15-times faster inference.

3 Data

3.1 Comparing the Scandinavian languages
Scandinavian LID is a more difficult task due to the
similarities between the four written languages. For
instance, the languages share similar grammatical
structures, having the Subject-Verb-Object word
order and similar systems of gender (gun, 2024).
Moreover, they have a high overlap in vocabulary,
which makes them mutually intelligible to varying
extents.

214

Moreover, Norwegian Bokmål, Norwegian
Nynorsk, and Danish have highly similar orthogra-
phy, while sharing the same writing system. Thus,
several words are spelled identically between
the languages, like the word “konge” (king) and
“skole” (school). Due to this, some sentences
might coincide like these:

• Jeg er glad (I am happy)

• Det er kaldt (It is cold)

• Vi ser deg (We see you)

Hence, it is more difficult to separate these
languages, as some sentences would only differ
by small differences in spelling or by combining
words that can not be done in the other languages.

On the other hand, Swedish has a higher propor-
tion of unique words compared to the other Scan-
dinavian languages, while words are often spelled
differently. For example, the word for “river” is
spelled like “älv” in Swedish, while it is spelled
like “elv” in the other three languages. Further-
more, the Swedish written language has the vowels
“ä” and “ö” that not used in the other Scandinavian
languages. Thus, despite sharing many similarities
with the other Scandinavian languages, Swedish is
easier to separate due to these qualities.

3.2 The UD dataset

The models presented in this paper are trained on
the treebanks provided by Universal Dependencies
(Nivre et al., 2017), which are gathered from
news articles. In particular, we use all data from
no_bokmaal (Norwegian Bokmål), no_nynorsk
(Norwegian Nynorsk), da_ddt (Danish) and
sv_talbanken (Swedish). In addition, we include a
label called ’other’, which includes data randomly
sampled from the other treebanks.

Furthermore, our evaluation set is sampled
from the test splits of the UD treebanks, where
additional labels are included if a sentence can
belong to multiple languages. For this project, a
prediction is defined to be correct if it shares a
label with the actual target. Considering this, the
number of sentences within each language and
split can be seen in Table 1

The data in Section 4.4 and Section 4.3 are prepared
with subword-tokenization using the BertTokenizer

Language Train Valid Eval
Bokmål 15,435 2392 1939
Danish 4376 563 565
Nynorsk 14,029 1859 1511
Swedish 4278 503 1219
Other 8805 1165 1742
Sum 46,923 6482 6976

Table 1: Distribution of sentences within each language
in our dataset

provided by Huggingface’s transformer library
(Wolf et al., 2019). Based on an analysis of the
distribution of the input lengths after tokenization,
we choose a maximum input length of 95 for our
models, as it covers 99.5% of all sentences in
the training set. Furthermore, we did not include
sequence length in our hyperparameter search, as
we aim to keep the complexity of our models to a
minimum.

3.3 The XL-UD dataset
An issue with the above dataset is that it is
relatively small. Thus, we construct a dataset that
we call the XL-UD dataset where data is sampled
from both the UD dataset and OpenLID dataset
(Burchell et al., 2023).

Firstly, the dataset presented in Section 3.2 is
extended by translating all sentences into the
opposite languages using a reliable machine
translation model. This is done to prevent bias
towards a certain language based on certain
topics. To ensure a balanced dataset, 10000
additional sentences are collected from the Papluca
LID dataset (Papariello, 2022) to increase the
proportion of non-Scandinavian languages.

Moreover, we include the Scandinavian portions
of the OpenLID dataset (Burchell et al., 2023),
which accounts for 3,973,481 sentences in total. In
addition to this, we include 1,000,000 sentences
randomly sampled from other languages to account
for non-Scandinavian languages. Moreover,
the number of sentences distributed over each
language and dataset split can be seen in Table 2.

315

Language Train
Bokmål 1,113,120
Danish 1,264,301
Nynorsk 491,345
Swedish 1,258,499
Other 1,018,806
Sum 5,146,071

Table 2: Distribution of sentences within each language
in the XL-UD dataset

4 Experimental setup

4.1 Baseline models
We establish a set of baselines that will provide a
point of reference to the other models, which will
be the original fastText (Joulin et al., 2016), NLLB
(Joakim Nivre and Tyers, 2017) and OpenLID
(Burchell et al., 2023) models. In addition, the
results are compared with a random identifier,
where a label is chosen at random. By utilizing
facebook’s fastText library in Python (Mikolov
et al., 2018), we run inference on all samples on
the validation and evaluation sets, while measuring
performance metrics like accuracy, precision,
recall, F1-score and Matthews’ correlation
coefficient (Chicco et al., 2021).

4.2 Fine-tuning a fastText model
In our first experiment, we explore whether the
performance of simple neural classifiers in Scandi-
navian LID can improve by fine-tuning a baseline.
In particular, we fine-tune the fastText model on
the UD dataset from Section 3.2 and evaluate its
performance against the baselines. To ensure op-
timal performance, we conduct a hyperparameter
search of the most vital hyperparameters using the
following grid:

• Learning rate: [0.01, 0.1, 0.5]

• Number of epochs: [5, 10, 25, 50]

• Word N-grams: [1, 2, 3]

After conducting the search, the best-performing
hyperparameters are at learning_rate = 0.1,
epochs = 50 and word_ngrams = 2 2. More-
over, the model had a total training time of 29.59
seconds, while containing 44,363,400 parameters.

2The full results of the search can be seen in Appendix A.1

val_loss acc. lr w_decay
0.1321 0.9753 1.325e-05 0.2390
0.1342 0.9754 2.421e-05 0.2932
0.1344 0.9703 9.214e-06 0.2038
0.1429 0.9721 8.931e-06 0.1739
0.1493 0.9692 4.921e-05 0.1631
0.1502 0.9732 4.992e-05 0.1409
0.1504 0.9661 7.948e-06 0.1294
0.1720 0.9710 5.392e-06 0.0385

Table 3: The results on validation loss (val_loss)
population-based training on the Scandi-NLI on accu-
racy (acc.), learning rate(lr) and weight decay (w_decay)

4.3 Fine-tuning a BERT-model

Furthermore, we fine-tune a BERT model for the
same task on the UD dataset. This will serve
as the teacher model in Section 4.5, as well
as another baseline comparison to our simple
neural classifiers. For this task, it is beneficial
to choose a model that already contains cross-
lingual dependencies in the Scandinavian written
languages. Keeping this in mind, we choose to
fine-tune the Scandi-NLI model (Institute, 2022),
which achieves state-of-the-art performance in
Norwegian, Swedish, and Danish.

To ensure the optimal selection of hyperparameters,
we use the Ray library in Python (Moritz et al.,
2017) to implement population-based training.
Differently from regular grid search, population-
based training exploits information from previous
runs to find the best-performing hyperparameters
during the search. In our search, we explore
different learning rates (ranging between 5e − 6
to 5e − 5) and values of weight decay (from 0 to
0.3) over 3 epochs and 9 trials. The search took
14.27 hours in total, with the best-performing
hyperparameters achieving minimal validation loss
at lr = 1.325e − 05 and weight_decay = 0.239.
The full results of the hyperparameter search can
be seen in Table 3.

The model was trained on the UD dataset by
utilizing the Trainer class from the Huggingface
library (Wolf et al., 2019) while using the Adam
optimizer and cross-entropy loss function. Fur-
thermore, we train the model for 6 epochs while
saving checkpoints and evaluating every epoch.
The minimum validation loss ended up being at
epoch = 1 with total training time taking 7.3

416

Model Accuracy Precision Recall F1 MCC Inference
val. eval. val. eval. val. eval. val. eval. val. eval. val. eval.

Random 0.205 0.211 0.206 0.210 0.200 0.213 0.186 0.204 0.007 0.012 0.01s 0.01s
fastText 0.730 0.796 0.743 0.801 0.813 0.806 0.742 0.776 0.657 0.747 0.20s 0.23s
NLLB 0.931 0.944 0.918 0.937 0.947 0.946 0.930 0.941 0.907 0.928 0.64s 0.67s
OpenLID 0.918 0.935 0.906 0.924 0.931 0.937 0.918 0.930 0.889 0.917 0.62s 0.65s
S-NLI 0.976 0.988 0.982 0.988 0.978 0.987 0.980 0.988 0.967 0.984 151s 164s
GRU 0.934 0.939 0.936 0.936 0.937 0.940 0.936 0.938 0.910 0.922 0.12s 0.14s
FT-Tuned 0.946 0.946 0.949 0.947 0.947 0.947 0.948 0.948 0.927 0.936 0.52s 0.52s
XL-GRU 0.892 0.910 0.885 0.900 0.898 0.906 0.891 0.902 0.854 0.884 0.13s 0.14s
D-GRU 0.946 0.949 0.958 0.948 0.943 0.945 0.950 0.946 0.926 0.934 0.12s 0.13s

Table 4: Accuracy, precision (macro), recall (macro), F1-score (macro) and Matthews Correlation Coefficient (MCC)
computed on the validation and evaluation set. The models are a random identifier, fastText, NLLB, OpenLID,
Scandi-NLI, GRU, XL-GRU and Distil-GRU in that order. Bold values represent the best-performing score of the
FT-Tuned, XL-GRU, and Distil-GRU models

hours on an NVIDIA RTX A2000 8GB GPU for
all epochs. Moreover, total number of parameters
for the Scandi-NLI model is 354M.

4.4 GRU

We train a simple BiGRU model, which is imple-
mented in Pytorch library (Paszke et al., 2019).
Firstly, the input is encoded with BERT’s tokenizer
(Devlin et al., 2018b), in which words are split into
subword tokens. The model architecture consists
of a single embedding layer of dimension 128
together with a bi-directional GRU module, which
is restricted to a single layer to limit the complexity
of our model. Lastly, we include a linear layer
that maps to a probability distribution over the 5
labels, which results in a model having 6,665,477
parameters. To explore how data augmentation
influences performance, we train a model on the
UD dataset (LSTM) and another on the XL-UD
dataset (XL-LSTM).

The parameters are chosen based on experimen-
tation, previous experiences, and a grid search.
The GRU architecture was chosen, as it normally
achieved the best results on the validation set across
different hyperparameter settings compared to the
LSTM. To stabilize training and avoid overfitting,
we include Pytorch’s layer normalization and expo-
nential learning rate scheduler (Paszke et al., 2019),
where gamma = 0.9. Otherwise, we perform a
grid search on learning rate (LR) and weight decay
with the following hyperparameter settings3:

3The grid search is only performed on the UD dataset

• LR: [1e-1, 6e-2, 1e-2, 6e-3, 1e-3, 6e-4, 1e-4]

• Weight decay: [0, 1e-5, 1e-4, 1e-3, 1e-2]

Moreover, we choose the best performing hyperpa-
rameters from the search, which is at a learning
rate of 6e − 3 and a weight decay of 1e − 4,
achieving a minimum validation loss of 0.1563 4.

The models are trained on the same NVIDIA GPU
as in Section 4.3 with the Adam optimizer together
with the cross-entropy loss function from Pytorch
(Paszke et al., 2019). We also introduce early stop-
ping if validation loss does not decrease over 5
epochs. The regular LSTM stopped training after 7
epochs which took a total of 2.5 minutes, while the
XL-LSTM stopped training after 10 epochs, taking
a total of 9.1 hours.

4.5 Knowledge distillation

Lastly, we fine-tune a GRU model on the UD
dataset, while distilling knowledge from the Scandi-
NLI model fine-tuned in Section ??. In particular,
we apply response-based knowledge distillation to
align the predictions from the student and teacher
models. This is done by modifying the loss func-
tion like in 1.

L = α× LCE + (1− α)× Ldistill (1)

In the formula, LCE is the traditional cross-entropy
loss, which is computed in respect to the actual
labels. Furthermore, we compute the mean-squared
error between the student and teacher like in 2, with

4Please refer to Appendix A.2 for the full results

517

z(T) being the teacher’s soft logits and z(S) being
the student’s (Tang et al., 2019).

Ldistill = ||z(T) − z(S)||22 (2)

We reuse the same architecture and hyperparame-
ter settings as in Section 4.4. Furthermore, we set
α = 0.1, which makes the teacher’s logits more
influential than the actual labels. The model train-
ing stopped at epoch = 13, which took 27.3 hours
due to the long inference time of the Scandi-NLI
model.

5 Results

5.1 Performance metrics
After training the models as specified in Section
4, we evaluate the models on accuracy, precision,
recall, F1-score, and Matthew’s correlation
coefficient (MCC). The results after computing
these metrics on both the validation set and
evaluation set can be seen in Table 4.

As shown in the first four rows of the table,
our baseline models score differently across the
evaluation metrics. As expected, the random
identifier performs relatively poorly on all metrics,
while the fastText model is the second-worst
performing model, achieving a F1-score of 0.776
and an accuracy of 0.796 on the evaluation set.
Moreover, the NLLB model performs the best
across the baselines, obtaining slightly better
scores than OpenLID.

Moreover, the next two rows visualize the perfor-
mance of the Scandi-NLI model (S-NLI) and the
regular GRU model. As expected, Scandi-NLI
achieves the best scores across all metrics out
of all models, while obtaining an evaluation
F1-score of 0.988. Nevertheless, the inference
times over the datasets are 151 and 164 seconds
for the validation and evaluation sets respectively,
making this approach largely inefficient. Moreover,
the performance of the standard GRU model is
comparable to the NLLB model, performing better
on the validation set among all metrics except
recall, while slightly worse on the evaluation set.

Furthermore, we evaluate the fastText-tuned
(FT-tuned) model, XL-GRU and Distil-GRU
(D-GRU) on the same metrics, which can be seen
in the three lasts row of Table 4. The results
show that both the fastText-tuned model and

Figure 1: Confusion matrix of the regular GRU, XL-
GRU and Distil-GRU calculated on our test set

Distil-GRU can achieve higher evaluation scores
than all baselines except the teacher. The model
performing the best among the fastText-tuned
and Distil-GRU models depends on the metric,

618

with the Distil-LSTM model performing the
best in terms of accuracy and precision, and the
fastText-tuned model scoring the best scores in
recall and MCC. Additionally, the Distil-GRU
score is higher than the standard GRU on all
metrics, thus proving the effectiveness of our
knowledge distillation technique in shrinking the
performance gap between Transformer models and
simpler neural classifiers. At the other end, the
XL-GRU model achieves worse scores than the
NLLB and OpenLID baselines, which may be due
to the choice of validation and evaluation sets, as
discussed in Section 6.

5.2 Confusion matrix
Moreover, we discuss how our GRU models com-
pare per language through confusion matrices in
Figure 1. Analyzing these figures reveals several
interesting insights:

• The Distil-GRU model has the most accurate
predictions among most languages, followed
by the standard GRU model.

• Interestingly, Swedish is the only language
where the standard GRU model (macro F1-
score of 0.976) performs better than the Distil-
GRU (macro F1-score of 0.975).

• Among all models, Swedish achieves the high-
est per-class F1 scores 5. This is also expected,
as the Swedish alphabet has characters that are
not used in the three other written languages.

• For the XL-GRU, a common mistake is to
predict a sentence in Norwegian Nynorsk as
Norwegian Bokmål (128 of 1474). Although
less prominent, this is also a common mistake
for the Distil-GRU and GRU models.

• Danish achieves the lowest per-class F1 scores
among all languages6. This may be related
to the number of Danish samples being more
limited than other languages in the training
data.

50.976, 0.975 and 9.960 for the GRU, Distil-GRU and
XL-GRU respectively

60.912, 0.920 and 0.831 for the GRU, Distil-GRU, and
XL-GRU respectively

6 Discussion and future work

Our results are promising, and shows that both
fine-tuning and knowledge distillation are effective
approaches to improve the performance of
simple neural classifiers for LID of Scandinavian
languages.

Nevertheless, the results of the Distil-GRU are
arguably more remarkable, as model complexity
is significantly reduced. This is because the size
of our GRU architecture is roughly a seventh of
the fastText model (6,665,477 vs. 44,363,400
parameters), while inference time is only around
a fourth (0.13 vs. 0.52 seconds on the evaluation
set). Thus, the Distil-GRU is the most successful
in our task, as it boosts performance while limiting
model complexity. Despite significantly smaller
model sizes, the Distil-GRU model can achieve
performance scores closer to a Transformer model
than previous. Thus, we show that it is possible to
boost the performance of simple neural classifiers
for Scandinavian LID without compromising
model complexity.

There are various directions to go in future work to
further shrink the gap between Transformer mod-
els and simpler neural classifiers. For instance, we
may include more diverse data in the validation and
evaluation sets from more sources than only news
articles. By doing this, we may obtain more reli-
able results for the XL-GRU model, where metric
scores are likely impacted by a high bias toward the
news article language. Other ways to improve per-
formance could be to explore other knowledge dis-
tillation approaches, like feature-based or relation-
based knowledge distillation, which may benefit
from including context from the teacher’s interme-
diate layers (Gou et al., 2021). Moreover, a more
extensive hyperparameter search including a larger
range of settings would be beneficial. For instance,
it would be helpful to include the alpha and temper-
ature parameters in the search, which may improve
knowledge distillation.

719

7 Conclusion

In this project, we showed that it is possible to
improve the performance of simple neural classi-
fiers for Scandinavian LID while reducing model
complexity. This was done by comparing three ap-
proaches: fine-tuning a fastText model, increasing
the size of the training set, and distilling knowl-
edge from a more complex Scandi-NLI model. By
doing this, we saw that our knowledge distillation
technique was the most successful, as we were able
to increase the F1-score from 0.930 to 0.950 on the
validation set while limiting model complexity by
roughly one-seventh. Thus, we show that it is not
necessary to rely on more complex models like the
Transformer to improve the performance of LID
between linguistically similar languages.

References
2024. Nordiske språk. Store norske leksikon. Accessed

on 26. May 2024 from https://snl.no/nordiskespr

Peyman Alavi, Pouria Nikvand, and Mehrnoush Shams-
fard. 2021. Offensive language detection with bert-
based models, by customizing attention probabilities.
Preprint, arXiv:2110.05133.

Laurie Burchell, Alexandra Birch, Nikolay Bogoychev,
and Kenneth Heafield. 2023. An open dataset and model
for language identification. In Proceedings of the 61st
Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pages 865–879,
Toronto, Canada. Association for Computational Lin-
guistics.

Davide Chicco, Niklas Tötsch, and Giuseppe Jurman. 2021.
The matthews correlation coefficient (mcc) is more reli-
able than balanced accuracy, bookmaker informedness,
and markedness in two-class confusion matrix evalua-
tion. BioData Mining, 14(1):13.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2019. Unsupervised
cross-lingual representation learning at scale. CoRR,
abs/1911.02116.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. 2018a. BERT: pre-training of deep bidirec-
tional transformers for language understanding. CoRR,
abs/1810.04805.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. 2018b. BERT: pre-training of deep bidirec-
tional transformers for language understanding. CoRR,
abs/1810.04805.

Jianping Gou, Baosheng Yu, Stephen J. Maybank, and
Dacheng Tao. 2021. Knowledge distillation: A

survey. International Journal of Computer Vision,
129(6):1789–1819.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015. Dis-
tilling the knowledge in a neural network. Preprint,
arXiv:1503.02531.

Alexandra Institute. 2022. Scandinli - natural
language inference model for scandinavian lan-
guages. https://huggingface.co/alexandrainst/scandi-
nli-large. Accessed: 2024-05-05.

Tommi Jauhiainen, Marco Lui, Marcos Zampieri, Tim-
othy Baldwin, and Krister Lindén. 2018. Automatic
language identification in texts: A survey. CoRR,
abs/1804.08186.

Filip Ginter Joakim Nivre, Daniel Zeman and Francis Ty-
ers. 2017. Universal dependencies.

Armand Joulin, Edouard Grave, Piotr Bojanowski, and
Tomas Mikolov. 2016. Bag of tricks for efficient text
classification. Preprint, arXiv:1607.01759.

Rau M. D. 1974. Language identification by statistical
analysis,. Naval Postgraduate School.

Tomas Mikolov, Edouard Grave, Piotr Bojanowski, Chris-
tian Puhrsch, and Armand Joulin. 2018. Advances in
pre-training distributed word representations. In Pro-
ceedings of the International Conference on Language
Resources and Evaluation (LREC 2018).

Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey
Tumanov, Richard Liaw, Eric Liang, William Paul,
Michael I. Jordan, and Ion Stoica. 2017. Ray: A
distributed framework for emerging AI applications.
CoRR, abs/1712.05889.

S. Mustonen. 1965. Multiple discriminant analysis in lin-
guistic problems. page 37–44. Statistical Methods in
Linguistics.

Y. Nakamura. 1971. Identification of languages with short
sample texts – a linguometric study. page 459–481.
Library and information science.

Yuting Nie, Junhong Zhao, Wei-Qiang Zhang, and Jinfeng
Bai. 2022. Bert-lid: Leveraging bert to improve spoken
language identification. Preprint, arXiv:2203.00328.

Joakim Nivre, Daniel Zeman, Filip Ginter, and Francis
Tyers. 2017. Universal Dependencies. In Proceedings
of the 15th Conference of the European Chapter of the
Association for Computational Linguistics: Tutorial Ab-
stracts, Valencia, Spain. Association for Computational
Linguistics.

Luca Papariello. 2022. The papluca language identifica-
tion dataset. https://huggingface.co/papluca. Accessed:
2024-05-05.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zem-
ing Lin, Natalia Gimelshein, Luca Antiga, Alban Des-
maison, Andreas Köpf, Edward Z. Yang, Zach De-
Vito, Martin Raison, Alykhan Tejani, Sasank Chil-
amkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and

820

Soumith Chintala. 2019. Pytorch: An imperative
style, high-performance deep learning library. CoRR,
abs/1912.01703.

Julio Ariel Romero, Roberto Sanchis, and Elena Arrebola.
2015. Experimental study of event based pid controllers
with different sampling strategies. application to brush-
less dc motor networked control system. In 2015 XXV
international conference on information, communica-
tion and automation technologies (ICAT), pages 1–6.
IEEE.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2020. Distilbert, a distilled version of
bert: smaller, faster, cheaper and lighter. Preprint,
arXiv:1910.01108.

Raphael Tang, Yao Lu, Linqing Liu, Lili Mou, Olga Vech-
tomova, and Jimmy Lin. 2019. Distilling task-specific
knowledge from BERT into simple neural networks.
CoRR, abs/1903.12136.

Atnafu Lambebo Tonja, Mesay Gemeda Yigezu, Olga
Kolesnikova, Moein Shahiki Tash, Grigori Sidorov, and
Alexander Gelbuk. 2022. Transformer-based model
for word level language identification in code-mixed
kannada-english texts. Preprint, arXiv:2211.14459.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
and Jamie Brew. 2019. Huggingface’s transformers:
State-of-the-art natural language processing. CoRR,
abs/1910.03771.

Junho Yim, Donggyu Joo, Jihoon Bae, and Junmo Kim.
2017. A gift from knowledge distillation: Fast optimiza-
tion, network minimization and transfer learning. In
2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 7130–7138.

21

A Appendix

A.1 Hyperparameter search - fastText

Accuracy lr epochs word_ngrams
0.9462 0.1 50 1
0.9461 0.1 50 2
0.9456 0.5 50 3
0.9454 0.1 50 3
0.9454 0.5 25 1
0.9451 0.5 10 1
0.9449 0.5 25 2
0.9448 0.5 10 3
0.9448 0.5 25 3
0.9448 0.5 50 2
0.9447 0.1 25 1
0.9445 0.5 50 1
0.9442 0.5 5 3
0.9434 0.1 25 2
0.9431 0.5 5 1
0.9428 0.1 25 3
0.9426 0.5 5 2
0.9417 0.5 10 2
0.9402 0.1 10 1
0.9391 0.1 10 2
0.9383 0.1 10 3
0.9305 0.01 50 1
0.9297 0.1 5 1
0.9285 0.1 5 2
0.9282 0.01 50 2
0.9269 0.01 50 3
0.9266 0.1 5 3
0.8624 0.01 25 1
0.8526 0.01 25 2
0.8438 0.01 25 3
0.4858 0.01 10 1
0.4653 0.01 10 2
0.4519 0.01 10 3
0.3721 0.01 5 1
0.3721 0.01 5 2
0.3721 0.01 5 3

A.2 Hyperparameter search - GRU

val_loss acc. epoch lr w_decay
0.1563 0.9416 3 0.006 0.0001
0.1581 0.9415 3 0.01 0.0001
0.1669 0.9418 3 0.006 1e-05
0.1719 0.9356 3 0.01 0.001
0.1731 0.9413 4 0.006 0.0001
0.1748 0.9415 5 0.006 0.0001
0.1750 0.9415 6 0.006 0.0001
0.1750 0.9415 7 0.006 0.0001
0.1750 0.9415 8 0.006 0.0001
0.1750 0.9415 9 0.006 0.0001

...
1.4466 0.3718 19 0.1 0.01
1.4466 0.3718 20 0.1 0.01
1.4466 0.3718 21 0.1 0.01
1.4618 0.3672 2 0.06 0
1.4802 0.3819 2 0.06 1e-05
1.4891 0.3718 2 0.1 0.01
1.5292 0.3917 2 0.1 1e-05
1.5657 0.3636 2 0.1 0.0001
1.6553 0.3190 2 0.1 0
1.7018 0.2775 2 0.06 0.0001

822

Fine-Tuning Language Identification Models for Scandinavian Languages:
Insights and Comparisons

Arezo Shakeri
arezo.shakeri@uis.no

Abstract
Language identification forms the cornerstone
of preprocessing in the analysis of large text
corpora. Unfortunately, existing identification
systems exhibit shortcomings, particularly in
distinguishing between closely related Scandi-
navian languages. In this paper, we address
the aforementioned challenge, focusing on the
Scandinavian languages: Danish, Norwegian
Bokmål and Norwegian Nynorsk, and Swedish.
These languages, due to their close linguistic
ties, present a unique challenge in language
identification. In our study, we assessed six
baseline models alongside a transfer-learning
approach. We computed two versions of met-
rics, namely loose and strict. Among the base-
line models, NLLB emerged as the top per-
former, achieving a strict accuracy of 91.71 and
a loose accuracy of 94.41. However, our pro-
posed transfer-learning method, utilizing the
XLM-RoBERTa-base model, demonstrated im-
proved performance metrics at the expense of
runtime.

1 Introduction

Language identification, along with its associated
encoding identification task, serves as an essential
initial phase in numerous natural language process-
ing endeavors (Brown, 2013). The challenge of
distinguishing between closely related languages
represents a significant obstacle for contemporary
state-of-the-art language identification systems, de-
spite recent efforts to expand their discriminatory
capacity across a broader spectrum of languages
(Zampieri et al., 2014).

Language identification serves as a fundamental
preprocessing step for extensive textual datasets.
For example, when training a Swedish language
model, the training data is labeled as ’Swedish’,
and similarly, a Nynorsk machine translation model
learns to generate text classified as ’Nynorsk’. Con-
sequently, the efficacy of these models is con-
strained by the precision of a basic language identi-

fication tool employed in constructing the training
corpus.

The current language identification models strug-
gle to effectively differentiate among the Scandina-
vian languages. The aim of this paper is to assess
the performance of the transfer learning approach
utilizing the XLM-Roberta model for Scandina-
vian language identification and to evaluate the
impact of incorporating synthetic data generated
using a machine-translation tool. This work cen-
ters on the Scandinavian languages, particularly
Danish, Norwegian Bokmål, Norwegian Nynorsk,
and Swedish, due to their close linguistic relation-
ship, presenting an intriguing challenge in language
identification. Additionally, it incorporates a classi-
fication category "other" for languages outside of
the mentioned languages. We assess six baseline
methods, described in Section 4 and further apply
a transfer-learning approach based on gold train-
ing/validation data from Universal Dependencies
treebanks (Nivre et al., 2017) and a collection of
machine-translated versions of gold data to gener-
ate a silver training dataset.

Finally, we evaluated both the baseline and fine-
tuned models on the held-out manually-annotated
test set called "Manually Filtered Evaluation
Dataset " from the UD treebanks for each of the in-
cluded languages, with the incorporation of supple-
mentary labels where sentences exhibited potential
belonging to multiple languages.

2 Related Work

Recent research has delved into the challenge of
distinguishing between similar languages. The pa-
per by (Zampieri et al., 2015) presents the results
of the second edition of the discriminating between
dimilar languages shared task. The dataset uti-
lized in this study covered 14 languages, including
an "other" category for languages that the model
was not trained on. Two different test sets were

23

used in the evaluation. The best-performing model
achieved an average accuracy of 95.54% on the
original text set and 94.01% on the test set with
named entities replaced by placeholders. Partic-
ipants in this shared task employed a variety of
classifiers and features, such as Support Vector
Machine and Term Frequency-Inverse Document
Frequency.

The study carried out by (Haas and Derczyn-
ski, 2020) utilized a machine learning approach
for automatic language identification among six
Nordic languages: Danish, Swedish, Norwegian
(Nynorsk), Norwegian (Bokmål), Faroese, and Ice-
landic. They developed the Nordic DSL (Distin-
guishing Similar Languages) dataset by compiling
summaries from Wikipedia articles in each lan-
guage. The study evaluated the performance of four
classical models: K-Nearest Neighbors, Logistic
Regression, Naive Bayes, and linear Support Vec-
tor Machine alongside two neural network archi-
tectures: Multilayer Perceptron and Convolutional
Neural Network. The two best-performing mod-
els, FastText supervised and Convolutional Neural
Network, showed decreased performance on off-
domain data. However, utilizing character n-grams
as features instead of words significantly improved
the performance of the FastText Supervised classi-
fier.

A state-of-the-art language identification sys-
tem, surpassing previous models, is introduced by
(Burchell et al., 2023a). This system achieves a
macro-average F1 score of 0.93 across 201 lan-
guages. A FastText language identification model
is developed that embeds character-level n-grams
from the input text, which are then used as input
to a multi-class linear classifier. This classifier was
trained on 121 million lines of data covering 201
language classes sourced from various platforms
such as news sites and Wikipedia.

3 Dataset

The dataset utilized in this study comprises five
main components, each tailored to address specific
challenges inherent in training and evaluating lan-
guage identification models. The figure 1 illustrates
the distribution of sentence counts per language
across the five datasets utilized in this study.

3.1 Gold Training Dataset

We utilize the gold training/validation data sourced
from Universal Dependencies treebanks (Nivre

Figure 1: Distribution of languages across datasets: Dan-
ish (da), Swedish (sv), Norwegian Nynorsk (nn), and
Norwegian Bokmål (nb).

et al., 2017). While this dataset is clean, it lacks
disambiguation. A sentence labeled as Nynorsk is
likely to be in Nynorsk, but it could also be a valid
Bokmål sentence.

3.2 Silver Training Dataset

Neural models have a tendency to utilize quick and
possibly simplistic strategies whenever they are ac-
cessible. However, this behavior could introduce
potential risks or drawbacks within the task at hand;
for instance, if Norwegian datasets predominantly
feature skiing-related texts and Swedish datasets
ice hockey-related ones, the model might wrongly
associate skiing-related sentences with Norwegian.
In response to this challenge, we developed a syn-
thetic training dataset termed "silver data," com-
prising machine-translated versions of all datasets
in other languages investigated in this study. Inte-
gration of the silver training data with the existing
gold training data yielded a balanced training cor-
pus. This amalgamation ensures equitable distribu-
tion of sentence counts and domain representation
across languages. However, it is important to note
that this approach may introduce unintended arti-
facts. Artifacts in this context refer to unintended
and potentially problematic elements introduced
during the machine translation process. Artifacts

24

can distort the original meaning of the text, intro-
duce inconsistencies, or create patterns that do not
naturally exist in the original language data. This
can be detrimental to training neural models as they
might learn from these artificial patterns rather than
genuine linguistic features, leading to poorer per-
formance or incorrect associations. One example
of an artifact introduced during machine translation
is the mistranslation of idiomatic expressions. For
instance, if the original text contains a phrase like
"kick the bucket," which is an English idiom mean-
ing "to die," the machine translation might translate
it literally into another language, resulting in a non-
sensical or incorrect translation. Figure 1 illustrates
that the gold training and validation datasets are un-
balanced towards Norwegian languages, having a
higher number of samples in these languages com-
pared to others. However, combining the silver and
gold training datasets resulted in a new, balanced
training dataset.

3.3 Manually Filtered Evaluation Dataset

The evaluation dataset is sourced from the test splits
of the UD treebanks for each language, annotated
with additional labels for sentences potentially be-
longing to multiple languages. For example, a
sentence like "Hvordan går det?" could be both
Bokmål and Danish, but not Nynorsk or Swedish.

4 Baselines

To establish a solid foundation for evaluating novel
methodologies, we present a comprehensive suite
of baseline methods in this study. These base-
lines serve as fundamental reference points against
which we compare the performance of our pro-
posed transfer-learning approaches.

The first baseline, OpenLID1 (Burchell et al.,
2023a), is a linear classifier built upon the FastText
model. The model consists of 60.5 million parame-
ters and achieves an inference time of 22.4 seconds
over 206,448 lines of the test set (Burchell et al.,
2023b).

The second and third baselines encompass the
original FastText 2 (Joulin et al., 2016b,a) model
and the updated NLLB language identifier3 (NLLB
Team et al., 2022). Subsequently, we examined the
langid 4 (Lui and Baldwin, 2011, 2012; Heafield

1https://github.com/laurieburchell/open-lid-dataset
2https://fasttext.cc/docs/en/language-identification.html
3https://github.com/facebookresearch/fairseq/tree/nllblid-

model
4https://github.com/saffsd/langid.py

et al., 2015), lingua 5, and langdetect 6 models as
additional baseline models.

5 Our proposed Transfer-learning
approach

In this section, we present two pre-trained mod-
els for language identification that we fine-tuned
specifically for Scandinavian language identifica-
tion.

5.1 XLM-RoBERTa-base

XLM-RoBERTa 7 (Conneau et al., 2019a), a mul-
tilingual iteration of RoBERTa, undergoes exten-
sive pretraining on a massive dataset comprising
2.5 TB of meticulously curated CommonCrawl
data spanning over 100 languages. Unlike con-
ventional supervised methods, RoBERTa adopts a
self-supervised approach, training on raw text data
without human annotations, leveraging publicly
available sources. Its pretraining process entails
generating input-output pairs from text through an
automatic process. Specifically, RoBERTa is pre-
trained using the masked language modeling objec-
tive, where a fraction (15%) of words in a sentence
are randomly masked, and the model predicts these
masked words when given the entire masked sen-
tence as input. This bidirectional approach allows
RoBERTa to develop comprehensive representa-
tions of sentences in over 100 languages, enabling
it to extract valuable features for diverse down-
stream tasks (Conneau et al., 2019b). The XLM-
RoBERTa-base has been utilized, comprising 12
hidden layers, 12 attention heads, and a hidden size
of 768. For both transfer-learning approaches, we
applied the XLMRobertaTokenizerFast tokenizer.
It is important to note that the Scandinavian lan-
guages examined in this study are among the 100
languages that the XLM-RoBERTa-base model is
trained on.

5.2 XLM-RoBERTa-base-language-detection

This model is a refined version of the XLM-
RoBERTa-base, specifically fine-tuned for lan-
guage identification tasks8. It utilizes the trans-
former architecture of XLM-RoBERTa, supple-
mented with a classification head on top. The train-

5https://pypi.org/project/lingua/
6https://github.com/Mimino666/langdetect
7https://huggingface.co/FacebookAI/

xlm-roberta-base
8https://huggingface.co/papluca/

xlm-roberta-base-language-detection

25

Models Loose Accu-
racy

Loose
macro F1

Strict Accu-
racy

Strict macro
F1

Runtime

NLLB 94.41 % 93.21 % 91.71 % 91.54 % CPU: 0.39
(sec)

OpenLID 93.51 % 92.39 % 90.54 % 90.48 % CPU: 0.51
(sec)

FastText 79.69 % 76.74 % 77.58 % 75.70 % CPU: 0.10
(sec)

LangID 67.33 % 66.92 % 66.50 % 66.59 % CPU: 10.06
(sec)

Lingua 91.71 % 91.17 % 88.72 % 89.26 % CPU: 2.65
(sec)

langdetect 64.09 % 57.59 % 61.84 % 57.16 % CPU: 25.60
(sec)

Table 1: Results of Scandinavian language identification using the six baseline approaches.

Models Loose Accu-
racy

Loose
macro F1

Strict Accu-
racy

Strict
macro F1

Runtime training
dataset

XLM-
RoBERTa-
base

97.6 % 97.4 % 94.1 % 91.4 % CPU: 93.41
(sec)

Only Gold
training
dataset

XLM-
RoBERTa-
base-
language-
detection

96.8 % 96.4 % 93.3 % 90.6 % CPU: 120.25
(sec)

Only Gold
training
dataset

XLM-
RoBERTa-
base

96.1 % 96.4 % 93.0 % 90.4 % CPU: 80.70
(sec)

Gold and sil-
ver training
dataset

XLM-
RoBERTa-
base-
language-
detection

96.6 % 96.3 % 93.1 % 90.6 % CPU: 92.50
(sec)

Gold and sil-
ver training
dataset

Table 2: Results of Scandinavian language identification using transfer-learning approaches.

26

Figure 2: Confusion matrices of the fine-tunned version of XLM-RoBERTa-base and XLM-RoBERTa-base-
language-detection based on the gold training dataset in five different categories: Danish (da), Swedish (sv),
Norwegian Nynorsk (nn), Norwegian Bokmål (nb) and other.

Figure 3: Confusion matrices of fine-tunned version of XLM-RoBERTa-base and XLM-RoBERTa-base-language-
detection based on combination of the gold and silver training datasets in five different categories: Danish (da),
Swedish (sv), Norwegian Nynorsk (nn), Norwegian Bokmål (nb) and other.

ing dataset comprises 70,000 samples, with both
validation and test sets containing 10,000 samples
each, spanning text sequences from 20 languages
(Luca Papariello, 2024). We opted for the XLM-
RoBERTa-base-language-detection model due to
its specialization in language identification tasks, in
contrast to the XLM-RoBERTa-base model, which
was initially designed as a masked language model.
However, it is worth noting that the Scandina-
vian languages investigated in this study were not
included in the languages covered by the XLM-
RoBERTa-base-language-detection model.

6 Results

In the upcoming section, we will present the results
obtained from our baseline approaches and transfer
learning models. These methods serve as bench-
marks against which we evaluate the performance
of our proposed transfer-learning approaches. In
our analysis, we computed two variations of accu-
racy and average macro F1 score, termed as strict
and loose.

6.1 Results based on baseline approaches

The outcomes derived from six baseline method-
ologies, encompassing the OpenLID, original
FastText, updated NLLB, LangID, Lingua, and

27

langdetect language identifier models, are outlined
through an evaluation conducted on the Manually
Filtered Evaluation Dataset, as illustrated in Ta-
ble 1. As depicted in Table 1, NLLB emerges as
the top-performing model across all four perfor-
mance metrics, although it ranks second in terms
of runtime. FastText emerges as the most computa-
tionally efficient model, albeit occupying the fourth
position in terms of performance. OpenLID and
Lingua closely compete in terms of performance,
securing the second and third positions, respec-
tively, with OpenLID demonstrating fivefold faster
processing. LangID and langdetect occupy the fifth
and sixth positions, respectively, in terms of per-
formance, with Lingua exhibiting almost twice the
speed. Considering both performance and runtime
aspects, NLLB emerges as the most favorable base-
line method.

6.2 Results based on transfer-learning
approach

We executed an assessment employing two distinct
training configurations to examine the influence
of the machine-translated Silver training dataset.
Initially, we solely trained the model utilizing the
gold training dataset and subsequently assessed its
performance on the Manually Filtered Evaluation
Dataset. In the second configuration, we amalga-
mated the silver and gold training datasets before
evaluating the model on the Manually Filtered Eval-
uation Dataset, where the concatenation of the gold
and silver training data result in a balanced dataset.
This evaluation comprised two iterations: firstly, by
fine-tuning the XLM-RoBERTa-base model, and
secondly, by fine-tuning the XLM-RoBERTa-base-
language-detection model. The latter model had
been previously fine-tuned for identifying 20 lan-
guages; we further fine-tuned it specifically for
Scandinavian language identification to leverage
its existing knowledge of the aforementioned 20
languages.

The outcomes of the transfer learning strategies
across all configurations are presented in Table
2. Upon comparing the results, it is evident that
fine-tuning the XLM-RoBERTa-base model solely
based on the gold training dataset surpasses other
scenarios. This observation may suggest that the
cross-lingual knowledge embedded in the XLM-
RoBERTa-base-language-detection model did not
contribute significantly to Scandinavian language
identification. This could be attributed to the fact
that this model is limited to supporting only 20

languages, none of which include Scandinavian
languages. Consequently, it may loose some of
the linguistic knowledge that the XLM-RoBERTa-
base model possesses regarding these languages.
Furthermore, it reflects the fact that fine-tuning a
base model yielded better results than fine-tuning a
model that has already been pre-trained on the same
task but in other languages. This finding might be
interesting because it contradicts the expectation
that a pre-trained model, already familiar with sim-
ilar tasks in other languages, would perform better
than a base model. Additionally, the introduction
of the machine-translated silver dataset did not im-
prove model performance; instead, it reduced the
runtime. In comparison between the baseline and
transfer-learning approaches, the XLM-RoBERTa-
base model achieves superior performance in terms
of both loose and strict versions of accuracy and
F1-score when compared to the baseline model.
However, concerning runtime, the baseline model,
NLLB operates approximately 240 times faster
than the fine-tuned model. Figures 2 and 3 depict
the confusion matrices of the four transfer learning
approaches in identifying Scandinavian languages.

Discussion

This study compares various transfer learning ap-
proaches with existing baseline models for identi-
fying Scandinavian languages. Two primary con-
siderations for the current Scandinavian language
identification task are model performance and com-
putational efficiency, specifically runtime. Given
that language identification serves as a fundamental
preprocessing step for large corpora, minimizing
computational resources is paramount.

Among the six baseline models evaluated on the
held-out test dataset, the NLLB model emerged
as the top performer. However, upon comparison
with the best-performing fine-tuned model, XLM-
RoBERTa-base trained solely on the gold training
dataset, we observed that while NLLB excelled in
runtime efficiency, the fine-tuned model improved
all four metrics: strict and loose accuracy, as well
as F1-score.

This study has several limitations. The models
were trained and evaluated on datasets that may
not fully capture the linguistic diversity and nu-
ances of Scandinavian languages. Additionally, the
computational resources required for fine-tuning
large models like XLM-Roberta can be prohibitive,
limiting accessibility for researchers with less com-

28

putational power.
Future research should explore several areas to

enhance Scandinavian language identification fur-
ther. One potential direction is to investigate the
use of Scandinavian models, such as NorBERT
(Samuel et al., 2023), ScandicBERT (Snæbjarnar-
son et al., 2023). Additionally, incorporating more
diverse datasets, including social media text and in-
formal language, could improve model robustness.

Conclusion

In conclusion, while the fine-tuned XLM-
RoBERTa-base model showed improvements in
performance metrics, these gains must be balanced
against computational runtime.

References
Ralf D Brown. 2013. Selecting and weighting n-grams

to identify 1100 languages. In Text, Speech, and Di-
alogue: 16th International Conference, TSD 2013,
Pilsen, Czech Republic, September 1-5, 2013. Pro-
ceedings 16, pages 475–483. Springer.

Laurie Burchell, Alexandra Birch, Nikolay Bogoychev,
and Kenneth Heafield. 2023a. An open dataset and
model for language identification. In Proceedings
of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers),
pages 865–879, Toronto, Canada. Association for
Computational Linguistics.

Laurie Burchell, Alexandra Birch, Nikolay Bogoychev,
and Kenneth Heafield. 2023b. An open dataset and
model for language identification. arXiv preprint
arXiv:2305.13820.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2019a. Unsupervised
cross-lingual representation learning at scale. arXiv
preprint arXiv:1911.02116.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2019b. Unsupervised
cross-lingual representation learning at scale. CoRR,
abs/1911.02116.

René Haas and Leon Derczynski. 2020. Discriminating
between similar nordic languages. arXiv preprint
arXiv:2012.06431.

Kenneth Heafield, Rohan Kshirsagar, and Santiago
Barona. 2015. Language identification and modeling
in specialized hardware. In Proceedings of the 53rd
Annual Meeting of the Association for Computational
Linguistics and the 7th International Joint Confer-
ence on Natural Language Processing (Volume 2:

Short Papers), pages 384–389, Beijing, China. Asso-
ciation for Computational Linguistics.

Armand Joulin, Edouard Grave, Piotr Bojanowski,
Matthijs Douze, Hérve Jégou, and Tomas Mikolov.
2016a. Fasttext.zip: Compressing text classification
models. arXiv preprint arXiv:1612.03651.

Armand Joulin, Edouard Grave, Piotr Bojanowski, and
Tomas Mikolov. 2016b. Bag of tricks for efficient
text classification. arXiv preprint arXiv:1607.01759.

Luca Papariello. 2024. xlm-roberta-base-language-
detection (revision 9865598).

Marco Lui and Timothy Baldwin. 2011. Cross-domain
feature selection for language identification. In Pro-
ceedings of 5th international joint conference on nat-
ural language processing, pages 553–561.

Marco Lui and Timothy Baldwin. 2012. langid. py: An
off-the-shelf language identification tool. In Proceed-
ings of the ACL 2012 system demonstrations, pages
25–30.

Joakim Nivre, Daniel Zeman, Filip Ginter, and Francis
Tyers. 2017. Universal dependencies. In Proceed-
ings of the 15th Conference of the European Chapter
of the Association for Computational Linguistics: Tu-
torial Abstracts.

NLLB Team, Marta R. Costa-jussà, James Cross, Onur
Çelebi, Maha Elbayad, Kenneth Heafield, Kevin Hef-
fernan, Elahe Kalbassi, Janice Lam, Daniel Licht,
Jean Maillard, Anna Sun, Skyler Wang, Guillaume
Wenzek, Al Youngblood, Bapi Akula, Loic Bar-
rault, Gabriel Mejia-Gonzalez, Prangthip Hansanti,
John Hoffman, Semarley Jarrett, Kaushik Ram
Sadagopan, Dirk Rowe, Shannon Spruit, Chau
Tran, Pierre Andrews, Necip Fazil Ayan, Shruti
Bhosale, Sergey Edunov, Angela Fan, Cynthia
Gao, Vedanuj Goswami, Francisco Guzmán, Philipp
Koehn, Alexandre Mourachko, Christophe Ropers,
Safiyyah Saleem, Holger Schwenk, and Jeff Wang.
2022. No language left behind: Scaling human-
centered machine translation.

David Samuel, Andrey Kutuzov, Samia Touileb, Erik
Velldal, Lilja Øvrelid, Egil Rønningstad, Elina Sigdel,
and Anna Palatkina. 2023. Norbench–a benchmark
for norwegian language models. arXiv preprint
arXiv:2305.03880.

Vésteinn Snæbjarnarson, Annika Simonsen, Goran
Glavaš, and Ivan Vulić. 2023. Transfer to a low-
resource language via close relatives: The case study
on faroese. arXiv preprint arXiv:2304.08823.

Marcos Zampieri, Liling Tan, Nikola Ljubešić, and Jörg
Tiedemann. 2014. A report on the dsl shared task
2014. In Proceedings of the first workshop on ap-
plying NLP tools to similar languages, varieties and
dialects, pages 58–67.

29

Marcos Zampieri, Liling Tan, Nikola Ljubešić, Jörg
Tiedemann, and Preslav Nakov. 2015. Overview
of the dsl shared task 2015. In Proceedings of the
Joint Workshop on Language Technology for Closely
Related Languages, Varieties and Dialects, pages
1–9.

30

Scandinavian Language Identification

Jonas Sebulon Frydenberg
jonassf@ifi.uio.no

Abstract

Language identification is by many considered
a solved task today. Performance on minor
and closely related languages is, however, still
lacking. An additional important factor of a
good language identification model is its speed,
due to the application of language identifica-
tion in the preprocessing of large-scale cor-
pora. The goal of this paper is to improve
language identification on the closely related
Scandinavian languages. We compare existing
approaches and present finetuned BERT-like
models (NorBERT, ScandiBERT, XLM-R) that
reaches great performance at the cost of longer
inference time, as well as a fast hybrid approach
that combines the speed of a FastText model
with the performance of a deep learning model.

1 Introduction

Language identification (LID) is an important part
of the preprocessing step for large-scale text cor-
pora, like web-crawls. An accurate language iden-
tification model is thus necessary to ensure that
the data sets are clean, in the sense that they do
not contain data from other languages. During the
gathering and processing of web-crawled corpora,
several terabytes of data have to be processed, the
inference time of such a LID model needs to be as
fast as possible.

Language identification for major languages is
by many considered a solved task, but there leaves
a lot to be desired when dealing with minor lan-
guages, especially closely related ones like the
Scandinavian languages (Norwegian, Swedish and
Danish), which is the topic of this paper.

One can distinguish between language identifi-
cation performed at the document-level and on the
sentence-level. Document-level identification is a
much easier task than sentence-level identification
due to more data and thus a higher likelihood of
finding distinguishing elements. On the sentence
level, there are fewer words and less information

that can be used to tell languages apart, let alone the
fact that short sentences have a higher likelihood
of being passable in several languages. The topic
of this paper will be sentence level classification.
Important applications of such a task include lan-
guage identification for parallel corpora intended
for machine translation and language identification
for short sentences in a search engine like Google.

The rest of the paper is structured as follows.
Section 2 provides some details on the different
Scandinavian languages. In Section 3, the dataset
splits and their sources are described. Related work
and existing methods are described in Section 4.
In Section 5, we explore different approaches to
language identification and their performance. A
baseline evaluation is established in 5.1. In 5.2,
we explore a dictionary-based approach, while in
Section 5.3, we explore the usage of deep learning
models as well as a hybrid architecture in 5.4. A
discussion of the the different models is provided in
section 6. We briefly point out directions for future
work in Section 7, before concluding in Section 8.

2 Background

The languages considered for this task will be
Norwegian Nynorsk, Norwegian Bokmål, Danish,
Swedish and "other" (which means none of the
Scandinavian languages). These four languages are
all part of the North-Germanic branch of the Ger-
manic languages. Traditionally, Norwegian along
with Icelandic and Faroese have been classified as
West-Nordic while Danish and Swedish are East-
Nordic.

Norwegian Bokmål however is a continuation of
the written Danish that was used in Norway from
the 1600s to early 1900s. This places it closer to
Danish, which is also reflected in formal Bokmål
being very close to Danish. Norwegian Nynorsk
has traditionally been kept quite distinguished from
Bokmål, but the official spelling reform of 2012 has

31

made it possible to write Bokmål-close Nynorsk.
While Norwegian (both varieties) and Danish use
the same alphabet, Swedish has its own unique let-
ters "ä" and "ö" and an ortohgraphic convention
that makes it stand out from the other three. Au-
tomatic language identification on Swedish is thus
easier than on Bokmål, Nynorsk, Danish.

Some issues are sentences which are similar in
the different languages as well as sentences which
are grammatically sound in several languages, but
with different meaning. Some examples of this
from the test set (see 3.1) are:

• Hun skulle betale for bogen.

• Har du skrevet en bog?.

The first sentence is a grammatically valid and se-
mantically meaningful sentence in Nynorsk, Bok-
mål and Danish. The difference is that the Danish
word bogen means ’the book’, while the Bokmål
and Nynorsk word bogen means ’chuck’ (meat
from the shoulder of an animal). The second is
grammatically valid in Bokmål in the sense that a
noun is the object of a verb, but semantically it is
nonsensical ("Have you written an animal shoul-
der"). A word-wise lexical lookup approach even
if combined with POS tagging, would not be able
to classify the second sentence as Danish only (it
could be remedied with n-gram statistics but such
an approach will always be limited by training data
and will thus not scale well to the unseen). A trans-
formers model could however model the relation-
ship between skrevet and bogen and recognise that
bogen in this case is not likely to mean ’animal
shoulder’. A third scenario is the following sen-
tence which is also taken from the test set (in which
it is labelled as Nynorsk):

• Vann folket med plyndring.

This is likely the title of a news article in which the
subject is omitted. This makes it seem like the verb
is in the imperative mood. The first interpretation
yields the Nynorsk sentence: "Won the people by
plunder.", where vann is the past tense of å vinne ’to
win’, while the latter interpretation yields the Bok-
mål sentence: "Water the people with plunder!",
where vann is the imperative of the verb å vanne
’to water’. It is not trivial to conclude whether it
should be considered correct to classify the above
sentence as Bokmål and Nynorsk or only Nynorsk.

3 The Data

In this section, the different datasets and their
sources will be described. In Section 5.3, we will
experiment with finetuning deep learning models
on combinations of the following datasets.

3.1 Universal Dependencies Treebank
The provided datasets come from the Universal
Dependencies (UD) Treebank (Nivre et al., 2017),
see table 1 for complete statistics. The gold data
set, which is taken directly from the UD treebank
is skewed with about 30 000 sentences in Bokmål
and Nynorsk compared to about 8500 sentences
in Danish and Swedish. An additional "silver"
training set, which is also based on the UD treebank
data, tries to remedy the skewed data distribution
with machine translated content.

The provided test set, which consists of the UD
treebank test splits for each of the included lan-
guages, has been manually annotated with addi-
tional labels when the sentences could belong to
multiple languages. There are some issues with the
provided test set, however. Upon manual inspec-
tion, we changed 55 sentences and removed two1.
For the most part, sentences which were valid in
more than one language, but had only one language
tag, had to be updated with additional tags (espe-
cially Bokmål sentences that were also valid in
Danish or Nynorsk). Two sentences contained a
quote in Nynorsk, but they were tagged as Bokmål.

3.2 Other
In addition to the UD data, we gathered data from
the Tatoeba corpus2 (Tiedemann, 2020) and the
Open LID dataset3 (Burchell et al., 2023), as well
as some extra samples of "other" languages from
the Bokmål antgiold test set used by FastSpell4.
It is important that the data comes from reliable
sources in which the data will actually be in the
language it claims to be. Web crawled data is there-
fore excluded from consideration, since they are
noisy and full of erroneous language identification
even if they have been cleaned.

1Full list of changes is available here: https:
//github.uio.no/jonassf/in5550_exam/blob/main/
data/test_fixed_log.txt

2https://huggingface.co/datasets/Helsinki-NLP/
tatoeba_mt

3https://github.com/laurieburchell/
open-lid-dataset?tab=readme-ov-file

4https://github.com/mbanon/benchmarks/tree/
main/langid/testsets/antigold

32

Language Gold train Tatoeba openLID Other Gold valid Silver train Evaluation set
Bokmål 15 435 17 636 35 000 — 2 392 22 860 1 938
Danish 4 376 58 400 1 538 — 563 34 173 564
Nynorsk 14 029 1 640 35 000 — 1 859 24 382 1 511
Swedish 4 278 53 053 1 541 — 503 34 252 1 219
Other 8 805 — — 500 1 165 — 1 742

Table 1: Number of sentences per language per corpus

Here follows descriptions of the additional data
sets.

Tatoeba Tatoeba is a collection of translated
sentences based on voluntary contributions. We
include all the data from Tatoeba for Bokmål,
Nynorsk, Danish and Swedish. The Tatoeba dataset
contains short, informal and colloquial sentences.
This is ideal as an additional data set for sentence-
level classification as most other data sources will
contain formal language. The language distribu-
tion is on the other hand skewed, with only 1 640
sentences in Nynorsk, and over 50 000 sentences
for both Danish and Swedish.

openLID The full openLID dataset is 21GB of
data in 201 languages. We extract the Nynorsk,
Bokmål, Danish and Swedish parts of it and re-
move the sentences with the source tag MT560,
(except for the Bokmål part for which MT560 is
the only data source) as we want to ensure high
quality sentences without localization files. The
MT560 dataset (Gowda et al., 2021) contains a
sizeable amount of data from the Bible. Archaic
Bokmål bible verses are written in stilted language
which closely resembles Danish, an example is the
usage of the archaic second person plural pronouns
I/eder/eders which in my opinion should not be a
part of the Bokmål data. Obvious biblical sentences
are thus filtered out by a simple regular expression5

that matches some common biblical words as well
as the "[chapter]: [verse]" formula for citations
from the Bible.

By randomly picking out sentences, 35 000 sen-
tences from the open LID dataset for Bokmål and
Nynorsk, and about 1500 for Danish and Swedish
are gathered. The aim of this skewed distribution
is to balance out the language distribution of the
Tatoeba data.

other The antigold Bokmål part of the bench-
mark data used by FastSpell contains sentences

5(
¯
jer|eder|eders|kristen|jehova|disipler|[0-9]+:

[0-9]+)
¯

from languages other than Bokmål. The sentences
are sorted by language, and Danish and Nynorsk
sentences were manually removed. This dataset is
used to add further examples of "other" languages.

4 Related work

The best performing fast language identification
models are simple linear classifiers trained on top
of a FastText (Bojanowski et al., 2016) embed-
ding model. These include the openLID model
(Burchell et al., 2023), the original FastText model6

and the updated and extended No Language Left
Behind (NLLB) language identifier ((Team et al.,
2022); (Joulin et al., 2017)). FastText learns word
embeddings by extending the continous skip-gram
model (Mikolov et al., 2013) with subword infor-
mation by representing each word as the sum of the
vectors of the n-grams that constitute it. CLD37 is
made by Google and works similarly to FastText.

Other approaches include dictionary based word
lookup ,in which lexica enriched with inflected
forms of all words are used to identify the lan-
guage by outputting the language with the most
dictionary hits. This approach is heavily limited
by the quality of the underlying dictionary. It also
falls short when dealing with named entities (of
which an exhaustive list will never be included in
the underlying dictionary) and homographs with
different meanings in different language for which
grammatical information is ignored when using
bag of words majority voting. More details about
this are discussed in 5.2.

Fastspell (Bañón et al., 2024) is the LID model
used in Bicleaner, which has been used to clean the
enormous web-crawled corpus ParaCrawl (Esplà
et al., 2019). It is a hybrid approach that combines
a FastText model with dictionary-based spell check-
ing using Hunspell8. It works by first defining sets

6https://fasttext.cc/docs/en/
language-identification.html

7https://github.com/google/cld3
8https://hunspell.github.io/

33

of closely related languages. When the FastText
model predicts a language that is a part of one of
these sets, spell checking is performed to determine
exactly which of the closely related languages it is.
The FastSpell tool uses the original 176-language
FastText model which, as seen in table 2, performs
rather poorly compared to newer models. The spell
checking also faces the issues discussed in the para-
graph above. Since FastSpell is aimed at parallel
corpora filtering, it requires a target language when
the model is instantiated. We evaluated the model
using da, nn, nb, no, and sv and report the best
result obtained when using nb as the target. This
means that when Danish, Bokmål and Nynorsk
would get an equal score using Hunspell, nb will
be output.

5 Methodology

5.1 Baseline

The models will be evaluated in two ways: strict
and loose. The test set contains data with poten-
tially multiple labels, due to the sentences being
valid in more than one language. The loose metric
considers a prediction correct if the prediction is
a subset of the gold labels. The strict metric on
the other hand, only considers a prediction correct
if it exactly matches the gold labels. Most of the
available language identification tools only output
one language, although confidence scores and top-
n predictions are available for some of them. In
this paper, the loose metric will be used to evalu-
ate single-label prediction and the strict metric to
evaluate multi-label prediction.

In table 2, F1 and MCC (Matthews correlation
coefficient) scores for a selection of available lan-
guage identification methods are reported. The
best score for each metric is highlighted in bold-
face. There are two methods that stand out: NLLB
and FastSpell, with NLLB beating FastSpell in the
overall macro average, as well as on Bokmål and
Nynorsk. FastSpell somewhat surprisingly delivers
strong results on Danish, Swedish and other classi-
fication. Both of these utilize FastText embeddings
and a linear classifier head, but FastSpell uses dic-
tionary based spell checking as well. NLLB is
extremely fast, averaging 0.10ms runtime per sen-
tence in the test set. FastSpell is however slightly
slower with an average of 0.43 ms/sentence. As
is evident from the table, they clearly outperform
the original 176 language FastText model, which
only reaches a macro F1 score of 77.04. On the

other hand, the original FastText model is even
faster than NLLB at 0.02 ms/sentence. A notable
mention is Lingua, which uses rule-based and sta-
tistical methods. It reaches a macro F1 score of
91.53, making it the fourth best baseline method.
Even though it runs quite fast, it is significantly
slower than NLLB and FastText at 0.71 ms / sen-
tence.

5.2 Dictionary based
In this section we will explore dictionary based
language identification and combine it with a POS
tagger.

We gather full morphological dictionaries (word-
banks) of Bokmål9, Nynorsk10 and Danish11. The
data is then read and filtered, notably words con-
taining numbers, proper nouns and symbols are
removed. In addition, plural and definite past par-
ticiples of intransitive verbs in Bokmål are removed.
This is due to their similarity to Danish past tense
verbs ending in -ede. Since past participles of in-
transitive verbs inflected for plural or definite are
very seldom, if at all, used, they can safely be re-
moved. Sentences are then classified by match-
ing each word in the sentence with each target
language’s wordbank, the language with the most
matched tags is then returned. If there is a tie,
several languages are returned.

This approach is fast (0.18 ms/sentence) and
works fairly well for long text segments or docu-
ments, but it often fails due to words of different
parts of speech being equal to different words in an-
other language. For instance the distinctive Danish
second person plural pronoun i ’you’ is equal to the
Norwegian (and Danish) preposition i ’in’. This ap-
proach can not distinguish between words in such
cases. It also fails at novel compound words which
are not in the dictionary, as well as named entities.

To try to remedy this, we train a POS-tagger
using a bidirectional LSTM-CRF on the Norwe-
gian Bokmål, Norwegian Nynorsk, Danish and
Swedish UD treebanks (training and devlopment
data combined) for 90 epochs using the Flair NLP
toolkit12 (Akbik et al., 2019). The tagger gets a
micro F1 score of 0.97 on the test-splits of the Bok-
mål, Nynorsk, Danish and Swedish UD treebanks.

9https://www.nb.no/sprakbanken/ressurskatalog/
oai-nb-no-sbr-5/

10https://www.nb.no/sprakbanken/en/
resource-catalogue/oai-nb-no-sbr-41/

11https://korpus.dsl.dk/resources/details/
ddo-fullforms.html

12https://github.com/flairNLP/flair

34

Method Metric nb nn da sv other Macro average
Runtime (ms / sent)
Random F1 24.11 23.50 12.28 22.14 24.35 21.27
<0.01 ms MCC 28.76 29.65 22.03 29.31 29.67 27.88
CLD3 F1 69.10 0.00 79.44 92.82 85.69 65.41
0.15 ms MCC 60.75 1.64 79.49 91.60 82.06 63.11
NLLB F1 94.40 93.58 89.98 97.03 93.40 93.68
0.10 ms MCC 92.39 92.19 89.54 96.45 91.61 92.44
FastText F1 73.13 59.08 66.96 92.80 93.20 77.04
0.02 ms MCC 67.44 59.96 68.02 91.54 91.23 75.64
OpenLID F1 93.50 92.77 87.73 96.12 93.17 92.66
0.10 ms MCC 91.25 91.20 87.35 95.37 91.39 91.31
LangID F1 28.52 78.26 70.64 94.40 62.40 66.85
1.87 ms MCC 34.93 76.01 71.62 93.40 53.56 65.90
Lingua F1 90.31 90.00 89.29 95.85 92.21 91.53
0.71 ms MCC 87.30 87.98 88.85 95.06 90.24 89.88
Langdetect F1 64.76 0.00 66.75 89.05 68.92 57.90
8.35 ms MCC 54.54 1.68 67.89 87.29 66.83 55.65
FastSpell F1 92.72 90.45 90.12 98.01 94.02 93.06
0.43 ms MCC 90.03 88.78 89.77 97.61 92.28 91.69

Table 2: Baseline results with runtime per sentence, F1 and MCC scores in percentages for each language, and the
macro average to the right

In practice however, it often misclassifies subject
complements: in the sentence Vi er arabere ’We
are arabs’, the tagger classifies arabere as an ad-
jective. It also has issues with very short and/or
incomplete sentences (like news titles). Overall, it
works decently.

The wordbanks are then read, and words are
stored in a dictionary with universal POS tags as
the keys. Some ambiguous words are removed, like
the rare Norwegian verb blive ’to drown’ which is
equal in form and conjugation to the very com-
mon Danish copulative and auxilliary verb blive
’to become, to be (forms the passive voice)’ — as
they are both verbs, this model can’t distinguish
them. When classifying a sentence, the POS tag-
ger assigns a POS tag to each word, which is then
matched to the set of words in that POS tag for
each language. Due to the unreliable POS tagger,
if none of the wordbanks match a word of a par-
ticular POS, the word is matched against the full
wordbank (without considering parts of speech).
We then apply a simple scoring system: if the POS-
tagged word is only found in one language, that
word is worth 1.5 points, if it is found in >1 lan-
guage, it is worth 1.0 point, finally, words that have
to be matched against the full wordbank are worth
0.5 points.

Even though performance is slightly improved, it
comes at the cost of significantly longer inference
time (23.08ms/sent). It also fails to distinguish
words of the same POS but with totally different
semantical meanings, see 2 for a concrete example.

The wordbank classifier only has data for Bok-
mål, Nynorsk and Danish. As a consequence, they
can not reliably detect that a sentence is not in one
of these languages — there will likely be words
in the dictionaries that match words in foreign lan-
guages. Similarly to FastSpell’s approach, we com-
bine the wordbank classifier with a FastText model
which is first used to make a language prediction,
if this language is Bokmål, Nynorsk or Danish, the
wordbank classifier is used to determine which of
these it is, else the FastText model prediction is
returned.

One advantage with this approach is that it is
inherently multi-label. This can also be seen in
table 3, where both the models have a higher score
for the more difficult strict evaluation.

5.3 Deep learning

Since the target of this task is Scandinavian lan-
guage identification, it is necessary to deploy mod-
els pretrained on these languages. Three different
pre-trained models will thus be considered:

35

Eval Method F1 MCC Overlap F1
Loose Wb 87.08 84.17 —

Wb+POS 89.30 87.11 —
Strict Wb 89.94 87.58 93.56

Wb+POS 90.66 88.51 93.90

Table 3: Performance of the dictionary based Wordbank
(Wb) and Wordbank with POS tagging (Wb+POS) with
macro F1 and MCC scores using both loose and strict
evaluation

• NorBERT3 (Samuel et al., 2023a): A family
of BERT-like models trained on Norwegian
only data using the optimized training meth-
ods as described in (Samuel et al., 2023b).
NorBERT3 comes in four sizes:

– xs (L = 12, H = 192, A = 3, 15M params)
– small (L = 12, H = 384, A = 6, 40M

params)
– base (L = 12, H = 768, A = 12, 123M

params)
– large (L = 24, H = 1024, A = 16, 353M

params)

All four of them will be evaluated in this pa-
per. It is worth noting that these models use
a Word-Piece subword tokenizer (Wu et al.,
2016) with a vocabulary size of 50 000, which
is trained only on Norwegian data.

• ScandiBERT (Snæbjarnarson et al., 2023): A
Scandinavian BERT model (L = 12, H = 768,
A = 12, 125M params) trained on Danish,
Faroese, Swedish, Icelandic and Norwegian
data. The majority of the data is however
Norwegian and Icelandic — with Norwegian
accounting for roughly 63% and Icelandic ac-
counting for approximately 24%.13

• XLM-RoBERTa (Conneau et al., 2020): A
mutlilingual roberta-model trained on 2.5TB
of filtered common crawl data containing
100 languages (including Norwegian, Dan-
ish and Swedish). We consider the XLM-
RoBERTabase model (L = 12, H = 768, A =
12, 270M params).

5.3.1 Finetuning
The pretrained models described in section 5.3
were finetuned on various combinations of the train-
ing data sets described in section 3.2. The models

13Training procedure and model available here: https:
//huggingface.co/vesteinn/ScandiBERT

were trained for 5 epochs, with a batch size of 32,
a learning rate of 1e−4 using 100 warmup steps
and a linear scheduler together with the AdamW
optimizer.

The best performing models were trained on a
combination of the Tatoeba and gold datasets de-
scribed in 3.2. The performance of the models
trained on all the training data (Tatoeba, open LID,
gold, other) is shown in table 6. These models
reached competitive performance, but they were
slightly edged out by the models trained only on
Tatoeba and the gold train set. One would be-
lieve that more data equals better performance, and
also that similar distributions of the different labels
would be beneficial. The best models presented
in this paper proves otherwise for this particular
task. Models trained on the silver dataset, as well
as combinations of the silver dataset with Tatoeba
and open LID were worse than models trained on
the gold set by a substantial margin (around 10
percentage points difference in F1). Their ability
to discriminate Bokmål and Nynorsk worsened. It
seems that the unbalanced data distribution is ben-
eficial for the model, at least for the single label
prediction task. The impact of finetuning on the
silver dataset on the multi label prediction task has
not been fully explored.

The results shown in table 4 show that the xs and
small versions of NorBERT have very competitive
and even better performance than the larger mod-
els. This is rather unexpected, it is likely that more
and/or different training data as well as further hy-
perparameter tuning would improve the larger mod-
els.

A way to improve the performance of a smaller
and faster model is knowledge distillation (Sanh
et al., 2020) by using a slow "teacher" model to
guide the faster "student" model. Due to the great
performance of directly finetuning NorBERTxs
however, such a training approach was not nec-
essary.

Inference speed is a crucial aspect of a language
identification tool. In the evaluation script, the test
set is evaluated sentence for sentence, i.e. without
batching. We also choose to perform the evaluation
on CPUs only — all the running times reported
in table 4 are measured on the HPC-Cluster fox14

using 24 CPUs and 48 GB of RAM. The FastText
models are intended to be used on CPUs, and since

14https://www.uio.no/english/services/it/
research/hpc/fox/

36

Method Metric nb nn da sv other Macro average
Runtime (ms / sent)
NorBERT3large F1 96.84 96.75 94.92 98.09 97.76 96.87
130.57 ms MCC 95.69 95.93 94.57 97.71 97.07 96.19
NorBERT3base F1 97.95 97.97 94.93 99.02 98.44 97.66
44.38 ms MCC 97.17 97.45 94.59 98.82 97.95 97.19
NorBERT3small F1 98.34 98.40 95.69 99.02 98.49 97.99
23.91 ms MCC 97.71 97.97 95.38 98.82 98.02 97.58
NorBERT3xs F1 98.25 98.36 95.03 98.41 98.02 97.61
17.71 ms MCC 97.58 97.92 94.70 98.09 97.40 97.14
RoBERTa F1 96.81 96.46 94.59 98.46 97.96 96.85
31.16 ms MCC 95.63 95.59 94.23 98.14 97.33 96.18
ScandiBERT F1 97.58 97.28 95.68 98.73 97.86 97.43
28.32 ms MCC 96.68 96.58 95.38 98.47 97.19 96.86

Table 4: Results of the finetuned models with runtime per sentence, F1 and MCC scores in percentages for each
language, and the macro average to the right.

Model T F1 MCC speed
NorBERT3xs 0.25 93.99 92.79 0.67ms
NorBERT3xs 0.5 95.06 94.06 1.46ms
NorBERT3xs 0.80 96.93 96.30 2.95ms
NorBERT3xs 0.95 97.60 97.11 4.46ms
NorBERT3s 0.25 94.04 92.85 0.99ms
NorBERT3s 0.5 95.18 94.20 2.04ms
NorBERT3s 0.80 97.13 96.52 4.22ms
NorBERT3s 0.95 97.95 97.52 6.22ms
NorBERT3b 0.25 94.03 92.84 1.25ms
NorBERT3b 0.5 95.09 94.10 3.98ms
NorBERT3b 0.80 96.95 96.31 7.53ms
NorBERT3b 0.95 97.61 97.11 11.46ms

Table 5: Macro average F1 and MCC as well as infer-
ence time (ms/sentence) for hybrid NorBERT models
using different thresholds (T).

they are the models to beat, inference speed should
be measured against them in a similar fashion. For
large-scale text corpora filtering, it would be ben-
eficial to do batched prediction on GPUs. This
would significantly improve the inference speed
of the slow deep learning models. GPUs are how-
ever not always available. In section 5.4, a hybrid
approach with much improved inference speed on
CPUs without batching will be described.

5.4 Hybrid

Even though the transformer models beat the other
approaches by quite a margin in terms of pure per-
formance, it comes at the cost of a significantly
longer inference time. To remedy this, we will

combine the best performing FastText model —
NLLB — with the finetuned NorBERT3small and
NorBERT3xs, which are compact models with great
performance, into a hybrid model. It works by first
predicting the language of a sentence using the
fast NLLB model, and only falling back to the
NorBERT3-model in when it is uncertain, i.e. the
confidence score is low. Testing has shown that
a threshold of 0.80, which means that sentences
with a FastText confidence score below 0.80 will
be predicted by the NorBERT3-model, is a decent
compromise between speed and performance. This
threshold can naturally be altered by use case. See
table 5 and table 7 in the appendix for a compre-
hensive threshold, score and speed overview.

Using a threshold of 0.25, the NorBERT3xs hy-
brid LID model uses just 0.67 ms/sentence, but only
at a marginal performance increase from the pure
NLLB model: F1 from 93.68 to 93.99. There is a
always a trade-off between speed and performance,
the NorBERT3xs hybrid model with a threshold of
0.80 seems to be the best performer for the speed.
It reaches an F1 score of 96.93 and MCC 96.30 at
an inference speed of 2.95 ms. The NorBERT3small
hybrid model with a threshold of 0.95 hardly sacri-
fices any performance compared to the NorBERT
only model (F1 97.95 vs 97.99) being four times
faster (6.22ms/s vs 23.91ms/s).

6 Discussion

The NLLB FastText model is exceptionally fast at
0.10 ms/sentence and delivers great performance
with a macro F1 score of 93.68 on single label pre-

37

diction on the test set. FastSpell is not far behind
with a macro F1 score of 93.06. These scores are,
however, slightly inflated by their performance on
predicting Swedish and "other". The most challeng-
ing part is distinguishing Bokmål, Nynorsk and
Danish. Per language metrics reveal that NLLB
only reaches F1 89.98 on Danish — more impres-
sive is F1 94.40 on Bokmål and 93.68 on Nynorsk —
while FastSpell reaches F1 92.72, 90.45 and 90.12
on Bokmål, Nynorsk and Danish respectively.

The step up from FastText embeddings is deep
learning models. We have evaluated the mul-
tilingual models NorBERT3, ScandiBERT and
XML-RoBERTa. Even though ScandiBERT and
NorBERT3 score similarly, the NorBERT3 in the
small and xs variants deliever slightly better perfor-
mance in a much smaller and faster package. The
best performing model, NorBERT3, small, reaches
F1 98.34 on Bokmål and 98.40 on Nynorsk. This
shows a significant improvement over the FastText
models mentioned above. It’s weakest language is
Danish, with an F1 score of 95.69. This could be
due to the model preferring to predict Bokmål in
cases where it is tied with Danish and in sentences
that are hard to classify in which only a single letter
distinguishes the two languages — some examples
are the -t-suffix that Danish uses in adjectives end-
ing in -ig inflected for neuter, which Norwegian
does not, and the letter j in for instance Danish
køkken versus Norwegian kjøkken ’kitchen’.

A simple dictionary-based approach is not that
useful compared to the other available models, even
when paired with a POS tagger. Efforts could be
put into an improved POS tagger and further word-
bank filtering to identify potentially distinguishing
words that are not exploited due to the presence of
rare and/or obscure words that are similar to com-
mon words. This is a laborious task and is probably
not worth the effort compared to other approaches.

7 Future work

We did not fully explore the effects of multi-label
classification. The majority of the test data con-
tains single-labeled sentences. When evaluating
the models on multi-label prediction, we often ex-
perienced deteriorated performance — the single-
label prediction models got better results on the
strict metric than models with multi-label predic-
tion, which should not be the case. Experimenta-
tion with different activation functions, like soft-
max and sigmoid, and different thresholds for when

to output multiple labels yielded inconclusive re-
sults. More work needs to be done to fully explore
the impact of more training data and the effect on
the model’s multi-label prediction abilities.

8 Conclusion

In this paper, we have evaluated existing meth-
ods for automatic language identification and com-
pared them to dictionary based methods and well-
performing finetuned deep learning models. The
best existing methods are the speedy FastText mod-
els. In this paper, we have found a finetuned
NorBERT3, small model to be the top performer. To
leverage the high performance of the transform-
ers models and the outstanding speed of the Fast-
Text models, we propose a hybrid architecture.
This hybrid approach reaches competitive speed
and a great performance, the FastText/NorBERT3-
threshold can be adapted to balance speed vs per-
formance in differently demanding applications.

References
Alan Akbik, Tanja Bergmann, Duncan Blythe, Kashif

Rasul, Stefan Schweter, and Roland Vollgraf. 2019.
FLAIR: An easy-to-use framework for state-of-the-
art NLP. In NAACL 2019, 2019 Annual Conference
of the North American Chapter of the Association for
Computational Linguistics (Demonstrations), pages
54–59.

Marta Bañón, Jaume Zaragoza-Bernabeu, Gema
Ramírez-Sánchez, and Sergio Ortiz-Rojas. 2024.
FastSpell: the LangId Magic Spell. _eprint:
2404.08345.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomás Mikolov. 2016. Enriching Word Vectors
with Subword Information. CoRR, abs/1607.04606.
ArXiv: 1607.04606.

Laurie Burchell, Alexandra Birch, Nikolay Bogoychev,
and Kenneth Heafield. 2023. An Open Dataset and
Model for Language Identification. In Proceedings
of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers),
pages 865–879, Toronto, Canada. Association for
Computational Linguistics.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
Cross-lingual Representation Learning at Scale. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8440–
8451, Online. Association for Computational Lin-
guistics.

38

Miquel Esplà, Mikel Forcada, Gema Ramírez-Sánchez,
and Hieu Hoang. 2019. ParaCrawl: Web-scale paral-
lel corpora for the languages of the EU. In Proceed-
ings of Machine Translation Summit XVII: Translator,
Project and User Tracks, pages 118–119, Dublin, Ire-
land. European Association for Machine Translation.

Thamme Gowda, Zhao Zhang, Chris A Mattmann, and
Jonathan May. 2021. Many-to-english machine trans-
lation tools, data, and pretrained models. Preprint,
arXiv:2104.00290.

Armand Joulin, Edouard Grave, Piotr Bojanowski, and
Tomas Mikolov. 2017. Bag of Tricks for Efficient
Text Classification. In Proceedings of the 15th Con-
ference of the European Chapter of the Association
for Computational Linguistics: Volume 2, Short Pa-
pers, pages 427–431. Association for Computational
Linguistics.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Cor-
rado, and Jeffrey Dean. 2013. Distributed Represen-
tations of Words and Phrases and their Composition-
ality.

Joakim Nivre, Daniel Zeman, Filip Ginter, and Francis
Tyers. 2017. Universal Dependencies. In Proceed-
ings of the 15th Conference of the European Chap-
ter of the Association for Computational Linguistics:
Tutorial Abstracts, Valencia, Spain. Association for
Computational Linguistics.

David Samuel, Andrey Kutuzov, Samia Touileb, Erik
Velldal, Lilja Øvrelid, Egil Rønningstad, Elina Sigdel,
and Anna Palatkina. 2023a. NorBench – A Bench-
mark for Norwegian Language Models. In Proceed-
ings of the 24th Nordic Conference on Computational
Linguistics (NoDaLiDa), pages 618–633, Tórshavn,
Faroe Islands. University of Tartu Library.

David Samuel, Andrey Kutuzov, Lilja Øvrelid, and Erik
Velldal. 2023b. Trained on 100 million words and
still in shape: BERT meets British National Corpus.
_eprint: 2303.09859.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2020. DistilBERT, a distilled version
of BERT: smaller, faster, cheaper and lighter. _eprint:
1910.01108.

Vésteinn Snæbjarnarson, Annika Simonsen, Goran
Glavaš, and Ivan Vulić. 2023. Transfer to a Low-
Resource Language via Close Relatives: The Case
Study on Faroese. In Proceedings of the 24th Nordic
Conference on Computational Linguistics (NoDaL-
iDa), Tórshavn, Faroe Islands. Linköping University
Electronic Press, Sweden.

NLLB Team, Marta R. Costa-jussà, James Cross, Onur
Çelebi, Maha Elbayad, Kenneth Heafield, Kevin Hef-
fernan, Elahe Kalbassi, Janice Lam, Daniel Licht,
Jean Maillard, Anna Sun, Skyler Wang, Guillaume
Wenzek, Al Youngblood, Bapi Akula, Loic Bar-
rault, Gabriel Mejia Gonzalez, Prangthip Hansanti,
John Hoffman, Semarley Jarrett, Kaushik Ram
Sadagopan, Dirk Rowe, Shannon Spruit, Chau

Tran, Pierre Andrews, Necip Fazil Ayan, Shruti
Bhosale, Sergey Edunov, Angela Fan, Cynthia
Gao, Vedanuj Goswami, Francisco Guzmán, Philipp
Koehn, Alexandre Mourachko, Christophe Ropers,
Safiyyah Saleem, Holger Schwenk, and Jeff Wang.
2022. No Language Left Behind: Scaling Human-
Centered Machine Translation. _eprint: 2207.04672.

Jörg Tiedemann. 2020. The Tatoeba Translation Chal-
lenge – Realistic Data Sets for Low Resource and
Multilingual MT. In Proceedings of the Fifth Con-
ference on Machine Translation, pages 1174–1182,
Online. Association for Computational Linguistics.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le,
Mohammad Norouzi, Wolfgang Macherey, Maxim
Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff
Klingner, Apurva Shah, Melvin Johnson, Xiaobing
Liu, Łukasz Kaiser, Stephan Gouws, Yoshikiyo Kato,
Taku Kudo, Hideto Kazawa, Keith Stevens, George
Kurian, Nishant Patil, Wei Wang, Cliff Young, Jason
Smith, Jason Riesa, Alex Rudnick, Oriol Vinyals,
Greg Corrado, Macduff Hughes, and Jeffrey Dean.
2016. Google’s Neural Machine Translation Sys-
tem: Bridging the Gap between Human and Machine
Translation. _eprint: 1609.08144.

A Appendix

39

Method Metric nb nn da sv other Macro average
Runtime (ms / sent)
NorBERT3small all F1 97.79 98.20 94.90 98.61 98.10 97.52
22.87 ms MCC 96.96 97.73 94.57 98.33 97.52 97.02
NorBERT3xs all F1 97.69 97.41 95.15 98.65 98.64 97.51
15.64 ms MCC 96.84 96.72 94.83 98.37 98.21 96.99
NorBERT3xs (sm)all F1 98.10 98.11 96.21 98.57 98.61 97.92
15.71 ms MCC 97.38 97.60 95.94 98.28 98.17 97.47
ScandiBERT all F1 97.17 97.13 94.88 98.73 97.21 97.02
26.04 ms MCC 96.10 96.40 94.55 98.47 96.36 96.38
ScandiBERT64 all F1 97.31 97.48 96.43 98.90 97.72 97.57
27.51 ms MCC 96.29 96.83 96.17 98.67 97.03 97.00
XLM-RoBERTa all F1 87.44 70.28 80.86 98.17 96.25 86.60
30.99 ms MCC 83.22 69.01 80.64 97.80 95.17 85.17

Table 6: Performance of models finetuned on all datasets (Gold, Tatoeba, openLID, other). Note that the
NorBERT3xs(sm)all was trained on a smaller openLID dataset with only 33 079 sentences. The ScandiBERT64
model was trained with a batch size of 64

Model Threshold Macro F1 Macro MCC speed
NorBERT3xs 0.25 93.99 92.79 0.67ms
NorBERT3xs 0.5 95.06 94.06 1.46ms
NorBERT3xs 0.75 96.74 96.05 2.98ms
NorBERT3xs 0.80 96.93 96.30 2.95ms
NorBERT3xs 0.85 96.98 96.36 3.34ms
NorBERT3xs 0.90 97.34 96.79 3.82ms
NorBERT3xs 0.95 97.60 97.11 4.46ms
NorBERT3small 0.25 94.04 92.85 0.99ms
NorBERT3small 0.5 95.18 94.20 2.04ms
NorBERT3small 0.75 96.93 96.28 4.23ms
NorBERT3small 0.80 97.13 96.52 4.22ms
NorBERT3small 0.85 97.24 96.67 4.59ms
NorBERT3small 0.90 97.56 97.04 5.23ms
NorBERT3small 0.95 97.95 97.52 6.22ms
NorBERT3base 0.25 94.03 92.84 1.25ms
NorBERT3base 0.5 95.09 94.10 3.98ms
NorBERT3base 0.75 96.76 96.07 7.03ms
NorBERT3base 0.80 96.95 96.31 7.53ms
NorBERT3base 0.85 97.01 96.39 8.32ms
NorBERT3base 0.90 97.23 96.66 9.76ms
NorBERT3base 0.95 97.61 97.11 11.46ms

Table 7: Full list of hybrid NorBERT3 models with different confidence score thresholds, macro F1 and MCC on
the test set and inference speed (ms/sentence)

40

Successes and Downfalls: Error Analysis of Scandinavian Language
Identification

Victoria Handford, Marthe Midtgaard, Solveig Helene Willoch

Abstract
Language identification is a fundamental task
in natural language processing and is often
one of the first steps of processing multilin-
gual data for use in further downstream tasks.
While existing models perform strongly on
high-resource languages like English, we ob-
serve a relatively poor performance for simi-
lar languages, for example Scandinavian lan-
guages. This paper presents a foundational ex-
ploration of the performance of selected exist-
ing language identification models on Scandi-
navian languages, highlighting some strengths
and weaknesses. We compare these methods
to a fine-tuned XLM-R and observe that we
can achieve comparable performance using the
No Language Left Behind (NLLB) model, thus
saving time and resources needed to fine-tune
large languages models for this task. We hope
that our findings provide insights into Scandi-
navian language identification and where the
existing models fail, in hope that this can help
improve future models.

1 Introduction

Language identification (LID) is regarded as a
solved task by many NLP researchers, but this is
not necessarily the case for many world languages.
For these languages, language identifiers either do
not exist or perform relatively poorly. This is a ma-
jor hurdle for developing NLP tools for them since
language identification is essential for processing
any large-scale multi-lingual data. For instance,
if you train a Swedish language model, it learns
from texts identified as Swedish. Similarly, a good
Nynorsk machine translation model should pro-
duce texts identified as Nynorsk. The performance
of these large and complex models is limited by
the precision of the language identification tool
used to curate the data in order to have a quality
foundational training corpus.

Existing language identification models perform
relatively poor when it comes to distinguishing

between the Scandinavian languages Danish, Nor-
wegian and Swedish, as they are similar languages.
The Scandinavian languages share common history
rooted in the Viking Age, during which Old Norse
was spoken across the region1. This later evolved
into the distinct Scandinavian languages, yet they
retain similar linguistic features across vocabulary,
grammar, and pronunciation. This contributes to
the languages’ mutual intelligibility today, posing a
challenge for accurate language identification. Nor-
wegian presents additional challenges as it is di-
vided into two written forms, Bokmål and Nynorsk,
both representing the same oral language.

In this paper we look at language identifica-
tion models for Norwegian Bokmål, Norwegian
Nynorsk, Danish, and Swedish. We consider exist-
ing methods – No Language Left Behind (NLLB),
OpenLID, FastText, CLD3 – for a basline and com-
pare the results of the best performing model to a
XLM-R model fine-tuned for Scandinavian LID.
Additionally, we include a random baseline for
comparison.

The sections of this paper discuss key aspects of
our research. Section 2 outlines previous research
in the field of LID. Section 3 introduces the datasets
we used for training (when needed) and evaluating
the models. Section 4 identifies the metrics we use
for evaluation and justifies our choices. Section
5 presents our baseline models, and Section 6 ex-
plains the process of fine-tuning the large language
model. In Section 7, we examine the results of
model performance and identify main case cate-
gories into which errors can be clustered. Finally,
Section 8 rounds off our research with a discussion
of our findings, the limitations of our work, and
suggestions for future research.

We aim to shed light on areas where the models
perform well or poorly through a dedicated error
analysis, identifying cases where the models fail

1https://snl.no/nordiske_sprÃěk

41

to classify correctly, seeing which of the cases are
the most difficult, and determining whether the
mistakes are obvious to humans. In doing so, we
hope to highlight the importance of quality training
data and identify cases in that data where existing
models tend to struggle to encourage creating and
using more curated datasets.

2 Related Work

Research into language identification has a rich and
long history, employing a diverse array of methods
(Jauhiainen et al.). Recent work in automatic LID
has leveraged both traditional machine learning
techniques and more advanced deep learning tech-
niques. Although language identification for high-
resource languages has become highly effective
and is no longer a primary research focus, the chal-
lenge of distinguishing between similar languages
continues to draw significant interest. This focus
is exemplified by initiatives like the DSL (Discrim-
inating between Similar Languages) shared task,
which has been held since 2014 (Zampieri et al.,
2014).

A recent study has explored various methods to
discriminate between Nordic languages in the LID
task (Haas and Derczynski, 2020). Linear machine
learning models, FastText2 and neural networks,
including convolutional neural networks (CNNs)
were evaluated. The study found that FastText’s
performance was comparable to that of the CNN,
which was the best-performing model, yet FastText
is more efficient both during training and inference.

3 Data

For our experiments, we used the gold training and
validation sets from the Universal Dependencies
treebanks (Nivre et al., 2017), where the validation
sets were used as the held-out test data and for error
analysis. Each instance in the dataset is a sentence
with a single label identifying the sentence’s lan-
guage. Table 1 shows how the data is split. The
following shows the first instance in the training
data:

{
'text': 'For no skal vi drive

ut desse demonane.',
'languages': "['nn']"

}

For the purpose of our experiments, we only con-
sider the data with single labels. We acknowledge

2https://fasttext.cc

that some instances can be acceptable in multiple
languages, but for simplicity’s sake, we consider
only single-labeled data (more on this in Section 8).
Additionally, it is important to note that the datasets
are unbalanced, that is to say, there are more exam-
ples of Bokmål and Nynorsk in the datasets than
Other, Danish, or Swedish, as shown in Table 1.

Language Label Training Evaluation
Bokmål nb 15435 2392
Nynorsk nn 14029 1859
Other other 8360 1116
Danish da 4376 563
Swedish sv 4278 503
Total 46478 6433

Table 1: The number of instances in each dataset by lan-
guage. The training data was used for training, whereas
the validation set was used as a held-out test set and for
error analysis.

4 Metrics

For evaluating the models, we look at three metrics,
namely accuracy, macro F1 score, and Matthews’
correlation coefficient (MCC)3. The first metric,
accuracy, tells us how close the models’ predic-
tions are to the target labels. The macro F1 score
is another quantification of performance that com-
bines the precision and recall scores. Thirdly, the
Matthews’ correlation coefficient is another repre-
sentation of the quality of binary classification.

We calculate each method loosely, meaning that
the target value is only one language label, and the
model predicts only one language label. The met-
rics are calculated with an all-or-nothing approach,
that is to say, either the prediction is correct or
incorrect, even though some instances are accept-
able in multiple languages as we address later in
the paper. In addition, we acknowledge that the
number of examples for each language is not the
same. While the datasets are unbalanced, we find
the choice to use macro scoring over weighted scor-
ing suitable due to the fact that the most similar
examples are those of Bokmål and Nynorsk, so we
need more examples to get a representative result
of model performance.

5 Baselines

Initially, we calculate the results of randomly pre-
dicted languages as a lower level benchmark. Next,

3https://lightning.ai/docs/torchmetrics/
stable/all-metrics.html

42

we use several different linear models for our base-
lines, the first of which is the original FastText
model for language identification (Joulin et al.,
2016). Then, we evaluate the next two models,
OpenLID (Burchell et al., 2023) and NLLB (NLLB
Team et al., 2022), which train a linear classifier
on top of the FastText model using curated datasets
and linguistic input. As a final baseline, we evalu-
ate the CLD3 model 4 which is a neural network
that uses character-based n-grams as features.

By using different types of baseline architectures,
we hope to gain insight into what improves model
performance and highlight decisions which can
negatively affect results. For example, the Open-
LID and NLLB language identifiers further refine
the performance of the FastText model with the
added classifier. If this is a successful approach,
we will see that the OpenLID and NLLB language
identifiers will outperform the FastText model. On
the other hand, the CLD3 model only has one class
for the Norwegian language and does not distin-
guish between Norwegian Bokmål and Norwegian
Nynorsk. Therefore, we had manually decided
whether instances identified as Norwegian would
default to Bokmål or Nynorsk, and decided to de-
fault to Bokmål as it makes up a larger portion of
the dataset. However, this means that no instance
is identified as Nynorsk by the CLD3 model, dis-
rupting the performance results.

6 Fine-Tuned Language Model (FTLM)

We fine-tuned the XLM-R base model (Conneau
et al., 2019) on the gold training dataset. To save
time and resources, we used the procedure and hy-
perparameters used in (Luca Papariello, 2024) as
a starting point and adapted it to our specific task
(Table 2). In their experiments, they fine-tuned
the base XLM-R model to the LID task and were
able to predict across 20 languages with an average
accuracy of 99.6 percent. We acknowledge that,
by opting out of a more in-depth hyperparameter
search, the performance of the fine-tuned classifica-
tion model could be improved. However we chose
to prioritize error analysis over hyperparameter op-
timization.

Additionally, we decided to limit inputs to a
length of only 128 characters. This is a naive sim-
plification and we acknowledge that we lose some
information by cutting off examples early. For in-
stance, Example 1 is a sentence in Nynorsk where

4https://github.com/google/cld3/

Learning Rate Train Batch Eval. Batch Epochs
2e-05 64 128 2

Table 2: Hyperparameters for fine-tuning the base XLM-
R model. The fine-tuning process took around 12 min-
utes on an NVIDIA L4 GPU.

the colored words are indicators of Nynorsk rather
than Bokmål, and the character cutoff is marked
by [128] and a line break. We see that there are a
total of 12 indicators of Nynorsk, but only 3 occur
within the first 128 character section. Therefore, by
expanding the input window, we can provide more
information to the model and potentially improve
performance. However, we see that most of the
data consists of fewer than 128 characters (Q3: 118
characters, see Appendix 4 for complete statistics),
so examples like Example 1 are not very frequent,
and we decided to prioritize simplifying computa-
tion over potentially optimizing input length.

(1) Ei slik løysing har etter måten solid
tilslutning gjennom dei merknader og
framlegg som er komne i samband med det
språkpolitisk [128]
e grunnlagsarbeidet som er gjort dei siste åra,
og er elles ein naturleg konsekvens av at
regjeringa med denne meldinga tek til orde
for ein ny og heilskapleg språkpolitikk som
skal omfatta den totale språksituasjonen i
landet.

7 Results

Model Accuracy F1 MCC Runtime
FTLM 0.9541 0.9567 0.9376 ∼ 3.5 m
NLLB 0.9307 0.9305 0.9154 0.84 s
OpenLID 0.9178 0.9176 0.9004 0.84 s
FastText 0.7298 0.7424 0.7205 0.23 s
CLD3 0.6370 0.6392 0.6069 0.64 s
Random 0.1940 0.1773 0.2475 0.01 s

Table 3: Loose metrics for baseline performance of
existing methods on development sets. Runtime is rep-
resented by the CPU inference time in either seconds (s)
or minutes (m).

We evaluated each of the baseline algorithms us-
ing the provided evaluation script5, and the overall
model performance results are shown in Table 3

5evaluation.py

43

Figure 1: F1-Score received by each of the models for each of the languages. Since the CLD3 model does not
include separate labels for Norwegian, it receives an F1-score of 0 for Nynorsk, and the Bokmål results are skewed.

and Figure 1. The results also includes the per-
formance of the FTLM. We see that, as expected,
all models perform better than the random base-
line, and the NLLB language identifier performs
the best of all of the baselines. When looking at
the inference times of the models, the runtime in-
crease, albeit slightly, as the performance increases.
Notably, the fine-tuned language model before the
best, but at 250x the runtime of the NLLB language
identifier achieving only around a 2 percent bump
in performance.

As introduced in Section 5, we see the impact
of different approaches on the results. The CLD3
model does not perform well on Norwegian em-
phasizing the necessity of separating Nynorsk and
Bokmål in LID tasks, as it performs better than the
FastText on Swedish and Danish. We see also that
using a curated dataset to fine-tune a classifier on
top of the FastText model is successful, as shown
by the NLLB language identifier and OpenLID
model results.

For our analysis, we look at all models from a
more surface level perspective and look at general
statistics in Section 7.1. Then, we dive deeper
into the best performing models and attempt to
identify problem areas that give insight into what
the models need to improve on in Section 7.2.

7.1 General Statistics
We see that the best performing existing LID mod-
els (NLLB and OpenLID) achieve F1-scores on
each language which are generally within 0.05 of
the performance of the fine-tuned language model.

When looking at the misclassified examples, we

find that they tend to be shorter (i.e. consist of
fewer characters) than the overall distribution of
lengths in the dataset. Figure 2 shows a density plot
of the character length of misclassified examples by
model compared to the distribution of lengths in the
entire dataset. We see that there is a higher density
of misclassified examples shorter than 40 charac-
ters for the NLLB, OpenLID and FTLM models
than in the dataset as a whole.

Figure 2: The distribution of the character length of
incorrectly classified instances by model compared to
the the distribution of lengths in the entire dataset. This
figure has a reduced domain for clarity. Appendix 6
shows the entirety of the density plot.

While the distribution of the lengths of examples
misclassified by the CLD3 model – and to some
extent, the FastText model – is fairly close to that of
the entire dataset, we attribute this is caused by the
overall poor performance of the model rather than
that the model handles shorter examples particu-
larly well. Ultimately, all models face difficulties

44

when predicting short ambiguous sentences due
to the lack of clear context, something even hu-
mans find difficult. We continue the discussion of
ambiguity in Section 7.2.

Next, we looked at what the models predicted
when they misclassified an instance (see Figure 3).
We see that NLLB language identifier and the Open-
LID model are similar when it comes to the amount
to misclassifications when the model predicts Dan-
ish, Bokmål and Swedish, but it is interesting to
note that OpenLID predicts Nynorsk more often
than NLLB when it classifies incorrectly. On the
other hand, NLLB predicts Other incorrectly more
often that the other two models shown. However,
it is important to note that NLLB was trained to
identify many more languages than just the four
we examine and the dataset is not perfect (see Po-
tentially Problematic Gold Labels in Section 7.2)
so we see that even though our metric punishes
the model for predicting Other, it is not always
technically incorrect. Additionally, we see that the
fine-tuned language models predicts Bokmål in-
correctly much more than the other two models
and does not predict Other nearly as frequently.
However, it is unclear whether this is statistically
significant because it was fine-tuned on an unbal-
anced dataset which favored Bokmål and had fewer
examples of other languages.

7.2 Case Categories
We chose to further analyze the two best models,
namely the fine-tuned model and the NLLB model,
and look in depth at where the models failed to
classify correctly. In our analysis, we were able to
identify four misclassification categories relating
to ambiguity: input from Non-Scandinavian Lan-
guages, potentially problematic gold labels, named
entities, and ambiguity because of language simi-
larity.

When it comes to determining the cause of mis-
classification, we find that the length of the sen-
tence carries more weight than the following cases
of ambiguity. If an input consists of fewer charac-
ters, it is clearer that the lack of information leads
to misclassification and overrides the influence of
the named cases. For longer sentences, it becomes
easier to point out which of the four cases plays the
biggest part for the misclassification.

Input From Non-Scandinavian Languages
Misclassification often occurs when the presence of
words in non-Scandinavian languages outweighs

Figure 3: When the models predict a language incor-
rectly, this is the distribution of the labels predicted.

the linguistic indicators that identify the text as
Scandinavian. This could be the case when test
sentences contain non-Scandinavian references and
loanwords.

When comparing misclassifications due to
the inclusion of non-Scandinavian words, the
NLLB model exhibits a tendency to misclassify
clearly non-Scandinavian sentences as Scandina-
vian, while the fine-tuned model demonstrates far
fewer instances of that sort, likely due to the re-
duced size of languages seen during training for the
fine-tuned model. In the NLLB model’s training
data, instances with foreign scripts inside sentences
of another language were found (Costa-jussà et al.,
2022). Despite attempts to filter out such sentences,
some may have been missed, leading to misclassi-
fication of test sentences due to incorrectly learned
language representations (see Example 2).

(2) et venerunt et impleverunt ambas naviculas
ita ut mergerentur (pred: nb, gold: other)

Additionally, the NLLB model frequently mis-
classifies sentences with loanwords and non-
Scandinavian references. In such cases, sentences
are often misclassified as Other when the number
of Non-Scandinavian words surpasses or equals
the count of Scandinavian words (see Example 3).
This stands in contrast to human evaluation, where

45

such instances are typically correctly classified.
On the other hand, the presence of loanwords and
Non-Scandinavian references has an overall dimin-
ished impact on the fine-tuned model’s decision-
making process. This is due to the transformer-
based architecture of the fine-tuned model that cre-
ates a contextualized representation better identify-
ing language-specific features crucial for accurate
classification.

(3) Ein avocado (gold: nn, pred: other)

However, both models still misclassify when
sentences only include loanwords and non-
Scandinavian references and words, highlighting
the inherent challenge of accurately classifying sen-
tences acceptable in multiple languages. Such sen-
tences are typically short, lacking linguistic cues
and context indicative of the correct language. Con-
sequently, they can fit into both the gold and pre-
dicted languages, introducing ambiguity, as seen
in Examples 4 and 5 from the fine-tuned model.
These sentences would probably also be misclassi-
fied by humans since they do not have any words
that are specifically Scandinavian, and the same
loanwords can appear in all the languages.

(4) Voila! (pred: other, gold: nn)

(5) «Kids Wanna Rock» (pred: nb, gold: other)

Potentially Problematic Gold Labels Generally,
language identification works better on the docu-
ments level and is more difficult at the sentence
level due to less context. This leads to instances
where the instance itself seems to be in one lan-
guage, but is included in text that is labeled as
another language, e.g. using an English idiom in a
Bokmål paragraph. We see that models predict cor-
rectly, i.e. label the instance as other, even though
they are punished because the gold label is nb.

We find that both NLLB and the fine-tuned
model struggles with these problematic gold labels.
It is not surprising that the models misclassified
these instances since the sentences themselves are
not in any of the Scandinavian languages when con-
sidered in a stand-alone context. We found a few
instances (see Example 6 and 7) where the exam-
ple seems to be in English and the model predicted
other, while the sentence was labeled with one of
the Scandinavian languages in the gold dataset. In-
terestingly, we also found a Non-English sentence
that have a problematic gold label (see Example 8).

This sentence is in fact not a Nynorsk sentence, but
a Bokmål one.

(6) « ... where do we go when we die? (pred:
other, gold: nb)

(7) What lies beyond, and what lay before? (pred:
other, gold: nb)

(8) Det forutsetter selvsagt at komiteene
engasjerer seg på saker som krever det. (pred:
nb, gold: nn)

The reason for these problematic gold labels are
because the sentences appear in documents of the
respective language and has therefore been labeled
as such. The misclassification of such sentences is
therefore not because of the model, but the out-of-
context labels themselves, resulting in a negative
effect for the metrics score the models are given
since they are seen as mistakes when that is not the
fact.

Named Entities Named entities have meaning
that carries across language boundaries and may
contain character sequences that lack language-
specific patterns and are common across multi-
ple languages, which could lead to misclassifica-
tion. For example, Example 9 is misclassified by
both the NLLB and FTLM model as Danish, even
though the word veske (purse) is not a Danish word.
Both the NLLB model and the fine-tuned model
face challenges with sentences including named en-
tities, particularly in short sentences. However, the
fine-tuned model typically predicts a Scandinavian
language, whereas the NLLB model tends to pre-
dict Other (see Example 11 and 10, respectively).

(9) Jeg elsker min Chanelveske. (pred: da, gold:
nb)

(10) Leste Karl Marx (pred: other, gold: nb)

(11) (Foto: Bent Rej) (pred: nb, gold: da)

The tendency for the fine-tuned model to
wrongly predict a Scandinavian language may stem
from the bias towards Scandinavian languages in
the training data, coupled with the inherent simi-
larity among Scandinavian names, which are less
frequently encountered in the Other category of the
training data. More specifically, sentences with
named entities tend to be misclassified as Bok-
mål, possibly due to the dominance of Bokmål
in the training data, leading to a greater exposure

46

of named entities in the Bokmål training data. Con-
sequently, even if a sentence exhibits linguistic fea-
tures indicative of another Scandinavian language,
the model’s preference towards Bokmål sometimes
prevails (see Example 12).

(12) Jytte Hilden og Lone Dybkjær er
barndomsveninder, og Poul Nyrup
Rasmussen og Mogens Lykketoft har været
venner i mere end 25 år. (pred: nb, gold: da)

Finally, when a few extra words are included, the
fine-tuned model typically demonstrates greater
proficiency in predicting the language than the
NLLB model does. This advantage may stem from
the model’s contextualized understanding, enabling
it to identify and effectively utilize the few linguis-
tic cues for more accurate language prediction. In
contrast, the NLLB model relies solely on statis-
tical probabilities from character sequences. This
makes it difficult to prioritize words for prediction
due to the model’s lack of contextual understanding.
Thus, while both models may encounter difficulties
with short sentences containing named entities, the
fine-tuned model’s architecture allows for better
handling of such cases.

Ambiguity Because of Language Similarity
Scandinavian languages have many features in
common, such as word forms and grammar. We
find that there are two instances where the misclas-
sification tends to happen because of this similarity.
The first is sentences that are misclassified because
of ambiguity where they are correct for multiple
languages, but the data has only one gold label. If
the model predicts one of the languages that is not
the gold label, it will be seen as incorrect, even
if it is not necessarily so. The second instance is
sentences where there are only a few words that are
uniquely language specific, but the rest are words
that are found in multiple languages.

From Figure 4 and Figure 5, both models strug-
gle the most with predicting Nynorsk, and most
of the wrongly predicted sentences were predicted
to be Bokmål. For many of these sentences, it is
the presence of one or two language specific words
that identify the sentence as one of the languages.
For instance, Example 13 is incorrectly predicted
as Bokmål, and the verb vere is the only indicator
that it is in Nynorsk, as well as Example 14 where
ministerbilerne and tokbaksrygning are the only
indicators that it is in Danish. From the two figures
we also see a trend for both models where Bokmål

Figure 4: Number of incorrectly predicted languages
per language for NLLB

Figure 5: Number of incorrectly predicted languages
per language for fine-tuned LM

sentences are misclassified as Danish. The figures
also show that, in general, the fine-tuned model has
the most difficulty distinguishing between Nynorsk,
Bokmål, and Danish. It often misclassifies a sen-
tence in one of these languages as being in one of
the other two. NLLB, also struggles with Nynorsk
and Bokmål, but the misclassifications are more
spread out between all the languages. We can also
see that NLLB has a higher tendency to misclassify
a sentence as Other, than the fine-tuned model.

(13) Distriktnorge er kjent for å vere bakpå og
intolerant. (pred: nb, gold: nn)

(14) Med andre ord: tobaksrygning er forbudt i
ministerbilerne! (pred: nb, gold: da)

47

There are a number of ambiguous sentences that
are acceptable in multiple Scandinavian languages
because of their shared orthography, which makes
them difficult to classify. Both models tend to strug-
gle with these because of the similarity and lack
of language identifiable words. Example 15 is al-
lowed in both Danish and Bokmål, Example 16 is
allowed in Nynorsk, Bokmål, and Danish, Exam-
ple 17 is allowed in all the Scandinavian languages,
while Example 18 is allowed in both Swedish and
Nynorsk. In our analysis, we found that these dif-
ficulties appear most often between Bokmål and
Danish, and Nynorsk and Bokmål, given their close
orthographic proximity.

(15) Det er et ’jeg’ der, det er et ’vi’ der og det er
et ’de’ der. (pred: da, gold: nb)

(16) Metoden er brutal. (pred: da, gold: nn)

(17) (Privat foto) (pred: sv, gold: nn)

(18) Det handlar om systemet (pred: nn, gold: sv)

It comes as no surprise that the models struggle
more between Nynorsk and Bokmål than between
the other languages considering they are written
forms of the same oral language. In addition, there
have been a number of changes in the orthographic
standardization for Nynorsk (Språkrådet) where
some of the argumentation for the changes are to
make it easier for the speakers of Norwegian to
read and write both written languages. Two exam-
ple from the last change that happened in 20126

was that it is now allowed to write skole in addition
to skule, and enten and anten is equally acceptable
to write. While the changes might make it easier
for the speakers of Norwegian by making the two
written forms more similar to each other, this is the
exact thing which makes it more difficult for mod-
els to learn the difference, and thereby predicting
which of the two written forms is used.

8 Discussions

Our research examined the successes and downfalls
of existing language identification models on Scan-
dinavian languages. Of the baseline algorithms we
looked at, NLLB performs the best and achieves
performance comparable to the results of our fine-
tuned language model. This suggests that we do not

6https://www.sprakradet.no/globalassets/
vi-og-vart/publikasjoner/ny-nynorskrettskriving.
pdf

necessarily need to invest resources in fine-tuning
models, but rather that we can use existing models
to achieve comparable results.

In our error analysis, we identified several clus-
ters of misclassification cases where models fail
to disambiguate Scandinavian languages. Firstly,
short examples likely do not provide enough infor-
mation for the model to identify the language. Next,
we looked at four cases of ambiguity in the incor-
rectly labeled instances to highlight potential prob-
lem areas. The model may classify the instance
incorrectly if multiple languages are represented in
the instance. When a document includes loanwords
or Non-Scandinavian language, it can confuse the
model or potentially have a misleading gold la-
bel. Language-agnostic forms, like names, places,
dates, or citations, are a further hindrance, as they
do not change. Examples with shared written forms
across languages were a source of problems for the
models, although we mention that this is also the
case for humans as well since there are multiple
correct answers.

8.1 Limitations
Due to practical and resources restraints, we ac-
knowledge the limitations of our work:

• The performance by our fine-tuned model
could be improved with a more in-depth hy-
perparameter search and is limited by a fixed
context window.

• The statistics are based on all or nothing classi-
fication, when, as we have seen, Scandinavian
Language identification can be ambiguous and
not always suited for single-label classifica-
tion.

• The potentially problematic gold labels influ-
ence the models ability to learn an accurate
representation of the language.

8.2 Future Work
We see that the majority of errors in our best per-
forming models stem from ambiguity in the exam-
ples, where there is not a single correct label. This
suggests that binary or multi-class classification is
not sufficient enough for this task, and multi-label
classification is required for further improvements.
We encourage future work in how we can allow
multi-label classification in cases where a sentence
is acceptable in multiple Scandinavian languages
or ambiguous due to lack of context.

48

Additionally, we hope that our work will moti-
vate continued research into curated datasets, as
(Burchell et al., 2023) and (NLLB Team et al.,
2022) have done. We have shown that adding a
curated dataset improves performance and high-
lighted problem cases and hope that they can be
used to further refine training data to improve
model performance. As we saw with the presence
of foreign texts, mostly English, in the Scandina-
vian datasets, we encourage a finer-grain refine-
ment of datasets to prevent misleading gold labels
that could prohibit a model from learning an accu-
rate representation of the language.

References
Laurie Burchell, Alexandra Birch, Nikolay Bogoychev,

and Kenneth Heafield. 2023. An open dataset and
model for language identification. In Proceedings
of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers),
pages 865–879, Toronto, Canada. Association for
Computational Linguistics.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2019. Unsupervised
cross-lingual representation learning at scale. CoRR,
abs/1911.02116.

Marta R Costa-jussà, James Cross, Onur Çelebi, Maha
Elbayad, Kenneth Heafield, Kevin Heffernan, Elahe
Kalbassi, Janice Lam, Daniel Licht, Jean Maillard,
et al. 2022. No language left behind: Scaling
human-centered machine translation. arXiv preprint
arXiv:2207.04672.

René Haas and Leon Derczynski. 2020. Discriminating
between similar nordic languages. arXiv preprint
arXiv:2012.06431.

Tommi Jauhiainen, Marcos Zampieri, Timothy Baldwin,
and Krister Lindén. Automatic Language Identifica-
tion in Texts. Springer Nature. Google-Books-ID:
n9PrEAAAQBAJ.

Armand Joulin, Edouard Grave, Piotr Bojanowski, and
Tomas Mikolov. 2016. Bag of tricks for efficient text
classification. arXiv preprint arXiv:1607.01759.

Luca Papariello. 2024. xlm-roberta-base-language-
detection (revision 9865598).

Joakim Nivre, Daniel Zeman, Filip Ginter, and Francis
Tyers. 2017. Universal dependencies. In Proceed-
ings of the 15th Conference of the European Chapter
of the Association for Computational Linguistics: Tu-
torial Abstracts.

NLLB Team, Marta R. Costa-jussà, James Cross, Onur
Çelebi, Maha Elbayad, Kenneth Heafield, Kevin Hef-
fernan, Elahe Kalbassi, Janice Lam, Daniel Licht,
Jean Maillard, Anna Sun, Skyler Wang, Guillaume
Wenzek, Al Youngblood, Bapi Akula, Loic Bar-
rault, Gabriel Mejia-Gonzalez, Prangthip Hansanti,
John Hoffman, Semarley Jarrett, Kaushik Ram
Sadagopan, Dirk Rowe, Shannon Spruit, Chau
Tran, Pierre Andrews, Necip Fazil Ayan, Shruti
Bhosale, Sergey Edunov, Angela Fan, Cynthia
Gao, Vedanuj Goswami, Francisco Guzmán, Philipp
Koehn, Alexandre Mourachko, Christophe Ropers,
Safiyyah Saleem, Holger Schwenk, and Jeff Wang.
2022. No language left behind: Scaling human-
centered machine translation.

Språkrådet. Rettskrivingsvedtak. Accessed: 2024-05-
08.

Marcos Zampieri, Liling Tan, Nikola Ljubešić, and Jörg
Tiedemann. 2014. A report on the DSL shared task
2014. In Proceedings of the First Workshop on Ap-
plying NLP Tools to Similar Languages, Varieties
and Dialects, pages 58–67, Dublin, Ireland. Associa-
tion for Computational Linguistics and Dublin City
University.

49

A Appendix

method mean_len min_len Q1 median_len Q3 max_len
nllb 27.61 1.0 11.0 20.0 36.0 182.0
ftlm 33.59 1.0 14.0 23.0 43.5 145.0
openlid 35.72 1.0 14.0 26.0 47.0 210.0
fasttext 64.28 1.0 25.25 50.0 89.0 437.0
cld3 77.76 1.0 34.0 67.0 108.0 437.0
all_data 85.97 1.0 41.0 73.0 118.0 664.0

Table 4: Statistics about the distribution of the character length of the incorrectly classified instances by model.
"all_data" shows the distribution of text length in the entire evaluation dataset.

Figure 6: Density plot of the lengths of misclassified examples compared to the lengths of all examples in the
dataset.

50

Transformers do (not) outperform FastText on Scandinavian language
identification

Mariia Fedorova
University of Oslo, Norway

mariiaf@ifi.uio.no

Abstract

This paper presents a fast and accurate model
for Scandinavian language identification on
short news texts. We compare transformer-
based models with more lightweight ones
(based primarily on static word embeddings)
both in CPU inference speed and accuracy and
try to find the balance between these two met-
rics using quantization and knowledge distilla-
tion. Our best model infers 9 times faster than
the best baseline while preserving its F1-score1.

1 Introduction

Although transformer-based large language mod-
els have proved to gain state-of-the-art results on
many text classification tasks, including bench-
marks for Scandinavian languages (Snæbjarnarson
et al., 2023), their practical usefulness for some
real-world tasks is questionable. Language iden-
tification is a first step in many text processing
pipelines and is required to be not only accurate,
but also fast. In this paper we compare different
models and optimization techniques for their per-
formance on the task of identifying, whether a text
is written in Danish, Norwegian Bokmål, Norwe-
gian Nynorsk, Swedish or other language.

The task of Scandinavian language identifica-
tion is more complicated than a regular language
identification task, since three of the four aforemen-
tioned languages share the same alphabet and all
four languages have the same ancestry, which re-
sults in the fact that whole sentences can be written
in the same way, not only separate words. Creation
of multilabeled corpora for solving this problem
requires costly manual verification.

2 Related work

Language identification as a whole and Scandina-
vian language identification in particular are under-

1Code is available at: https://github.uio.no/
mariiaf/in9550-exam

explored fields.
A default baseline solution for text classifica-

tion tasks are bag of word (or subword) vectors,
for instance, CLD32 is a feed forward neural net-
work that uses them as input features. This model
treats both Bokmål and Nynorsk as the same class
Norwegian. Although such a model is simple to
train and efficient to predict, it may be not robust
towards unknown words or word forms.

Some models, solving the task efficiently and
accurately, are FastText (Joulin et al., 2017), NLLB
(Grave et al., 2018), OpenLID (Burchell et al.,
2023), GlotLID (Kargaran et al., 2023). They all
use FastText word vectors (Bojanowski et al., 2017)
and make a difference between Norwegian Bokmål
and Nynorsk. The Kargaran et al. (2023)’s model3

is especially interesting because it includes low-
resource languages along with high-resource ones,
which results in 2155 classes in total, while the
three other include 176, 207 and 217 languages
only.

We use all these models as our baselines, the
results will be discussed in the next sections.

3 Data

We report only the results obtained with the gold
training/validation data from Universal Depen-
dencies treebanks (Nivre et al., 2017). These
datasets are not disambiguated (a sentence labeled
as Nynorsk is in Nynorsk, but it could also be a
valid Bokmål sentence).

The test data are from the same treebanks, but
manually annotated in a multilabeled way. For
example, some samples are just named entities (e.g.
‘Marie’) labeled with all four languages.

Number of samples (sentences) across the
datasets and languages is shown in Table 1. The
dataset is disbalanced towards Norwegians. Al-

2https://github.com/google/cld3
3https://huggingface.co/cis-lmu/glotlid

51

Language Gold train Gold dev Test
Bokmål 15 435 2 392 1 939
Danish 4 376 563 565
Nynorsk 14 029 1 859 1 511
Swedish 4 278 503 1 219
Other 8 805 1 165 1 742

Table 1: Number of samples (sentences) across the
datasets and languages.

though this may be useful for Norwegian-focused
downstream tasks, this may be not a real world dis-
tribution (e.g. the Norwegian Bokmål Wikipedia
contains about 630 000 articles4, while the Swedish
one contains about 2 585 000 articles5). For this
reason, we did not experimented with class weights
for loss functions while training our models.

4 Experiments

4.1 Evaluation metrics
We evaluate both single-label and multilabel for-
mulations of the task. The first one is measured
by ‘loose’ metrics: if the predicted label is among
the gold labels, it is correct. The ‘strict’ metrics
consider to be correct only those sets of labels, that
exactly match with the gold ones. We report both
loose and strict accuracy and macro F1 for each
model.

4.2 Baselines
Table 2 shows the baseline results and CPU infer-
ence time (it is approximate, but allows to divide
the methods into ‘slow’ and ‘fast’). The inference
time is reported for the whole test set, also includ-
ing the preprocessing (tokenization etc.) steps.

For the best-performing FastText methods we
experimented with reducing the number of out of
vocabulary words (OOV) by removing punctuation
and lowercasing (entries with * in 2 show these
results).

4.3 Single-label vs. multilabel training
First, we had to choose between single-label and
multilabel formulations of the task. For this pur-
pose, we fine-tuned a lightweight (15 M parame-
ters) NorBERT3-XS model (Samuel et al., 2023)
and trained it with both regular Cross Entropy and
Binary Cross Entropy loss functions. The results

4https://no.wikipedia.org/wiki/Portal:Forside
5https://sv.wikipedia.org/wiki/Portal:

Huvudsida

turned out to be worse for the multilabel setup (see
Table 3), which was expected, since the training set
contained ambigious examples labeled by a single
label. Manual inspection of class probabilities for
random ambigious samples showed, that all true
probabilities are higher, than the wrong ones, but
those of a more frequent class in the data are much
higher (it was also proved by a larger difference
between accuracy and F1 for the multilabel model
than for other models). A typical example is the
sentence ‘Byen er totalt mørk’ (‘The city is totally
dark’), belonging to Bokmål, Nynorsk and Danish,
which got the probability distribution of approxi-
mately 0.99 Bokmål, 0.012 Nynorsk, 0.011 Danish,
0.0011 Swedish and 0.0016 other. Thus, a multi-
label model trained on single-label data behaves
like a single-label model trained on a noisy corpus.

It was also impossible to establish a threshold for
the class probabilities, since the difference among
them varied from sample to sample. For these rea-
sons, we left the creation of a multilabeled training
set for future work and trained the rest of our mod-
els for a single-label task. However, we still report
both loose and strict metrics, in order not to oversee
a situation when excessive optimization of a loose
metric caused the strict ones to sink.

4.4 Bertology

Model comparison. After making it clear with
the task formulation, we had to choose a language
model. BERT (Devlin et al., 2019) is nowadays a
default sequence classification solution based on
a transformer encoder (Vaswani et al., 2017) lan-
guage model. We compared multilingual, Scandi-
navian and Norwegain BERTs with different num-
ber of parameters in order to choose a model to
focus on for further optimizations. Since perfor-
mance on CPU is important for us, we began with
smaller models and moved on to larger ones.

The Scandinavian model we use is ScandiB-
ERT6 (Snæbjarnarson et al., 2023) and, speaking
precisely, is neither a BERT nor a pure Scandina-
vian model, but an XLM-RoBERTa-base (Conneau
et al., 2019) further trained on Icelandic, Danish,
Norwegian, Swedish and Faroese.

The results are presented in the table 4. While an
‘XS’-sized model performed below the best base-
line (GlotLID), all ‘S’- and more sized models
outperform it. One can note that the difference
between ‘S’ and ‘base’ sizes does not contribute

6https://huggingface.co/vesteinn/ScandiBERT

52

System Accuracy, loose, % F1, loose, % Accuracy, strict, %, % F1, strict, % CPU
CLD3 72.36 65.42 70.50 65.03 0.78
OpenLID 93.51 92.39 90.54 90.48 0.48
FastText 79.69 76.74 77.58 78.89 0.12
NLLB 94.41 93.21 91.71 91.54 1.89
NLLB* 94.93 94.15 92.07 92.35 1.04
GlotLID 96.30 95.17 93.53 93.38 4.75
GlotLID* 96.09 94.95 93.38 93.28 4.66
random 22.05 21.04 20.50 20.78 0.02

Table 2: Baseline metrics

System Acc, loose, % F1, loose, % Acc, strict, % F1, strict, % CPU
norbert-xs, single 92.70 91.29 89.28 88.68 125.79
norbert-xs, multi 90.34 87.74 87.16 85.61 141.70

Table 3: Metrics of the models trained for single- or multilabel classification. F1 here and in all other tables is
always macro averaged. CPU inference time is always in seconds.

much to the quality, while the inference speed be-
comes twice as worse. Moreover, the DistilBERT
multilingual cased model7 (Sanh et al., 2019) per-
forms better than the model it was distilled from8

(Devlin et al., 2019).
Another interesting result is that the Norwegian

models910 outperform the multilingual models.

Inference speed optimization. Since inference
time of the fine-tuned BERT models is more than
40 times as large as the GlotLID’s one, while their
evaluation metrics are only about 5 point better,
we had a look common technique of inference
speed optimization. First, we export a model into
ONNX11 runtime, which reduces the running time
of an ‘S’-sized model up to less than a minute
without loss in its accuracy. Then we apply a quan-
tization into int8 datatype, which further decreases
model size and inference time with affecting perfor-
mance only a little. The exact results are presented
in the table 5.

4.5 Knowledge distillation

Although the inference time of 43 seconds on 6976
samples may be satisfactory for some tasks, even
a quantized BERT is still much less efficient than
GlotLID. For this reason, we tried to train a tiny

7https://huggingface.co/distilbert/
distilbert-base-multilingual-cased

8https://huggingface.co/google-bert/
bert-base-multilingual-cased

9https://huggingface.co/ltg/norbert3-small
10https://huggingface.co/ltg/norbert3-base
11https://github.com/onnx/onnx

model that would profit from both GlotLID and
NorBERT-base, following the approach from (Hin-
ton et al., 2015): while training a light student
model, we run prediction by both the student and a
larger teacher model and calculate two losses. The
first one is calculated as follows:

t ∗∑(log t− s)

len(s) ∗ (T 2)

where s and t are student and teacher class prob-
abilities in a batch, and T is a hyperparameter (we
used 2). We will further call it Soft Target loss.
The second one is a regular Cross Entropy loss of
the student. Then both losses are multiplied by a
weight number each. Both Soft Target loss weight
and Cross Entropy loss weights are hyperparame-
ters. We used 0.25 and 0.75 respectively12. The
sum of the two weighted losses is used for back-
propagation.

We used a feed forward network with 1 hidden
linear layer of size 64 and a ReLU activation func-
tion between it and the output linear layer. GlotLID
sentence embeddings13 with a size of 256 served
as an input. Table 6 shows the metrics both for the
student model trained solely and with the teacher.
Checkpoints trained with a teacher are saved with
TorchScript14, for this reason they use less memory.
Inference time includes also getting a sentence em-
bedding from GlotLID (its size is 1.69GB). This

12https://pytorch.org/tutorials/beginner/
knowledge_distillation_tutorial.html

13https://github.com/cisnlp/GlotLID?tab=
readme-ov-file#for-getting-sentence-vectors

14https://pytorch.org/docs/stable/jit.html

53

System N params, M Acc, loose, F1, loose Acc, strict F1, strict CPU
DistilBERT 66 96.26 96.06 92.73 93.19 131.43
BERT-base 110 95.84 95.71 92.29 92.80 281.21
ScandiBERT 250 97.81 97.54 94.35 94.64 250.78
NorBERT-s 40 98.62 98.24 95.11 95.32 166.23
NorBERT-base 123 98.65 98.40 95.15 95.45 349.70

Table 4: Models with different sizes, NorBERT-s is for NorBERT 3 small. Accuracy and F1-score are given in
percents.

System Size, MB Acc, loose F1, loose Acc, strict F1, strict CPU
NorBERT-s 187.7 98.62 98.24 95.11 95.32 166.23
NorBERT-s, onnx 179.3 98.62 98.24 95.11 95.32 58.95
NorBERT-s, onnx, QInt8 47.2 98.49 98.10 94.98 95.15 42.61

Table 5: ONNX optimization of NorBERT 3 small. Accuracy and F1-score are given in percents.

may explain why the inference time of both check-
points is the same.

Although the knowledge distilled model does
not achieve the teacher’s performance, it outper-
form the solely trained student model and reaches
the GlotLID performance (and even slightly out-
performs its by F1 score) while being almost 5
times faster. Using a teacher also helps the student
model to converge faster (we used early stopping
for defining the number of training epochs).

This approach also lefts a lot of space for im-
provement, from hyperparameter search for the
current loss to trying other knowledge distillation
losses. It is also possible to train both the teacher
and student models jointly. Thus, although the cur-
rent result is not an outstanding one, the knowledge
distillation approach deserves further development.

5 Error analysis

5.1 Tokenization

The finding that multilingual models perform worse
for Scandinavian language identification than a
Norwegian one is counterintuitive, especially given
that we have an ‘other’ class including various lan-
guages of the world. One already reported problem
with multilingual models applied to Scandinavian
languages (Samuel and Charpentier, 2024) is that
they tokenize the words in a way that does not re-
flect their morphology. We supposed that it could
also cause problems in our task and compared how
some samples are tokenized.

A typical example of much different tokeniza-
tion that most likely caused an error is a Bokmål
example ‘Ved å senke kvaliteten på det nye syke-

huset, vil driftskostnadene øke.’ DistilBERT erro-
neously classified it as Nynorsk, while NorBERT’s
prediction was correct.

• DistilBERT: ’[CLS]’, ’Ved’, ’å’, ’sen’,
’##ke’, ’k’, ’##vali’, ’##teten’, ’på’, ’det’,
’nye’, ’sy’, ’##ke’, ’##huset’, ’,’, ’vil’, ’drift’,
’##sko’, ’##st’, ’##naden’, ’##e’, ’ø’, ’##ke’,
’.’, ’[SEP]’

• NorBERT3-base: [’[CLS]’, ’ Ved’, ’ å’, ’
senke’, ’ kvaliteten’, ’ på’, ’ det’, ’ nye’, ’
sykehuset’, ’,’, ’ vil’, ’ driftskostnadene’, ’
øke’, ’.’, ’[SEP]’]

In this example, DistilBERT’s tokenizer splits
the words excessively and splits them not on mor-
pheme borders as good tokenizers do. For instance,
splitting of the word ‘kvaliteten’ (‘the quality’)
does not make any sense and destroys the usefull-
ness of subword tokenization. Moreover, we are
cautiously suspicious that the resulting subwords
can really occur both in Bokmål and Nynorsk.

One could argue that the previous example was
classified correctly not because of better tokeniza-
tion, but simply because a Norwegian model al-
ways outputs Norwegian. We have a counterexam-
ple for that, a Swedish sentence ‘En samling kalla
fakta’. DistilBERT claimed it to be Nynorsk, while
NorBERT3-base classified it correctly.

• DistilBERT: ’[CLS]’, ’En’, ’samling’, ’kalla’,
’fakt’, ’##a’, ’[SEP]’

• NorBERT3-base: ’[CLS]’, ’ En’, ’ samling’,
’ kalla’, ’ fakta’, ’[SEP]’

54

System Size Acc, loose F1, loose Acc, strict F1, strict CPU
Solely, 1 epoch 262 kB 95.83 95.28 92.66 92.93 0.59
Solely, 5 epochs 262 kB 96.03 95.66 92.69 93.15 0.57
With a teacher, 1 epoch 97.1 kB 96.09 95.80 92.76 93.24 0.70
With a teacher, 4 epochs 97.1 kB 96.29 95.91 93.02 93.40 0.55

Table 6: Knowledge distillation. Accuracy and F1-score are given in percents.

Even though this DistilBERT tokenization looks
like a valid one when compared to the previous one,
again it resulted in tokens that may be present in
more than one Scandinavian language. We suppose
that the reason why it is so difficult to outperform
static word embeddings by BERTs for this task is
that all BERTs are trained on subword tokens which
is a heavy disadvantage when sentences in two
languages may be different by e.g. verb endings
like it happens with Bokmål and Nynorsk.

However, FastText models are not robust towards
out of vocabulary words. For example, there was a
Bokmål single-word sentence ‘Venner.’ (‘Friends.’)
erroneously classified by GlotLID as ‘other’. If we
try to tokenize is with GlotLID, we will see that
both the word and the dot are the same token and it
is not present in the vocabulary. We believe this is
the reason why it was difficult to get a result higher
than the original GlotLID when doing knowledge
distillation with a student model based on its fea-
tures: the proportion of OOV tokens was the same
in both cases. The simplest solution for this prob-
lem may be training a FastText model on a large
Scandinavian corpus (e.g. Wikipedia, see ‘Limita-
tions’ section) with NorBERT3-base tokenizer and
use it as the source of features.

6 Conclusion

Our experiments has shown that, although there
exist already fast and reliable pretrained models
for language identification, their performance may
be improved by fine-tuning on a particular set of
languages or on texts from a specific domain.

We have also shown that BERT-like models out-
perform FastText methods in accuracy and F1 met-
rics (but not in prediction speed, which still makes
them useless for many real-world tasks) on a se-
lected test set and may be successfully used for
making FastText-based models faster while preserv-
ing their accuracy. The BERT model of a ‘small’
size can be enough. Choice of the model depends
on the subset of target languages: a model pre-
trained on one language only may perform better

than a multilingual one if all target languages are
similar to each other (probably, because of a more
reasonable vocabulary).

Our main contribution is a model of satisfactory
quality that runs in less than a second on approxi-
mately 7000 samples.

Future work beyond directions already meant in
the previous sections and in the Limitations section
should also include testing the models on other
datasets than a short news one and more in-depth
error analysis. It also makes sense to explore other
methods of BERT inference optimization: speaking
honestly, the ONNX default methods used in our
study are only baseline ones.

Ethical impact

We do not expect any significant ethical impact
from this study. However, we did not check
our training corpus for any inappropriate content.
BERT-like models were reported for making predic-
tions biased towards particular population groups
(Ahn and Oh, 2021), (Jentzsch and Turan, 2022)
but exploring both the base models and our fine-
tuned ones for biases was beyond the scope of our
study.

Limitations

We experimented with enriching the training
dataset with Wikipedia abstracts data (with Ice-
landic serving for enriching of the class ’other’,
assuming that it could play a role of ‘negative sam-
ples’). We got lower results on the development
dataset for all models we trained. This makes us
suspicious that the news test dataset is somewhat
specific and that our models would perform bad on
texts from other domains.

We also tried enriching the training dataset with
a ‘silver’ dataset, which was the original training
dataset translated into our other target languages.
It did not include the ‘other’ label. The results
also dropped, although less than with Wikipedia
data. Our hypothesis is that our model learns se-
mantics more, than surface features and the texts

55

on the same topics are recognized to be the same
for it, but an error analysis is required to prove this
assumption.

We tried to fine-tune the NorBERT3-large15

model with different learning rates and on different
subsets (also on the Wikipedia one) and got ex-
tremely low metrics like F1 0.1 on the development
set. Although the reasons could be pure technical
e.g. if we used a wrong tokenizer when prepro-
cessing the data, the problem is worth of further
exploration.

References
Jaimeen Ahn and Alice Oh. 2021. Mitigating language-

dependent ethnic bias in BERT. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, pages 533–549, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion for Computational Linguistics, 5:135–146.

Laurie Burchell, Alexandra Birch, Nikolay Bogoychev,
and Kenneth Heafield. 2023. An open dataset and
model for language identification. In Proceedings
of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers),
pages 865–879, Toronto, Canada. Association for
Computational Linguistics.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2019. Unsupervised
cross-lingual representation learning at scale. CoRR,
abs/1911.02116.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Edouard Grave, Piotr Bojanowski, Prakhar Gupta, Ar-
mand Joulin, and Tomas Mikolov. 2018. Learning
word vectors for 157 languages. In Proceedings of
the International Conference on Language Resources
and Evaluation (LREC 2018).

Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean.
2015. Distilling the knowledge in a neural network.
ArXiv, abs/1503.02531.
15https://huggingface.co/ltg/norbert3-large

Sophie Jentzsch and Cigdem Turan. 2022. Gender bias
in BERT - measuring and analysing biases through
sentiment rating in a realistic downstream classifica-
tion task. In Proceedings of the 4th Workshop on Gen-
der Bias in Natural Language Processing (GeBNLP),
pages 184–199, Seattle, Washington. Association for
Computational Linguistics.

Armand Joulin, Edouard Grave, Piotr Bojanowski, and
Tomas Mikolov. 2017. Bag of tricks for efficient
text classification. In Proceedings of the 15th Con-
ference of the European Chapter of the Association
for Computational Linguistics: Volume 2, Short Pa-
pers, pages 427–431, Valencia, Spain. Association
for Computational Linguistics.

Amir Hossein Kargaran, Ayyoob Imani, François Yvon,
and Hinrich Schütze. 2023. GlotLID: Language iden-
tification for low-resource languages. In The 2023
Conference on Empirical Methods in Natural Lan-
guage Processing.

Joakim Nivre, Daniel Zeman, Filip Ginter, and Francis
Tyers. 2017. Universal Dependencies. In Proceed-
ings of the 15th Conference of the European Chap-
ter of the Association for Computational Linguistics:
Tutorial Abstracts, Valencia, Spain. Association for
Computational Linguistics.

David Samuel and Lucas Charpentier. 2024. A journey
from tokenization to instruction-finetuning (normis-
tral). LTG research seminar.

David Samuel, Andrey Kutuzov, Samia Touileb, Erik
Velldal, Lilja Øvrelid, Egil Rønningstad, Elina Sigdel,
and Anna Palatkina. 2023. NorBench – a benchmark
for Norwegian language models. In Proceedings
of the 24th Nordic Conference on Computational
Linguistics (NoDaLiDa), pages 618–633, Tórshavn,
Faroe Islands. University of Tartu Library.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version of
bert: smaller, faster, cheaper and lighter. In NeurIPS
EMC2 Workshop.

Vésteinn Snæbjarnarson, Annika Simonsen, Goran
Glavaš, and Ivan Vulić. 2023. Transfer to a low-
resource language via close relatives: The case study
on Faroese. In Proceedings of the 24th Nordic Con-
ference on Computational Linguistics (NoDaLiDa),
pages 728–737, Tórshavn, Faroe Islands. University
of Tartu Library.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

A Training details

We ran all our training experiments on NVIDIA
A100 80GB. We used the learning rate 5e-5 for all
transformer models, except for NorBERT 3 xs, for

56

which we used the learning rate 5e-3. We used the
learning rate 1e-3 for the student model.

57

58

2 Pretraining Tiny Language Models track

59

An empirical study of recent optimizers in tiny language models

Sander Finnset Ørnes
University of Oslo

sanderfo@math.uio.no

Abstract

The purpose of this paper is to asses how a de-
coder based tiny language model performs with
various optimizers. The jungle of optimizers is
vast, and we limit ourselves to six different op-
timizers. The AdamW optimizer will serve as a
baseline, and the remaining five optimizers will
be measured against AdamW. These other five
optimizers are LAMB, Lion, Sophia, and sched-
ule free versions of SGD and AdamW, they are
all quite new, and empirical studies on these op-
timizers are therefore limited. Since different
optimizers perform best with different learning
rates we must tune the learning rate, this is done
through evaluation on the LAMBADA dataset
and on the BLiMP dataset. Furthermore, we
test some different schedulers and weight de-
cays. Finally, a brief qualitative analysis will
be given for some predictions made by the best
model on the LAMBADA dataset.

1 Introduction

Language models are getting bigger and bigger, en-
abled by the ever increasing computational capacity
of computers. The most famous family of language
models, the Generative Pre-Trained Transformer
(GPT) family, for instance, have only increased in
size, from the "modest" size of 117 million param-
eters in the GPT-1 model (Radford et al., 2019), to
175 billion parameters used by the GPT-3 model
(Brown et al., 2020). The GPT-4 model has an
unknown size, but the number of parameters is
rumoured to be in the trillions. It is certainly pos-
sible that language models needs to be of such a
magnitude to be comparable to humans in terms
of language understanding, but it is also possible
that a few of those trillions of parameters are su-
perfluous. It would be impossible to test for the
significance of all these parameters, but to test the
hypothesis that some of the parameters of these
massive language models are redundant, we could
instead show that smaller models have an equally

good performance. This will likely require a lot of
experimentation, and one component of language
models that directly affects the parameters is the
choice of optimization method. In addition to creat-
ing models with more efficient parameters, another
motivation is to speed up convergence, and thereby
reduce the training cost.

Optimizers control the update of the parameters
for each step in a training process by minimizing a
loss function, the exact way in which this is done
varies greatly and is an interesting topic in and of it-
self. However, mathematical and implementational
details on optimizers are way beyond the scope of
this paper, we will therefore limit ourselves to some
basic properties and refer elsewhere for details.

In our experiment we have tried several optimiz-
ers, and for each of them, several models have been
trained with varying learning rates. The learning
rate is perhaps the most important hyperparameter
of an optimizer, and it controls the speed at which
optimizers update the parameters based on the loss.
Too large of a learning rate might overshoot the
global minimum, and too small of a learning rate
might get stuck in a local minimum, or converge
really slowly. Different optimizers work best with
different learning rates, therefore we perform a grid
search over the chosen optimizers and some learn-
ing rates.

Evaluation of the models will be done on both
the BLiMP dataset (Warstadt et al., 2023b) and the
LAMBADA dataset (Paperno et al., 2016). First we
determine the best learning rate for each optimizer,
then, we will test some different schedulers and
weight decays given these best learning rates. Note
that this is not really best practice from a statistical
point of view, but is done to reduce the amount
of possible combinations. After the exploration of
the hyperparameter space, some predictions made
by the best model according to the LAMBADA
dataset will be analyzed qualitatively.

60

2 Related works

As a consequence of the the recency of the opti-
mizers we consider, there are few empirical studies
comparing them. The only one we have found
is Kaddour et al. (2023), which uses AdamW as
a baseline, and compares it with the Sophia opti-
mizer and the Lion optimizer by testing them on
the GLUE dataset (Wang et al., 2019) and the Su-
perGLUE dataset (Wang et al., 2020) for both a
BERT-type model and a T5-type model. They also
develop an evaluation methodology called refer-
ence system time, as they claim that "evaluation
methodology is not standardized" (Kaddour et al.,
2023, p. 1).

Other, and earlier comparisons exist. The most
comprehensive one is perhaps (Schmidt et al.,
2021), which compares the most popular optimiz-
ers at the time on a variety of problems, datasets
and model designs. They conclude that, of the
optimizers considered, no optimizer is universally
better, but that Adam is often a good choice.

In (Wilson et al., 2018) the angle is adaptive
optimizers, such as Adam, vs non-adaptive opti-
mizers, such as SGD. They consider a few different
deep learning experiments, but they also construct a
very interesting example where the adaptive meth-
ods fail to make the correct predictions in a lin-
early separable binary classification task and make
the following bold claim in their conclusion: "our
experimental evidence demonstrates that adaptive
methods are not advantageous for machine learn-
ing", but bear in mind that the initial year of publi-
cation was 2017.

Other, and similar works include Choi et al.
(2020) and Schneider et al. (2019), both consider
SGD, momentum and Adam. The former com-
pares a few more adaptive optimizers, and con-
cludes that "RMSPROP, ADAM, and NADAM
never underperformed SGD, NESTEROV, or MO-
MENTUM under our most exhaustive tuning pro-
tocol" (Choi et al., 2020, p. 8), i.e. the adaptive
methods they tested did not underperform the non-
adaptive methods they tested. The latter also devel-
ops a python package of deep learning optimiza-
tion benchmarks called "DeepOBS", and concludes
similarly to Schmidt et al. (2021), that none of the
tried optimizers are best for every problem, but that
Adam "compares favorably on most test problems"
(Schneider et al., 2019, p. 9).

3 Dataset

As discussed, models can be very large in terms
of parameters, they can also be trained on huge
amounts of data, far exceeding the amount of words
a human is exposed to throughout their life. As with
parameter size, the largest models are trained on
datasets containing trillions of words, the training
dataset we will use is much smaller and is similar
to the small dataset from the BabyLM challenge
(Warstadt et al., 2023a). It contains 10 million
words from various English sources and is sup-
posed to mimic the words a thirteen-year-old child
could have been exposed to throughout their lives,
see table 1.

4 Model

The model is decoder based with self attention.
It uses the GEGLU activation function (Shazeer,
2020) on each layer, and the GELU activation func-
tion on the classification head. The feed forward
neural network part of the model has three hidden
layers each of a size of 192. There are three atten-
tion heads, and the vocabulary size is set to 3072.
Additionally, all dropout probabilities are set to 0.1.
Furthermore, each layer has layer normalization
(Ba et al., 2016). Note that 10000 steps with a
batch size of 256 corresponds to 15 epochs on our
dataset. The total amount of parameters amounts
to 5 965 056.

As mentioned, the only hyperparameters we will
be tuning in the proper way are the optimizer, and
the peak learning rate of the optimizer. But we
will also test some different learning rate sched-
ulers, and some different weight decays, given the
best combinations of optimizer and learning rate.
For our learning rate experiments, we use a linear
scheduler and a weight decay of 0.1. The warmup
will be linear and last for 1.6% of the total amount
of steps. The final learning rate will, for all runs
with linear and cosine scheduling, be 10% of the
peak learning rate. In addition, whenever relevant
we set the optimizer parameters ϵ = 1e − 6, and
β = (0.9, 0.98). Lastly, the seed is set to 42 for all
runs. Altering the parameters ϵ, β and seed value
might single-handedly, or in collaboration, change
the results of our forthcoming experiment. This
highlights a weakness of our study, as we do not
know how sensitive the results are to changes in
these parameters.

61

Source Domain Words Proportion
British national corpus (BNC) Dialogue 0.8M 8%
Childes (Macwhinney, 2000) Child-directed speech 2.9M 29%

Project Gutenberg (Gerlach and Font-Clos, 2018) Written fiction and nonfiction 2.6M 26%
OpenSubtitles (Lison and Tiedemann, 2016) Scripted dialogue 2M 20%

Simple English Wikipedia Written fiction 1.5M 15%
Switchboard (Stolcke et al., 2000) Written fiction 0.1M 1%

Table 1: Dataset

5 Optimizers

The collection of optimizers that are commonly
used in deep learning algorithms has itself come
into existence through a sequential optimization
procedure, where authors have built upon previ-
ous work and tried to mitigate the weaknesses of
previously proposes optimizers. Perhaps the most
basic optimizer is (deterministic) gradient descent,
which finds the closest local minimum. If a prob-
lem has many local minimums, the probability that
gradient descent will find the global minimum is
slim. The method of stochastic gradient descent,
on the other hand, alleviates this issue and is able
to escape local minima, which could lead to better
models. On the backbone of stochastic gradient
descent, a myriad of other optimizers have come to
life. Such as Root mean square propagation (RM-
SProp) and Adaptice Gradient algorithm (Adagrad).
We refer to Ruder (2017) for a quick overview of
these and some other optimization algorithms. The
focal point of our study will be on newer optimiz-
ers, the most popular type of optimizers, namely
Adam type optimizers, will set the bar for these
newer methods.

5.1 AdamW

A very popular optimization algorithm is the
Adaptive Moment Estimation algorithm (Adam)
(Kingma and Ba, 2017), which essentially allows
for individual learning rates for each parameter, set
dynamically at each iteration, by using estimates of
the first and second moments of the gradient. This
is fundamentally different from standard stochas-
tic gradient descent (SGD) which uses the same
learning rate for each parameter. As a consequence
of this adaptivity, using the Adam optimizer of-
ten leads to faster convergence than non-adaptive
methods such as SGD. Further enhancements to the
Adam algorithm have been suggested, resulting in
optimizers such as Rectified Adaptive Moment Esti-

mation (RAdam) (Liu et al., 2021), Nesterov Adap-
tive Moment Estimation (NAdam) (Dozat, 2016),
and AdamW (Loshchilov and Hutter, 2019). At the
point of writing, AdamW is maybe the most popu-
lar optimizer on the market, it attempts to improve
upon the standard Adam algorithm by decoupling
the weight decay and learning rate, hence reduc-
ing their dependence of one another. Because of
the sequential relationship between the optimizers
mentioned above, we will only include what might
be the most popular one in our experiments, namely
the AdamW optimizer.

5.2 LAMB
In addition to some of the aforementioned opti-
mization methods, we will also experiment with
the LAMB algorithm (You et al., 2020), this is
a further development of the AdamW algorithm
which adds layerwise adaptivity to the learning rate
in addition to the parameter adaptivity of the basic
Adam algorithm, this means that the learning rate
is individual to the parameter and the layer, and
not just the parameter. The main motivation behind
the LAMB algorithm is to speed up the training
process by allowing for large batch learning with-
out degrading performance, much larger than batch
sizes of 256 which we will be using. See (You
et al., 2020) for details.

5.3 Lion
There is an even newer optimization method called
Lion (EvoLved Sign Momentum) (Chen et al.,
2023), which is also motivated by the wish to ef-
fectivize the training process, both in terms of time
and memory. The memory reduction compared
to the Adam type algorithms is achieved by only
tracking the first moment of the gradient, compared
to both first and second moment for the Adam algo-
rithms. This also makes the Lion optimizer simpler
to implement. We have not discussed the hyperpa-
rameters of the optimizers thus far, but this is an

62

appropriate time to begin. Because of the mechan-
ics of the Lion algorithm, the authors suggest that
the learning rate should be 3-10x smaller than the
learning rate for AdamW, and further commands
that "initial value, peak value, and end value of
the learning rate should be changed simultaneously
with the same ratio compared to AdamW" (Chen
et al., 2023, p. 14). This criteria will be satisfied in
our case since we compare models trained with a
linear warmup using the same amount of warmup
steps and the same scheduler, which means that the
start learning rates, peak learning rates, and end
learning rates will have the same ratio. In addi-
tion, they suggest increasing the weight decay by
3-10x as compared to AdamW. Our main focus is
on learning rate, but we will also try some different
values of weight decay, as suggested by the authors.

5.4 Sophia

All the above methods are first-order methods,
meaning that they only require computation of
the gradient, and not the second-order structure,
namely the Hessian. The reason for this is that
computation of the Hessian is very costly. Instead
of computing the actual Hessian, the Second-order
Clipped Stochastic Optimization (Sophia) algo-
rithm (Liu et al., 2024) instead approximates the
diagonal of the Hessian on every n’th step, in our
case chosen to be 10. This has a minimal compu-
tational and per-step time overhead according to
the authors. In addition, the authors claim a 2x
speed up in terms of "number of steps, total com-
pute, and wall-clock time" (Liu et al., 2024, p. 9) as
compared to AdamW for the models they consider,
which are GPT-2 models of various sizes. For hy-
perparameters they recommend the learning rate to
be 0.8 of the learning rate used for AdamW, and 2x
the weight decay.

5.5 Schedule-free optimizers

Finally, we will also try two schedule-free opti-
mization methods, these are brand new, one is a
schedule-free version of SGD and the other is a
schedule-free version of AdamW. "Schedule-free"
means that it is not necessary to use a learning
rate scheduler. See (Defazio et al., 2024) for de-
tails on the algorithms. In this case they suggest
a learning rate 10-50x larger for the schedule free
SGD as compared to the standard SGD, and 1-10x
larger for the schedule free AdamW as compared
to the standard AdamW. The authors also hints that
other parameters, such as weight decay, might need

tuning to be comparable to the scheduled versions.

6 Evaluation

As mentioned above, evaluation will first be done
on the optimizers and learning rates in a grid with
the largest peak learning rate being 0.05, and the
smallest being 0.0001. This is done to cover the
range of reasonable learning rates for a problem
of this type, and also to take into account the sug-
gestions for the different optimizers made by the
respective authors. Then we try some different
schedulers and weight decays for the best combi-
nations of optimizer and learning rate found. All
evaluations will be done on the BLiMP dataset and
on the LAMBADA dataset. In addition we use a
random untrained decoder as a baseline. Finally,
the best scoring model, according to LAMBADA
accuracy will be used to qualitatively analyze some
examples in the LAMBADA dataset.

6.1 BLiMP
The Benchmark of Linguistic Minimal Pairs
(BLiMP) is a dataset used to test models on vari-
ous grammatical problems (Warstadt et al., 2023b).
The dataset consists of grammatically correct and
grammatically incorrect sentences, where the job
of the model is to predict which sentences are
grammatically correct, and which are not. Quot-
ing the authors: "BLiMP consists of 67 minimal
pair paradigms, each with 1,000 sentence pairs in
mainstream American English grouped into 12 cat-
egories." (Warstadt et al., 2023b, p. 379), Where
each category represents a grammatical phenomena.
It is possible to do a very fine-grained evaluation
of a model using these 67 minimal pair paradigms,
since each of them has its own score, and thereby
diagnosing specific strengths and weaknesses of
the model in question. To simplify the evaluation
we only look at the average score over these 67 min-
imal pair paradigms. Note that guessing randomly
on the BLiMP dataset gives an expected score of
50%, therefore, none of our models should score
significantly less than 50%. The random decoder
illustrates this fact with a score of 49.29%.

6.2 LAMBADA
In addition to BLiMP scores, we will also use the
LAMBADA (LAnguage Modeling Broadened to
Account for Discourse Aspects) (Paperno et al.,
2016) dataset to evaluate the models. The task is
to predict missing words in sentences, where the
correct word should be fairly easy to guess given

63

the full context, but not easy at all given no con-
text beyond the sentence of the missing word. This
is usually quite easy for humans, but, as we shall
soon see, difficult for language models. Substan-
tially, the LAMBADA dataset tests the memory
of a language model. We focus on the accuracy
scores on the LAMBADA dataset, but perplexity
scores will also be mentioned when deemed fitting.
As usual, the larger the accuracy the better, and
the opposite for perplexity scores, that is, lower
perplexity scores are better. The random decoder
gets an accuracy score of 0% on the LAMBADA
dataset.

7 Results

7.1 Optimizer and learning rate grid search

We now compare the various optimizers and peak
learning rates based on LAMBADA accuracy and
average BLiMP accuracy. Firstly, we can see that
the LAMBADA scores and BLiMP scores are con-
sistent with each other in the sense that they assign
the best score to the same learning rates for each
respective optimizer. The very best optimizer and
learning rate combination is Adamfree with a learn-
ing rate of 0.01 for LAMBADA, and AdamW with
a learning rate of 0.005 for BLiMP.

Studying the LAMBADA accuracies from ta-
ble 2 we can see many 0’s. In particular, the
SGDfree optimizer never gets a positive accuracy
score. However, the perplexity scores on the LAM-
BADA dataset is the smallest for a learning rate of
0.5 and the largest for a learning rate of 0.0001, but
all very poor. It also performs consistently poor on
the BLiMP dataset, and only marginally better than
guessing which would give a score of about 50%.
This is probably a result of the amount of steps
taken, with more steps, SGDfree should eventually
be comparable to the other optimizers, which are
all fast-converging optimizers. But at the very least,
the perplexity scores indicate that a larger learning
rate for the SGDfree is appropriate, as claimed by
the authors.

All the other optimizers have a LAMBADA ac-
curacy above 8% and below 9% for their best learn-
ing rate, and all achieve a BLiMP score better than
69.5%. AdamW is, in this case, the most robust
optimizer in terms of learning rates with accuracy
scores exceeding 6.5% for learning rates between
0.01 and 0.001. On the BLiMP dataset, the same
trend occurs, where AdamW scores above 67.5%
for all learning rates between 0.01 and 0.0005.

Comparing the best learning rates for each opti-
mizer, we can clearly see that the suggestions for
learning rates made by the respective authors match
quite well, even without any tuning of weight de-
cay.

For Adamfree, the authors suggested a learning
of 1-10x bigger than that for AdamW, which fits
quite well with our results since AdamW performed
best with a learning rate of 0.005, and Adamfree
performed best with a learning rate of 2 · 0.005 =
0.01, and also quite good with a learning rate of
0.005.

The Lion optimizer was suggested to perform
best with learning rates 3-10x smaller than that
for AdamW, the best learning rate for the Lion
optimizer was 0.005/10 = 0.0005, which just fits
in their suggested range, however, based on the
good score AdamW achieved with a learning rate
of 0.0025, it is possible that the ideal learning rate
for AdamW is smaller than 0.005. It is also not
unlikely that the optimal learning rate for the Lion
optimizer is slightly larger than 0.0005, so that their
recommendations are right on the mark

For the LAMB optimizer the authors did not
make a specific suggestion, but looking at table 4
in You et al. (2020, p. 8), we can see that they have
used a learning rate of 5

20.5·103 for BERT training
with a batch size of 16K, and, that the best learn-
ing rate with a batch size of 16K for the AdamW
optimizer was 0.0002, which is smaller, see table
8 in You et al. (2020, p. 19). This is, of course, a
different setting, but it is perhaps sensible to use
a slightly larger learning rate for the LAMB opti-
mizer compared to AdamW since LAMB uses a per
parameter, and per layer normalization. In our ex-
periment at least, the LAMB optimizer performed
the best with a learning rate of 2 · 0.005 = 0.1, and
similarly to AdamW and Adamfree, it is also quite
robust to various learning rates.

Finally, the Sophia optimizer performed best for
the learning rate 0.001, which is smaller than the
best learning rate for AdamW, and larger than the
best learning rate for Lion, this is in line with the
authors suggestions, however, their specific recom-
mendation was 0.8 of the learning rate for AdamW,
or 3-5x that of the Lion optimizer. This would have
given a larger optimal learning rate for Sophia than
the best we have found, by looking at the scores
Sophia achieved with a learning rate of 0.0005, it
seems like the very precise suggestions made by
the authors are not completely congruous to our set-
ting. But note that the recommendation in Liu et al.

64

(2024) implies a narrower learning rate interval for
the Lion optimizer compared to AdamW, than the
recommendation made by the inventors of Lion in
Chen et al. (2023), where they say that the learning
rate of the Lion should be 3-10x smaller than that
of AdamW.

Summing up, there are few surprises in table 2,
and table 3, and for the most part our results are
in line with what the different authors suggested in
regards to learning rate, with Lion being the only
exception. Now we move over to the "illegal" part
of our experiments, where, for the best learning
rates for each optimizer, different schedulers, and
different weight decays will be tried. As previously
stated, this should ideally be done as a grid search
in combination with the learning rates, but to sim-
plify matters, we perform these experiments only
for the best optimizer and learning rate combina-
tions. The issue with this procedure is, of course,
that the same dataset is used to tune the learning
rate first, and then also used to evaluate different
schedulers and weight decays. This will bias our
optimizers and learning rate combinations in favor
of a linear scheduler with weight decay set to 0.1,
since these were the parameters used in the grid
search experiment.

As a final remark, we note that the training time
was around 34-35 minutes for most runs with the
optimizers AdamW, Lion, Adamfree, and SGDfree.
For the LAMB optimizer, most runs took around
37-38 minutes, and for the Sophia optimizer, it was
around 38-39 minutes.

7.2 Experimentation with schedulers
The results in this section are not very surprising ei-
ther. The linear scheduler, and the cosine scheduler
were comparable in performance, then the inverse
square root was the third best, and running with no
scheduler performed the worst. In figure 1 we can
see how the different schedulers affect the learning
rate over a total run. The figure also shows why the
cosine and linear scheduler performs similarly, it
is simply because the learning rate is quite similar
at all steps. The linear scheduler slightly edges out
the cosine scheduler on the BLiMP dataset, but this
is not unnatural given that the learning rates were
tuned with linear schedulers. The results with the
inverse square root scheduler is quite close, and
using a slightly larger peak learning rate for the
inverse square root optimizer as compared to lin-
ear and cosine could give similar results. Running
with no scheduler, on the other hand, likely requires

Figure 1: Visualization of different schedulers

a smaller learning rate as compared to linear and
cosine scheduler.

From tables 4 and 5 we can see that only the
Lion optimizer with a learning rate of 0.0005 di-
vert from the ranking pattern described above, it
performs better without a scheduler than with the
inverse square root scheduler on both BLiMP and
LAMBADA, and also performs better on BLiMP
than a cosine scheduler. This might be because
the learning rate used for the experiments with the
Lion optimizers was 0.0005, i.e. quite small, and
therefore that the need for scheduling is reduced,
this also suggests that the learning rate of 0.0005 is
slightly smaller than the ideal learning rate for the
Lion optimizer, as per reference to our discussion
above. All in all the differences are rather small, es-
pecially on the BLiMP dataset. These experiments
naturally excludes the schedule-free optimizers.

7.3 Experimentation with weight decay

Above we saw that both a linear scheduler and a
cosine scheduler worked well in our setting. This
section will instead experiment with the weight
decay parameter, similarly to the experiments for
scheduler, this will be done with the best learning
rate for each optimizer found in the grid search.
Recall that this grid search was performed with the
baseline value of 0.1 for weight decay, and with
a linear scheduler for all non-schedule free opti-
mizers. Based on the poor results achieved by the
SGDfree optimizer above, we skip experimentation
with the SGDfree optimizer.

The results can be found in table 6 and 7. Un-
like the previous experiment with schedulers, there
is less of a trend in this case, but perhaps a very
slight trend indicating that the larger weight de-
cays were a little bit better, given the bias towards
a weight decay of 0.1, a grid search with weight
decay and learning rate might accentuate this pos-
sible trend further. Again, the differences, on the

65

Learning rate AdamW LAMB Lion Sophia Adamfree SGDfree
0.05 0.00 0.00 0.00 0.00 0.00 0.00
0.01 6.91 8.48 0.00 0.00 8.97 0.00

0.005 8.75 7.14 0.00 0.00 7.84 0.00
0.0025 8.13 6.50 0.00 0.00 5.39 0.00
0.001 6.66 2.15 4.81 8.19 4.72 0.00
0.0005 4.17 0.04 8.13 7.14 1.40 0.00
0.0001 0.00 0.00 5.20 1.96 0.00 0.00

Table 2: LAMBADA accuracy (in percent). The bold numbers indicates best score in the column, and the italic text
indicates that the value is also the best in the entire table.

Learning rate AdamW LAMB Lion Sophia Adamfree SGDfree
0.05 58.62 58.27 52.95 53.12 59.29 54.97
0.01 70.41 69.97 56.13 59.41 69.65 54.54
0.005 70.53 68.31 57.85 60.24 69.48 53.42
0.0025 70.19 68.15 59.26 62.53 69.54 53.06
0.001 68.56 64.75 68.39 70.20 68.27 53.30
0.0005 67.53 61.37 69.68 69.59 65.44 52.88
0.0001 62.88 56.66 67.28 65.82 60.92 50.70

Table 3: Average BLiMP accuracy (in percent)

Scheduler AdamW (0.005) LAMB (0.01) Lion (0.0005) Sophia (0.001)
Linear 8.75 8.48 8.13 8.19
Cosine 8.95 8.42 7.96 8.50

Inverse sqare root 7.53 7.72 5.45 6.57
None 5.08 6.25 6.81 5.82

Table 4: LAMBADA accuracy (in percent) for the non schedule-free optimizers for 4 different schedulers at their
best learning rate. The best learning rate is in parenthesis.

Scheduler AdamW (0.005) LAMB (0.01) Lion (0.0005) Sophia (0.001)
Linear 70.53 69.97 69.68 70.20
Cosine 69.72 69.18 68.93 70.11

Inverse square root 68.91 68.97 68.75 69.37
None 66.60 68.15 69.22 67.35

Table 5: Average BLiMP accuracy (in percent) for the non schedule-free optimizers for 4 different schedulers at
their best learning rate

66

BLiMP dataset in particular, are small. As with the
schedulers experiment, the LAMB optimizer seems
to be the most robust to variations, and it performs
well for all the tested weight decays, this could be
a result of the double normalization procedure that
it performs. The worst weight decay on the BLiMP
dataset for the LAMB optimizer was actually 0.1,
which is interesting since this weight decay was
used for the learning rate tuning.

On the other hand, the Lion optimizer seems to
be the most sensitive to changes. The winner of
these experiments are AdamW, which has the best
score on the LAMBADA dataset with a learning
rate of 0.2, and the best score on the BLiMP dataset
with a learning rate of 0.4.

7.4 Examples of LAMBADA predictions
To round off this section we briefly, and informally,
analyze a couple of examples produced by the
model scoring 9.7 on the LAMBADA dataset, that
is, the model trained with AdamW optimizer with
a peak learning rate of 0.005, weight decay equal
to 0.2, and a linear scheduler. The task is to predict
the missing word, highlighted by and underscore.

Example 1: "Only one source I know of that
would be likely to cough up enough money to fi-
nance a phony sleep research facility and pay peo-
ple big bucks to solve crimes in their dreams,"
Farrell concluded dryly. "What can I say?" Ellis
unfolded his arms and widened his hands. "Your
tax dollars at work." Before Farrell could respond,
Leila’s voice rose from inside the house. "No insur-
ance?" she wailed. "What do you mean you don’t
have any _?". The correct answer is "insurance",
but the model outputs "moneyurance", which is not
correct, but has the common part "urance" at the
end. Also the first part of the word "money" is se-
mantically related to "insurance", even though the
words themselves are not similar. It almost seems
as if the model can not decide if it prefers "money"
or "insurance", and instead collapses them into one
word.

Example 2: "He heard Rhinna speak "The Queen
wants you in her carriage." Tom spoke "No, I’m
not going in some asylum." Ran was seen standing
next to him spoke "It’s just for a private talk with
you that’s all." Tom groaned and went inside the
carriage to sit down next to the _.". The answer
is "Queen", and the prediction is "carueen". In
this example the prediction is not an actual word,
but still similar to the correct word "Queen", the
prediction is also phonologically quite similar, but

this could be a coincidence as the model likely
combine the word "Queen" with "carriage".

There were other similar examples. For example
"thelen" was predicted when the correct word was
"Helen", and "doastin" was predicted, when the
correct answer was "Hastin".

8 Conclusion

We have examined a part, and hopefully the most
important part, of the hyperparameter space for var-
ious optimizers in the context of a decoder based
tiny language model with less than 6 million pa-
rameters. All models were evaluated on both the
BLiMP dataset and the LAMBADA dataset, and
we have seen that all tested optimizers, except
SGDfree, perform similarly for their respective
best learning rates. We have also seen that varying
the scheduler and the weight decay could improve
the models. Concluding that all 5 fast-converging
optimizers are approximately equally good given
proper tuning, is quite a boring result, but it aligns
with the results of the papers mentioned in section
2 on related works. Perhaps the most thorough of
them was the paper Schmidt et al. (2021). It tests
several different optimizers, amongst them Adam,
on several different tasks. Their set of tested opti-
mizers does not overlap our set of tested optimiz-
ers, but it is quite likely that applying the Adam
algorithm to our problem would have led to a per-
formance similar to that of AdamW (with appro-
priate tuning). Their conclusion was that no opti-
mizer is universally better than all other optimizers,
but nonetheless that the Adam optimizer is usually
amongst the best performing optimizers across a
variety of problems. They also say that "Evaluating
multiple optimizers with default hyperparameters
works approximately as well as tuning the hyper-
parameters for a fixed optimizer." (Schmidt et al.,
2021, p. 2). Our conclusion is similar, with proper
tuning, all optimizers except SGDfree performs
similarly. The one that comes out on top is the
AdamW optimizer, but perhaps more important
than the marginally better scores that it achieved
compared to the other optimizers, is that AdamW
performs well for quite a large range of learning
rates, making it easier to tune than competitors like
Lion and Sophia. LAMB and Adamfree also shares
this property of good performance across a large
range of parameters. Additionally, Adamfree has
the benefit of freeing us of the need to tune the
scheduler, consequently it might become a popular

67

Weight decay AdamW (0.005) LAMB (0.01) Lion (0.0005) Sophia (0.001) Adamfree (0.01)
0.01 7.14 8.00 6.87 6.50 7.08
0.05 8.3 9.06 6.89 7.01 7.39
0.1 8.75 8.48 8.13 8.19 8.97
0.2 9.7 9.02 6.79 8.19 7.90
0.3 8.87 8.87 6.93 7.67 7.20
0.4 8.42 9.1 6.95 8.42 8.15

Table 6: LAMBADA accuracy (in percent) for 6 different weight decays

Weight decay AdamW (0.005) LAMB (0.01) Lion (0.0005) Sophia (0.001) Adamfree (0.01)
0.01 69.16 70.18 68.81 69.57 70.08
0.05 70.15 70.16 68.97 70.52 69.77
0.1 70.53 69.97 69.68 70.20 69.65
0.2 70.55 70.07 69.84 70.20 69.42
0.3 69.77 70.28 69.79 70.25 69.90
0.4 71.03 70.16 69.87 70.67 68.20

Table 7: Average BLiMP accuracy (in percent) for 6 different weight decays

optimizer in the near future.

9 Future work

In future work, it would be interesting to robustify
our results. Firstly, one could try different seeds
and see how much the results change, since this
is perhaps the biggest weakness of our study. It
would also be interesting to tune the β and ϵ values
that several of the optimizers use. These were fixed
and equal for all optimizers in our experiment, but
might have a large impact on the performance of
the various optimizers. It is also possible that al-
tering these values would change our conclusion
regarding AdamW, Adamfree and LAMB being
easier to tune than Lion and Sophia. There are sev-
eral other natural extensions, for instance, altering
the model architecture or testing on other datasets.

References
Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E.

Hinton. 2016. Layer normalization. Preprint,
arXiv:1607.06450.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen,
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam Mc-
Candlish, Alec Radford, Ilya Sutskever, and Dario

Amodei. 2020. Language models are few-shot learn-
ers. Preprint, arXiv:2005.14165.

Xiangning Chen, Chen Liang, Da Huang, Esteban Real,
Kaiyuan Wang, Yao Liu, Hieu Pham, Xuanyi Dong,
Thang Luong, Cho-Jui Hsieh, Yifeng Lu, and Quoc V.
Le. 2023. Symbolic discovery of optimization algo-
rithms. Preprint, arXiv:2302.06675.

Dami Choi, Christopher J. Shallue, Zachary Nado, Jae-
hoon Lee, Chris J. Maddison, and George E. Dahl.
2020. On empirical comparisons of optimizers for
deep learning. Preprint, arXiv:1910.05446.

Aaron Defazio, Xingyu (Alice) Yang, Konstantin
Mishchenko, Ashok Cutkosky, Harsh Mehta, and
Ahmed Khaled. 2024. Schedule-free learning - a new
way to train.

Timothy Dozat. 2016. Incorporating Nesterov Momen-
tum into Adam. In Proceedings of the 4th Inter-
national Conference on Learning Representations,
pages 1–4.

Martin Gerlach and Francesc Font-Clos. 2018. A stan-
dardized project gutenberg corpus for statistical anal-
ysis of natural language and quantitative linguistics.
Preprint, arXiv:1812.08092.

Jean Kaddour, Oscar Key, Piotr Nawrot, Pasquale
Minervini, and Matt J. Kusner. 2023. No train
no gain: Revisiting efficient training algorithms
for transformer-based language models. Preprint,
arXiv:2307.06440.

Diederik P. Kingma and Jimmy Ba. 2017. Adam:
A method for stochastic optimization. Preprint,
arXiv:1412.6980.

Pierre Lison and Jörg Tiedemann. 2016. OpenSub-
titles2016: Extracting large parallel corpora from

68

movie and TV subtitles. In Proceedings of the Tenth
International Conference on Language Resources
and Evaluation (LREC’16), pages 923–929, Portorož,
Slovenia. European Language Resources Association
(ELRA).

Hong Liu, Zhiyuan Li, David Hall, Percy Liang, and
Tengyu Ma. 2024. Sophia: A scalable stochas-
tic second-order optimizer for language model pre-
training. Preprint, arXiv:2305.14342.

Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu
Chen, Xiaodong Liu, Jianfeng Gao, and Jiawei Han.
2021. On the variance of the adaptive learning rate
and beyond. Preprint, arXiv:1908.03265.

Ilya Loshchilov and Frank Hutter. 2019. De-
coupled weight decay regularization. Preprint,
arXiv:1711.05101.

Brian Macwhinney. 2000. The childes project: tools
for analyzing talk. Child Language Teaching and
Therapy, 8.

Denis Paperno, Germán Kruszewski, Angeliki Lazari-
dou, Quan Ngoc Pham, Raffaella Bernardi, Sandro
Pezzelle, Marco Baroni, Gemma Boleda, and Raquel
Fernández. 2016. The lambada dataset: Word pre-
diction requiring a broad discourse context. Preprint,
arXiv:1606.06031.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Sebastian Ruder. 2017. An overview of gradi-
ent descent optimization algorithms. Preprint,
arXiv:1609.04747.

Robin M. Schmidt, Frank Schneider, and Philipp Hen-
nig. 2021. Descending through a crowded valley -
benchmarking deep learning optimizers. Preprint,
arXiv:2007.01547.

Frank Schneider, Lukas Balles, and Philipp Hennig.
2019. Deepobs: A deep learning optimizer bench-
mark suite. Preprint, arXiv:1903.05499.

Noam Shazeer. 2020. Glu variants improve transformer.
Preprint, arXiv:2002.05202.

Andreas Stolcke, Klaus Ries, Noah Coccaro, Eliza-
beth Shriberg, Rebecca Bates, Daniel Jurafsky, Paul
Taylor, Rachel Martin, Carol Van Ess-Dykema, and
Marie Meteer. 2000. Dialogue act modeling for au-
tomatic tagging and recognition of conversational
speech. Computational Linguistics, 26(3):339–373.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Aman-
preet Singh, Julian Michael, Felix Hill, Omer Levy,
and Samuel R. Bowman. 2020. Superglue: A stickier
benchmark for general-purpose language understand-
ing systems. Preprint, arXiv:1905.00537.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2019.
Glue: A multi-task benchmark and analysis plat-
form for natural language understanding. Preprint,
arXiv:1804.07461.

Alex Warstadt, Aaron Mueller, Leshem Choshen, Ethan
Wilcox, Chengxu Zhuang, Juan Ciro, Rafael Mos-
quera, Bhargavi Paranjabe, Adina Williams, Tal
Linzen, and Ryan Cotterell. 2023a. Findings of the
BabyLM challenge: Sample-efficient pretraining on
developmentally plausible corpora. In Proceedings
of the BabyLM Challenge at the 27th Conference on
Computational Natural Language Learning, pages
1–34, Singapore. Association for Computational Lin-
guistics.

Alex Warstadt, Alicia Parrish, Haokun Liu, Anhad Mo-
hananey, Wei Peng, Sheng-Fu Wang, and Samuel R.
Bowman. 2023b. Blimp: The benchmark of
linguistic minimal pairs for english. Preprint,
arXiv:1912.00582.

Ashia C. Wilson, Rebecca Roelofs, Mitchell Stern,
Nathan Srebro, and Benjamin Recht. 2018. The
marginal value of adaptive gradient methods in ma-
chine learning. Preprint, arXiv:1705.08292.

Yang You, Jing Li, Sashank Reddi, Jonathan Hseu,
Sanjiv Kumar, Srinadh Bhojanapalli, Xiaodan Song,
James Demmel, Kurt Keutzer, and Cho-Jui Hsieh.
2020. Large batch optimization for deep learn-
ing: Training bert in 76 minutes. Preprint,
arXiv:1904.00962.

69

70

From bad babies to good language students? - An experiment of training
tiny language models on ESL data

Erling Midtgard
erlingmi@ifi.uio.no

Abstract

This paper takes inspiration from the BabyLM
competition in which the goal was to pre-train
tiny language models on a dataset similar to
language children might be exposed to. Instead
of using child-directed data, I attempted to use
English as second language (ESL) data to pre-
train an encoder model, a decoder-model and
an encoder-decoder model. More specifically,
I used the child-directed CHILDES corpus to
train the baseline models and the Teacher stu-
dent chatroom corpus (TSCC) for the ESL mod-
els. I used backtranslation via ten different lan-
guages to augment the TSCC data. All models
were evaluated on the BLiMP and LAMBADA
metrics. Overall the difference between models
trained on the different datasets was very small.
The best model turned out to be the CHILDES
decoder, but it was only marginally better than
the TSCC decoder, with average BLiMP accu-
racies of 70,2 % and 70,1 % respectively.

1 Introduction and background

This paper takes the BabyLM competition
(Warstadt et al., 2023) as a starting point. The
goal of the BabyLM competion was to explore the
possibility of training small language models with
a lot fewer paramters than the well-known big ones
like Llama2 (Touvron et al., 2023) and BERT (De-
vlin et al., 2018). The training data provided for the
BabyLM was a combination of different corpora
that was meant to be comparable to the number
of words a 13 year-old child can be expected to
have been exposed to. Warstadt et al. (2023, pp.4)
estimates this number to be 24 to 84 million words.
The competition included three different tracks: the
strict-small track, where the participants were pro-
vided with a dataset of 10 million tokens and only
allowed to train their models on these, the strict
where they were provided with a dataset of 100 mil-
lion tokens, and a loose track where they in addition
to the dataset of 100 million tokens, were permitted

to use non-lingustic data, for instance images and
sound. The training data provided for the competi-
tion was selected to be similar to language children
may meet throughout their daily lives. 56% came
from transcribed speech, whereas the rest came
from textual sources. 40% came from sources in-
tended for, or deemed appropriate for children, like
books or films,or transcribed child-directed speech
(Warstadt et al., 2023, pp.5).

A lot of different approaches were tried for the
BabyLM competition. I will give a short overview
in the next section.

I find the idea of training tiny LM’s on textual
data with reduced linguistic complexity quite in-
teresting. After reading some of the papers from
the BabyLM competition, I had an alternative idea:
Children are not the only ones that aquire a new
language, adults also do when studying foreign lan-
guages. It is possible that the reason child-oriented
speech is structured the way it is, i.e. has a sim-
plified vocabulary and syntactical structure, is that
children have not yet developed the cognitive capac-
ities they need to be able to handle more advanced
language. It could also be argued that it doesn’t re-
ally matter if parents and kindergarten teachers use
a simplified form of child-directed language, what
Steven Pinker refers to as "Motherese" - children
living in a society will acquire language anyway
(Pinker, 1994, pp.28-29).

Adult language learners also need a small vo-
cabulary when they start out learning a new lan-
guage, but they can handle more complex concepts
and syntax than children, especially if their native
tongue is not too different from the new language
they are studying. To use a machine learning anal-
ogy, we could say adult language learners are al-
ready "pre-trained" on their native tongue.

The way to train good tiny LM’s might not be
through training them on child-directed textual
data, but using the simplified textual data that sec-
ond language students are exposed to. The LM’s

71

might be "bad babies"(Steuer et al., 2023), but
could they be raised to good language students?

In this paper, I want to explore the possibility of
pre-training tiny LM’s on ESL (English as a sec-
ond language) data. I will use a dataset of about 10
million tokens, similar to the BabyLM strict-small
track (see table1). I will first train an encoder-
model, a decoder-model and an encoder-decoder
model on these data. I will then substitute the
CHILDES dataset with an English as a second lan-
guage (ESL) dataset. I will keep the rest of the
training data and train the three aforementioned
architectures on the new dataset. This will give me
a total of six models, which I will evaluate using
BLiMP (Warstadt et al., 2020) and LAMBADA
(Paperno et al., 2016)

2 Previous work

I have not been able to find any previous works
that attempt to train tiny LM’s on ESL data. There
are however quite a few that have done so on child-
directed data. An early paper suggesting a road
map for this is Dupoux (2018). Dupoux (2018)
argues that there are a few puzzles to be solved
when it comes to how children acquire language,
namely how children are able to learn language
at all given its complexity and variability across
cultures. Also, it seems like children are able to
acquire language spontaneously and for the most
part without supervisory feedback. Dupoux (2018)
calls for using deep learning models to reverse en-
gineer children’s early language development and
mentions the CHILDES repository (MacWhinney,
2000) as a possible dataset for performing experi-
ments to achieve this.

Huebner et al. (2021) trained a smaller model
named BabyBERTa which was based on RoBERTa
(Liu et al., 2019). Huebner et al. (2021) only used
30 million tokens for training and a model size of 5
Million parameters, compared to RoBERTas 30 bil-
lion tokens and 125 million parameters. Huebner
et al. (2021) used the AO-CHILDES corpus (Hueb-
ner and Willits, 2021) which is an age-ordered ver-
sion of the CHILDES corpus (MacWhinney, 2000)
as part of their training set. They also used a ver-
sion of the Newsela corpus(Xu et al., 2015) which
had been rewritten for children and age-ordered.
Huebner et al. (2021) found that the models trained
on child-directed text got a higher accuracy than
those trained on text from Wikipedia.

The BabyLM challenge received 31 submissions

(Warstadt et al., 2023, pp.2). It is outside the scope
of this paper to discuss them all, but I will mention
a selection.

The winner of the strict track was Georges
Gabriel Charpentier and Samuel (2023). They used
a previously introduced architecture named LTG-
BERT (Samuel et al., 2023) which made several
changes to the transformer architecture by using
additional layer normalization, the GEGLU acti-
vation function, alternative ways of calculating at-
tention and scaled weight initialization (Georges
Gabriel Charpentier and Samuel, 2023), (Warstadt
et al., 2023, pp. 12). The same authors also won
the strict-small track (Georges Gabriel Charpentier
and Samuel, 2023).

The winner of the loose track was Xiao et al.
(2023). They used a "contextualizer approach"
where they mixed training data from different cate-
gories in different ways to avoid what they call the
"contextualization trap" (Xiao et al., 2023, pp. 317)
which is a risk of overfitting training data to the sur-
rounding context. By combining the training data
in a variety of ways and training the models for 40
epochs they received an average BLiMP accuracy
of 85.54 for their best model (Xiao et al., 2023, pp.
321).

Steuer et al. (2023) used the Open Pre-
trained Transformer(OPT)-architecture (Zhang
et al., 2022). They trained 24 different models
with varying hidden sizes. During training they
used a sequence length of 64 for the first epoch,
which they incresead to 256 for the remaining four
epohchs.

Martinez et al. (2023) used a curriculum-
learning approach where they increased complexity
during training. They used three approaches: The
first was vocabulary curriculum where they gradu-
ally increased the size of the vocabulary during the
epochs of training. The second was data curricu-
lum where they gradually increased the difficulty
of the training data samples. Here, variants of per-
plexity were used as a measure of difficulty with in-
creasing perplexity indicating increasing difficulty.
Perplexity can be defined as

"the inverse probability of a test set, nor-
malized by number of words(Jurafsky
and Martin, pp.39)."

In other words, perplexity can be described by how
"surprised" or "uncertain" a model is in predicting
a new word given a context.

72

Source Weight Word Count Domain

BNC 8% 800K Dialogue
CHILDES (MacWhinney, 2000) 29% 2.9M Dialogue, Child Directed
Project Gutenberg (Gerlach and Font-Clos, 2018) 26% 2.6M Fiction, Nonfiction
OpenSubtitles (Lison and Tiedemann, 2016) 20% 2M Dialogue, Scripted
Simple English Wikipedia 15% 1.5M Nonfiction
Switchboard (Stolcke et al., 2000) 1% 100K Dialogue

Table 1: Data sources and their respective weights, word counts, and domains.

Finally, Martinez et al. (2023) tried an approach
called "objective curriculum" where they used
a simplified variant of Masked Language Mod-
elling (MLM). Standard MLM involves training the
encoder-part of a transformer by hiding or "mask-
ing out" a token and have the language model pre-
dict the hidden token (Devlin et al., 2019). Mar-
tinez et al. (2023) simplified this approach by hav-
ing the model only predict the part-of-speech tag
of the hidden word, beginning with only Verbs and
Nouns and then gradually increasing the number
of word classes (Martinez et al., 2023, pp.117).

A recent paper outside of BabyLM is Eldan and
Li (2023) who pre-trained small decoder models
of about 125 million parameters on a synthetic
dataset of children’s stories. They then had these
models predict the continuation of a story. They
introduced a new type of evaluation where they
instructed GPT-4 to pretend to be a teacher and
grade the output generated by the smaller models
on a scale from one to ten within the categories
of grammar, creativity, consistency and plot. They
compared this with GPT-XL and in most cases
the smaller models trained on children’s stories
generated better continuations.

3 Data and preprocessing

In this paper, I used a dataset of the same size as the
BabyLM strict-small track (see Table 1). A signfi-
cant part - 29 % consists of data from the CHILDES
corpus(MacWhinney, 2000). The CHILDES cor-
pus only made up 5% of the BabyLM challenge
(Warstadt et al., 2023, pp.5). I used this dataset for
the baseline models.

For the models where I experimented with ESL-
data, I used the Teacher Student Chatroom Corpus
(TSCC) (Caines et al., 2020, 2022) instead of the
CHILDES corpus.

The TSCC consists of written one-to-one lessons
between an English teacher and an adult English

student. The corpus was collected at the University
of Cambridge in 2020 and 2022. Two English
teachers were hired to hold the online lessons and
in total there were 13 different students from across
7 different native languages. The English level of
the students ranged from B1 to C2 according to
the Common European Framework of Reference
for Languages (CEFR)1. B1 corresponds to lower
intermediate and C2 is advanced, so this means no
complete beginners were represented in the corpus.
The corpus was annotated with CEFR-level and
the conversational turns were annotated according
to Teacher feedback types, like "scaffolding" and
"eliciting". The dataset included both the original
text from the chatrooms, as wells as a corrected
version that included punctuation and correcting
of morphological errors (i.e. miswritten words).
The syntax was not corrected. According to the
articles, the TSCC consists of 260 lessons, 41.400
conversational turns and 362.900 tokens in total.
(Caines et al., 2020, 2022).

I decided to use the corrected version of the raw
text for my experiments. I imported the dataset
and extracted all the corrected text. I first manually
inspected the dataset and did some preprocessing.
The most important thing I did, was replace strings
that consisted of one or more underscores with the
<UNK> token. The reason these were in the corpus
in the first place, was that teachers used them as
cloze-tasks (fill in the blank) for the students. An
example: "Some parents make their kids do loads
of lessons like violin, karate, extra maths etc. etc.
They are really ______." The word the teacher is
looking for the student to provide here is probably
"strict" or less likely "ambitious".

1https://www.coe.int/en/web/common-european-
framework-reference-languages/table-1-cefr-3.3-common-
reference-levels-global-scale

73

3.1 Backtranslation

After preprocessing, I was left with a file that con-
sisted of 294.409 tokens. This was a problem con-
sidering that the CHILDES dataset consisted of
2.839.591 tokens - almost 10 times as many. I
couldn’t expect the models trained on the TSCC
dataset to be able to compete when it had only a
tenth of the input.

I decided to try to augment the TSCC data using
backtranslation. I used the Helsinki-NLP/Opus-
MT machine translation models (Tiedemann and
de Gibert, 2023). I wanted to use frequent lan-
guages on the internet for backtranslation, as I ex-
pected their machine translation models to be better.
I kept adding languages until I had enough tokens,
and ended up using the following languages for
backtranslation of the TSCC dataset: French, Span-
ish, Italian, Russian, Mandarin Chinese, Dutch,
German, Finnish, Swedish and Danish. Some of
them are both big and lingustically close to en-
glish, namely French, Spanish, Italian and German.
Dutch, Danish and Swedish are smaller but simi-
lar to English. Russian and Mandarin Chinese are
big, but not very similar to English. The outlier
is Finnish which is neither a big language nor lin-
guistically close to English. The main reason I
included Finnish was that the Helsinki-NLP/Opus-
MT is a model developed in Finland and I therefore
expected it to do well. The criteria for selecting
these languages for backtranslating was both to get
good backtranslations, as well as some variation.

After I had finished backtranslations, I dis-
covered some special symbols that hadn’t been
stripped. Some of these were: ♪, •, # and ¶. It
might not have mattered for the pre-training of the
transformer models if I would have kept these in.
In fact, some of them like the note-symbol ♪ and
the paragraph symbol ¶ might have provided extra
context that could have made them slightly bet-
ter. However, since I was to compare with models
trained on the CHILDES corpus, I decided this
might be unfair one way or the other, so I stripped
away the special symbols.

In the end I took the set of the original trans-
lations and all of the backtranslations to remove
possible duplicates. The original TSCC text data
plus all the backtranslations left me with a file that
consisted of 2.938.160 tokens, which is very com-
parable to the 2.839.591 tokens of the CHILDES
dataset.

3.2 Backtranslation quality

I will briefly discuss the quality of the backtransla-
tions of four conversational turns. I picked the turns
from index 9 to 12 in the TSCC training set for
Spanish, French, German, Mandarin Chinese and
Finnish (see Table 2). The translation of these four
conversational turns for all of the languages can be
found in the Appendix A - Table 18. From these
examples it looks like all of the backtranslations
did reasonably well when it comes to morphology
and syntax. All of the words are spelled correctly
and the word order looks reasonable. There were
however some problems regarding semantics. The
text starts with the teacher praising the student for
the results on an English reading, after which they
then go on to speak about the results on a listening
test. In the original text the student says: "around
30, listening is harder for me." This is a case of
ellipsis, where the number 30 refers to 30 "points".
We see that French, Mandarin Chinese and Finnish
interpret 30 as age, and German interpret it as time.
All of these were wrong. In fact, the only language
that managed to backtranslate this turn correctly
was Spanish.

Backtranslation via Spanish provided the exam-
ples that were most similar to the source text, often
resulting in near-identical sentences. This would
be good from a translator’s point of view, but for
my use this was not ideal, since it resulted in less
variability.

The backtranslations via Mandarin Chinese were
quite different from the source text, but in many
cases they were semantically wrong or had cut a
lot of the content from the source text. There is
one particularly bad translation: The text where the
teacher comforts the student by saying: "ok that’s
quite common to be better at reading - but 30 is
still more than respectable. i guess maybe speaking
is the toughest part?" is backtranslated to 30 years
of age isn’t worthy of respect.

Finnish was a language I was a little worried
about, given that it’s not very big and linguisti-
cally far from English, but it turned out to be a
good choice. It looks like Finnish provided a little
more variability than the Romance and Germanic
languages, and did not do worse when it comes
to preserving semantics. If I were to repeat this
experiment, I would probably not have included
Mandarin Chinese and instead explored if Estonian
had the same qualities as Finnish.

74

English Spanish French German Mandarin Chi-
nese

Finnish

Wow that’s really
good - well
done... you’ve
definitely made
a lot of progress.
and what’s your
normal score on
listening these
days?

Wow that’s really
good - well
done... you’ve
definitely made
a lot of progress.
and what’s your
normal score on
listening these
days?

You have cer-
tainly made a
lot of progress,
and what is your
normal listening
score these days?

This is really
good - well
done... You have
definitely made
a lot of progress.
and what is your
normal score
when listening
these days?

Wow, really
good– well
done... you’ve
really made a lot
of progress.

Wow, it’s really
good - well
done... you’ve
definitely made
a lot of progress.
And what’s the
normal result of
listening these
days?

Around 30, listen-
ing is harder for
me.

Around 30, listen-
ing is harder for
me.

About 30 years,
listening is more
difficult for me.

At 30 o’clock it’s
harder for me to
listen.

I’m about 30
years old. I’m
worse.

At about 30 years
of age, listening
is harder for me.

Ok that’s quite
common to be
better at reading
- but 30 is still
more than re-
spectable. I guess
maybe speaking
is the toughest
part?

Ok that’s quite
common to be
better at reading
- but 30 is still
more than re-
spectable. I guess
maybe speaking
is the toughest
part?

Ok it’s pretty
common to be
better at read-
ing - but 30 is
even more than
respectable. I
guess speaking is
perhaps the most
difficult part?

Okay, that’s
pretty common
to be better at
reading - but
30 is still more
than respectable.
I guess maybe
speaking is the
most difficult
part?

But 30 years of
age isn’t worthy
of respect.

Okay, it’s pretty
common to be
better at reading
- but 30 is still
more than re-
spectable. Maybe
talking is the
hardest part?

Yeah, because it’s
difficult to prac-
tice...

Yes, because it’s
difficult to prac-
tice...

Because it’s hard
to train...

Yeah, because it’s
hard to practice...

Yes, because it’s
hard to practice...

Yeah, because it’s
hard to practice...

Table 2: Comparison of backtranslations for English, Spanish, French, German, Mandarin Chinese and Finnish

4 Training

The main point of my experiment was not to train
the best possible tiny transformer-based model us-
ing ESL data, but rather to see if a model trained
on ESL data could outperform a model trained
on child-directed data. I trained each model three
times, with the seeds: 42, 2024 and 5550. I did not
perform a hyper-parameter search. For preprocess-
ing, I contatenated the datasets, created tokenizers
and segmented the training data. I then trained an
encoder-model, a decoder-model and an encoder-
decoder model with the parameters shown in table
3 for all the models.

The only difference is that the encoder-decoder
model has listed 6 hidden layers and the other two
has 12, but in practice this amounts to the same
number of layers since the encoder-decoder is a
dual model.

After training the baseline models, I substituted
the processed CHILDES data for the combined
original and backtranslated TSCC dataset. I fol-
lowed the same preprocessing steps as for the orig-
inal data, creating a separate tokenizer for the new
training data. I then trained the three different mod-
els on the new training data with the new tokenizer.
The models can be found on my github2.

2http://github.uio.no/erlingmi/IN5550_exam/

5 Evaluation

I now had six models: three baseline models where
29% of the training data came from the CHILDES-
corpus and three models where the CHILDES-
corpus had been substituted with TSCC-data aug-
mented by backtranslation. Each of these models
had been trained three times on the same three
seeds, which amounted to a total of 18 chekcpoints.
I evaluated each checkpoint using the BLiMP and
LAMBADA metrics. I then averaged the results
for each of the models, and these can be found in
Table 4 and Table 5. More detailed results can be
found in the appendix A.

I will describe each of the metrics below and
comment on the performance of my six models.

5.1 The Benchmark of Linguistic Minmal
Pairs: BLiMP

The The Benchmark of Linguistic Minmal Pairs
(BLiMP) consists of a set of artificially generated
minimal pairs. Each pair consists of an accept-
able and an unacceptable example and the goal of
the LM to be tested is to select, that is assign the
higher probability, to the acceptable example. The
BLiMP metric tests for twelve different linguistic
phenomena (see Table 4). An example of an accept-
able example of Determiner-Noun agreement could
be "She had bought that chair", whereas an unac-

75

Table 3: Hyperparameters

Parameters

attention_dropout_prob 0.1
attention_probs_dropout_prob 0.1
classifier_activation_function gelu
classifier_dropout_prob 0.1
embedding_dropout_prob 0.1
ffn_activation_function geglu
ffn_dropout_prob 0.1
hidden_size 192
intermediate_size 512
norm_eps 1e-05
max_position_embeddings 128
norm_type layer_norm
num_attention_heads 3
num_hidden_layers 12 / 6
position_bucket_size 32
positional_embeddings relative
post_norm true
pre_norm true
qk_size 192
v_size 192
vocab_size 3072
relative_embedding_dropout 0.1

ceptable example would be "She had bought that
chairs" (Warstadt et al., 2020, pp.380). Accuracy
is calculated for each of the twelve phenomena, as
well as the average accuracy. That means if a model
gets an accuracy of 50 it would be the same as ran-
domly picking an example. When Warstadt et al.
(2020) developed this benchmark in 2020 their best
performing model was GPT-2 with an average ac-
curacy of 81.5. GPT-2 has 36 layers, 774 Million
parameters and was trained on approximately 8
Billion tokens (Warstadt et al., 2020, pp.382). To
recap, all of my models have less than 7 Million
parameters, 12 layers and was trained on approxi-
mately 10 Million tokens.

When looking at the results from Table 4 the
first observation we can make is that the decoder
models do significantly better than the encoder and
encoder-decoder models. This is to be expected.
For left-to-right languages the decoder generates
token by token from left to right. This is useful for
capturing syntactic elements in analytic languages
like English which relies heavily on a fixed word
order. Encoder Models like BERT are useful for
creating rich embeddings, but not so much for dis-

tinguishing small syntactic differences.
The second observation we can make is that the

best model overall turned out to be the baseline
decoder model trained on the CHILDES data with
an average accuracy of 70.20, but only by a very
small margin. The decoder model trained on the
TSCC dataset got an average accuracy of 70.10.

NPI licensing is the lingustic phenomena where
the CHILDES-decoder outperform the TSCC-
decoder the most with accuracies of 61.01 and
57.55 respectively. NPI is short for Negative Polar-
ity Items and refers to words like any and ever that
are only permitted in certain clauses like negations
and interrogatives (Warstadt et al., 2020, pp.381).
Many languages, one of them Norwegian, do not
have the same distinctions as English between Neg-
ative Polarity Items, like "any" and Positive Polar-
ity Items, like "some". The Norwegian word for
both of these would be "noen". For this particular
lingustic phenomena it seems like it’s a disadvan-
tage to be an adult "pre-trained" on another a lan-
guage that presumably have different NPI / PPI -
distinctions.

The CHILDES-decoder also does significantly
better on anaphor agreement with accuracies of
82.63 and 80.12 respectively. Anaphor agreement
refers to agreement between a reflexive pronoun
and it’s antecedent (Warstadt et al., 2020, pp.381).
An example of an acceptable sentence would be
"He washed himself " and an unacceptable sentence
would be "He washed him". These kind of con-
structions can be confusing for a foreign student
of English. In English these reflexive pronouns are
gendered, but in many languages they are not. In
Italian for instance the same sentence would be:
"(Lui) si è lavato" for the male form and "(Lei) si
è lavata" for the female form. Since Italian is a
pro-drop language, hence the parenthesis around
the subject pronouns, in most cases the only way to
tell the difference in gender between these two sen-
tences would be the ending of the past participle:
"lavato/a". In fact, it would also be correct to say
"Lui/lei ha lavato/a se stesso/a", where the reflexive
pronoun changes from "si" to "se". The point here
is not to go into an extended discussion of Italian
syntax, but to emphasize that the reflexive pronoun
in other languages may change in other situations
and for different reasons than what is the case for
English.

The TSCC decoder does better on irregular
forms than the CHILDES decoder, with accuracies
of 92.35 and 91.55 respectively. This is expected

76

Table 4: Blimp Average Results

Model Encoder -
CHILDES

Encoder -
TSCC

Decoder -
CHILDES

Decoder -
TSCC

Encoder-
decoder -
CHILDES

Encoder-
decoder -
TSCC

Filler gap dependency 63.41 71.43 68.90 67.34 60.09 60.74
Subject verb agreement 49.52 51.40 74.30 76.12 55.47 53.69
NPI licensing 36.14 48.64 61.01 57.55 35.44 32.27
Control and raising 53.47 46.25 64.15 63.86 59.64 59.21
Argument structure 52.73 52.02 71.48 71.52 56.96 55.95
Ellipsis 30.17 38.30 72.00 70.92 61.32 49.63
Determiner-Noun agreement 50.50 50.70 81.39 80.68 69.77 62.85
Anaphor agreement 61.62 59.72 82.63 80.12 65.35 58.18
Binding 52.22 55.51 72.79 74.21 66.10 64.92
Island effects 34.60 26.00 51.61 54.40 45.34 44.46
Quantifiers 43.26 72.51 79.50 78.93 65.84 67.88
Irregular forms 49.18 53.80 91.55 92.35 81.55 72.10
Average accuracy 48.32 51.40 70.20 70.10 57.84 55.48

Table 5: Lambada – average results

Metric Encoder -
CHILDES

Encoder -
TSCC

Decoder -
CHILDES

Decoder -
TSCC

Encoder-
decoder -
CHILDES

Encoder-
decoder -
TSCC

Accuracy 0.17 0.83 8.63 7.06 1.08 0.69
Perplexity 1453.86 531.95 21.48 21.04 52.42 137.62

since children usually learn the regular patterns
first, especially when it comes to verbs, and only
later in their linguistic development learn the irreg-
ular exceptions(Pinker, 1994, pp.278-279). Even
though this is the case, some of the adult language
learners represented in the TSCC corpus might also
struggle with this. The languages most different
from English, were Japanese, Mandarin Chinese
and Thai (Caines et al., 2020, pp.12). Of these, I
only have personal experience with Chinese which
I know have a much simpler inflection than English.
For these students, the irregular forms, in partic-
ular, might cause problems. The reason why the
TSCC decoder still outperformed the CHILDES
decoder could be that some of the students spoke
pro-drop languages like Spanish and Italian that
have a more complex inflection than English, and
would be expected to do better than native-speaking
children on verb inflection. This was indeed the
case, which we can also observe from the linguistic
phenomena of subject-verb agreement where the
CHILDES-decoder had an accuracy of 74.30 and
the TSCC-decoder had an accuracy of 76.12. We
might hypothesize that if we filtered out the Asian

students and only kept the Romance-speaking ones,
this difference would be even higher for both irreg-
ular forms and subject-verb agreement.

I should also mention that none of the models do
bad when it comes to irregular forms. The much
bigger GPT-2 decoder-model had an accuracy of
84.1 on irregular forms, which is worse than both of
my decoder models (Warstadt et al., 2020, pp.382).

Another linguistic phenomena where the TSCC-
decoder outperformes the CHILDES-decoder is
binding, with accuracies of 74.21 and 72.79 respec-
tively. Binding refers to the structural relationship
between a pronoun and its antecedent, typically a
noun (Warstadt et al., 2020, pp.381). Warstadt et al.
(2020, pp.380) gives the following sentence as an
acceptable example of binding: "Carlos said that
Lori helped him". and this sentence as an unac-
ceptable example: "Carlos said that Lori helped
himself". It seems like binding is a linguistic phe-
nomena that requires a sense of logic that might
not be as developed amongst children. It could also
be one of the phenomena that do not vary so much
across languages, which means the adult language
learners receive the benefit and not the penalty of

77

already knowing another language.
The third observation we can make, is that even

though my TSCC models lost to the CHILDES
models both for the decoder-model and the encoder-
decoder model, it still won overall if we calculate
the average accuracies for the three models: 58.79
for CHILDES and 58.93 for TSCC. The reason
for this is that the TSCC encoder model did over
3 percentage points better than the CHILDES en-
coder model. It is not clear to me why this is the
case, but one hypothesis could be that intermediate
and advanced adult language learners, and espe-
cially their English teachers, would use a bigger
and more varied vocabulary than children and their
parents in an everyday setting. In fact, challenging
students to expand their vocabulary would be one
of the goals of the teachers. Parents do so too when
speaking with children, but probably not as often
and as systematically. So my hypothesis is that the
encoder model in particular might have benefited
from this higher type to token ratio. It is unclear
how backtranslation might have affected the result.
On the one hand we might have gotten some syn-
onyms "for free", but on the other hand many of
the sentences would be very similar.

5.2 LAngugage Modelling Broadened to
Account for Discourse Aspects:
LAMBADA

The LAMBADA dataset is a next-word prediction
task that requires a very broad context to get right.
It was intentionally designed to be difficult for lan-
guage models. Paperno et al. (2016, pp.1528) used
crowdsourcing when selecting which examples to
include in the dataset. They first tested examples
on two separate human reviewers giving the entire
context, typically about 5 sentences before the tar-
get sentence and only included the examples that
both of them got right. Of the examples that passed
this hurdle, only the target sentence - excluding the
context - were given to ten new human reviewers
and only if all of them got the next word prediction
wrong, was the word included in the LAMBADA
dataset. The aim of this selection process was to
only pick examples where it was imperative to un-
derstand the broader context in order to be able to
predict the next word correctly.

Most LM’s don’t do well on the LAMBADA
metric. It is still an open question whether this
metric actually tests for language understanding
or if it simply tests for the ability to infer from
a very long context. The LAMBADA results of

my models (see Table 5) mirror the BLiMP results,
with the CHILDES decoder being the best with
an accuracy of 8.63. The TSCC decoder was the
second best model for this metric too, but it lags
a little more behind than was the case for BLiMP,
with an accuracy of 6.77. For the perplexity metric
lower is better and here the TSCC decoder got the
lower score of 21.04 compared to 21.48 for the
CHILDES decoder.

The CHILDES Encoder was the worst with an
accuracy of 0.17 and a perplexity of 1453.86. In
fact for two of the seeds, it wasn’t able to predict a
single next-word correctly (Table 7).

6 Conclusion

The conclusion so far, must be that tiny LM’s did
not turn out to be better students than babies, but
neither were they much worse. The best model was
the CHILDES decoder, but it only beat the TSCC
decoder by a very small margin. The results are not
very confident. One big source of uncertainty is my
use of backtranslation as data augmentation of the
TSCC corpus. It would have been better to have a
bigger ESL corpus. Another alternative would have
been to train on only the original TSCC dataset and
one tenth of the CHILDES dataset. It might have
been useful for comparison, but this would mean
using only about 7.3 million tokens /compared to
10 million) and I was worried the metrics would
too uncertain using so few tokens as input. Another
source of uncertainty is the fact that the TSCC data
were collected from online chat rooms designed
for this purpose, whereas the CHILDES data were
collected by audio clips from real life interactions
and then transcribed. We use spoken and written
language differently, so for comparisons sake it
might have been better collecting spoken ESL data
and transcribing them, but it wouldn’t necessarily
have resulted in better LM’s, quite possibly the
opposite.

7 Future work

Even though my results in this small experiment
were not entirely convincing, I think my idea is
good enough that it is worth testing further before
being discarded. I looked for more ESL corpora,
but apart from TSCC I couldn’t find any that were
easily accessible, open and large enough. In order
to test my hypothesis further it would be necessary
to get access to more ESL student-directed data.
This doesn’t have to be teacher-student conversa-

78

tions, but could be text from textbooks or transcrip-
tions from educational films.

It would also be worth doing a more thorough
hyperparameter search to find the best model for
the different datasets. One possibility would be to
replicate the Contextualiser approach that won the
Loose track of the BabyLM challenge (Xiao et al.,
2023, pp. 12-13).

Of the metrics used here, BLiMP mainly tests
for the formal-linguistic aspects and LAMABADA
for ability to consider long context. It might be ben-
eficial to include at least some of the metrics from
Super GLUE to test for the functional-lingustic
aspects.

My hypothesis also needs a better theoretical
foundation, both from a cognitive-linguistic per-
spective and from an NLP / Informatics perspec-
tive.

References
Andrew Caines, Helen Yannakoudakis, Helen Allen,

Pascual Pérez-Paredes, Bill Byrne, and Paula Buttery.
2022. The teacher-student chatroom corpus version
2: more lessons, new annotation, automatic detec-
tion of sequence shifts. In Proceedings of the 11th
Workshop on NLP for Computer Assisted Language
Learning, pages 23–35, Louvain-la-Neuve, Belgium.
LiU Electronic Press.

Andrew Caines, Helen Yannakoudakis, Helena Edmond-
son, Helen Allen, Pascual Pérez-Paredes, Bill Byrne,
and Paula Buttery. 2020. The teacher-student chat-
room corpus. arXiv (Cornell University).

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: pre-training of
deep bidirectional transformers for language under-
standing. CoRR, abs/1810.04805.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. Preprint, arXiv:1810.04805.

Emmanuel Dupoux. 2018. Cognitive science in the
era of artificial intelligence: A roadmap for reverse-
engineering the infant language-learner. Cognition,
173:43–59.

Ronen Eldan and Yuanzhi Li. 2023. Tinystories: How
small can language models be and still speak coherent
english? arXiv (Cornell University).

Lucas Georges Gabriel Charpentier and David Samuel.
2023. Not all layers are equally as important: Every
layer counts BERT. In Proceedings of the BabyLM
Challenge at the 27th Conference on Computational
Natural Language Learning, pages 238–252, Singa-
pore. Association for Computational Linguistics.

Martin Gerlach and Francesc Font-Clos. 2018. A stan-
dardized project gutenberg corpus for statistical anal-
ysis of natural language and quantitative linguistics.

Philip A. Huebner, Elior Sulem, Fisher Cynthia, and
Dan Roth. 2021. BabyBERTa: Learning more gram-
mar with small-scale child-directed language. In Pro-
ceedings of the 25th Conference on Computational
Natural Language Learning, pages 624–646, Online.
Association for Computational Linguistics.

Philip A. Huebner and Jon A. Willits. 2021. Chapter
eight - using lexical context to discover the noun
category: Younger children have it easier. In Kara D.
Federmeier and Lili Sahakyan, editors, The Context
of Cognition: Emerging Perspectives, volume 75 of
Psychology of Learning and Motivation, pages 279–
331. Academic Press.

Daniel Jurafsky and James H. Martin. Speech and lan-
guage processing an introduction to natural language
processing, computational linguistics, and speech
recognition third edition draft.

Pierre Lison and Jörg Tiedemann. 2016. OpenSub-
titles2016: Extracting large parallel corpora from
movie and TV subtitles. In Proceedings of the Tenth
International Conference on Language Resources
and Evaluation (LREC’16), pages 923–929, Portorož,
Slovenia. European Language Resources Association
(ELRA).

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. Preprint, arXiv:1907.11692.

Brian MacWhinney. 2000. The CHILDES project :
tools for analyzing talk : Vol. 1 : Transcription for-
mat and programs, 3rd ed. edition, volume Vol. 1.
Lawrence Erlbaum, Mahwah, N.J.

Richard Diehl Martinez, Hope McGovern, Zebulon
Goriely, Christopher Davis, Andrew Caines, Paula
Buttery, and Lisa Beinborn. 2023. CLIMB – curricu-
lum learning for infant-inspired model building. In
Proceedings of the BabyLM Challenge at the 27th
Conference on Computational Natural Language
Learning, pages 112–127, Singapore. Association
for Computational Linguistics.

Denis Paperno, Germán Kruszewski, Angeliki Lazari-
dou, Quan Ngoc Pham, Raffaella Bernardi, Sandro
Pezzelle, Marco Baroni, Gemma Boleda, and Raquel
Fernández. 2016. The lambada dataset: Word pre-
diction requiring a broad discourse context. arXiv
(Cornell University).

Steven Pinker. 1994. The language instinct. Morrow,
New York.

David Samuel, Andrey Kutuzov, Lilja Øvrelid, and Erik
Velldal. 2023. Trained on 100 million words and still
in shape: BERT meets British National Corpus. In

79

Findings of the Association for Computational Lin-
guistics: EACL 2023, pages 1954–1974, Dubrovnik,
Croatia. Association for Computational Linguistics.

Julius Steuer, Marius Mosbach, and Dietrich Klakow.
2023. Large GPT-like models are bad babies: A
closer look at the relationship between linguistic com-
petence and psycholinguistic measures. In Proceed-
ings of the BabyLM Challenge at the 27th Confer-
ence on Computational Natural Language Learning,
pages 142–157, Singapore. Association for Compu-
tational Linguistics.

Andreas Stolcke, Klaus Ries, Noah Coccaro, Eliza-
beth Shriberg, Rebecca Bates, Daniel Jurafsky, Paul
Taylor, Rachel Martin, Carol Van Ess-Dykema, and
Marie Meteer. 2000. Dialogue act modeling for au-
tomatic tagging and recognition of conversational
speech. Computational Linguistics, 26(3):339–373.

Jörg Tiedemann and Ona de Gibert. 2023. The OPUS-
MT dashboard – a toolkit for a systematic evaluation
of open machine translation models. In Proceed-
ings of the 61st Annual Meeting of the Association
for Computational Linguistics (Volume 3: System
Demonstrations), pages 315–327, Toronto, Canada.
Association for Computational Linguistics.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurelien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023. Llama 2: Open foundation and fine-
tuned chat models. Preprint, arXiv:2307.09288.

Alex Warstadt, Aaron Mueller, Leshem Choshen, Ethan
Wilcox, Chengxu Zhuang, Juan Ciro, Rafael Mos-
quera, Bhargavi Paranjabe, Adina Williams, Tal
Linzen, and Ryan Cotterell. 2023. Findings of the
BabyLM challenge: Sample-efficient pretraining on
developmentally plausible corpora. In Proceedings
of the BabyLM Challenge at the 27th Conference on
Computational Natural Language Learning, pages
1–34, Singapore. Association for Computational Lin-
guistics.

Alex Warstadt, Alicia Parrish, Haokun Liu, Anhad Mo-
hananey, Wei Peng, Sheng-Fu Wang, and Samuel R.

Bowman. 2020. Blimp: The benchmark of linguistic
minimal pairs for english. Transactions of the Asso-
ciation for Computational Linguistics, 8:377–392.

Chenghao Xiao, G Thomas Hudson, and Noura
Al Moubayed. 2023. Towards more human-like lan-
guage models based on contextualizer pretraining
strategy. In Proceedings of the BabyLM Challenge
at the 27th Conference on Computational Natural
Language Learning, pages 317–326, Singapore. As-
sociation for Computational Linguistics.

Wei Xu, Chris Callison-Burch, and Courtney Napoles.
2015. Problems in current text simplification re-
search: New data can help. Transactions of the Asso-
ciation for Computational Linguistics, 3:283–297.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, Todor Mi-
haylov, Myle Ott, Sam Shleifer, Kurt Shuster, Daniel
Simig, Punit Singh Koura, Anjali Sridhar, Tianlu
Wang, and Luke Zettlemoyer. 2022. Opt: Open
pre-trained transformer language models. Preprint,
arXiv:2205.01068.

A Appendix

80

Table 6: Blimp - Encoder CHILDES

Seed 42 2024 5550 Average

Filler gap dependency 71.43 71.43 47.37 63.41
Subject verb agreement 48.60 51.70 48.25 49.52
NPI licensing 29.60 47.63 31.20 36.14
Control and raising 57.48 46.98 55.96 53.47
Argument structure 54.01 50.04 54.14 52.73
Ellipsis 23.25 44.65 22.60 30.17
Determiner-Noun agreement 50.71 49.94 50.84 50.50
Anaphor agreement 65.60 46.90 72.35 61.62
Binding 52.39 57.17 47.10 52.22
Island effects 37.05 30.29 36.45 34.60
Quantifiers 32.65 71.50 25.62 43.26
Irregular forms 48.05 48.05 51.45 49.18
Average accuracy 48.44 51.29 45.22 48.32

Table 7: Lambada - Encoder - CHILDES

Seed 42 2024 5550 Average

Accuracy 0.00 0.52 0.00 0.17
Perplexity 1374.78 872.31 2114.50 1453.86

Table 8: Blimp - Encoder - TSCC

Seed 42 2024 5550 Average

Filler gap dependency 71.43 71.43 71.43 71.43
Subject verb agreement 51.75 51.82 50.62 51.40
NPI licensing 51.49 42.46 51.96 48.64
Control and raising 45.74 45.12 47.88 46.25
Argument structure 53.66 48.80 53.61 52.02
Ellipsis 40.50 37.35 37.05 38.30
Determiner-Noun agreement 51.02 50.29 50.80 50.70
Anaphor agreement 62.10 57.10 59.95 59.72
Binding 54.73 56.04 55.77 55.51
Island effects 26.36 27.19 24.44 26.00
Quantifiers 61.52 80.12 75.90 72.51
Irregular forms 51.30 54.95 55.15 53.80
Average accuracy 51.32 50.81 52.08 51.40

Table 9: Lambada - Encoder - TSCC

Seed 42 2024 5550 Average

Accuracy 2.19 0.07762 0.21 0.83
Perplexity 349.29 666.637 579.93 531.95

Table 10: Blimp - Decoder - CHILDES

Model Decoder - CHILDES

Seed 42 2024 5550 Average

Filler gap dependency 67.99 68.71 70.01 68.90
Subject verb agreement 75.30 73.62 73.98 74.30
NPI licensing 59.57 64.39 59.07 61.01
Control and raising 63.60 63.20 65.64 64.15
Argument structure 71.72 71.42 71.30 71.48
Ellipsis 71.90 71.45 72.65 72.00
Determiner-Noun agreement 81.42 79.64 83.10 81.39
Anaphor agreement 82.10 84.55 81.25 82.63
Binding 71.66 73.24 73.46 72.79
Island effects 49.12 54.43 51.28 51.61
Quantifiers 80.95 79.55 78.00 79.50
Irregular forms 92.70 88.15 93.80 91.55
Average accuracy 69.72 70.51 70.36 70.20

Table 11: Lambada - Decoder - CHILDES

Seed 42 2024 5550 Average

Accuracy 8.95 8.83 8.11 8.63
Perplexity 21.39 21.46 21.58 21.48

81

Table 12: Blimp - Decoder - TSCC

Seed 42 2024 5550 Average

Filler gap dependency 68.44 66.01 67.57 67.34
Subject verb agreement 76.35 76.85 75.17 76.12
NPI licensing 54.99 57.59 60.07 57.55
Control and raising 62.68 65.06 63.84 63.86
Argument structure 72.04 71.42 71.09 71.52
Ellipsis 70.85 69.15 72.75 70.92
Determiner-Noun agreement 80.58 81.69 79.77 80.68
Anaphor agreement 79.35 81.45 79.55 80.12
Binding 73.99 74.66 73.97 74.21
Island effects 50.81 54.71 57.67 54.40
Quantifiers 77.85 76.55 82.38 78.93
Irregular forms 88.10 95.20 93.75 92.35
Average accuracy 69.27 70.24 70.78 70.10

Table 13: Lambada - Decoder - TSCC

Seed 42 2024 5550 Average

Accuracy 6.77 6.62 7.80 7.06
Perplexity 21.48 21.43 20.22 21.04

Table 14: BLiMP - Encoder-decoder - CHILDES

Seed 24 2024 5550 Average

Filler gap dependency 59.44 59.99 60.84 60.09
Subject verb agreement 55.00 55.62 55.80 55.47
NPI licensing 40.11 30.67 35.53 35.44
Control and raising 61.14 58.26 59.52 59.64
Argument structure 55.87 58.17 56.83 56.96
Ellipsis 63.20 56.80 63.95 61.32
Determiner-Noun agreement 74.75 60.38 74.17 69.77
Anaphor agreement 69.80 56.45 69.80 65.35
Binding 66.39 66.64 65.27 66.10
Island effects 43.30 46.55 46.16 45.34
Quantifiers 62.95 75.33 59.23 65.84
Irregular forms 83.40 84.10 77.15 81.55
Average accuracy 58.64 56.73 58.16 57.84

Table 15: Lambada - Encoder-decoder - CHILDES

Seed 42 2024 5550 Average

Accuracy 0.17 1.94 1.14 1.08
Perplexity 68.55 42.70 46.00 52.42

Table 16: BLiMP - Encoder-decoder – TSCC

Seed 24 2024 5550 Average

Filler gap dependency 60.24 58.84 63.14 60.74
Subject verb agreement 53.83 54.75 52.50 53.69
NPI licensing 29.07 35.79 31.94 32.27
Control and raising 60.12 59.94 57.58 59.21
Argument structure 56.71 55.24 55.91 55.95
Ellipsis 63.40 46.65 38.85 49.63
Determiner-Noun agreement 64.49 65.05 59.00 62.85
Anaphor agreement 63.20 56.45 54.90 58.18
Binding 64.41 65.43 64.93 64.92
Island effects 44.57 40.77 48.04 44.46
Quantifiers 66.42 69.08 68.15 67.88
Irregular forms 76.80 68.85 70.65 72.10
Average accuracy 56.05 55.41 54.98 55.48

Table 17: Lambada - Encoder-decoder - TSCC

Seed 42 2024 5550 Average

Accuracy 2.04 0.02 0.0 0.69
Perplexity 43.47 139.02 230.36 137.62

82

English French Spanish Italian Russian Mandarin Chinese
Wow that’s really
good - well done...
you’ve definitely
made a lot of
progress. and
what’s your normal
score on listening
these days?

You have certainly
made a lot of
progress, and what
is your normal
listening score these
days?

Wow that’s really
good - well done...
you’ve definitely
made a lot of
progress. and
what’s your normal
score on listening
these days?

Wow that’s really
good - well done...
you definitely made
a lot of progress.
and what’s your nor-
mal score listening
these days?

Wow, that’s re-
ally good– well
done– you’ve
certainly made
great progress, and
what’s your usual
bill for listening
these days?

Wow, really good–
well done... you’ve
really made a lot of
progress.

Around 30, listen-
ing is harder for me.

About 30 years, lis-
tening is more diffi-
cult for me.

Around 30, listen-
ing is harder for me.

About 30 years, lis-
tening is harder for
me.

About 30, it’s
harder for me to
listen.

I’m about 30 years
old. I’m worse.

Ok that’s quite com-
mon to be better at
reading - but 30 is
still more than re-
spectable. I guess
maybe speaking is
the toughest part?

Ok it’s pretty com-
mon to be better at
reading - but 30 is
even more than re-
spectable. I guess
speaking is perhaps
the most difficult
part?

Ok that’s quite com-
mon to be better at
reading - but 30 is
even more than re-
spectable. I guess
maybe talking is the
hardest part?

Ok that’s common
enough to be better
at reading - but 30 is
even more than re-
spectable. I guess
maybe talking is the
hardest part?

It’s good that it’s
quite often better to
read - but 30 is
still more than re-
spectable.

But 30 years of age
isn’t worthy of re-
spect.

Yeah, because
it’s difficult to
practice...

Because it’s hard to
train...

Yes, because it’s dif-
ficult to practice...

Yeah, ’cause it’s
hard to practice...

Yes, because it’s
hard to train...

Yes, because it’s
hard to practice...

English Dutch German Finnish Swedish Danish
Wow that’s really
good - well done...
you’ve definitely
made a lot of
progress. and
what’s your normal
score on listening
these days?

Oh, wow that’s re-
ally good – well
done... you’ve cer-
tainly made a lot
of progress. And
what’s your normal
score on listening
these days?

This is really good
- well done... You
have definitely
made a lot of
progress. and what
is your normal
score when listen-
ing these days?

Wow, it’s really
good - well done...
you’ve definitely
made a lot of
progress. And
what’s the normal
result of listening
these days?

Wow it’s really
good - well done...
you’ve definitely
made a lot of
progress. and
what’s your normal
point on listening
these days?

Wow it’s really
good - well done...
you’ve definitely
made a lot of
progress. And
what’s your normal
score on listening
these days?

Around 30, listen-
ing is harder for me.

About 30 o’clock
listening is harder
for me.

At 30 o’clock it’s
harder for me to lis-
ten.

At about 30 years
of age, listening is
harder for me.

About 30, listen is
harder for me.

About 30 years, it’s
harder for me to lis-
ten.

Ok that’s quite com-
mon to be better at
reading - but 30 is
still more than re-
spectable. I guess
maybe speaking is
the toughest part?

OK that’s very com-
mon to be better at
reading - but 30 is
still more than re-
spectable. I think
speaking is the hard-
est part?

Okay, that’s pretty
common to be bet-
ter at reading - but
30 is still more than
respectable. I guess
maybe speaking is
the most difficult
part?

Okay, it’s pretty
common to be bet-
ter at reading - but
30 is still more than
respectable. Maybe
talking is the hard-
est part?

OK it’s pretty com-
mon to be better
at reading - but
30 is still more
than respectable. I
guess speaking is
the toughest part?

Well, it’s quite com-
mon to be better at
reading - but 30 is
still more than re-
spectable. I guess
speeches are the
hardest part?

Yeah, because
it’s difficult to
practice...

Yes, because it’s
hard to practice...

Yeah, because it’s
hard to practice...

Yeah, because it’s
hard to practice...

Yes, because it’s
hard to train...

Yeah, because it’s
hard to practice...

Table 18: Comparison of backtranslations for all of the languages

83

84

Parameter Sharing for Tiny Language Models

Eirik Eggset
University of Oslo

Rayyan A. S. Syed
University of Oslo

Torkild Finne
University of Oslo

Abstract

In recent years the trend has been that lan-
guage models (LMs) has grown in size. Some
of the challenges faced when using these are
GPU capacity and long training times. This
is motivation for aiming to reduce the model
size. This paper is based on the TinyLM
track(Charpentier, 2024), where the goal is to
improve small language models with a max
size of 7 million parameters. Our approach
is based on the layer-wise parameter sharing
as proposed in (Takase and Kiyono, 2023).
They proposed three assignment rules: SE-
QUENCE, CYCLE, and CYCLE (REV), for
deciding which layers are assigned the same pa-
rameters. Their results show that this approach
gives improvements in terms of the parame-
ter size and computational time for relatively
small models. Motivated by these results, we
aim to see if these improvements translate well
to much smaller models as well. We observe
some minor improvements in some setups. It
also showed potential for improved results for
future experiments, and perhaps for downscal-
ing larger models.

1 Introduction

Language models (LMs) have progressively in-
creased in size, presenting challenges such as lim-
ited GPU capacity and extended training times.
Smaller models contain less trainable parameters,
which leads to faster and cheaper training. The
drawback is that larger models usually outperforms
smaller ones. Therefore it can be beneficial to try
to reduce the model size, without degrading the
model performance.

This paper is based on the "Pretraining of Tiny
Language Models" track(Charpentier, 2024). This
track is inspired by the annual BabyLM chal-
lenge(Warstadt et al., 2023), where the goal is to
train a language model on a small dataset. Sim-
ilarly to the BabyLM challenge, the goal of this

track is to pretrain a language model and to inves-
tigate potential improvements compared to prede-
termined benchmarks. In contrast to this challenge,
the track does not limit the training data, but the
model’s number of trainable parameters. The set
limitations are a maximum of 7 million parame-
ters, and a maximum of 5 hours of training time.
The track uses two different metrics as a bench-
mark, namely LAMBADA(Paperno et al., 2016)
and BLiMP(Warstadt et al., 2020).

The main motivation for our experiments is the
research done by Takase and Kiyono in (Takase
and Kiyono, 2023). They tested three different
ways to reuse transformer layers in transformer
models. The main idea is that by reusing the same
parameters, you can increase the size or number of
the layers and still keep a similarly sized model.

Takase and Kiyono focused on stacking mul-
tiple smaller layers, resulting in a deeper model.
They compared their results to another approach
for parameter sharing used in the Universal Trans-
former architecture(Dehghani et al., 2018). Here,
instead of adding multiple small layers to com-
pensate for the now fewer trainable parameters,
the existing weight matrices are increased. Even
though the paper showed promising results of in-
creasing the expressive power over classical trans-
former models, increasing the weight matrices is
slower than adding more small layers(Takase and
Kiyono, 2023).

This paper will document our experiments and
results for parameter sharing for tiny language mod-
els. In Section 2 we will go through the background
theory and the motivation for our choices. In Sec-
tion 3 we will go through our methodology. In
Section 4 we will present our results. In the sec-
tions 5 and 6 we will discuss and conclude our
findings.

85

2 Background

2.1 Transformer models

Figure 1: Encoder-decoder architecture(Vaswani et al.,
2017)

The model we are trying to improve is based
on the transformer architecture, as proposed in
(Vaswani et al., 2017). It is divided in two individ-
ual parts, an encoder and a decoder. In the original
paper, the encoder output is linked to the decoder
through a concept called cross-attention. However,
in later years it has been popular to either use an
encoder-only or decoder-only architecture(Devlin
et al., 2018; Samuel et al., 2023; Radford et al.,
2018, 2019).

As illustrated in Figure 1, the encoder comprises
N identical layers, each containing a self-attention
mechanism and a feed-forward network. The dif-
ference between an encoder-only and decoder-only
model is the masking of future tokens. While an
encoder model is trained to predict a random token
within a sequence(Devlin et al., 2018), the decoder
is trained in an auto-regressive fashion, meaning it
will predict the last token in a sequence(Radford
et al., 2018).

Transformer models uses a concept called at-
tention to capture context from surrounding to-
kens(Vaswani et al., 2017). Attention utilizes query,
key and value vectors to model dependencies across
the input sequence. This allows for efficient and
parallelized computations.

A transformer model takes tokenized text as in-
put. In the baseline model the text is converted us-
ing BytePiece(Wu et al., 2016) tokenization. This
algorithm uses a hyperparameter called merge op-
erations in order to determine the vocabulary size,
which is not well understood(Gowda and May,
2020). However it is reported that different vocab-
ulary sizes may affect the performance(Martinez
et al., 2023).

2.2 Metrics

Measuring the effectiveness of a language model
can be challenging, as there is often multiple cor-
rect answers. To evaluate the performance of our
models, we used the metrics LAMBADA(Paperno
et al., 2016) and BLiMP(Warstadt et al., 2020).
These are commonly used methods for evaluat-
ing language models(Devlin et al., 2018; Warstadt
et al., 2023; Charpentier, 2024)

2.2.1 BLiMP

To assess the models’ grammatical knowledge, we
utilized the BLiMP (Benchmark of Linguistic Min-
imal Pairs) dataset(Warstadt et al., 2020). This
dataset comprises pairs of sentences that contrast
incorrect and correct syntax, morphology, or se-
mantics, providing a clear basis for evaluation. The
metric tests the models’ performance on different
categorized phenomena.

BLiMP consists of 67 automatically generated
datasets of 1000 minimal pairs each. These are
divided into 12 phenomena. They are categorized
in multiple groups, where each looks at it’s own
grammatical rules. We have added two examples
in Table 1.

2.2.2 LAMBADA

LAMBADA (LAnguage Modeling Broadened to
Account for Discourse Aspects) tests whether the
model can understand the context within a broader
discourse (Paperno et al., 2016). The idea behind
LAMBADA is that one should be able to predict the
last word of a sequence if given the entire passage,
but not if only the last sentence is provided. This
implies that a model excels in LAMBADA if it can
maintain awareness of the entire passage, rather
than mainly focusing on the local context. The
model is tasked to guess the last word of a context
sequence.

The dataset consists of 5,153 passages with a
context sentence, a target sentence and a target
word each. The context sentences is provided to
define the target word from the target sentence. The
target sentence is built up by a sentence where the
last word is masked. A complete example passage
from the dataset is shown in figure 2.

The metric itself gives an accuracy score as well
as a perplexity score. The accuracy tells us how
many of the words were predicted correctly. The
perplexity tells us how sure the model is about its
prediction. A model with low perplexity usually

86

Phenomenon Acceptable Example Unacceptable Example
ANAPHOR AGR Many girls insulted themselves. Many girls insulted herself.
ARG. STRUCTURE Rose wasn’t disturbing Mark. Rose wasn’t boasting Mark.

Table 1: Example of BLiMP dataset pairs with acceptable and unacceptable sentences.

indicates that the model is more confident, and the
answer is less based on random choice.

Context: “Yes, I thought I was going to lose the
baby.” “I was scared too,” he stated, sincerity
flooding his eyes. “You were?” “Yes, of course.
Why do you even ask?” “This baby wasn’t
exactly planned for.”
Target sentence: “Do you honestly think that I
would want you to have a ——?”
Target word: miscarriage

Figure 2: LAMBADA Context and Target Sentence
with Target Word

2.3 Dataset

Studies such as CLIMB(Martinez et al., 2023) high-
lights infants’ sensitivity to linguistic distributional
aspects and curriculum learning. Martinez pro-
poses a learning framework similar to an infant’s
progression from basic word memorization to rec-
ognizing lexical categories.

We used the 10 million words dataset provided
by (Charpentier, 2024). This consists of 6 differ-
ent corpora. This dataset uses a lot of the same
corpora as in CLIMB, however it is only a small
subset and the order of training data is randomized.
The fractions used of each dataset can be found in
table 2.

The SWITCHBOARD corpus (Godfrey et al.,
1992), comprises of conversational speech and text
from roughly 500 speakers across the U.S. Open-
Subtitles collection (Lison and Tiedemann, 2016)
contains movie and TV subtitles and provide paral-
lel corpora in over 60 languages.

The CHILDES Project (MacWhinney, 2000) is
a datasets with conversational interactions from
monolingual and bilingual children, caregivers, and
individuals with language disabilities.

The Standardized Project Gutenberg Corpus
(SPGC) (Gerlach and Font-Clos, 2020) include
over 50,000 books and 3 billion word-tokens.

Some part of the BNC (British National Corpus)
(Consortium et al., 2007) was also included. This
data set consist of a wide range of newspapers,

journals, books, letters, essays, unscripted informal
conversations, radio shows and phone calls from
the late 20th century.

3 Method

3.1 Parameter sharing

The different techniques we used for parameter
sharing was the same as in (Takase and Kiyono,
2023). They proposed three different ways to con-
figure which layers share parameters, which they
called SEQUENCE, CYCLE and CYCLE (REV).
These where the three techniques we chose to test
out. We refer to these as assignment strategies, as
illustrated in Figure 3.

Figure 3: Parameter sharing strategies(Takase and Kiy-
ono, 2023)

When implementing the parameter sharing, we
created a model with a total depth N and M
unique layers. With layer we refer to either an
encoder-layer or a decoder-layer, consisting of both
attention-heads as well as a feed forward network.
In our implementation we add the number of shared
parameter layers in the configuration file. This
value is used alongside the total number of layers
to calculate M .

In the forward function of the encoder and de-
coder models, we use a special "assignment strat-
egy function", which takes an index and returns the
corresponding layer based on the selected assign-
ment strategy. When initializing the model we only
create M unique layers, indexed by j. During train-
ing and inference, we iterate over all N layers with
the layer index i. The chosen assignment strategy

87

Source Weight Word Count Domain
BNC 8% 800K Dialogue
CHILDES 29% 2.9M Dialogue, Child Directed
Project Gutenberg 26% 2.6M Fiction, Nonfiction
OpenSubtitles 20% 2M Dialogue, Scripted
Simple English Wikipedia 15% 1.5M Nonfiction
Switchboard 1% 100K Dialogue

Table 2: Source data used in the project with their respective weight, word count, and domain.(Charpentier, 2024)

function is used to map i to its corresponding value
j.

Each assignment strategy function has a guard
clause which checks if the index exceeds the num-
ber of shared layers. If it does, it starts to index
incrementally from after the last shared layer. This
ensures that all layers after the first parameter shar-
ing ones gets it’s own unique parameters. If the
number of shared layers is set to 0, it effectively
becomes an identity function, which always returns
the input.

Our implementation also keeps the last layers
without parameter sharing, unless specified, mean-
ing they have their own unique parameters. The
assignment strategies, which are displayed in Al-
gorithms 1, 2 and 3. In the algorithms, the value
"num_shared_layers" tells us how many of the N
layers use parameter sharing. The parameter shar-
ing layers are always at the start.

For example if you have an 8 layer deep model,
where the first 6 layers use parameter sharing, we
would iterate over the indexes from 0 to 7. By send-
ing the numbers 0, 1, 2, 3, 4, 5, 6, 7 into the func-
tion sequence selection 1 with parameter sharing
in the first 6 layers, the output would respectively
be 0, 0, 1, 1, 2, 2, 3, 4. In this configuration there
would only be initialized 5 unique layers, where
3 are used for the first 6 parameter sharing layers,
and the last two are unique.

Takase and Kiyono used an encoder-decoder
model. From their testing, parameter sharing
seemed to improve the model in terms of the pa-
rameter size and computational time, for language
translation tasks. Our goal is to investigate whether
similar results can be seen for our task.

Algorithm 1 Sequence Selection

function SEQUENCESELECTION

if i ≥ numSharedLayers then
return i−

⌊
numSharedLayers

2

⌋

else
return

⌊
i
2

⌋

end if
end function

Algorithm 2 Cycle Selection

function CYCLESELECTION

midpoint←
⌊
totalUniqueLayers

2

⌋

if i ≥ numSharedLayers then
return i−

⌊
numSharedLayers

2

⌋

else if i < midpoint then
return i

else
return i−midpoint

end if
end function

Algorithm 3 Cycle Reverse Selection

function CYCLEREVERSESELECTION

midpoint←
⌊
numSharedLayers

2

⌋

if i ≥ numSharedLayers then
return i−midpoint

else if i < midpoint then
return i

else
return numSharedLayers− 1− i

end if
end function

3.2 Baseline models
The two baseline models we used was the default
as was provided by (Charpentier, 2024). The two
architectures we investigated was the Encoder-only
and Decoder-only architectures.

88

The encoder models was trained using Masked
Language Modeling such as in (Devlin et al., 2018).
The decoder was trained using causal masking,
such as in (Radford et al., 2018, 2019).

Both the encoder and the decoder has the same
default configuration values. The values we tried
scaling up can be found in Table 3, along with their
baseline values.

The baseline encoder and decoder was approx-
imately 6 million parameters. Given that the task
was to train a model below 7 million we also com-
pared the parameter sharing models to a baseline
where the parameters were scaled up to right below
7 million parameters. This scaling was done in the
same way as our deep-wide models.

Because there always is a degree of randomness
when evaluating a trained model, it would not be
fair to only train a single baseline model and com-
pare it to a huge number of other configurations.
In order to minimize this disadvantage we trained
multiple baseline models, both scaled and not, and
chose the best performing metrics for each.

Parameters Values Scaling
hidden_size 192 Width
intermediate_size 512 Width
qk_size 192 Width
v_size 192 Width
num_hidden_layers 12 Depth

Table 3: Model Configuration Parameters, their default
value and scaling dimension

3.3 Configurations and Scaling

All the models used the exact same configuration
as the baseline models, except for the number of
shared layers and the values in Table 3 which was
scaled up.

Throughout this section we refer to scaling in
depth and width. With depth we mean increasing
the number of layers in the model, similarly to
what was done in (Takase and Kiyono, 2023), while
width refers to increase the size of the hidden and
output layers of the feed forward network at the
end of the block, as in (Dehghani et al., 2018). For
some of the models where we used more than 6
shared layers, we also increased the query, key and
value vector sizes from 192 to 256, and therefore
also the number of attention heads from 3 to 4. The
column Scaling in Table 3 shows which values we
considered when scaling in a certain dimension.

When introducing parameter sharing between

two layers, the number of parameters used by both
layers is halved. To get back to the original param-
eter count, there are multiple ways to scale up the
model(Takase and Kiyono, 2023; Dehghani et al.,
2018). For our experiments we tested four differ-
ent approaches for re-scaling. This included width,
depth, vocabulary size and a combination of the
prior approaches. We also tried different number
of layers which shared parameters. This is because
by having more sharing layers, we can scale even
more in the depth or width.

First we wanted to do a simple investigation of
how introducing parameter sharing in a model af-
fected its performance, without changing the con-
figuration values. This was so we could compare
the effects parameter sharing has on down scaling
versus up scaling of a model.

If we were to test every single combination it
would take a lot of time and resources. Instead
we ran multiple tests in multiple "training rounds",
where we eliminated the worst configurations for
each round.

For the first round we tested scaling in the width
versus scaling in depth. The specific configurations
included one scaled in width, one scaled for depth
and one scaled a smaller amount in both width
and depth. For each of these configurations we
tested for all three assignment strategies. We also
tested for three different levels of pairwise parame-
ter sharing. One where we only shared in the first
four layers, one where we shared in the 10 first
layers and finally one where all layers shared. For
all three the parameter sharing was done in pairs of
two, so each selected layer shared with exactly one
other layer.

In the next round we picked the best configura-
tions and tested for 25,000 steps. We also experi-
mented with scaling in both depth and width, but
more weighted towards one of the two directions.
This weighting was based on the results from the
first round.

For the third round we tested the best performing
models with a vocabulary size of 6144. We tested
for multiple numbers of parameter sharing layers.
Here we also tested for all three assignment strate-
gies, in case there is a difference for the vocabulary
size.

For the final round we tested a variety of dif-
ferent configurations we thought was interesting,
but did not fit into the earlier round. This includes
different numbers of shared layers, and different
combinations of configuration values.

89

4 Results

For the experiments, we have generated baselines
for both the decoder and encoder to compare the
results. Additionally, we have generated and in-
cluded metrics for the baselines, for both 10,000
and 25,000 steps to assess potential scaling im-
provements in the experiments. As we are working
with small languages models, we were able to gen-
erate many different models with different setups.
Since there were a lot of different and comprehen-
sive results we will not include everything. This
section includes the best and most interesting re-
sults from or experiments.

4.1 Cost of parameter sharing

Our main study focuses on experimenting with pa-
rameter sharing. As described in Section 3.3, the
strategy is to first downscale our model with param-
eter sharing before upscaling it to a corresponding
parameter count. In Table 4, we present the cost
of only implementing parameter sharing for the de-
coder. We have also performed the downscaling for
the encoder, but the results appeared to be mostly
random. Therefore, we have chosen not to include
them. In the following subsections, we will explore
if scaling the configuration values up again yields
any improvement.

As seen in Table 4, the performance of all mod-
els decreases compared to the baseline. However,
this is expected due to the lower parameter count.
The interesting aspect of the results is how much
the model’s performance decreases and for which
architecture.

Group-wise, our different parameter sharing ar-
chitectures have the same size for the same number
of shared parameters. As shown in Table 4, the cy-
cle reverse strategy outperforms the sequential and
cycle strategies. Our results support the findings of
the (Takase and Kiyono, 2023), where cycle reverse
is indicated to be the best of the three architectures.

4.2 BLiMP

4.2.1 Results from the Encoder
The results from the encoder were poor. An
overview of our results can be found in Table 5.
Out of the assignment strategies cycle reverse was
the most successful. Therefore we have chosen to
display these in the table.

For the models trained for 10,000 steps most of
the results had an average accuracy of around 50.
The best performing model was the model with 6

Decoder Size Acc. Perp. BLiMP
Baseline 5.97M 7.93 21.96 71.02
6 Seq 4.63M 7.70 23.94 67.52
6 Cycle 4.63M 6.64 24.45 68.37
6 Cycle rev 4.63M 6.58 24.07 68.77
12 Seq 3.30M 5.65 26.29 66.54
12 Cycle 3.30M 4.56 26.9 66.73
12 Cycle rev 3.30M 6.66 24.82 67.92
18 Seq 1.97M 3.70 30.71 63.68
18 Cycle 1.97M 3.67 31.30 63.09
18 Cycle rev 1.97M 4.31 29.94 64.72

Table 4: Decoder performance metrics for LAMBADA
accuracy and perplexity, and BLiMP average accuracy
for 10,000 training steps.

shared layers which had increased intermediate and
hidden sizes. This model reached an average accu-
racy of 52.78. The second best was the baseline,
right behind with a score of 52.20.

Most of the BLiMP scores did for some rea-
son decrease after running for 25,000 steps. Sur-
prisingly our scaled baseline was outperformed by
the un-scaled baseline for both 10,000 and 25,000
steps.

The number of shared layers did not seem to
affect the results too much, as the scores was spread
quite evenly throughout for both 10,000 and 25,000
steps.

4.2.2 Results from the Decoder
All our decoder models outperformed the best en-
coder model.

The best parameter sharing decoder model did
not outperform the decoder baseline model for
10,000 steps, which scored 71.02 as seen in Ta-
ble 5. One of our models however, did score the
same as the baseline.

It seemed like the parameter sharing models
gained more ground on the baseline decoder score,
where one even outperformed it with 71.77 for
25,000 steps. Here the baseline model stayed ap-
proximately the same, however most of the other
models increased their accuracy slightly.

4.3 LAMBADA
4.3.1 Results from the Encoder
In general, our encoder models produced poor re-
sults across the board. None of the experimental
models demonstrated any significant improvements.
As seen in Table 6, most of the scores are either 0 or
close to 0 for the 10,000 steps. The best-performing

90

Config Shared layers Dec 10k Enc 10k Dec 25k Enc 25k
Baseline 0 71.02 52.20 71.09 47.58
Baseline scaled 0 70.10 51.53 70.71 48.41
Deep cycle rev 6 69.31 50.38 70.60 50.06
Wide cycle rev 6 66.89 52.78 70.06 50.24
Wide cycle rev 8 70.05 43.98 69.24 45.35
Deep cycle rev 10 69.84 51.04 70.15 51.43
Wide/deep cycle rev 12 68.40 51.71 70.72 49.97
Deep cycle rev 24 71.02 48.62 71.77 51.85

Table 5: Model performance for the BLiMP metric across different configurations and training steps.

model has a score of 0.19. This represents 10 cor-
rect predictions out of 5,153 different passages, in
contrast to the baselines 0 (Paperno et al., 2016).

Although this indicates some improvement for
our model, 0.19 is still very low. A random word
from the context passage would result in a score of
1.6% (Paperno et al., 2016). Table 6 also shows that
the models have very high perplexity, indicating
that the results are quite random.

At 25,000 steps, most of the provided encoder
models improve. The deep cycle reverse model out-
performs the baseline model. However, the scaled
baseline appeared on top with 2.74, but with a
higher perplexity. This indicates that parameter
sharing might offer some improvements for scal-
ing.

4.3.2 Results from the Decoder
Unlike our encoder model, the decoder yielded
some notable results on the LAMBADA metric.
As the table shows, our best baseline decoder over
multiple runs of 10,000 steps scored an accuracy of
8.3. None of the parameter sharing models came
close. The second best was the scaled baseline with
8.0.

In general, we can see that most of the results
are quite similar at 10,000 steps. However it seems
like the parameter sharing might scale better than
our baseline. The best model for 25,000 steps re-
sulted in a score of 9.84 compared to our baseline
model of 8.93. For 25,000 steps multiple parameter
sharing models beat the baseline models.

4.4 Training time
The focus of this study was the performance on the
metrics. However we also noticed a small change
in the training time, as shown in Table 7. The wide
models was slightly faster than the baselines, but
the difference was marginal. The deep models were
substantially slower.

Model Time (min)
decoder baseline 29.58
decoder deep 39.92
decoder wide 29.47
encoder baseline 40.32
encoder deep 58.12
encoder wide 38.33

Table 7: Model training times for the baseline, deepest
and widest models. Trained for 10,000 steps.

5 Discussion

5.1 Encoder vs Decoder
The decoder-based model’s superior performance
compared to the encoder models might be at-
tributed to its auto-regressive decoding strategy.
This approach generates each token based on pre-
viously generated tokens, ensuring a coherent se-
quence output, which can in turn allow the model
to learn a better syntactic representation than the
encoder. The random masking in an encoder is not
sequential by nature, which might be a reason for
it to be outperformed.

The decoder-based models’ superior perfor-
mance compared to the encoders’ might be at-
tributed to the evaluation metrics. Decoders might
naturally have an advantage on these specific bench-
marks, due to the decoding strategy. LAMBADA
for example is about predicting the next token,
based on the previous tokens. This is the spe-
cific task the decoder is trained to do. While en-
coders are also trained by masking and predicting
the word, it is trained by having the option to usu-
ally be able to depend on future context. Therefore
it might not be able to capture information from
only prior tokens as effectively.

BLiMP is a metric which tests for a strong syn-
tactical understanding. The decoder is trained to
generate coherent sequences which makes seman-

91

Config Shared layers Dec 10k Enc 10k Dec 25k Enc 25k
Baseline 0 8.3 (22) 0.00 (1374) 8.93 (21) 1.998 (823)
Baseline scaled 0 8.00 (22) 0.019 (2150) 7.51 (22) 2.74 (605)
Deep cycle rev 6 7.22 (23) 0.00 (1418) 7.65 (22) 2.562 (551)
Wide cycle rev 6 0.89 (38) 0.00 (2175) 8.95 (20) 0.0 (3544)
Wide cycle 8 6.8 (-) 0.00 (1923) 4.09 (28) 0.097 (1248)
Deep cycle rev 10 6.66 (24) 0.19 (1384) 7.14 (22) 1.087 (1069)
Wide cycle rev 10 6.79 (25) 0.19 (1709) 9.84 (19) 0.78 (973)
Wide deep cycle rev 12 6.58 (24) 0.175 (1244) 9.33 (20) 1.144 (983)

Table 6: Lamabada accuracy results and the respective model configuration and number of shared layers for both
encoder and decoder models trained for 10,000 and 25,000 steps. Perplexity is shown in parenthesis.

tic sense. This requires it to learn both a syntac-
tically and semantically strong understanding of
the previous sequence. While encoders also learns
syntactical representations through its masking, the
primary objective might lean more towards seman-
tic understanding.

From Table 6 we can observe that as the number
of steps increases both the decoder and encoder
models do better on the lambada metrics. A notable
observation is the decoder’s results on 25,000 steps,
where multiple of the trained models outperforms
the accuracy score compared to the baseline.

5.2 Potential improvements

One interesting finding is that for the baseline, there
was not much difference for the results between
10,000 and 25,000 steps. However for most of the
parameter sharing models the results seemed to im-
prove. This indicates that this is a technique which
might become more efficient for even more training
steps. This is further strengthened by the fact that
the baseline was the best decoder model for 10,000
steps, while for 25,000 steps it was outperformed
by multiple models.

Even though the encoders results were very poor
for both 10,000 and 25,000 steps, we can see most
of the models did improve significantly, both in
accuracy and in perplexity when trained for more
steps. The baseline was even outperformed when
trained for 25,000 steps, while it was significantly
better for 10,000 steps. The best model for 25,000
steps ended up being the scaled up baseline without
parameter sharing.

6 Conclusion

In this paper we have built on the encoder decoder
architecture from (Charpentier, 2024) by introduc-
ing layer-wise parameter sharing as in (Takase and

Kiyono, 2023). Our approach was to introduce
parameter sharing, and compensate for the lost
trainable parameters by scaling the model up to
it’s original size.

Overall the experiments shows promising re-
sults for parameter sharing for some configurations
within a decoder model, but this is not always the
case. We can see a trend that by increasing the
number of steps the parameter sharing models did
improve more than the baseline models. However,
we did not train for enough steps to see if they
actually exceed the baseline, or only eclipses them.

By introducing parameter sharing we noticed a
drop in results, and a time increase for the deep
models. However by introducing 12 sharing lay-
ers in the decoder the parameter count was almost
cut in half while the BLiMP only got reduced by
around 3 points, as shown in Table 4. This indi-
cates that while introducing parameter sharing in
itself degrades the quality, the parameter decrease
seems more significant. Therefore parameter shar-
ing might be a better technique to downscale a well
performing larger model, then to upscale smaller
models in hope of better results.

References
Lucas Charpentier. 2024. Pretraining of tiny language

models. (Accessed on 05/14/2024).

BNC Consortium et al. 2007. British national corpus.
Oxford Text Archive Core Collection.

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals,
Jakob Uszkoreit, and Łukasz Kaiser. 2018. Universal
transformers. arXiv preprint arXiv:1807.03819.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

92

Martin Gerlach and Francesc Font-Clos. 2020. A stan-
dardized project gutenberg corpus for statistical anal-
ysis of natural language and quantitative linguistics.
Entropy, 22(1):126.

John J. Godfrey, Edward C. Holliman, and Jane Mc-
Daniel. 1992. Switchboard: telephone speech cor-
pus for research and development. In Proceed-
ings of the 1992 IEEE International Conference on
Acoustics, Speech and Signal Processing - Volume 1,
ICASSP’92, page 517–520, USA. IEEE Computer
Society.

Thamme Gowda and Jonathan May. 2020. Finding the
optimal vocabulary size for neural machine transla-
tion. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2020, pages 3955–3964,
Online. Association for Computational Linguistics.

Pierre Lison and Jörg Tiedemann. 2016. OpenSub-
titles2016: Extracting large parallel corpora from
movie and TV subtitles. In Proceedings of the Tenth
International Conference on Language Resources
and Evaluation (LREC’16), pages 923–929, Portorož,
Slovenia. European Language Resources Association
(ELRA).

Brian MacWhinney. 2000. The childes project. Compu-
tational Linguistics, 26(4):657–657.

Richard Diehl Martinez, Hope McGovern, Zebulon
Goriely, Christopher Davis, Andrew Caines, Paula
Buttery, and Lisa Beinborn. 2023. CLIMB – curricu-
lum learning for infant-inspired model building. In
Proceedings of the BabyLM Challenge at the 27th
Conference on Computational Natural Language
Learning, pages 112–127, Singapore. Association
for Computational Linguistics.

Denis Paperno, Germán Kruszewski, Angeliki Lazari-
dou, Ngoc Quan Pham, Raffaella Bernardi, Sandro
Pezzelle, Marco Baroni, Gemma Boleda, and Raquel
Fernández. 2016. The LAMBADA dataset: Word
prediction requiring a broad discourse context. In
Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 1525–1534, Berlin, Germany.
Association for Computational Linguistics.

Alec Radford, Karthik Narasimhan, Tim Salimans, and
Ilya Sutskever. 2018. Improving language under-
standing by generative pre-training.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

David Samuel, Andrey Kutuzov, Lilja Øvrelid, and Erik
Velldal. 2023. Trained on 100 million words and still
in shape: BERT meets British National Corpus. In
Findings of the Association for Computational Lin-
guistics: EACL 2023, pages 1954–1974, Dubrovnik,
Croatia. Association for Computational Linguistics.

Sho Takase and Shun Kiyono. 2023. Lessons on pa-
rameter sharing across layers in transformers. In

Proceedings of The Fourth Workshop on Simple and
Efficient Natural Language Processing (SustaiNLP),
pages 78–90, Toronto, Canada (Hybrid). Association
for Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. CoRR, abs/1706.03762.

Alex Warstadt, Aaron Mueller, Leshem Choshen, Ethan
Wilcox, Chengxu Zhuang, Juan Ciro, Rafael Mos-
quera, Bhargavi Paranjabe, Adina Williams, Tal
Linzen, and Ryan Cotterell. 2023. Findings of the
BabyLM challenge: Sample-efficient pretraining on
developmentally plausible corpora. In Proceedings
of the BabyLM Challenge at the 27th Conference on
Computational Natural Language Learning, pages
1–34, Singapore. Association for Computational Lin-
guistics.

Alex Warstadt, Alicia Parrish, Haokun Liu, Anhad Mo-
hananey, Wei Peng, Sheng-Fu Wang, and Samuel R.
Bowman. 2020. BLiMP: The Benchmark of Lin-
guistic Minimal Pairs for English. Transactions of
the Association for Computational Linguistics, 8:377–
392.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le,
Mohammad Norouzi, Wolfgang Macherey, Maxim
Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al.
2016. Google’s neural machine translation system:
Bridging the gap between human and machine trans-
lation. arXiv preprint arXiv:1609.08144.

93

94

Tiny LM: Back to basics

Vebjørn Haug Kåsene
vebjorhk@uio.no

Peder August Darre Fasting
pafastin@uio.no

Abstract

We investigate the performance of encoder
and decoder architectures with varying layer
counts, aiming to identify their capabilities in
understanding grammar and maintaining con-
text. The models’ success is evaluated using
the BLiMP benchmark for grammar and the
LAMBADA benchmark for contextual under-
standing.

Our results indicate that decoder models with
deeper architectures enhance contextual under-
standing, while shallower decoders suffice for
grammatical tasks. The best-performing mod-
els, a 6-layer decoder, and 12-layer decoder,
showed competitive results compared to base-
line models from the BabyLM challenge, de-
spite their smaller parameter count and the
small dataset size.

1 Introduction

The goal of this paper is to build on the research
done in the BabyLM challenge (Warstadt et al.,
2023a). The BabyLM challenge is a shared task
that aims to find efficient methods for pretraining
language models.

The challenge is inspired by the efficiency of
human children learning language, only being ex-
posed to about 100 million words before the age of
13 (Gilkerson et al., 2017). In contrast, state-of-the-
art language models, like the LLaMa model (Tou-
vron et al., 2023), need several orders-of-magnitude
more data to be close to an average 13 year old level
of language understanding.

The challenge itself is to pretrain a language
model on a dataset that is approximately the same
size as what an average 13 year old will have been
exposed to. One of the main underlying hypothesis
of the challenge is that being able to produce good
architectures and methods for language modelling
on a smaller scale may translate to better perfor-
mance with larger models and larger datasets.

There are three different tracks that are given in
the BabyLM challenge; the strict-small, strict and
loose tracks. This paper is focused on the strict-
small track where we are limited to training the
models on an exclusive set of 10 million words, as
opposed to the strict and loose tracks that allows
for 100 million training words.

This paper has a single, self-imposed, limita-
tion beyond the limitations already given in the
challenge track; the parameter count of the models
cannot exceed 7 million. Given the small dataset,
we hypothesize that reducing the number of pa-
rameters is rational and that the main objectives
of learning to identify context and grammar are
possible at such a small scale.

Specifically the aim of this paper is to test en-
coder and decoder architectures separately, and
experiment with the number of layers and their
impact on how the models are able to understand
grammar and context.

We measure the success of the models using two
metrics, the BLiMP metric (Warstadt et al., 2020)
with a primary focus on encoding grammar and
the LAMBADA benchmark (Paperno et al., 2016)
with a primary focus on keeping track of a larger
context.

In addition to the two primary metrics, and in the
spirit of the original challenge, we also focus on
efficiency in training, timing the training duration
for each candidate model.

2 Previous work

2.1 Papers submitted to the BabyLM
challenge

The original BabyLM challenge received 31 papers
(Warstadt et al., 2023b). Many different approaches
were tried, curriculum learning, where training
samples are sorted using different strategies to em-
ulate a curriculum from easy to difficult (Oba et al.,
2023; Hong et al., 2023; Mi, 2023), teacher student

95

knowledge distillation, which saw some success
(Samuel, 2023; Timiryasov and Tastet, 2023), and
formatting and splitting up the input data (Cheng
et al., 2023). By far, the approach that saw the high-
est performance were the ones that experimented
with the architectures and details thereof.

The overall winner of the original BabyLM chal-
lenge was the ELC-BERT model (Charpentier and
Samuel, 2023), using optimizations on the trans-
former architecture from LTG-BERT (Samuel et al.,
2023) and using layer weights. Charpentier and
Samuel (2023) did not limit themselves on the
model parameters. However, a few papers had
this as an optional goal, hypothesizing that suc-
cessful decisions made on smaller scale models are
applicable in a larger setting.

2.2 Smaller models
A few of the submissions experimented with
smaller models. Yang et al. (2023) experimented
with a smaller version of a RoBERTa model (Liu
et al., 2019) the BabyBERTa model (Huebner
et al., 2021), further developing their own Baby-
Berta+ model. The model was trained on the strict-
small version of the BabyLM challenge dataset and
achieved a competitive score on the BLiMP metric
(Table 3). This result is in line with the findings of
Zhang et al. (2021) that encoder-based models are
good at capturing syntactic and semantic features.

Another encoder-based model that was submit-
ted to the BabyLM challenge was the ELECTRA
model (Fields et al., 2023), with a parameter count
of only 7 million. However, the ELECTRA model
was trained using a teacher-student based approach,
which required a larger model to encode knowledge
in the smaller model, consequently requiring the
resources to run such a model.

Proskurina et al. (2023) experimented with both
a small scale decoder and encoder, 66 million and
16 million parameters respectively. The encoder
model (Bebeshka) performed poorly, on the BLiMP
task, compared to other models using the same
architecture, contrary to the previously mentioned
findings of Zhang et al. (2021). While the decoder
model (Zlata) performed worse than the baseline
trained decoder, as can be seen in table 2 and table
3, even though the amount of parameters were far
greater than the baseline decoder model.

Though, not a submission to the BabyLM chal-
lenge, Eldan and Li (2023) experimented with us-
ing small models (10 million parameters and less)
on a dataset dubbed "tiny stories". The tiny stories

dataset used words that a 3 to 5 years old may un-
derstand, similar to the BabyLM challenge. They
experimented with the number of layers and their
corresponding sizes. They found that shallower
models, i.e. fewer layers, are sufficient to learn
grammar. Conversely, they found that generating
language which is consistent with the start of the
input text (context-tracking) requires deeper mod-
els.

2.3 Wide or deep?

The depth and width of a transformer architecture
has also been researched before, though on a larger
scale. Brown et al. (2022) and Xue et al. (2021)
find that wider transformer networks may perform
equally as well as deeper networks. At the same
time they highlight one of the primary benefits
of using wider networks being that one may be
able to produce models with a smaller number of
parameters and consequently the shallowness of
such models may reduce training time by a large
margin.

3 Hypotheses/research questions

Being informed by the previous research we pose
the following questions: Are small scale decoders
better at learning to interpret context than their
encoder counterpart, given the same number of pa-
rameters? Given the findings of Zhang et al. (2021)
are encoders well suited for learning grammar at
a small scale, or are they in fact worse than their
decoder counterpart, in line with the findings of
Proskurina et al. (2023) and the baseline models
(Charpentier, 2024)?

Furthermore, we hypothesize that grammar is a
simple task for a transformer model to learn, con-
sequently a model aimed at just learning grammar
would require a fewer number of layers, in line
with the findings of Eldan and Li (2023).

Given the task of keeping track of the context,
we hypothesize that a greater number of layers may
be required, however, instead of just adding more
layers, we aim to illustrate where the benefits of
more layers are diminished by experimenting on
the depth of the models, while keeping the number
of parameters approximately equal between the
models.

In summation: our main research question is to
find the relationship between the number of layers,
the model architecture, the ability to keep track of
context, and the ability to learn grammar.

96

4 Benchmarks

We compare our work with the benchmarks given
by Charpentier (2024) (Table 1 and Table 2), and to
a lesser degree with some models from the original
BabyLM challenge (Warstadt et al., 2023b), specifi-
cally the ones focused on the strict-small track, and
the models that use a smaller number of parameters
(Table 3).

Model Accuracy Perplexity
Random Decoder 0.00 3578.65
Random Encoder 0.00 3611.27
Random Encoder-Decoder 0.00 3567.16
Trained Decoder 7.53 22.64
Trained Encoder 0.00 2349.43
Trained Encoder-Decoder 4.66 32.26

Table 1: Baseline LAMBADA scores (Charpentier,
2024)

Model Average
Random Decoder 51.56
Random Encoder 55.34
Random Encoder-Decoder 47.97
Trained Decoder 70.85
Trained Encoder 58.16
Trained Encoder-Decoder 58.13

Table 2: Baseline BLiMP scores (Charpentier, 2024)

Model Average
ELC-BERT
(Charpentier and Samuel, 2023) 80
MLSM
(Berend, 2023) 79
McGill-BERT
(Cheng et al., 2023) 75
Bebeshka (16M encoder)
(Proskurina et al., 2023) 55
Zlata (66M decoder)
(Proskurina et al., 2023) 64.25
ELECTRA-tiny (7M)
(Fields et al., 2023) 601

BabyBERTa+
(Yang et al., 2023) 69

Table 3: BLiMP scores from the strict-small version of
the original BabyLM challenge (Warstadt et al., 2023b)

1Modified version of BLiMP

5 Data

The training data from the challenge is made up of
different proportions of relatively simple language,
designed to emulate what language a child of age
13 might have been exposed to (Warstadt et al.,
2023a). We focus on the reduced dataset which
consists of 10 million tokens compared to the full
dataset that consists of 100 million tokens.

Most of the data is transcribed verbal language.
Consequently, one could argue that this type of
data does not necessarily lend itself well to learn-
ing strict grammatical rules, given the sometimes
less than accurate grammar that can be found in
transcribed text. For instance, part of our data, the
CHILDES dataset (Macwhinney, 2000), is tran-
scribed conversations between children and adults,
which included sequences such as the following:

*CHI: Fraser.
*MOT: Fraser.
*MOT: uhhuh.
*CHI: Cromer.
*MOT: no.

For more details on the entire dataset, see the
Warstadt et al. (2023a).

6 Method

6.1 Models

The models are based on the baseline models given
by Charpentier (2024).

We train and test both pure encoder and pure
decoder models with different numbers of layers
(1, 2, 4, 6, 8, 12). We aim to maintain the size of
the models at a similar level, with approximately 6
million parameters for each model. Each model is
trained for 10000 steps with a batch size of 128.

To do this we change the number of parameters
per block by changing the number of parameters in
the attention layer and the feedforward layer. We
aim to keep the ratio between the attention layer
and feedforward layer approximately to a 2:1 ratio.

In total 12 models are trained and tested on the
BLiMP and LAMBADA dataset. With the best
scoring models on each benchmark trained 2 addi-
tional times with diffrent seeds.

6.2 Performance metrics

This paper is focused on two zero-shot benchmarks:
BLiMP (Warstadt et al., 2020) and LAMBADA
(Paperno et al., 2016).

97

BLiMP is one of the primary metrics prescribed
in the BabyLM challenge. It aims to measure the
grammatical abilities of a language model. It does
this by testing the language models ability to rec-
ognize the most grammatical sentence, of two sen-
tences, as being the most likely. The metric is mea-
sured on a range of examples aimed at different
grammatical concepts (Warstadt et al., 2020).

Commonly an issue with many architectures is
forgetting important context, or being unable to use
context in general. The LAMBADA dataset aims
to test the amount of context a model is able to ac-
count for (Paperno et al., 2016). The LAMBADA
dataset consists of examples of contexts, target sen-
tences, and target words, where the target word is
the last word of the target sentence. The aim of the
model is then to guess the target word given the
context and target sentence. In this paper we report
the accuracy and perplexity of the models on the
LAMBADA dataset targets.

In addition to these metrics we also time the
training duration for each model, and report this as
well.

7 Results

7.1 Training time

Architecture Layers training time
Decoder 12 21m 36s

8 19m 21s
6 16m 58s
4 14m 41s
2 12m 31s
1 10m 32s

Encoder 12 24m 57s
8 22m 33s
6 20m 6s
4 17m 57s
2 15m 42s
1 12m 10s

Table 4: Training times

Each model was trained on a single Nvidia RTX
3080 (10GB) over 10 000 steps. We recorded the
training time for each model which are displayed
in Table 4. The absolute training times were short
across all models. This being one of the benefits to
training smaller models allowing for more tuning
and experimentation.

There is a pattern of shallower models being
quicker to train, supporting the findings of Brown

et al. (2022). On a larger scale this pattern would
likely be more extreme, again supporting shallower
models.

7.2 BLiMP

Figure 1: Average BLiMP score vs layers

Architecture Layers Average BLiMP
Decoder 12 68.58

8 66.77
6 68.60
4 66.41
2 62.83
1 61.12

Encoder 12 48.31
8 51.42
6 49.75
4 47.89
2 51.33
1 49.92

Table 5: Average BLiMP scores

Mean Standard deviation
68.3 0.35

Table 6: Best model BLiMP score, 3 different seeds,
decoder with 6 layers

In Table 5 we present the average BLiMP scores
obtained by the encoder and decoder models with a
different number of layers. Figure 1 shows a com-
parison between the encoder and decoder models
average scores over number of layers. Overall we
see that the decoder models perform better than all
the encoder models, given the same number of lay-
ers. We also see that the number of layers becomes
less important the more layers are added.

All the encoder models (Table 5) performed
worse than the baseline models (Table 2). In fact,

98

the encoder models were worse than the randomly
initialized encoder, indicating that the encoders did
not learn anything meaningful.

We see that the decoder models performed well,
compared to the encoder models. Compared to the
baseline trained decoder model, the best perform-
ing decoder model performed slightly worse. How-
ever, the baseline model had exactly the same train-
ing and model parameters as our 12 layer model
meaning that this discrepancy is likely due to a
different batch size used to train our models.

The best performing model on the BLiMP
dataset is the 6 layer decoder model (Table 6).

We see that our best performing model performs
better than the Bebeshka model (Proskurina et al.,
2023), the Zlata model (Proskurina et al., 2023),
and the ELECTRA-tiny model (Fields et al., 2023),
despite all of them having more parameters. We
also see that our best performing model performs
about as well as the BabyBERTa+ model (Yang
et al., 2023). (Table 3)

7.3 LAMBADA

Figure 2: LAMBADA accuracy vs layers

Figure 3: LAMBADA perplexity vs layers (log scale)

Architecture Layers Accuracy Perplexity
Decoder 12 6.95 23.45

8 6.46 24.23
6 4.33 26.60
4 0.43 41.84
2 1.28 36.18
1 0.04 158.48

Encoder 12 0 1892.29
8 0 1728.40
6 0 1557.91
4 0 3259.10
2 0 4144.76
1 0 2478.21

Table 7: LAMBADA accuracy and perplexity for tested
models

Metric Mean Standard deviation
Accuracy 6.08 0.75
Perplexity 24.40 0.835

Table 8: Best model LAMBADA score, 3 different
seeds, decoder with 12 layers

In Table 7 we show the performance of our models
on the LAMBADA dataset. Figure 2 and figure
3 shows a comparison of accuracy and perplex-
ity, respectively, between the encoder and decoder
models across different layers. As seen with the
BLiMP scores, the decoder models emerges as the
superior model on the LAMBADA task. The best
performing model was the 12 layer decoder which
still did not reach the same performance as the
baseline decoder (Table 1). As discussed in the
previous section, this is probably due to a different
batch size or non deterministic initialization.

The encoder models performed similarly to the
baseline encoder with a low accuracy and high per-
plexity. The scores being equally poor in both our
experiments and the baseline may hint at problems
elsewhere in the model and training parameters.

Table 8 displays the mean and standard devia-
tion for the best performing model trained with 3
different seeds. The mean and standard deviation
indicates that the seed used for the baseline and
our models was on the higher end of the perfor-
mance distribution for this model. Assessing the
true impact of the additional 4 layers on the perfor-
mance disparity between the 12-layer and 8-layer
decoders remains ambiguous.

99

7.4 Discussion

The decoder models exhibit behaviors consistent
with the observations of Eldan and Li (2023): more
layers are required to understand context, whereas
fewer layers may be sufficient for learning gram-
mar. This pattern is evident in Figure 2, where per-
formance on the LAMBADA dataset improves sig-
nificantly after four layers. However as evidenced
by Table 8 it is still unclear to what extent addi-
tional layers above 8 improve performance. In
contrast, Figure 1 shows that while the decoder
model continues to improve up to six layers, the
gains are not as pronounced as those observed with
LAMBADA.

The encoder model scores (Table 5) may reveal
that the BLiMP score does not improve signifi-
cantly after the first layer. This may suggest that
the models did not learn effectively, similar to the
findings of Proskurina et al. (2023). We hypothe-
size that this may be due to the model architecture
being more suited to decoder-only models, coupled
with the limited vocabulary size. With a vocabulary
of only 3072 tokens, the models may have faced
challenges in making accurate predictions.

8 Conclusion

In this article we have experimented with different
transformer model architectures on a small scale,
specifically decoders and encoders, and the amount
of layers in those architectures. We have mapped
out the impact of the architectures and their layers
on two tasks, grammar understanding and keeping
track of context, through the BLiMP and LAM-
BADA metrics respectively.

Our findings show that the encoder model with
our specific setting performed poorly compared
to our expectation. While the decoder model per-
formed better than many comparable models, more
in line with the findings of Proskurina et al. (2023).
We found that the decoder model only needed 6
layers to perform relatively well on the grammar
task, compared to the benchmark models. We saw
that increasing the amount of layers after this point,
did not significantly boost the performance on the
BLiMP task. This underpins the findings of Eldan
and Li (2023), that fewer layers are required to
understand grammar.

Furthermore, on the LAMBADA (context) task,
the decoder model still performed better than its
encoder counterpart. This was unsurprising, given
the the decoder models architecture is specifically

designed to predict the last word given a sequence.
Additionally, the model performed better the more
layers we added, which is in line with the findings
of Eldan and Li (2023).

9 Limitations and future work

For future work we recommend experimenting with
different amounts of attention heads as well as look-
ing at the impact of larger or smaller vocabulary
sizes.

We did not experiment with how the different
datasets, that compose the BabyLM dataset, im-
pacted the scores. We theorize that this may have
an impact on the scores.

While only having looked at the average score
for BLiMP itself, future work could also analyze
the impact of layers with regards to syntax, mor-
phology and semantics.

The results of the BabyLM challenge showed
that many different methods, not only relating to
architecture, could have a significant impact on the
scores, like curriculum learning. Combining some
of the more successful approaches in the 2023 chal-
lenge would be an interesting direction to improve
the best scores in the challenge even further.

In the spirit of the original challenge, it could be
interesting to scale the best approaches to a larger
parameter size and dataset setting, to see if the
methods at a smaller scale are actually applicable
to LLMs not just tiny LMs.

References
Gábor Berend. 2023. Better Together: Jointly Using

Masked Latent Semantic Modeling and Masked Lan-
guage Modeling for Sample Efficient Pre-training. In
Proceedings of the BabyLM Challenge at the 27th
Conference on Computational Natural Language
Learning, pages 298–307, Singapore. Association
for Computational Linguistics.

Jason Ross Brown, Yiren Zhao, Ilia Shumailov, and
Robert D Mullins. 2022. Wide Attention Is The Way
Forward For Transformers?

Lucas Georges Gabriel Charpentier. 2024.
lgcharpe/IN5550_pretrain_tiny_models.

Lucas Georges Gabriel Charpentier and David Samuel.
2023. Not all layers are equally as important: Every
Layer Counts BERT. In Proceedings of the BabyLM
Challenge at the 27th Conference on Computational
Natural Language Learning, pages 238–252, Singa-
pore. Association for Computational Linguistics.

Ziling Cheng, Rahul Aralikatte, Ian Porada, Cesare
Spinoso-Di Piano, and Jackie CK Cheung. 2023.

100

McGill BabyLM Shared Task Submission: The Ef-
fects of Data Formatting and Structural Biases. In
Proceedings of the BabyLM Challenge at the 27th
Conference on Computational Natural Language
Learning, pages 207–220, Singapore. Association
for Computational Linguistics.

Ronen Eldan and Yuanzhi Li. 2023. TinyStories: How
Small Can Language Models Be and Still Speak Co-
herent English? arXiv preprint. ArXiv:2305.07759
[cs].

Clayton Fields, Osama Natouf, Andrew McMains,
Catherine Henry, and Casey Kennington. 2023. Tiny
Language Models Enriched with Multimodal Knowl-
edge from Multiplex Networks. In Proceedings of
the BabyLM Challenge at the 27th Conference on
Computational Natural Language Learning, pages
47–57, Singapore. Association for Computational
Linguistics.

Jill Gilkerson, Jeffrey A. Richards, Steven F. Warren, Ju-
dith K. Montgomery, Charles R. Greenwood, D. Kim-
brough Oller, John H. L. Hansen, and Terrance D.
Paul. 2017. Mapping the Early Language Envi-
ronment Using All-Day Recordings and Automated
Analysis. American Journal of Speech-Language
Pathology, 26(2):248–265.

Xudong Hong, Sharid Loáiciga, and Asad Sayeed. 2023.
A surprisal oracle for active curriculum language
modeling. In Proceedings of the BabyLM Challenge
at the 27th Conference on Computational Natural
Language Learning, pages 259–268, Singapore. As-
sociation for Computational Linguistics.

Philip A. Huebner, Elior Sulem, Fisher Cynthia, and
Dan Roth. 2021. BabyBERTa: Learning More Gram-
mar With Small-Scale Child-Directed Language. In
Proceedings of the 25th Conference on Computa-
tional Natural Language Learning, pages 624–646,
Online. Association for Computational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
RoBERTa: A Robustly Optimized BERT Pretrain-
ing Approach.

Brian Macwhinney. 2000. The CHILDES project: tools
for analyzing talk. Child Language Teaching and
Therapy, 8.

Maggie Mi. 2023. Mmi01 at The BabyLM Challenge:
Linguistically Motivated Curriculum Learning for
Pretraining in Low-Resource Settings. In Proceed-
ings of the BabyLM Challenge at the 27th Confer-
ence on Computational Natural Language Learning,
pages 269–278, Singapore. Association for Compu-
tational Linguistics.

Miyu Oba, Akari Haga, Akiyo Fukatsu, and Yohei Os-
eki. 2023. BabyLM Challenge: Curriculum learn-
ing based on sentence complexity approximating lan-
guage acquisition. In Proceedings of the BabyLM
Challenge at the 27th Conference on Computational

Natural Language Learning, pages 290–297, Singa-
pore. Association for Computational Linguistics.

Denis Paperno, Germán Kruszewski, Angeliki Lazari-
dou, Ngoc Quan Pham, Raffaella Bernardi, Sandro
Pezzelle, Marco Baroni, Gemma Boleda, and Raquel
Fernández. 2016. The LAMBADA dataset: Word
prediction requiring a broad discourse context. In
Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 1525–1534, Berlin, Germany.
Association for Computational Linguistics.

Irina Proskurina, Guillaume Metzler, and Julien Vel-
cin. 2023. Mini Minds: Exploring Bebeshka and
Zlata Baby Models. In Proceedings of the BabyLM
Challenge at the 27th Conference on Computa-
tional Natural Language Learning, pages 30–40.
ArXiv:2311.03216 [cs].

David Samuel. 2023. Mean BERTs make erratic lan-
guage teachers: the effectiveness of latent bootstrap-
ping in low-resource settings. In Proceedings of
the BabyLM Challenge at the 27th Conference on
Computational Natural Language Learning, pages
221–237, Singapore. Association for Computational
Linguistics.

David Samuel, Andrey Kutuzov, Lilja Øvrelid, and Erik
Velldal. 2023. Trained on 100 million words and still
in shape: BERT meets British National Corpus. In
Findings of the Association for Computational Lin-
guistics: EACL 2023, pages 1954–1974, Dubrovnik,
Croatia. Association for Computational Linguistics.

Inar Timiryasov and Jean-Loup Tastet. 2023. Baby
Llama: knowledge distillation from an ensemble of
teachers trained on a small dataset with no perfor-
mance penalty. In Proceedings of the BabyLM Chal-
lenge at the 27th Conference on Computational Nat-
ural Language Learning, pages 279–289, Singapore.
Association for Computational Linguistics.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023. LLaMA: Open
and Efficient Foundation Language Models. arXiv
preprint. ArXiv:2302.13971 [cs].

Alex Warstadt, Leshem Choshen, Aaron Mueller, Ad-
ina Williams, Ethan Wilcox, and Chengxu Zhuang.
2023a. Call for Papers – The BabyLM Challenge:
Sample-efficient pretraining on a developmentally
plausible corpus. arXiv preprint. ArXiv:2301.11796
[cs].

Alex Warstadt, Aaron Mueller, Leshem Choshen, Ethan
Wilcox, Chengxu Zhuang, Juan Ciro, Rafael Mos-
quera, Bhargavi Paranjabe, Adina Williams, Tal
Linzen, and Ryan Cotterell. 2023b. Findings of the
BabyLM Challenge: Sample-Efficient Pretraining on
Developmentally Plausible Corpora. In Proceedings
of the BabyLM Challenge at the 27th Conference on

101

Computational Natural Language Learning, pages
1–34, Singapore. Association for Computational Lin-
guistics.

Alex Warstadt, Alicia Parrish, Haokun Liu, Anhad Mo-
hananey, Wei Peng, Sheng-Fu Wang, and Samuel R.
Bowman. 2020. BLiMP: The Benchmark of Lin-
guistic Minimal Pairs for English. Transactions of
the Association for Computational Linguistics, 8:377–
392. Place: Cambridge, MA Publisher: MIT Press.

Fuzhao Xue, Ziji Shi, Futao Wei, Yuxuan Lou, Yong Liu,
and Yang You. 2021. Go Wider Instead of Deeper.
arXiv preprint. ArXiv:2107.11817 [cs].

Yahan Yang, Elior Sulem, Insup Lee, and Dan Roth.
2023. Penn & BGU BabyBERTa+ for Strict-Small
BabyLM Challenge. In Proceedings of the BabyLM
Challenge at the 27th Conference on Computational
Natural Language Learning, pages 86–88, Singapore.
Association for Computational Linguistics.

Yian Zhang, Alex Warstadt, Xiaocheng Li, and
Samuel R. Bowman. 2021. When Do You Need
Billions of Words of Pretraining Data? In Proceed-
ings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 1112–1125, Online.
Association for Computational Linguistics.

A Repository

The repository for our code can be found here:
https://github.uio.no/pafastin/IN5550_pretrain_tiny_models.

(For security reasons, you cannot change the
visibility of a fork.)

102

Tiny-LMs Project 2024: Curriculum Learning in Tiny Language Models

Magnus S. Dhelie
Institute for Informatics / University of Oslo

magnusdh@uio.no

Abstract

The development of large language models is
resource-intensive and time-consuming, often
requiring substantial computational power and
expense. This project explores the potential
of curriculum learning as a method to increase
the efficiency of pre-training smaller, but better
language models. This study aims to identify
any significant improvements in learning per-
formance that can be achieved through curricu-
lum learning. The research involved training
models on six datasets, and evaluating the per-
formance using BLiMP and LAMBADA met-
rics.

The results show that curriculum learning does
not improve the results of tiny language mod-
els. These results provide insights into the ben-
efits and limitations of curriculum learning for
tiny language models, offering a foundation for
future exploration and potential scalability to
larger models.

1 Introduction

Finding a pre-training method for large language
models which improves efficiency is a task which
could significantly reduce the cost and time of said
training. However, using experimental methods to
train large language models would likely just result
in redundant use of resources where some methods
could yield no improvements. Therefore, training
tiny language models with different experimental
methods and analyzing the results before scaling
them up is a preferred way to test experimental
learning methods.

A learning method which can yield improved re-
sults is performing curriculum learning. (Soviany
et al., 2021) (Bengio et al., 2009) Attempting to
mimic human learning from a young age, curricu-
lum learning employs a gradual increase in com-
plexity of data.(Elman, 1993)

This project attempts to address the following
question: Does using curriculum learning improve

the performance of a tiny language model? In-
creased performance for a model will be defined as
a better score in the evaluation metrics compared
to the baseline models.

The limitations of the project are inspired by the
BabyLM challenge of 2023(Warstadt et al., 2023),
but in this case our models will be limited to a
max of 7 million parameters rather than limiting
the amount of words.

2 Curriculum Learning

Originally introduced in the paper "Curriculum
learning" (Bengio et al., 2009), curriculum learn-
ing was proposed as a method where a gradual
increase in complexity of the data was used in the
training method. The idea behind using this grad-
ual learning method was first introduced by (Elman,
1993) aiming to mimic the learning process of hu-
mans and animals. The first experiments performed
by Elman (1993) only tested learning simple gram-
mar with a recurrent network. However, the results
reinforced that successful learning was a product of
gradually increasing the complexity as the learning
progressed.

The decision to choose a "curriculum learning-
based" approach for training tiny language models
is further supported by Bengio et al. (2009) where
it is noted that "[...] simple multi-stage curriculum
strategies give rise to improved generalization and
faster convergence."1 (Bengio et al., 2009) Thus, if
implemented successfully for tiny language models
it could potentially be scaled up and significantly
decrease the amount of computational resources
required for training even larger language models in
a more effective manner alongside also performing
better than models trained with a larger corpus.

This methodology is reinforced by the findings
of Samuel et al. (2023) where the effects of down-
scaling the training, and pre-training a model on

1In the context of machine learning algorithms

103

a smaller, but carefully curated corpus showed re-
sults which outperformed the original BERT model.
(Samuel et al., 2023)

3 Data

The datasets which have been used as vocabulary
and training data in this project are: British Na-
tional Corpus (2007) (BNC Consortium, 2007),
CHILDES (MacWhinney, 2000), Project Guten-
berg (Gerlach and Font-Clos, 2020), OpenSubti-
tles (Lison and Tiedemann, 2016), Simple English
Wikipedia corpus (Wikimedia), and Switchboard
(Godfrey et al., 1992)(Stolcke et al., 2000).

A simple overview can be used as a reference in
Table 1 with the weight of each dataset also noted.

3.1 Calculating Perplexity
To make curriculum learning an effective method
there needs to be a defined difficulty for the training
data. Curriculum learning wants to be performed
in a way which trains a model from easy to diffi-
cult tasks. This mimics the way humans learn as
explained in Elman (1993).

The defined difficulty chosen for this project
is the dataset perplexity. Perplexity is defined as
the exponentiated average log-likelihood of a se-
quence.(HFP, 2023)

In simpler terms this definition means how well
a language model predicts a sequence of words.
Lower perplexity indicates that the model is more
accurate in its predictions, while a higher perplexity
indicates uncertainty in predictions and inaccurate
guesses.

The formula for calculating perplexity is given
as:

PPL(X) = exp

{
−1

t

t∑

i=1

log pθ(xi | x<i)

}

In this formula log pθ(xi | x<i) is the probability
assigned by the model to the word xi given the pre-
vious words x<i. In other words, when the model
assigns a probability to each word in a given se-
quence based on the previous words, the logarithms
of these probabilities are summed and averaged.
The exponent of the negative of this average is the
perplexity score for the entire sequence.

A simple explanation which follows the imple-
mentation for this study is that perplexity is cal-
culated as the exponential of the average loss of a
sequence.

There are two methods for calculating perplexity
for datasets presented in Martinez et al. (2023).
The first would be to calculate the perplexity of
each dataset instance once at the start of training,
while the other is to evaluate the perplexity of the
remaining data at regular intervals.

For this project, the choice was made to eval-
uated each dataset once with a baseline model
and sort them accordingly before training. This
method allows the training to stay within a reason-
able amount of training steps and overall training
time, as it was noted in the project description to
train in a reasonable time.

Calculating the perplexity of each dataset in its
entirety proved time-consuming. Therefore we re-
sorted to taking a percentage of samples from each
dataset and calculating the perplexity for the dataset
based on the samples. A sample size of 16% of
each dataset was chosen and then combined them
one dataset to create a tokenizer. The idea was
to get a perplexity score which is representative
of each dataset, but also not taking many hours to
calculate. A downside to this sampling is that it
leaves out a significant portion of each dataset. The
datasets are also not of relatively equal size which
could skew perplexity scores.

The perplexity for each dataset is then calculated
using the baseline model for the architecture. The
perplexity score from each dataset will be used to
infer an order in which the training will occur.

The perplexity calculation can be seen in Table 2.

3.2 Implementing a curriculum

There are different ways one can implement a cur-
riculum for a language model. The approach used
for this implementation is an ordered approach, in-
spired by the CLIMB paper (Martinez et al., 2023).
Having an order to the training instances can pro-
vide an increased effectiveness on the performance
of a model during training (Schluter and Varab,
2018).

Following the results gained from the calcu-
lation, an ordered curriculum is decided for the
model to train on. Each dataset will be trained on
in its entirety in an ordered list. As curriculum
learning starts with easier data and gradually in-
creases to the more difficult data, the order of the
training data based on Table 2 would be:

• Switchboard

• CHILDES

104

Corpus source Weight Domain Citation
BNC 2007 8% Dialogue (BNC Consortium, 2007)
CHILDES 29% Dialogue, Child-directed (MacWhinney, 2000)
Project Gutenberg 26% Fiction, nonfiction (Gerlach and Font-Clos, 2020)
OpenSubtitles 20% Dialogue, scripted (Lison and Tiedemann, 2016)
Simple English Wikipedia 15% Nonfiction (Wikimedia)
Switchboard 1% Dialogue (Godfrey et al., 1992)(Stolcke et al., 2000)

Table 1: Datasets with their corresponding weight, domain, and citation.
The weight in percent per dataset indicates the size of the dataset when combined with the rest into one large dataset.

Corpus 16% size Perplexity (bs=32) Perplexity (bs=8)
BNC 2007 2320.05 2310.80
CHILDES 2093.17 2100.00
Project Gutenberg 2698.81 2702.69
OpenSubtitles 2184.08 2223.52
Simple English Wikipedia 3950.29 3957.58
Switchboard 1763.13 1816.97

Table 2: Datasets with their calculated perplexity for batch sizes (bs) 32 and 8 (not sorted)
The model used to calculate the perplexity is the baseline for the architecture, in this case an Encoder.

• OpenSubtitles

• BNC 2007

• Project Gutenberg

• Simple English Wikipedia

3.3 Pacing

After the difficulty is calculated and the curriculum
has been determined, a pacing function needs to be
set (Wu et al., 2020). The pacing function deter-
mines the pace at which the training will progress
through the datasets.

Two primary functions which can be used in
curriculum learning are a linear pacing or a loga-
rithmic pacing, each providing their own benefits.
For the linear pacing, a gradual increase in diffi-
culty over time is expected. On the other hand, a
logarithmic pace provides an introduction to easier
concepts with diminishing increments based on the
assumption that the model has learned the easier
concepts. These functions have both been proposed
in earlier literature published on curriculum learn-
ing (Bai et al., 2022) (Li et al., 2021).

The pacing function which we chose for the
models employed a linear pacing function. The
reason behind this choice is to simplify the pro-
cess of doing curriculum learning where the model
has to progress the same amount of steps for each
dataset during training. For example: for a total of

6 datasets over 12000 steps, each dataset will be
trained on for 2000 steps. 2

3.4 Baseline accuracies

Determining baseline accuracies is important as it
provides scores which can be targeted for improve-
ment. For this project the evaluation is performed
using two methods: Benchmark of Linguistic Min-
imal Pairs (BLiMP) (Warstadt et al., 2020) and
LAnguage Modeling Broadened to Account for
Discourse Aspect (LAMBADA) (Paperno et al.,
2016).

Defined baselines are important as it shows the
results we can expect from a certain baseline config-
uration. From this baseline attempts can be made
to change hyper-parameters and training methods
which may grant increased performance and better
results.

Model Accuracy Perplexity
Baseline Encoder 0.00 1552.15
Baseline Decoder 9.47 20.99

Table 3: Baseline scores for the three architectures.
Scored by LAMBADA.

2The function used for this is simply: Steps per dataset =
Max steps / Num of datasets

105

Model Average Accuracy
Baseline Encoder 45.21
Baseline Decoder 54.14

Table 4: Baseline scores for the three architectures.
Scored by BLiMP.

4 Results

The results obtained from the models vary signif-
icantly depending on the hyper-parameters which
are provided during training. To keep this sim-
ple and show a representative result for each ar-
chitecture with the curriculum methods outlined,
the model architectures are trained with identical
hyper-parameters. This may not lead to optimal
results for the specific architectures, but it is meant
to show the performance differences and correlate
them against one another.

For example, we want to know if the Encoder
or Decoder architecture benefits more from one
approach compared to another. Correlating cer-
tain hyper-parameter choices with increased per-
formance can be beneficial for deciding further
research and experimentation.

Throughout this section when models are re-
ferred to, models which are just named with their
architecture name (e.g. "Decoder" or "Decoder
7M") are trained without curriculum learning us-
ing the standard combined dataset. Models trained
using curriculum learning are referred to as "Cur-
riculum" + the architecture name (e.g. "Curriculum
Decoder").

4.1 7M parameter baselines

To stay within the limitation of 7M parameters
set in this project a regular Encoder and Decoder
model was trained with the configuration seen in
Table 6.
This results in a total parameter count of 6,992,640
spread like this:

Architecture Embedding Classifier Total
6,349,824 602,688 40,128 6,992,640

Table 5: Parameter count table for 7M parameter con-
figuration.

Based on the scores from the evaluation in Ta-
ble 6, a slight increase in accuracy can be noted
when increasing the parameters to the set limit.

There are likely other configurations which could
significantly increase the performance.

4.2 Curriculum Encoders

The Encoder architecture already performed worse
than the Decoder baseline, but experimenting with
a curriculum for this architecture could potentially
still uncover if there were potential improvements
based on the training method.

All the Encoder models were trained with a start-
ing learning rate of 3 ∗ 10−3 (0.003) and a final
ratio of 0.1, indicating it scaled down to 3 ∗ 10−4

(0.0003) over the course of the training. The sched-
uler which was used was a cosine method as this
provides a steady decrease in learning rate to im-
prove generalization and prevent overfitting.

However, for the curriculum learning method it
was important that the model learned a significant
amount from each dataset. Due to this, the learn-
ing rate had to be reset when a new dataset was
introduced to the training.

Figure 1 shows the learning rate for the Encoder
models. The long steady cosine is the learning rate
for the baseline and 7M models trained without
curriculum learning, while the repeating reset rep-
resent the learning rate for the models trained using
curriculum learning.

Figure 1: Encoder model learning rates. Data tracked
using Weights and Biases3.

Comparing the statistics tracked during learning
is quite difficult as the stats will be tracked for each
dataset during the training. In Figure 2 we can
observe that loss, perplexity, and accuracy are all
quite poor compared to the models trained with 7M
parameters on the baseline dataset containing all
the datasets combined.

3https://wandb.ai

106

Model Hidden size Intermediate size Attention heads Hidden layers Vocab size BLiMP LAMBADA
Encoder 7M 192 590 4 13 3072 45.96 0.00
Decoder 7M 192 590 4 13 3072 54.84 8.50

Table 6: Configuration for 7M parameter models with corresponding evaluation scores.

Figure 2: The loss, perplexity, and accuracy during training for Encoder models. Data is tracked using Weights and
Biases3.

There may be multiple reasons for this, but the
most likely reason is due to the fact that the model
is using a dataset-specific tokenizer for each dataset.
We experimented with using a single tokenizer
combined on the entire dataset, but it proved diffi-
cult to implement in the learning process and set-
tled for changing to a dataset-specific tokenizer for
each dataset while training.

4.2.1 Encoder Model Performance Analysis

Table 7 shows a comparison of the baseline model,
7M parameter model, and the curriculum-training
model using an Encoder architecture.

Model BLiMP LAMBADA (acc/perp)
Encoder (baseline) 45.21 0.00/1552.15

Encoder 7M 45.96 0.00/84579.93
Curriculum Encoder 7M 53.80 0.00/8001.26

Table 7: Encoder Models comparison

From the results of the evaluation, we observe
that the curriculum-trained model performs better
than the regular encoders on the BLiMP scoring.
The average accuracy has increased which could
indicate that the model has learned more general-
ized language patterns and understands language
to a slightly higher degree.

We do however also observe that the average
perplexity evaluated by LAMBADA is quite high.
This shows that the model struggles with predicting
the final word of a sequence, indicating that it does
not have a good grasp on contextual understanding.

4.3 Curriculum Decoders
Already from the baseline results, it was clear that
the Decoder architecture would outperform the En-
coder models when it comes to contextual under-
standing as they (actually) scored on the LAM-
BADA test, and outperformed the Encoder on the
BLiMP test. (See Table 4)

4.3.1 Decoder Model Performance Analysis

Model BLiMP LAMBADA (acc/perp)
Decoder (baseline) 54.14 9.47/20.99

Decoder 7M 54.84 8.50/21.66
Decoder 7M (.2 dropout) 54.62 6.48/24.06
Curriculum Decoder 7M 53.61 0.27/8826.31

12k steps
Curriculum Decoder 12k 52.79 0.23/10383.47

Curriculum Decoder 12k (lamb optimizer) 53.68 0.29/15305.19
Curriculum Decoder 12k (lamb w/.2 dropout) 54.29 1.38/3172.47

Curriculum Decoder 12k (lamb batch128 lr5e-3) 53.85 1.20/3053.93

Table 8: Decoder Models comparison

In Table 8 we can see the results of the Decoder
models compared with the curriculum trained De-
coder models. The baselines already scored quite
well and increasing to a 7M parameter configura-
tion slightly increased the performance when eval-
uated using BLiMP.

The models trained using curriculum learning
did not perform significantly worse when evaluated
using BLiMP, but also did not perform better than
the baselines. Alongside this, the models seem to
not have learned contextual understanding as the
model performance evaluated using LAMBADA
has seen quite a drastic decrease.

A potential reason for this is the amount of tok-
enizers the curriculum model uses during its train-
ing, as it uses a specific tokenizer for each dataset.

107

This could possibly be hampering its learning abil-
ity for contextual understanding.

4.4 Extra dataset for curriculum

One method which was attempted for better com-
parison and results was to add the full segmented
dataset back into the training loop. This was to
get a comparison for how the curriculum-trained
models were performing when it came to perplexity
and accuracy on the same dataset which the regular
models were trained on.

The extra dataset was added to the list of datasets
to train on. It was added to the list so that it was
trained on as the final dataset.

Important to note here is that when looping into
the final dataset, the same tokenizer used for the
regular models is also used for the curriculum
model. This means the tokenization is done identi-
cally for the curriculum trained models and the non-
curriculum trained models during the final dataset.
The results can be seen in Figure 3.

The stats show that after having trained on the
individual datasets before moving to the combined
dataset the models perform significantly better with
respect to loss, perplexity, and accuracy.

However this performance increase is not re-
flected in any way when the model is evaluated
using the evaluation scripts as seen in Table 9.

Model BLiMP LAMBADA (acc/perp)
Decoder (baseline) 54.14 9.47/20.99

Decoder 7M 54.84 8.50/21.66
Decoder 7M (.2 dropout) 54.62 6.48/24.06

Curriculum Decoder Extra w/.2 dropout 50.93 0.00/84579.93
Curriculum Decoder Extra w/.3 dropout 50.97 0.08/120141.84

Table 9: Decoder Models with Extra dataset compari-
son.

5 Discussion

5.1 Encoders

The results we see in the evaluation are varied. For
the Encoder models, the curriculum-trained model
performs better when evaluated with BLiMP. (See
Table 7). This is an indication that the Encoder
model has increased performance when trained us-
ing a curriculum learning method. The LAMBADA
score is worse when it comes to perplexity, but this
is likely due to the tokenization process being done
in a less-than optimal way with multiple tokenizers.

5.2 Decoders

The Decoders do not seem to have benefited from
the curriculum learning as can be seen in Table 8.
The models have lower performance from both
evaluation metrics.

Based on the LAMBADA scores, it seems the
models are much more confused and only have
minimal, if any, contextual understanding. How-
ever, we believe these results are also a product of
the tokenization process.

One notable observation is the results in Figure 3
where the stats show that the curriculum learning
seems to have improved the performance of the
models when training on the same dataset as the
regular models. This could indicate that the cur-
riculum learning method increases the performance
of the models.

5.3 Performance from curriculum learning

Overall, the evaluation results do not seem to sup-
port the claim that curriculum learning increases
performance. We hypothesize that this is a product
of the tokenization process.

However, the statistics during training do indi-
cate that the model could is performing better on
the combined dataset during training. This may be
an indicator that the model is learning more from
this approach.

6 Conclusion

There are a couple of key conclusions which we
can draw from these results.

The first one is that curriculum learning as a
method works to train models. It appears to be
a viable training method and does seem to have
benefits when looking at the Encoder results.

The evaluation results however do not reflect
any increased performance from the curriculum
learning for the Decoder models and rather seems
to have made the performance worse.

The stated research question was if curriculum
learning could be used to improve the performance
of tiny language models and from the results gath-
ered in this study, the performance is better for
Encoder models, but worse for Decoder models.

Overall, this implementation of curriculum learn-
ing did not succeed in improving the performance
of tiny language models.

108

Figure 3: The loss, perplexity, and accuracy during training for Decoder models, and Decoder models with the extra
dataset. Data tracked using Weights and Biases3.

Limitations

The scope of this project allowed for testing only
a limited number of model configurations. Sig-
nificant time was spent implementing curriculum
learning which restricted the variety of developed
models. Exploring a more broad range of config-
urations could identify more effective setups and
improve baseline performance.

An idea for further research would be to im-
prove the tokenization process which would likely
yield better results for the curriculum-trained mod-
els. Performing the tokenization using a single
tokenizer across all the datasets. This study did not
manage to get that to work during the curriculum
learning implementations, but it could likely lead
to significantly better results as the model would
not get confused from using multiple different tok-
enizers.

Changing up how the the curriculum learning
approach may also yield interesting results. This
implementation loops through each dataset for a
given amount of steps, however one could also cal-
culate the perplexity for each dataset and then order
them correctly in a single dataset. That curriculum-
ordered dataset could then be tokenized and used
to train on. The results would potentially resolve
the issues of multiple tokenizers.

Tracking statistics using WandB presented a
challenge when attempting to compare the statistics
of the baseline models to the curriculum models.
The idea to add the combined dataset to the end
of a curriculum training only emerged close to the
end of the project. This did reveal interesting statis-
tics which can be comparable, but the analysis is
limited.

Finally, the model training time was limited and
most models were trained for a total of 2 hours.
Extending the training time to several hours or even

days could provide more comprehensive data and
insights which are representative of a well-trained
model.

References
2023. Perplexity of fixed-length models — transformers

3.1.0 documentation. [Online; accessed 19. May
2024].

He Bai, Tong Wang, Alessandro Sordoni, and Peng Shi.
2022. Better Language Model with Hypernym Class
Prediction. ACL Anthology, pages 1352–1362.

Yoshua Bengio, Jérôme Louradour, Ronan Collobert,
and Jason Weston. 2009. Curriculum learning. In
ICML ’09: Proceedings of the 26th Annual Inter-
national Conference on Machine Learning, pages
41–48. Association for Computing Machinery, New
York, NY, USA.

BNC Consortium. 2007. British National Corpus, XML
edition. University of Oxford.

J. L. Elman. 1993. Learning and development in neural
networks: the importance of starting small. Cogni-
tion, 48(1):71–99.

Martin Gerlach and Francesc Font-Clos. 2020. A Stan-
dardized Project Gutenberg Corpus for Statistical
Analysis of Natural Language and Quantitative Lin-
guistics. Entropy (Basel)., 22(1):126.

J. Godfrey, E. Holliman, and J. McDaniel. 1992.
SWITCHBOARD: telephone speech corpus for re-
search and development. IEEE International Confer-
ence on Acoustics, Speech, and Signal Processing.

Conglong Li, Minjia Zhang, and Yuxiong He. 2021.
Curriculum Learning: A Regularization Method for
Efficient and Stable Billion-Scale GPT Model Pre-
Training. [Online; accessed 18. May 2024].

Pierre Lison and Jörg Tiedemann. 2016. OpenSubti-
tles2016: Extracting Large Parallel Corpora from
Movie and TV Subtitles. ACL Anthology, pages 923–
929.

109

Brian MacWhinney. 2000. The CHILDES Project:
Tools for Analyzing Talk (third edition): Volume I:
Transcription format and programs, Volume II: The
database. Computational Linguistics, 26(4):657.

Richard Diehl Martinez, Hope McGovern, Zebulon
Goriely, Christopher Davis, Andrew Caines, Paula
Buttery, and Lisa Beinborn. 2023. CLIMB – Cur-
riculum Learning for Infant-inspired Model Building.
ACL Anthology, pages 112–127.

Denis Paperno, Germán Kruszewski, Angeliki Lazari-
dou, Ngoc-Quan Pham, Raffaella Bernardi, Sandro
Pezzelle, Marco Baroni, Gemma Boleda, and Raquel
Fernández. 2016. The LAMBADA dataset: Word
prediction requiring a broad discourse context. ACL
Anthology, pages 1525–1534.

David Samuel, Andrey Kutuzov, Lilja Øvrelid, and Erik
Velldal. 2023. Trained on 100 million words and still
in shape: BERT meets British National Corpus. ACL
Anthology, pages 1954–1974.

Natalie Schluter and Daniel Varab. 2018. When data
permutations are pathological: the case of neural
natural language inference. ACL Anthology, pages
4935–4939.

Petru Soviany, Radu Tudor Ionescu, Paolo Rota, and
Nicu Sebe. 2021. Curriculum Learning: A Survey.
arXiv.

Andreas Stolcke, Klaus Ries, Noah Coccaro, Eliza-
beth Shriberg, Rebecca Bates, Daniel Jurafsky, Paul
Taylor, Rachel Martin, Carol Van Ess-Dykema, and
Marie Meteer. 2000. Dialogue Act Modeling for Au-
tomatic Tagging and Recognition of Conversational
Speech. Computational Linguistics, 26(3):339–373.

Alex Warstadt, Aaron Mueller, Leshem Choshen, Ethan
Wilcox, Chengxu Zhuang, Juan Ciro, Rafael Mos-
quera, Bhargavi Paranjabe, Adina Williams, Tal
Linzen, and Ryan Cotterell, editors. 2023. Proceed-
ings of the BabyLM Challenge at the 27th Conference
on Computational Natural Language Learning. As-
sociation for Computational Linguistics, Singapore.

Alex Warstadt, Alicia Parrish, Haokun Liu, Anhad Mo-
hananey, Wei Peng, Sheng-Fu Wang, and Samuel
Bowman. 2020. BLiMP: The Benchmark of Lin-
guistic Minimal Pairs for English. Transactions of
the Association for Computational Linguistics, 8:377–
392.

Wikimedia. Simple english wikipedia.

Xiaoxia Wu, Ethan Dyer, and Behnam Neyshabur. 2020.
When Do Curricula Work? arXiv.

110

3 Fact-Checking with Graph Evidence track

111

Enhancing Fact Verification with Hybrid Models: Integrating Graph
Neural Networks and BERT Using the FactKG Dataset

Aleksandar Davidov
University of Oslo

aleksda@ifi.uio.no

Abstract

Abstract

This study explores the integration of Graph
Neural Networks (GNNs) with BERT for the
task of fact verification, utilizing the FactKG
dataset. By incorporating subgraph evidence
from DBpedia, the proposed Fact-checking
model aims to enhance verification accuracy.
The model achieved a validation accuracy
of 92.59%, outperforming the BERT model
that was fine-tuned on sentences alone, which
achieved 91.52% accuracy. These results high-
light the value of combining structured knowl-
edge graphs with language models and GNNs,
demonstrating that such hybrid approaches can
significantly improve the accuracy of fact verifi-
cation systems. The findings suggest that lever-
aging both structured and unstructured data al-
lows for better handling of complex reasoning
and relational information present in claims.

1 Introduction

The rapid diffusion of information in the digital
age calls for effective fact-checking mechanisms to
counter misinformation. Fact-checking, the prac-
tice of validating the truthfulness of claims using
reliable evidence, has been recently put forward as
one of the increased uses for fact-checking with
structured data extracted from knowledge graphs,
such as DBpedia (Kobilarov et al., 2009). Knowl-
edge graphs open up a rich, interlinked structure
of entities and relationships and have been used
as a formalism encoding excellent, scalable repre-
sentations of the web. Notably, Kim et al. (2023)
presented the FactKG dataset, which collected over
108,000 claims, each associating with supporting
or refuting sub-graphs from DBpedia. More specif-
ically, very recent works by Wang et al. (2020)
on path-based reasoning and Feng et al. (2020) on
multi-hop relational reasoning have shown the im-
portance of using KGs’ relational paths for better

inference. More recently, the QA-GNN modeel
Yasunaga et al. (2021) effectively integrates Graph
Neural Networks (GNNs) and language models,
demonstrating the power of unifying textual and
graph data for complex reasoning tasks. This model
highlights the potential for significantly advanc-
ing knowledge verification through joint reasoning
over structured and unstructured data sources.

The central problem addressed is how to pro-
vide subgraph evidence from knowledge graphs in
support of checking claims. Traditional text-based
fact-checking systems lack the depth required to
navigate the intricate relationship information in
knowledge graphs. This work tries to enrich the
existing fact-checking systems using subgraph evi-
dence; we use BERT (Devlin et al., 2019) for pro-
cessing the claim and GNNs based on multi-head
attention to deal with subgraphs having relational
data.

The primary objectives of this work are:

• Develop and implement an enhanced hybrid
model combining BERT and GNNs

• Evaluate the performance of this model using
the FactKG dataset

• Optimize the integration of subgraph evidence
with text-based claims

• Verify the potential of combining BERT
and GNNs to improve the precision of fact-
checking systems

This research could have potentially have psi-
tive implications for enhancing automated fact-
checking systems. By integrating sophisticated
GNNs with BERT, this study aims to address the
challenges associated with handling complex rela-
tional data. The outcomes of this research are di-
rectly relevant to news organizations, fact-checkers,
and technology companies striving to maintain pub-

112

lic trust by improving the accuracy and reliability
of fact-checking processes.

The scope of this research also includes assess-
ing the performance improvement over conven-
tional methods using the DBpedia subgraph. While
the hybrid model shows promise, its weaknesses lie
in the dependence on the quality and completeness
of DBpedia and the computational complexity in-
troduced with incorporating GNNs. These factors
suggest directions for future exploration, aiming to
further enhance the robustness and scalability of
fact-checking systems.

2 Theory

2.1 Knowledge Graphs

In the digital age, fact-checking has become one
of the most important elements for validating in-
formation and counterbalancing the rapid spread
of false information (López-Marcos and Vicente-
Fernández, 2021; Graves, 2018; Thorne et al.,
2018). The growth of social media and digital
platforms has led to an increase in misinforma-
tion, highlighting the critical need for automated
fact-checking systems that leverage Artificial In-
telligence (AI) and Natural Language Processing
(NLP) to quickly process and validate enormous
data sources (Vallayil et al., 2023; Nakov et al.,
2021). These systems play a major role in ensur-
ing public trust by delivering accurate information,
thereby dramatically reducing the adverse impacts
of false information (Graves, 2018).

Knowledge Graphs can be defined as directed,
labelled multi-relational graphs integrating seman-
tics. KGs are helpful in organizing heterogeneous
data resources for coherent knowledge presenta-
tion, offering rich context to understand relation-
ships among the data, and to interpret sophisticated
queries that go beyond simple keyword searching
(Kejriwal, 2022). One of the most common ap-
plications of graph-based knowledge is structured
data organization, representing entities and their
interrelations in a way that allows data integration
and data retrieval. Besides that, they are a founda-
tion for the intense application of AI, and through
the storage of structured knowledge, AI systems
acquire precise predictions to present reasonable
high performance in decision-making (Chaudhri
et al., 2022). More than that, KGs are broadly ap-
plied in the support of fact-checking tasks, where
the verification of some claim’s accuracy needs
the comprehensive understanding and analysis of

interconnected data.

2.2 BERT

BERT (Bidirectional Encoder Representations
from Transformers) is a modern model in NLP,
proposed by Devlin et al. in 2018 (Devlin et al.,
2019). BERT uses a transformer model to pretrain
deep bidirectional representations conditioned on
both left and right contexts in all layers. The pro-
cedure randomly masks a certain part of input and
predicts tokens that have been masked, thus learns
relationships of context inside the text (Liu et al.,
2019; Koroteev, 2021).

This property of BERT, that it creates rich con-
textual embeddings, yet simultaneously captures
large amounts of linguistic as well as world knowl-
edge, seems essential for a number of NLP tasks,
including question-answering and language infer-
ence (Lan et al., 2019), thus making BERT an im-
portant model. This capability is particularly cru-
cial for fact-checking, as accurate interpretation of
language and context is necessary to determine the
veracity of claims.

2.2.1 Model Architecture
BERT’s architecture is based on Transformer ar-
chitecture (Vaswani et al.), which is a multi-layer
bidirectional self-attention model. We identify that
the following are the critical components of BERT:

• Layers and Blocks: BERT-Base has 12 lay-
ers (or Transformer blocks), 768 hidden units,
and 12 self-attention heads. At the same time,
BERT-Large has 24 layers, 1024 hidden units.

• Input Representation: BERT accepts token
embeddings as well as segment embeddings
and position embeddings. The word embed-
dings that BERT uses are based on WordPiece
embeddings with a vocabulary of size 30,000.
In BERT, a special token for classification
[CLS] is inserted at the beginning of each in-
put. Segment separation within an input se-
quence is marked with [SEP] symbols.

• Self-Attention Mechanism: BERT uses self-
attention mechanisms, which enables each to-
ken in a sentence to attend to every other po-
tential token in that sentence; thus, it captures
efficiently the notion of bidirectional context.

One important part of BERT architecture is the

113

self-attention mechanism, which can be shown as:

Attention(Q,K, V) = softmax
(
QKT

√
dk

)
V (1)

where Q (queries), K (keys), and V (values) are
the input matrices, and dk is the dimension of the
keys (Vaswani et al.).

2.2.2 BERT for Binary Classification
BERT can be fine-tuned to binary classification
tasks and output a binary prediction. The following
are the steps involved during the process:

The loss function used for binary classification
to train the model is the binary crossentropy, repre-
sented as:

LBCE = − 1

N

N∑

i=1

[yi log(ŷi)+

(1− yi) log(1− ŷi)]

(2)

where N is the number of training examples, yi
is the true label, and ŷi is the predicted probability.

2.3 Graph Neural Networks

GNNs is a class of neural networks that operates
on graph data. A graph is an ordered pair G =
(A,Σ), where A is a set of edges and Σ is a set of
nodes. GNNs are widely applied in such domains
as social analysis, molecular biology, chemistry,
and recommendation systems, since they can model
complex dependencies and interactions (Wu et al.,
2020; Hamilton et al., 2017).

2.3.1 Message Passing Mechanism
GNNs learn representations for nodes or the graph
by propagating the information in the graph’s nodes
and edges. Under the most basic mechanism, a
node aggregates information from its neighboring
nodes to update or revise its own local representa-
tion through a process known as message-passing.
This is shown in the equation below:

h
(k+1)
i = σ

W (k) ·

∑

j∈N (i)

h
(k)
j + b(k)

 (3)

where h
(k)
i is a feature vector of node i at layer

k, N (i) are the neighbors of node i, and W (k)

and b(k) are the learnable weights and biases at
each layer with a non-linear activation function σ.

This is an iterative process through which nodes
sequentially gather and integrate information from
their neighborhoods to capture the structural and
feature information in a graph (Kipf and Welling,
2017; Scarselli et al., 2009; Gilmer et al., 2017).

2.3.2 Graph Attention Networks
Graph Attention Networks (GATs) improved mes-
sage passing by introducing attention coefficients,
allowing nodes to weigh in on the importance of
their neighbors’ features . The formulation of mes-
sage passing in the GATs is expressed below:

h
(k+1)
i = σ

 ∑

j∈N (i)

α
(k)
ij W (k)h

(k)
j

 (4)

where α
(k)
ij are the attention coefficients calcu-

lated as:

α
(k)
ij =

exp(LR(aT [W (k)h
(k)
i ∥W (k)h

(k)
j]))

∑
k∈N (i) exp(LR(aT [W (k)h

(k)
i ∥W (k)h

(k)
k]))
(5)

Here, a is a learnable weight vector, and ∥ de-
notes concatenation and LR is the LeakyReLU acti-
vation function. The attention mechanism enables
GATs to differentiate the significance of neighbor-
ing nodes’ features, which can enhance the model’s
ability to perform on various tasks (Velickovic
et al., 2018).

3 Methods

3.1 Graphical model

In this work, our method adopts the GNN model of
Brody et al. (2021), harnessing more expressible
and stable GATv2 layers. This model is designed to
efficiently propagate information across the nodes
and edges of the graph in a way that updates node
representations according to their local neighbor-
hood. A key improvement in GATv2 is the im-
plementation of dynamic attention, allowing the
attention weights to vary based on the query node.
This dynamic mechanism enhances the model’s
ability to focus on different nodes depending on the
context, thereby increasing its expressivity and flex-
ibility. A very important part of the GNN model
is its multi-head attention mechanism. At each
GATv2 layer, multiple attention heads compute
various attention coefficients, allowing the model
to capture different aspects of the node features and

114

their neighbors. The feature aggregation in each
layer is formulated as follows:

h
(k+1)
i = σ

∥∥M

m=1

∑

j∈N (i)

α
(k,m)
ij W (k,m)h

(k)
j

(6)
where h(k)i is the representation of node i at layer

k, N (i) is the neighborhood of node i, α(k,m)
ij is

the attention coefficient computed by the m-th at-
tention head at layer k, W (k,m) is the weight matrix
of the m-th attention head at layer k, σ is a non-
linear activation function, generally Leaky ReLU,
and

∥∥M
m=1

denotes the concatenation of the outputs
from all M attention heads.

Although the FactKG dataset does not explicitly
utilize edge attributes, GATv2 aims to offer ad-
vantages in terms of enhanced expressiveness and
stability. The dynamic attention mechanism allows
the model to adjust the importance of nodes based
on context, thus improving the model’s ability to
capture complex relationships within the graph
structure, even in the absence of edge features.

3.2 Fact-checking Model

The joint fact-checking model integrates outputs
from a pretrained BERT model and a GNN to lever-
age both textual and subgraph data sources for fact-
checking. This combined approach benefits from
the strengths of each model: text-based learning
with BERT and graph-based learning with GNN.

Input claims, in the form of textual data, are
processed by the BERT model to develop high-
dimensional embeddings. Specifically, the output
representation of the BERT model for a given claim
is denoted as t, where t ∈ Rdt and dt represents
the dimensionality of the BERT output.

Simultaneously, the GNN processes the knowl-
edge graph associated with the claims, producing
node embeddings. These embeddings are then ag-
gregated to generate a graph-level representation.
The graph-level representation g is obtained after
the final GNN layer by applying global mean pool-
ing:

g =
1

|V|
∑

i∈V
h
(K)
i (7)

where h(K) represents the node embeddings from
the last GNN layer and V is the set of all nodes in
the graph.

The textual representation t from the BERT
model and the graph representation g from the

GNN are concatenated to form a single feature
vector. This concatenation is given by:

h = [t∥g] (8)

where ∥ denotes the concatenation operator. Conse-
quently, h ∈ Rdt+dg , with dg being the dimension
of the GNN output. The final output y is computed
as:

y = σ(Wh+ b) (9)

where W is a weight matrix, b is a bias vector,
and σ is the sigmoid activation function, which is
suitable for binary classification tasks.

3.3 FactKG dataset

For this work, we will be using utilizing the Fac-
tKG dataset, which is designed for fact verification
via reasoning on knowledge graphs. It comprises
of over 108 000 natural language claims, structured
to facilitate reasoning through five distinct types:
One-hop, Conjunction, Existence, Multi-hop, and
Negation. Each claim is verified against DBpedia,
a comprehensive and structured knowledge base,
because FactKG leverages DBpedia’s vast, inter-
connected data to enhance the accuracy and trans-
parency of the verification process. The dataset
was created this way to utilize DBpedia’s logical
structure and extensive information, which allows
for complex reasoning patterns that simple datasets
cannot support alone. The dataset features a mix
of linguistic styles, including both colloquial and
formal claims, broadening its applicability across
different real-world scenarios each labeled as ei-
ther supported or refuted based on the evidence
provided by DBpedia.

Each claim is accompanied by several features,
including:

• Sentence: The natural language claim to be
verified. During data processing, the Sentence
is concatenated with the paths found in the
knowledge graph to form a comprehensive
input for the model.

• Label: Indicates whether the claim is true
(supported) or false (refuted) and is used dur-
ing model training to supervise the learning
process

• Entity set: The set of entities mentioned in the
claim, serving as starting points for search-
ing the knowledge graph. This evidence is

115

parsed and enhanced by searching the DBpe-
dia knowledge graph to find additional con-
nections. The Evidence is used to generate
paths that connect entities, providing the nec-
essary context to support or refute the claim.

• Evidence: The initial evidence supporting or
refuting the claim, structured in a format that
links entities through relationships. This ev-
idence is parsed and enhanced by searching
the DBpedia knowledge graph to find addi-
tional connections. The Evidence is used to
generate paths that connect entities, providing
the necessary context to support or refute the
claim.

• Metadata: Additional information such as the
claim style (written or colloquial) and reason-
ing type (e.g., one-hop, multi-hop, negation).

3.3.1 Utilization of DBpedia Knowledge
Graph

The DBpedia knowledge graph is used to explore
and extract meaningful paths that link the entities
mentioned in each claim. This process begins with
searching the graph for paths that connect the given
entities through specified relationships. DBpedia
facilitates uncovering both direct and indirect con-
nections, which include multi-hop relationships
that are not immediately apparent. These connec-
tions are crucial for comprehensive claim verifica-
tion.

The process of finding relevant paths between
entities in the knowledge graph involves several
steps:

• Initial Search: Starting from the entities men-
tioned in the claim (Entity set), the search
identifies potential relationships and paths
within the knowledge graph.

• Path Exploration: The search explores various
paths that connect these entities, considering
both direct relationships and multi-hop con-
nections that may provide additional context.

• Path Categorization: The paths are catego-
rized into two types:

– Connected Paths: Paths that directly link
the entities. These paths provide clear,
direct evidence supporting or refuting a
claim.

– Walkable Paths: Paths that do not nec-
essarily connect entities directly but still
offer relevant information. These paths
provide additional context and may re-
veal indirect connections that enrich the
evidence set.

3.3.2 Data Processing and Transformation
Once the relevant paths are identified from DB-
pedia, they are processed and transformed into a
structured format suitable for further analysis. This
begins with parsing the evidence accompanying
each claim to extract entities and their relationships.
Lists of nodes (entities) and edges (relationships)
are created, with each entity assigned a unique
identifier and relationships represented as directed
edges connecting the corresponding nodes. This
step constructs mappings of entities to indices and
enumerates the relationships between these enti-
ties. The evidence is then transformed into a graph
representation suitable for input to a GNN.

4 Results

4.1 Training metrics
Below are the results achieved with the Fact-
checking model, which consists of three GATv2
layers with 1024, 512, and 512 hidden units, re-
spectively. A constant learning rate of 1e-05 was
used, and the model was trained on 4 epochs us-
ing the FactKG dataset. The BERT component of
the model, which already has pre-trained weights,
was fine-tuned during this process, while the GNN
layers were trained from scratch.

Figure 1 shows the training loss curve of the
Fact-checking model over batches.

Figure 1: Training loss over epochs for the Fact-
checking model.

As observed from the training curve, the loss
steadily decreases with the number of epochs. How-
ever, there are noticeable fluctuations in the training
process. These fluctuations could indicate some

116

instability in the training process or could be at-
tributed to the model’s ability to handle different
reasoning types effectively. The variation might be
due to the complexity and diversity of the claims,
including one-hop, multi-hop, and other reason-
ing types, which can introduce variability in the
training dynamics.

Despite these fluctuations, there is a clear de-
creasing trend in the training loss over the number
of batches. This consistent downward trend is a
positive indication that the model is learning from
the data, progressively improving its performance
as it processes more training examples.

Further, figure 2 shows the validation batch
losses over epochs.

Figure 2: Training accuracy over epochs for the Fact-
checking model.

Examining the accuracy curve for the Fact-
checking model, it is evident that the model initially
performs poorly, with accuracy below 50%, which
suggests that it is essentially guessing at the begin-
ning of the training process. However, the model
quickly adapts to the data, and a steady increase
in accuracy is observed as training progresses. Al-
though there are fluctuations in the accuracy, these
variations diminish over time, and an increasing
number of batches achieve 100% accuracy. This
upward trend in accuracy demonstrates the model’s
improving capability to correctly verify claims as
it learns from the training data.

4.2 Comparison
In this section, we compare the performance of the
Fact-checking model against other models. Specifi-
cally, we evaluate:

1. A GNN with three GATv2 layers, having
1024, 512, and 512 hidden units respectively,
trained with a constant learning rate of 1e-5,
using only subgraph evidence as input..

2. A BERT model fine-tuned to predict the label

of a claim based solely on the sentence (input
natural language).

3. A BERT model that also incorporates sub-
graph evidence as input.

Both BERT models were fine-tuned with a learn-
ing rate of 1e-4 with a learning rate schedule, and
all models were trained for 4 epochs, as these pa-
rameters yielded the best results.

Table 1 provides us with the vailidation accura-
cies of the 4 different models.

Model Val Accuracy (%)
Fact-checking Model 92.59
GNN with three GATv2 layers 77.31
BERT (sentence only) 91.52
BERT (with subgraph evidence) 92.93

Table 1: Validation accuracy comparison of the different
models trained on 4 epocs.

The pure GNN implementation, which was
trained solely on subgraph evidence, achieved a
validation accuracy of 77.31%, which was the low-
est among the evaluated models. This lower perfor-
mance may be due to the GNN’s limited capacity
to handle natural language data directly, relying
solely on structured graph data. Additionally, the
complexity of reasoning types, such as multi-hop
and negation, might not be effectively captured by
the GNN.

The BERT model fine-tuned on sentences alone
achieved a validation accuracy of 91.52%. This
demonstrates the effectiveness of pre-trained lan-
guage models in understanding and classifying nat-
ural language data.

Incorporating subgraph evidence into the BERT
model improved its performance, resulting in a val-
idation accuracy of 92.93%. This indicates the
benefit of using structured knowledge graph infor-
mation to provide additional context and enhance
claim verification.

The Fact-checking model, which integrates both
the GNN and BERT components, achieved an ac-
curacy of 92.59%. This performance suggests that
combining graph-based reasoning with powerful
language models adds value. Although the Fact-
checking model did not surpass the BERT model
with subgraph evidence, it outperformed the BERT
model relying solely on sentences, indicating that
the GNN contributes valuable relational insights
that enhance overall model performance.

117

4.3 Future Work

Future work should aim to address the limitations
identified in the current models and explore new di-
rections to further improve fact verification. Specif-
ically, further analysis is needed to determine the
exact scenarios where the GNN performs well and
where it falls short, particularly in relation to claim
style and reasoning type. Understanding these as-
pects can provide insights into how different GNN
architectures, such as comparing GATv2 layers
with the original GAT layers, impact performance.

The promising results of incorporating subgraph
evidence into the BERT model suggest that hy-
brid approaches should be further explored. Ad-
vanced methods for combining structured knowl-
edge graph information with natural language pro-
cessing, such as dynamically updating the knowl-
edge graph during training or employing joint learn-
ing techniques, could provide more seamless inte-
gration and improved performance.

The promising results of incorporating subgraph
evidence into the BERT model suggest that hy-
brid approaches should be further explored. Ad-
vanced methods for combining structured knowl-
edge graph information with NLP, such as dynam-
ically updating the knowledge graph during train-
ing or employing joint learning techniques, could
provide more seamless integration and improved
performance. Unlike utilizing a static knowledge
graph, dynamically updating the graph during train-
ing could involve continuously refining and ex-
panding the graph based on the model’s learning
and feedback. This could include adding new rela-
tionships identified during training, adjusting the
strengths of existing relationships, and incorporat-
ing temporal dynamics to reflect changes over time.
These updates would allow the knowledge graph
to evolve in real-time, and maybe providing more
accurate and contextually rich representations that
could enhance the model’s ability to verify claims.

For the Fact-checking model that integrates both
GNN and BERT components, there is potential to
refine the interaction between these components.
Investigating different ways of combining these
components, such as varying the interaction mech-
anisms or optimizing hyperparameters, could yield
better results. Additionally, exploring multi-task
learning approaches, where the model simultane-
ously learns to perform related tasks, could enhance
its overall capability.

Furthermore, broader applicability and scalabil-

ity should be considered in future work. Evaluating
the models on more diverse datasets, including dif-
ferent languages and domains, can help assess their
generalizability.

Additionally, different reasoning types, such as
multi-hop and negation, may pose significant chal-
lenges. Future research could focus on developing
specialized modules or techniques to better han-
dle these complex reasoning types. For example,
integrating reinforcement learning approaches to
navigate multi-hop paths more effectively or em-
ploying logic-based reasoning techniques which
could potentially enhance the model’s capability to
verify complex claims.

Lastly, comparing the proposed models against
other state-of-the-art models, such as QA-GNN,
could provide valuable benchmarks for evaluating
effectiveness and highlighting areas for further im-
provement.

5 Discussion

The comparative analysis of the models provides
valuable insights into the strengths and limitations
of different approaches to fact verification. The
pure GNN implementation, which was trained
solely on subgraph evidence, achieved the lowest
validation accuracy of 77.31%. This result high-
lights the challenge of relying exclusively on struc-
tured graph data to verify claims, as the GNN may
struggle to capture the full semantic richness and
contextual nuances of the claims without incorpo-
rating natural language data. The complexity of
reasoning types, such as multi-hop and negation,
may further exacerbate this limitation.

The BERT model fine-tuned on sentences alone
demonstrated a substantial improvement, achieving
a validation accuracy of 91.52%. BERT’s ability
to leverage extensive contextual knowledge from
large text corpora allows it to handle a variety of
claim styles effectively, including both colloquial
and formal language. However, there is room for
improvement by enhancing the model’s ability to
handle more complex reasoning types.

Incorporating subgraph evidence into the BERT
model further enhanced its performance, achieving
the highest validation accuracy of 92.93%. This
demonstrates the added value of combining struc-
tured knowledge graph information with natural
language processing. The additional context pro-
vided by DBpedia allows the model to understand
and verify claims with complex reasoning patterns

118

more effectively. This improvement can be at-
tributed to the richer and more structured infor-
mation from the knowledge graph, which helps
in capturing indirect relationships and multi-hop
reasoning that the BERT model fine-tuned on sen-
tences alone could not achieve.

The Fact-checking model, which integrates both
GNN and BERT components, achieved a validation
accuracy of 92.59%. Although it did not surpass
the BERT model with subgraph evidence, it out-
performed the BERT model using sentences alone.
This indicates that the GNN contributes valuable
relational insights that enhance overall model per-
formance, particularly in understanding and ver-
ifying claims with complex relational structures.
The slight underperformance compared to BERT
with subgraph evidence suggests that while the in-
tegration of GNN adds value, there is still room for
improvement in how the relational information is
utilized.

6 Conclusion

In this study, we investigated the effectiveness of a
Fact-checking model that integrates Graph Neural
Networks (GNNs) with BERT for fact verification
tasks. The model utilizes subgraph evidence from
DBpedia to enhance the verification process. The
results demonstrated that incorporating subgraph
evidence through the GNN component improves
the model’s performance compared to using BERT
alone, highlighting the added value of leveraging
structured knowledge graphs for relational insights.

The Fact-checking model, which combines
GNNs and BERT, achieved a validation accuracy
of 92.59%, showing that the GNN contributes valu-
able context and relational information that en-
hances the overall performance. However, the
model did not surpass the BERT model with sub-
graph evidence, indicating that there is room for
further refinement in how relational information is
integrated.

The FactKG dataset showed to be a robust bench-
mark for evaluating these models, supporting vari-
ous reasoning types and claim styles.

References
Shaked Brody, Uri Alon, and Eran Yahav. 2021. How at-

tentive are graph attention networks? arXiv preprint
arXiv:2105.14491.

Vinay K. Chaudhri, Chaitanya Baru, Naren Chittar,
Xin Luna Dong, Michael Genesereth, James Hendler,

Aditya Kalyanpur, Douglas B. Lenat, Juan Sequeda,
Denny Vrandečić, and Kuansan Wang. 2022. Knowl-
edge graphs: Introduction, history and, perspectives.
AI Magazine, 43(1):17–29.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Yang Feng, Xiang Chen, Bill Yuchen Lin, Po-Wei Wang,
Jun Yan, and Xiang Ren. 2020. Scalable multi-hop re-
lational reasoning for knowledge-aware question an-
swering. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 1295–1309. Association for Com-
putational Linguistics.

Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley,
Oriol Vinyals, and George E. Dahl. 2017. Neural
message passing for quantum chemistry. In Proceed-
ings of the 34th International Conference on Machine
Learning (ICML), pages 1263–1272.

Lucas Graves. 2018. Understanding the promise and
limits of automated fact-checking.

William L. Hamilton, Rex Ying, and Jure Leskovec.
2017. Inductive representation learning on large
graphs. Advances in Neural Information Process-
ing Systems, 30:1024–1034.

Mayank Kejriwal. 2022. Knowledge graphs: A prac-
tical review of the research landscape. Information,
13(4).

Jinheon Kim, Seunghyun Park, Youngseo Kwon,
Youngki Jo, James Thorne, and Edward Choi. 2023.
Factkg: Fact verification via reasoning on knowledge
graphs. In Proceedings of the 61st Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 16190–16206. Asso-
ciation for Computational Linguistics.

Thomas N. Kipf and Max Welling. 2017. Semi-
supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907.

Georgi Kobilarov, Christian Bizer, Sören Auer, and Jens
Lehmann. 2009. Dbpedia–a linked data hub and data
source for web applications and enterprises.

Mikhail Koroteev. 2021. Bert: A review of applications
in natural language processing and understanding.
arXiv preprint arXiv:2103.11943.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2019. Albert: A lite bert for self-supervised learn-
ing of language representations. arXiv preprint
arXiv:1909.11942.

Nelson F. Liu, Matt Gardner, Yonatan Belinkov,
Matthew E. Peters, and Noah A. Smith. 2019. Lin-
guistic knowledge and transferability of contextual
representations. arXiv preprint arXiv:1903.08855.

119

Casandra López-Marcos and Pilar Vicente-Fernández.
2021. Fact checkers facing fake news and disinfor-
mation in the digital age: A comparative analysis
between spain and united kingdom. Publications,
9(3).

Preslav Nakov, David P. A. Corney, Maram Hasanain,
Firoj Alam, Tamer Elsayed, Alberto Barrón-Cedeño,
Paolo Papotti, Shaden Shaar, and Giovanni Da San
Martino. 2021. Automated fact-checking for assist-
ing human fact-checkers. CoRR, abs/2103.07769.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus
Hagenbuchner, and Gabriele Monfardini. 2009. The
graph neural network model. IEEE Transactions on
Neural Networks, 20(1):61–80.

James Thorne, Andreas Vlachos, Christos
Christodoulopoulos, and Arpit Mittal. 2018.
FEVER: a large-scale dataset for fact extraction
and VERification. In Proceedings of the 2018
Conference of the North American Chapter of
the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long
Papers), pages 809–819, New Orleans, Louisiana.
Association for Computational Linguistics.

Manju Vallayil, Parma Nand, Wei Qi Yan, and Héc-
tor Allende-Cid. 2023. Explainability of automated
fact verification systems: A comprehensive review.
Applied Sciences, 13(23).

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you
need. arXiv preprint arXiv:1706.03762.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Lio, and Yoshua Bengio.
2018. Graph attention networks. arXiv preprint
arXiv:1710.10903.

Peifeng Wang, Nanyun Peng, Filip Ilievski, Pedro
Szekely, and Xiang Ren. 2020. Connecting the dots:
A knowledgeable path generator for common-sense
question answering. In Findings of the Association
for Computational Linguistics: EMNLP 2020, pages
4129–4140. Association for Computational Linguis-
tics.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong
Long, Chengqi Zhang, and Philip S Yu. 2020. A com-
prehensive survey on graph neural networks. IEEE
Transactions on Neural Networks and Learning Sys-
tems, 32(1):4–24.

Michihiro Yasunaga, Hongyu Ren, Antoine Bosselut,
Percy Liang, and Jure Leskovec. 2021. Qa-gnn: Rea-
soning with language models and knowledge graphs
for question answering. In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 535–546. Association
for Computational Linguistics.

120

FactGenius: Combining Zero-Shot Prompting and Fuzzy Relation Mining
to Improve Fact Verification with Knowledge Graphs

Sushant Gautam
Simula Metropolitan Center for Digital Engineering

Oslo, Norway
sushant@simula.no

Abstract

Fact-checking is a crucial natural language
processing (NLP) task that verifies the
truthfulness of claims by considering reliable
evidence. Traditional methods are often limited
by labour-intensive data curation and rule-
based approaches. In this paper, we present
FactGenius, a novel method that enhances fact-
checking by combining zero-shot prompting
of large language models (LLMs) with fuzzy
text matching on knowledge graphs (KGs).
Leveraging DBpedia, a structured linked data
dataset derived from Wikipedia, FactGenius
refines LLM-generated connections using
similarity measures to ensure accuracy. The
evaluation of FactGenius on the FactKG,
a benchmark dataset for fact verification,
demonstrates that it significantly outperforms
existing baselines, particularly when fine-
tuning RoBERTa as a classifier. The two-stage
approach of filtering and validating connections
proves crucial, achieving superior performance
across various reasoning types and establishing
FactGenius as a promising tool for robust fact-
checking. The code and materials are available
at https://github.uio.no/sushantg/FactGenius.

1 Introduction

Fact-checking is a critical task in natural language
processing (NLP) that involves automatically
verifying the truthfulness of a claim by considering
evidence from reliable sources (Thorne et al.,
2018). This task is essential for combating
misinformation and ensuring the integrity of
information in digital communication (Cotter et al.,
2022). Traditional fact-checking methods rely
heavily on manually curated datasets and rule-
based approaches, which can be labour-intensive
and limited in scope (Papadopoulos et al., 2024).

Recent advancements in large language models
(LLMs) have shown promise in enhancing fact-
checking capabilities (Choi and Ferrara, 2024).
LLMs, with their extensive pre-training on diverse

textual data, possess a vast amount of embedded
knowledge (Yang et al., 2024). However, their
outputs can sometimes be erroneous or lacking in
specificity, especially when dealing with complex
reasoning patterns required for fact-checking.
External knowledge, such as knowledge graphs
(KGs) (Hogan et al., 2021), can aid in fact-
checking.

In this paper, we propose FactGenius, a novel
approach that combines zero-shot prompting
of LLMs with fuzzy relation-mining technique
to improve reasoning on knowledge graphs.
Specifically, we leverage DBpedia (Lehmann et al.,
2015), a structured source of linked data, to
enhance the accuracy of fact-checking tasks.

Our methodology involves using the LLM to
filter potential connections between entities in
the KG, followed by refining these connections
through Levenshtein distance-based fuzzy
matching. This two-stage approach ensures that
only valid and relevant connections are considered,
thereby improving the accuracy of fact-checking.

We evaluate our method using the FactKG
dataset (Kim et al., 2023b), which comprises
108,000 claims constructed through various
reasoning patterns applied to facts from DBpedia.
Our experiments demonstrate that FactGenius
significantly outperforms existing baselines (Kim
et al., 2023a), particularly when fine-tuning
RoBERTa (Liu et al., 2019) as a classifier,
achieving superior performance across different
reasoning types.

In summary, the integration of LLMs with KGs
and the application of fuzzy matching techniques
represent a promising direction for advancing fact-
checking methodologies. Our work contributes to
this growing body of research by proposing a novel
approach that effectively combines these elements,
yielding significant improvements in fact-checking
performance.

121

Figure 1: Overall pipeline of FactGenius: The process starts with LLM-based Connection Filtering using a
knowledge graph (see Section 3.3.1). In Fuzzy Relation Mining (see Section 3.3.2), Stage-I matches one-hop
connections of entities, and optionally, Stage-II includes all entities’ connections. The classifier (BERT, RoBERTa,
or Zero-Shot LLM; see Section 3.4) then determines if the claim is supported or refuted.

2 Literature Review

Fact-checking has become an increasingly vital
aspect of natural language processing (NLP)
due to the proliferation of misinformation
in digital communication (Guo et al., 2022).
Traditional approaches to fact-checking have
typically relied on manually curated datasets
and rule-based methods, which, while effective
in controlled environments, often struggle with
scalability and adaptability to new types of
misinformation (Saquete et al., 2020; Guo et al.,
2022). The labour-intensive nature of these
methods also poses significant challenges in rapidly
evolving information landscapes (Nakov et al.,
2021; Zeng et al., 2021).

To address challenges in understanding machine-
readable concepts in text, FactKG introduces
a new dataset for fact verification with claims,
leveraging knowledge graphs, encompassing
diverse reasoning types and linguistic patterns,
aiming to enhance reliability and practicality in
KG-based fact verification (Kim et al., 2023b).
Similarly, the Fact Extraction and VERification
(FEVER) dataset (Thorne et al., 2018) pairs claim
with Wikipedia sentences that support or refute
them, providing a benchmark for fact-checking
models. The authors employed a combination of
natural language inference models and information
retrieval systems to assess claim veracity. The
GEAR framework (Zhou et al., 2019) improves
fact verification by using a graph-based method
to aggregate and reason over multiple pieces of
evidence, surpassing previous methods by enabling
evidence to interact.

Recent advancements in large language models
(LLMs) have demonstrated considerable potential
in enhancing fact-checking processes (Kim et al.,
2023a; Choi and Ferrara, 2024). LLMs have been
pre-trained on vast and diverse corpora (Yang et al.,
2024), enabling them to generate human-like text
and possess a broad knowledge base (Choi and
Ferrara, 2024). However, despite their impressive
capabilities, LLMs can produce outputs that are
erroneous or lack the specificity required for
complex fact-checking tasks (Choi and Ferrara,
2024). This is particularly evident when
intricate reasoning and contextual understanding
are necessary to verify claims accurately (Chai
et al., 2023). Several studies have explored the
integration of LLMs with external knowledge
sources to improve their performance in fact-
checking tasks (Cui et al., 2023; Ding et al., 2023).

The incorporation of knowledge graphs (KGs)
into fact-checking frameworks has also garnered
attention. KGs, such as DBpedia (Lehmann et al.,
2015), provide structured and linked data that can
enhance the contextual understanding of LLMs.

Knowledge graphs have been used to improve
various NLP tasks by providing additional context
and relationships between entities, as demonstrated
by initiatives for knowledge-aware language
models (Li et al., 2023; Logan Iv et al., 2019)
and KG-BERT (Yao et al., 2019).

Approximate string matching (Navarro, 2001),
also called fuzzy string matching, is a technique
used to identify partial matches between text
strings. Fuzzy matching techniques (Navarro,
2001) have been applied to enhance the integration
of LLMs and KGs (Wang et al., 2024).

122

Levenshtein distance-based similarity
measure (Levenshtein et al., 1966) helps in
identifying strings which have approximate
matches which can be useful to find relevant
connections between entities by accommodating
minor discrepancies in data representation This
approach has been beneficial in refining the outputs
of LLMs, ensuring that only valid and contextually
appropriate connections are considered (Guo et al.,
2023).

Our proposed method, FactGenius, builds
on these advancements by combining zero-shot
prompting of LLMs with a fuzzy relation-mining
technique to improve reasoning over KGs. This
methodology leverages DBpedia as a structured
source of linked data to enhance fact-checking
accuracy. By using LLMs to filter potential
connections between entities and refining these
connections through fuzzy matching, FactGenius
aims to address the limitations of existing fact-
checking models.

3 Methodology

FactGenius leverages the capabilities of a
Large Language Model (LLM) to filter
possible connections between entities in a
Knowledge Graph (KG), particularly utilizing
DBpedia (Lehmann et al., 2015) as a structured
source of linked data.

Since the output of LLMs can be erroneous, the
connections are further refined and enriched using
Levenshtein distance (Levenshtein et al., 1966) and
are also validated to ensure that such connections
exist. This process is crucial for tasks such as fact-
checking, where establishing valid and relevant
connections between entities can validate or refute
claims. Finally, the classifier, which can be fine-
tuned over pre-trained models like BERT (Devlin
et al., 2019) or RoBERTa (Liu et al., 2019), or a
Zero-Shot LLM, determines whether the claim is
supported or refuted. The overall pipeline is shown
in Figure 1.

3.1 Dataset

The FactKG dataset (Kim et al., 2023b) is
used which comprises 108,000 claims constructed
through various reasoning patterns applied to facts
sourced from DBpedia (Lehmann et al., 2015).
Each data point consists of a natural language claim
in English, the set of DBpedia entities mentioned in
the claim, and a binary label indicating the claim’s

veracity (Supported or Refuted). The distribution
across labels and five different reasoning types
is shown in Table 1. The relevant relation paths
starting from each entity in the claim are known
which aids in the evaluation and development of
models for claim verification tasks.

The dataset is accompanied by processed
DBpedia, an undirected knowledge graph (KG).
The dataset provides researchers with a valuable
resource for exploring the intersection of natural
language understanding and knowledge graph
reasoning.

Table 1: Data distribution across labels and five
reasoning types.

Set Train Valid Test
Total Rows 86367 13266 9041
True (Supported) 42723 6426 4398
False (Refuted) 43644 6840 4643
One-hop 15069 2547 1914
Conjunction 29711 4317 3069
Existence 7372 930 870
Multi Hop 21833 3555 1874
Negation 12382 1917 1314

3.2 Claim Only Classifier
In this setting, where the models are given only
the claim and tasked with predicting the label, it
is expected that the model will heavily depend
on stored evidence within its trained weights
or identify patterns within the structure of the
provided claims.

3.2.1 Zero-shot Claim Only Baseline
A baseline is established using the Meta-Llama-3-
8B-Instruct1 (Meta, 2024) model with zero-shot
promoting for claim verification, asking it to verify
the claim without evidence. Through instruction
prompt engineering, it is ensured that the model
responds with either ’true’ or ’false’. A retry
mechanism is implemented to handle potential
failures in LLM responses. A prompt example
is shown in Figure 2.

3.2.2 RoBERTa as Claim Only Fact Classifier
RoBERTa-base2 is fine-tuned with claims as input,
training it to predict Supported or Refuted. This
is to compare with the BERT baseline reported in
previous works (Kim et al., 2023b).

1huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
2huggingface.co/FacebookAI/roberta-base

123

[{
"role":"system", "content":
"You are an intelligent fact checker trained on Wikipedia.
You are given a single claim and your task is to decide
whether all the facts in the given claim are supported
by the given evidence using your knowledge.
Choose one of {True, False}, and output the one-sentence
explanation for the choice. "
},{
"role":"user", "content":
'''
TASK:
Now let’s verify the Claim based on the evidence.
Claim:
< < < Well, The celestial body known as 1097 Vicia has a
mass of 4.1kg.> > >

#Answer Template:
"True/False (single word answer),
One-sentence evidence."
'''
}]

Figure 2: Example prompt given to Llama3-Instruct
without evidence for zero-shot fact-checking.
< < < ... > > > signs are added just to indicate that the content
inside is different for each prompt.

[{
"role":"system", "content":
"You are an intelligent graph connection finder. You
are given a single claim and connection options for the
entities present in the claim. Your task is to filter
the Connections options that could be relevant to connect
given entities to fact-check Claim1. ~ (tilde) in the
beginning means the reverse connection. "
},{
"role":"user", "content":
'''
Claim1:
<<<Well, The celestial body known as 1097 Vicia has a
mass of 4.1kg.>>>

TASK:
- For each of the given entities given in the DICT
structure below:

Filter the connections strictly from the given
options that would be relevant to connect given entities
to fact-check Claim1.
- Think clever, there could be multi-step hidden
connections, if not direct, that could connect the
entities somehow.
- Prioritize connections among entities and arrange them
based on their relevance. Be extra careful with ~ signs.
- No code output. No explanation. Output only valid python
DICT of structure:

{
<<<
"1097_Vicia": ["...", "...", ...],
options (strictly choose from): discovered, formerName,
epoch, periapsis, apoapsis, ..., Planet/temperature

"4.1": ["...", "...", ...],
options (strictly choose from): ~length, ~ethnicGroups,
~percentageOfAreaWater, ~populationDensity, ~engine,
..., ~number
}
>>>
'''
}]

Figure 3: Example prompt given to Llama3-Instruct to
filter potential connections between entities based on a
given claim.

3.3 Graph Filtering

The graph filtering is divided into two main stages:

3.3.1 Filtering Possible Connections
This stage involves utilizing an LLM, particularly
the Llama3-Instruct model, to identify and filter
potential connections between entities based on a

given claim. The detailed steps are as follows:
Data Preparation Entity sets and their possible

connections are extracted from the KG (DBpedia).
Each entity and its associated possible connections
form the initial input for the LLM.

LLM Integration The LLM is tasked with
identifying relevant connections for each entity in
the specific claim. The process involves:

1. Encoding each entity and its possible
connections into a structured format suitable
for the LLM.

2. Utilizing the LLM’s inference capabilities to
filter out irrelevant connections based on the
context provided by the claim.

3. Generating a filtered set of connections in a
structured format, which is then evaluated for
completeness and relevance.

An example of the prompt used with LLM in
Stage-I is shown in Figure 3. Prompts are crafted
through iterative testing and refinement, aiming to
optimize results and performance.

Handling Invalid LLM Response A retry
mechanism is implemented to handle potential
failures in LLM responses. If the LLM output is
inadequate (e.g., empty or nonsensical), the request
is retried up to a specified maximum number of
attempts, typically 10. Throughout this experiment,
however, we did not encounter any cases where the
retry exceeded this limit.

3.3.2 Fuzzy Relation Mining
The LLM-filtered connections are then validated
against the KG to ensure their existence and
relevance. This involves:

1. Stage-I: Checking each connection filtered
using LLM against the KG to confirm
its validity. For each connection in the
entities, perform fuzzy matching using
Levenshtein distance to match entities
in the first-hop relation of the graph.
This approach accommodates speckling and
reverse connection errors.

2. Stage-II: Matching potential connections
fuzzily, while considering reverse
relationships and similarities across all
the one-hop connections in the knowledge
graph of all entities within the claims.

The details are explained in Algorithm 1.

124

Algorithm 1 Relationship Mining with Validation
1: Input: A - dictionary of entities with their connections, G: Graph
2: Output: probable_connections- dictionary of entities with

updated and validated connections

3: procedure VALIDATERELATION(A)
4: Initialize: probable_connections: {}

5: — Stage-I —

6: for each entity, connections in A do
7: Retrieve: all one_hop_connections for entity G
8: for each connection in connections do
9: Fuzzily match from one_hop_connections

10: Filter matches with a similarity score greater than 90
11: Update entity in probable_connections
12: end for
13: end for
14: — Stage-II (optional) —

15: all_connections = all connections in probable_connections
16: for each entity, connections in probable_connections do
17: Retrieve: all one_hop_connections for entity G
18: for each connection in all_connections do
19: Fuzzily match from one_hop_connections
20: Filter matches with a similarity score greater than 90
21: Update entity in probable_connections
22: end for
23: end for
24: end procedure

3.4 With Evidence Classifier

In this configuration, the model is supplied with
both the claim and graphical evidence as input,
and it then makes predictions regarding the label.
FactGenius utilizes graph filtering, as explained in
Section 3.3, to ensure retention of the most relevant
and accurate connections.

3.5 Zero-shot LLM as Fact Classifier

This involves utilizing Llama-3-Instruct as a fact
classifier, to predict Supported or Refuted for the
given input claim and evidence. A retry mechanism
is implemented to handle potential failures in LLM
responses. A prompt example with evidence is
shown in Figure 4.

3.6 Fine-tuning pre-trained models

Pre-trained BERT-base-uncased3 and RoBERTa-
base are finetuned with claim and evidence as
inputs to predict whether the claim is supported
or refuted. In addition, an ablation evaluates
the contributions of each stage of our approach.
This involved sequentially removing Stage-II and
measuring the performance of the system after
the removal. The results of the ablation study

3huggingface.co/google-bert/bert-base-uncased

allowed us to quantify the impact of both stages on
the overall performance of the model. Accuracy
as an evaluation metric across all reasoning
types was employed to quantify the performance
improvements resulting from the ablation study.

[{
"role":"system", "content":
"You are an intelligent fact-checker. You are given a
single claim and supporting evidence for the entities
present in the claim, extracted from a knowledge graph.
Your task is to decide whether all the facts in the given
claim are supported by the given evidence.
Choose one of {True, False}, and output the one-sentence
explanation for the choice. "
},{
"role":"user", "content":
'''
TASK:
Now let’s verify the Claim based on the evidence.
Claim:
< < < Well, The celestial body known as 1097 Vicia has a
mass of 4.1kg.> > >

Evidences:
< < <
1999_Hirayama >- mass -> ""4.1""
1097_Vicia >- mass -> ""9.8"""
> > >

#Answer Template:
"True/False (single word answer),
One-sentence evidence."
'''
}]

Figure 4: Example prompt given to Llama3-Instruct
with evidence for zero-shot fact-checking.

3.7 Implementation

Our FactGenius system implementation leverages
several advanced tools and frameworks to
ensure efficient and scalable processing. The
Llama3-Instruct inference server is set up using
vLLM (vLLM Project, 2024; Kwon et al., 2023),
running on an NVIDIA A100 GPU (80 GB
vRAM) to facilitate rapid inference. This server
runs standalone, integrating seamlessly with the
FactGenius pipeline.

For model fine-tuning and evaluation, we employ
the Hugging Face Transformers library, utilizing
the Trainer class for managing the training
process. This setup allows for the fine-tuning
of pre-trained models like BERT and RoBERTa
on our pipeline. Hyper-parameters such as
batch size, learning rate, and training epochs
are configured to optimize performance, with
computations accelerated by PyTorch.

125

4 Results

To evaluate the performance of our proposed
methods, we conducted a series of experiments
comparing different strategies for fact-checking.
The results are summarized in Table 2.

Figure 5: ROC curve (top) illustrates classifier
discrimination ability with AUC 0.92, while Precision-
Recall curve (bottom) reveals precision across recall
levels for the best model in the test dataset.

4.1 Baseline and Claim Only Models
This achieved an accuracy of 0.61, demonstrating
the inherent knowledge embedded within
the Llama3 about the facts in our corpus.
Adding evidence to the Llama3-Instruct model’s
instructions significantly improved its accuracy
from 0.61 to 0.68. This reflects the trivial
phenomenon that, incorporating relevant evidence
can enhance fact-checking performance in a
zero-shot learning scenario where the performance
is mostly dependent on knowledge embedded in
the model.

4.2 Comparison of Different Models
We compared the performance of RoBERTa, under
the claim-only scenario. RoBERTa outperformed
the reported accuracy of BERT (Kim et al., 2023b),

achieving an accuracy of 0.68, which is on par
with the 12-shot ChatGPT model reported in the
KG-GPT paper (Kim et al., 2023a). This suggests
that RoBERTa is a highly effective model for fact-
checking tasks.

4.3 Incorporating Evidence with FactGenius
We employed a zero-shot prompting technique
to filter relevant connections from the evidence,
followed by fuzzy matching across multiple
stages. This approach enabled us to retrieve
evidence by searching over the graph. However,
directly applying zero-shot prompting with Llama3-
Instruct, even with evidence, did not yield superior
performance. When using fine-tuned BERT as
a classifier, the performance was comparable to
the 12-shot KG-GPT model. However, fine-tuning
RoBERTa led to a significant performance boost,
achieving an accuracy of 0.85, the highest among
all models tested, even surpassing the GEAR
baseline(Zhou et al., 2019), which enhances fact
verification by using a graph-based approach to
aggregate and reason over multiple pieces of
evidence.

4.4 Two-Stage Approach
To assess the contribution of our two-stage
approach, we first apply only the first-stage graph
filtering method (Stage-I) to filter the relationships,
which achieved an accuracy of 0.83. Incorporating
the second stage (Stage-II) further improved the
performance to 0.85. The second stage particularly
enhanced performance across all reasoning types,
with notable improvements in conjunction and
negation tasks. Interestingly, for the existence
reasoning type, the BERT classifier performed on
par with the best models, indicating its robustness
for this specific task.

4.5 Overall Performance
FactGenius with a fine-tuned classifier,
demonstrated superior performance across all
reasoning types compared to previously reported
accuracies. This validates the effectiveness of
our multi-stage evidence retrieval and classifier
fine-tuning approach in improving fact-checking
accuracy. Refer to Figure 5 for the ROC and
Precision-Recall curves illustrating the classifier
performance of the best FactGenius variant
with two-stage filtering relationship mining and
fine-tuned RoBERTa classifier and to Table 3 and
4 for the classification report and confusion matrix,
respectively.

126

Table 2: Comparing our method with other strategies and methods in terms of reported accuracies in the test set.
* indicates results obtained from KG-GPT paper (Kim et al., 2023a).

Input type Model Variants One-hop Conjunction Existence Multi-hop Negation Total

Claim Only

baseline Llama3-Instruct-zero-shot 0.61 0.67 0.59 0.61 0.53 0.61

Fact-KG BERT* 0.69 0.63 0.61 0.70 0.63 0.65

KG-GPT ChatGPT (12-shot)* - - - - - 0.68

baseline RoBERTa 0.71 0.72 0.52 0.74 0.54 0.68

With Evidence

Fact-KG GEAR* 0.83 0.77 0.81 0.68 0.79 0.77

KG-GPT KG-GPT (12-shot)* - - - - - 0.72

FactGenius

Llama3-Instruct-zero-shot 0.72 0.75 0.76 0.62 0.52 0.68

BERT-two-stage 0.75 0.67 0.94 0.66 0.79 0.72

RoBERTa-single-stage 0.87 0.82 0.94 0.75 0.84 0.83

RoBERTa-two-stage 0.89 0.85 0.95 0.75 0.87 0.85

Table 3: Classification report for the best model across
the test dataset.

Precision Recall F1 Support

Refuted 0.81 0.93 0.86 4643
Supported 0.91 0.77 0.83 4398

Accuracy 0.86 0.85 0.85 9041
(average)

Table 4: Confusion matrix for the best model across the
test dataset.

Predicted
Refuted Supported

Actual Refuted 4315 328
Supported 1031 3367

5 Discussion

The improved performance of FactGenius,
particularly in Conjunction, Existence, and
Negation reasoning, can be attributed to its
innovative combination of zero-shot prompting
with large language models and fuzzy text
matching on knowledge graphs.

The two-stage approach, which involves an
initial filtering phase followed by a validation
phase, significantly enhances accuracy. However,
the model shows moderate performance
improvement in Multi-hop reasoning, indicating
the need for more advanced techniques to handle
its complexity.

The two-stage approach of filtering and
validating connections proved to be particularly
effective. In the first stage, the LLM helps to
narrow down potential connections based on the

context provided by the claim. This initial filtering
significantly reduces the search space, making the
subsequent validation stage more efficient. The
second stage further refines these connections
through fuzzy matching, ensuring that only the
most relevant and accurate connections are retained.
The comparative study confirmed the importance
of each stage, showing that the second stage
particularly enhances performance in conjunction
and negation reasoning tasks.

As having an LLM inference server is a crucial
component of this framework, we employed
vLLM (vLLM Project, 2024) to streamline rapid
inference with a single NVIDIA A100 GPU. In our
experiment, the LLM inference speed was around
15 queries per second, including retries in case of
failure. This rate is feasible, considering that LLM
inference is continually optimized with the latest
technologies. Embedding LLM in a framework has
proven to be a wise choice.

6 Conclusion

In this paper, we introduced FactGenius, a novel
method that combines zero-shot prompting of large
language models with fuzzy relation mining for
superior reasoning on knowledge graphs. This
approach addresses several key challenges in
traditional fact-checking methods. First, the
integration of LLMs allows for the leveraging of
extensive pre-trained knowledge, which is crucial
for understanding and verifying complex claims
through structured data from DBpedia. Second,
the use of fuzzy text matching with Levenshtein
distance ensures that minor discrepancies in
entity names or relationships do not hinder the
relationship selection process, thus improving
robustness.

127

Our experiments on the FactKG dataset
demonstrated that FactGenius significantly
outperforms traditional fact-checking methods and
existing baselines, particularly when fine-tuning
RoBERTa as a classifier. The two-stage approach
of filtering and validating connections proved
crucial for achieving high accuracy across different
reasoning types. This underscores the potential
of FactGenius to improve fact-checking accuracy
without requiring complex stages and components.

The findings from this study suggest that
integrating LLMs with structured knowledge
graphs and fuzzy matching techniques holds great
promise for advancing fact-checking capabilities.
Future work could explore the application of this
approach to other domains and datasets, as well as
the potential for incorporating additional sources
of structured data to further enhance performance.

By improving the accuracy and efficiency
of fact-checking, FactGenius contributes to the
broader effort of combating misinformation and
ensuring the reliability of information in digital
communication.

Acknowledgement

This work has benefited from the Experimental
Infrastructure for Exploration of Exascale
Computing (eX3) at Simula, which is financially
supported by the Research Council of Norway.

References
Ziwei Chai, Tianjie Zhang, Liang Wu, Kaiqiao

Han, Xiaohai Hu, Xuanwen Huang, et al. 2023.
GraphLLM: Boosting Graph Reasoning Ability of
Large Language Model. arXiv.

Eun Cheol Choi and Emilio Ferrara. 2024. FACT-GPT:
Fact-Checking Augmentation via Claim Matching
with LLMs. In WWW ’24: Companion Proceedings
of the ACM on Web Conference 2024, pages 883–886.
Association for Computing Machinery, New York,
NY, USA.

Kelley Cotter, Julia R. DeCook, and Shaheen
Kanthawala. 2022. Fact-Checking the
Crisis: COVID-19, Infodemics, and the
Platformization of Truth. Social Media + Society,
8(1):20563051211069048.

Jiaxi Cui, Zongjian Li, Yang Yan, Bohua Chen, and
Li Yuan. 2023. ChatLaw: Open-Source Legal
Large Language Model with Integrated External
Knowledge Bases. arXiv.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training
of Deep Bidirectional Transformers for Language
Understanding. ACL Anthology, pages 4171–4186.

Yan Ding, Xiaohan Zhang, Saeid Amiri, Nieqing Cao,
Hao Yang, Andy Kaminski, et al. 2023. Integrating
action knowledge and LLMs for task planning and
situation handling in open worlds. Auton. Robot.,
47(8):981–997.

Zhijiang Guo, Michael Schlichtkrull, and Andreas
Vlachos. 2022. A Survey on Automated Fact-
Checking. Transactions of the Association for
Computational Linguistics, 10:178–206.

Zishan Guo, Renren Jin, Chuang Liu, Yufei Huang,
Dan Shi, Supryadi, et al. 2023. Evaluating Large
Language Models: A Comprehensive Survey. arXiv.

Aidan Hogan, Eva Blomqvist, Michael Cochez, Claudia
D’amato, Gerard De Melo, Claudio Gutierrez, et al.
2021. Knowledge Graphs. ACM Comput. Surv.,
54(4):1–37.

Jiho Kim, Yeonsu Kwon, Yohan Jo, and Edward
Choi. 2023a. KG-GPT: A General Framework
for Reasoning on Knowledge Graphs Using Large
Language Models. ACL Anthology, pages 9410–
9421.

Jiho Kim, Sungjin Park, Yeonsu Kwon, Yohan Jo, James
Thorne, and Edward Choi. 2023b. FactKG: Fact
Verification via Reasoning on Knowledge Graphs.
ACL Anthology, pages 16190–16206.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, et al. 2023.
Efficient Memory Management for Large Language
Model Serving with PagedAttention. In SOSP ’23:
Proceedings of the 29th Symposium on Operating
Systems Principles, pages 611–626. Association for
Computing Machinery, New York, NY, USA.

Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch,
Dimitris Kontokostas, Pablo N. Mendes, et al. 2015.
DBpedia – A large-scale, multilingual knowledge
base extracted from Wikipedia. Semantic Web,
6(2):167–195.

Vladimir I Levenshtein et al. 1966. Binary codes
capable of correcting deletions, insertions, and
reversals. In Soviet physics doklady, volume 10,
pages 707–710. Soviet Union.

Xinze Li, Yixin Cao2, Liangming Pan, Yubo Ma, and
Aixin Sun. 2023. Towards Verifiable Generation: A
Benchmark for Knowledge-aware Language Model
Attribution. arXiv.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du,
Mandar Joshi, Danqi Chen, et al. 2019. RoBERTa:
A Robustly Optimized BERT Pretraining Approach.
arXiv.

Robert L. Logan Iv, Nelson F. Liu, Matthew E. Peters,
Matt Gardner, and Sameer Singh. 2019. Barack’s
Wife Hillary: Using Knowledge-Graphs for Fact-
Aware Language Modeling. arXiv.

Meta. 2024. Meta Llama 3. [Online;
https://llama.meta.com/llama3].

128

Preslav Nakov, David Corney, Maram Hasanain, Firoj
Alam, Tamer Elsayed, Alberto Barrón-Cedeño,
et al. 2021. Automated Fact-Checking for
Assisting Human Fact-Checkers. In Proceedings
of the Thirtieth International Joint Conference
onArtificial Intelligence, {IJCAI-21}, pages 4551–
4558. International Joint Conferences on Artificial
Intelligence Organization.

Gonzalo Navarro. 2001. A guided tour to approximate
string matching. ACM Comput. Surv., 33(1):31–88.

Stefanos-Iordanis Papadopoulos, Christos Koutlis,
Symeon Papadopoulos, and Panagiotis C.
Petrantonakis. 2024. VERITE: a Robust benchmark
for multimodal misinformation detection accounting
for unimodal bias. Int. J. Multimed. Info. Retr.,
13(1):1–15.

Estela Saquete, David Tomás, Paloma Moreda,
Patricio Martínez-Barco, and Manuel Palomar. 2020.
Fighting post-truth using natural language processing:
A review and open challenges. Expert Syst. Appl.,
141:112943.

James Thorne, Andreas Vlachos, Christos
Christodoulopoulos, and Arpit Mittal. 2018.
FEVER: a Large-scale Dataset for Fact Extraction
and VERification. ACL Anthology, pages 809–819.

vLLM Project. 2024. vLLM. [Online;
https://github.com/vllm-project/vllm].

Yu Wang, Nedim Lipka, Ryan A. Rossi, Alexa Siu,
Ruiyi Zhang, and Tyler Derr. 2024. Knowledge
Graph Prompting for Multi-Document Question
Answering. AAAI, 38(17):19206–19214.

Jingfeng Yang, Hongye Jin, Ruixiang Tang, Xiaotian
Han, Qizhang Feng, Haoming Jiang, et al. 2024.
Harnessing the Power of LLMs in Practice: A Survey
on ChatGPT and Beyond. ACM Trans. Knowl.
Discovery Data, 18(6):1–32.

Liang Yao, Chengsheng Mao, and Yuan Luo. 2019.
KG-BERT: BERT for Knowledge Graph Completion.
arXiv.

Xia Zeng, Amani S. Abumansour, and Arkaitz Zubiaga.
2021. Automated fact-checking: A survey. Lang.
Linguist. Compass, 15(10):e12438.

Jie Zhou, Xu Han, Cheng Yang, Zhiyuan Liu, Lifeng
Wang, Changcheng Li, et al. 2019. GEAR: Graph-
based Evidence Aggregating and Reasoning for Fact
Verification. ACL Anthology, pages 892–901.

129

130

Fact or Fiction? Exploring Diverse Approaches to Fact Verification with
Language Models

Tobias Opsahl
University of Oslo
tobiasao@uio.no

Abstract

Recent advancements in natural language pro-
cessing (NLP) have greatly improved the per-
formance of language reasoning and generat-
ing. However, a well known shortcoming of
language models is that they tend to generate
information that is untrue, referred to as hal-
lucinations. In order to improve the correct-
ness of language models, we improve the per-
formance and the computational efficiency of
models trained on classifying claims as true
or false. We use the FACTKG dataset, which
is constructed from the DBpedia knowledge
graph extracted from Wikipedia. We create
fine-tuned text models and hybrid graph and
text models that significantly outperform the
benchmark FACTKG models, both with respect
to test-set accuracy and training time. The
increase in performance and efficiency stems
from simplifying the methods for retrieving
subgraphs, using simple logical retrievals rather
than fine-tuned language models. Finally, we
construct prompts to ChatGPT 4o that achieves
decent performance, but without the need of
fine-tuning.

1 Introduction

The field of NLP has greatly improved with the
transformer architecture (Vaswani et al., 2017) and
vastly scaling up model parameters and training
data (Achiam et al., 2023; Bubeck et al., 2023).
Large language models (LLMs) trained on a sub-
stantial part of all internet data have passed bench-
marks as passing the BAR exam (Katz et al., 2024),
follow precise and complex coding instructions
(Bubeck et al., 2023) and perform data analyst
tasks with the same performance as human experts
(Cheng et al., 2023). Despite this improvement,
state of the art language models still struggle with
basic planning (Bubeck et al., 2023) and frequently
generates false information, known as hallucina-
tion (Xu et al., 2024; Huang et al., 2023; Zhang
et al., 2023). In order to mitigate hallucination, we

Figure 1: An example claim from FACTKG (Kim et al.,
2023). The claim can be verified or refuted based on the
DBpedia KG (Lehmann et al., 2015). This is Figure 1
from Kim et al. (2023).

believe it is crucial to be able to classify which
information is correct and which is not. Therefore,
we dedicate this article to explore models used for
fact verification.

One way of structurally working with knowledge
is with knowledge graphs (KGs). They consist
of nodes and edges linked together to represent
structural concepts. The DBpedia KG (Lehmann
et al., 2015) is a large KG extracted from Wikipedia.
Nodes represent entities, such as persons, things
or events, and edges represent relations, conveying
how entities are related, as shown in Figure 1. For
instance, a node can be the company Meyer Werft,
and since it is located in the city Papenburg, they
are connected with the edge location. We refer to
Meyer Werft, location, Papenburg as a knowledge
triple.

We propose models trained on FACTKG (Kim
et al., 2023), a dataset proposed to better utilise
knowledge graphs with fact verification (see Fig-
ure 1). It consists of 108 000 English claims that
are extracted from the DBpedia knowledge graph.
About a third of the claims are manually written,

131

while the rest are generated from the written claims
to be a colloquial form by a language model. The
train and validation datasets are equipped with rel-
evant subgraphs for each claim, which one can use
to train subgraph retrieval.

In order to work with fact verification, we will
work with three main model architectures:

• Textual Fine-tuning: Fine-tuning pretrained
encoder models on text data for claim verifi-
cation. We use BERT (Devlin et al., 2018)
by concatenating the claims with subgraphs
represented as strings.

• Hybrid Graph-Language Model: Using
a modification of a Question answer graph
neural network (QA-GNN) (Yasunaga et al.,
2021), which both uses a pretrained encoder
model to embed the claim, and a GNN to struc-
turally process the subgraphs.

• LLM Prompting: Deploying state-of-the-art
language models in a few-shot setting, without
the need for additional finetuning. We use
ChatGPT 4o (Achiam et al., 2023; Open AI,
2024) for this setting.

We selected these three approaches to explore a
variety of different models used in NLP, and com-
pare how they perform on fact verification. The
text-based finetuning, which is a widely used tech-
nique, serves as a conventional method. The QA-
GNN architecture is a more specific model for this
task, that can efficiently process graph data. We
explore various ways to retrieve relevant subgraphs
that do not require training of language models, to
make the QA-GNN train even more efficiently. In
contrast, the LLM prompting displays how gen-
eral purpose language models can be used for fact
verification, without the need of further training.

By utilising efficient subgraph retrieval methods,
we are able to substantially increase the test-set
accuracy on FACTKG from 77.65% (Kim et al.,
2023) to 93.49%. Additionally, our models train
quicker, taking only 1.5-10 hours, compared to the
2-3 days spent on the benchmark model from (Kim
et al., 2023).

The code and documentation can be found
at https://github.uio.no/tobiasao/IN5550_
tobiasao/tree/main/home-exam.

2 Related Work

2.1 The FactKG Dataset
The FACTKG dataset (Kim et al., 2023) consists of
108 000 English claims for fact verification, where
the downstream task is to predict whether the claim
is true or false. The claims are constructed from
the DBpedia KG (Lehmann et al., 2015), which
is extracted from Wikipedia and represents how
entities are related to each other.

The claims are constructed on the following five
reasoning types:

• One-hop: To answer a one-hop claim, one
only needs to traverse one edge in the KG.
In other words, only one knowledge triple is
needed to verify the validity of the claim.

• Multi-hop: As opposed to one-hop claims,
one need to traverse multiple steps in the KG
to verify multi-hop claims.

• Conjunction: The claim includes a combina-
tion of multiple claims, which are often added
together with the word and.

• Existence: These claims state that an entity
has a relation, but does not specify which en-
tity it relates to.

• Negation: The claim contains negations, such
as not. The generation process varies depend-
ing on the reasoning type of the claim.

The dataset is split in a train-validation-test set
of proportion 8:1:1. The train and validation set
includes relevant subgraphs for each claim, but not
the test set. All claims include a list of entities
present in the claim and the KG.

2.2 Question Answer Graph Neural Networks
(QA-GNNs)

The QA-GNN (Yasunaga et al., 2021) is a hybrid
language and GNN model that both uses a pre-
trained language model to process the text, and
couples it with a GNN reasoning over a subgraph.
It is given text and a subgraph as input. The text,
consisting of a question and possible answers, is
added as a node to the subgraph. The language
model embeds the text, and assigns a relevance
score to each node in the subgraph. The relevance
scores are multiplied with the node features, be-
fore being sent into the GNN. The GNN output,
text-node and the text embedding are concatenated
before being put into the classification layer.

132

3 Methods

3.1 Efficient Subgraph Retrieval

We experiment with different ways of retrieving
a relevant subgraph for each claim, focusing on
computational efficiency. Each datapoint in the
FACTKG dataset consists of a claim and a list of
entities that appear both in the claim and the KG.
Since the part of DBpedia used in FactKG is fairly
large (1.53GB), it is necessary to only use a small
subgraph of it as input to the models. The bench-
mark model from Kim et al. (2023) uses two lan-
guage models to predict the relevant edges and the
depth of the graph. We wish to simplify this step in
order to reduce the model complexity, and propose
non-trainable methods for subgraph retrieval.

We experiment with the following methods (ex-
amples can be found in Figure 2):

• Direct: Only includes knowledge triples
where both nodes are present in the entity list.

• Contextualized: First, include all direct sub-
graphs. Additionally, lemmatize the words in
the claim and check if the nodes in the entity
list have any relations corresponding to the
lemmatized words in the claim. Include all
knowledge triples where at least one node is
in the entity list, and the relation is found in
the claim.

• Single-step: Includes every knowledge triple
one can be traversed in one step from a node
in the entity list. In other words, include every
knowledge triple that contains at least one
node in the entity list.

3.2 Finetuning BERT

We use BERT (Devlin et al., 2018) as our pre-
trained language model. We fine-tune it with both
the claims only, and with claims and various sub-
graphs. We convert the subgraphs to strings, where
each knowledge triple is represented with square
brackets, and the name of the nodes and edges are
the same as they appear in DBpedia. The order of
the knowledge triples are determined by the order
of the list of entities in the FactKG dataset and the
order of the edges in DBpedia. The subgraphs are
concatenated after the claims and a “ | ” separation
token.

Figure 2: Examples of the different subgraphs ex-
plored in this article. Boxes and bold letters represent
entities, while arrows and italic letters represent rela-
tions. This claim is meant for illustrative purposes and
is not present in the FACTKG dataset.

3.3 QA-GNN Architecture

In order to adapt the QA-GNN to the fact verifica-
tion setting, we perform some slight modifications.
Because the possible answers are always “true” or
“false”, we embed only the claims, instead of the
question and answer combination. Additionally,
we do not connect the embedded question or claim
to the subgraph, but use the subgraph as it is from
the retrieval.

We use a pre-trained BERT (Devlin et al., 2018)
model as the language model to embed and calcu-
late the relevance scores. In order to reduce the
complexity of the model, we use a frozen BERT
to calculate the embeddings for the nodes and the
edges in the graph graph. This way, all of the em-
beddings in the graph can be pre-calculated. We
use the last hidden layer representation of the CLS
token, which is of length 768. The BERT that
calculates the relevance scores and the embedding
of the claim is not frozen. The relevance scores
are computed as the cosine similarity between the
claim embedding and the embedding of the text in
the nodes.

133

Input Type Model One-hop Conjunction Existence Multi-hop Negation Total

Claim Only
FACTKG BERT Benchmark 69.64 63.31 61.84 70.06 63.62 65.20

BERT (no subgraphs) 67.71 67.48 62.51 73.28 64.23 68.99

With Subgraphs
FACTKG GEAR Benchmark 83.23 77.68 81.61 68.84 79.41 77.65

QA-GNN (single-step) 79.08 74.43 83.37 74.72 79.60 78.08
BERT (single-step) 97.40 97.51 97.31 80.32 92.54 93.49

Table 1: Test-set accuracy for the best models from this article and the best benchmark models from (Kim
et al., 2023). The fine-tuned BERT model performed the best, while the QA-GNN was the computationally most
efficient model.

We use a graph attention network (Veličković
et al., 2017) for our GNN. Since the subgraphs are
quite shallow, we only use two layers in the GNN.
Each layer has 256 features, which is mean-pooled
and concatenated with the BERT embedding and
sent into the classification layer. We add dropout
(Srivastava et al., 2014) to the GNN layers and the
classification layer.

3.4 ChatGPT Prompting

We construct a prompt for ChatGPT 4o in order to
answer a list of claims as accurately as possible.
This is done by creating an initial prompt and vali-
dating the results on 100 randomly drawn claims
from the validation set, and by trying different con-
figurations of the prompt until we do not get a
better validation set accuracy. We then use the best
prompt with 100 randomly drawn unseen test-set
questions, and attempt to ask 25, 50 and 100 claims
at a time, to see if the amount of claims at a time
influences the performance. All the experiments
are run three times.

Since we do not have access to vast enough com-
putational resources to run an LLM, this analysis
is limited by only using 100 datapoints from the
test set. In order to get access to a state-of-the-art
LLM, we used the ChatGPT website with a “Chat-
GPT Plus” subscription to perform the prompting.
This model is not seeded, so the exact answers
are not reproducible, but every prompt and answer
are available in the GitHub repository. We used
the ChatGPT 4o model 30th of May 2024. Every
prompt was performed in the “temporary chat” set-
ting, so the model did not have access to the history
of previous experiments.

Due to the inability to use the entire test set and
the lack of reproducibility, we do not directly com-
pare this experiment to the other models. However,
we still believe it serves as a valuable benchmark.
Recently, the performance of LLMs has rapidly im-
proved, which suggests that their applications will
continue to broaden. Additionally, this approach

is not fine-tuned, and may work as an interesting
benchmark that can contextualise the results of the
other models.

3.5 Benchmark Models

We will compare the results against the best bench-
mark models from (Kim et al., 2023). The first
model is a fine-tuned BERT using only the claims,
without incorporating the KG. The model utilising
the KG is inspired by GEAR (Zhou et al., 2019),
which has been adapted to handle graph-based ev-
idence. It uses two fine-tuned language models
to retrieve the subgraphs. One of them predicts
relevant edges, the other predicts the depth of the
subgraph.

3.6 Further Details

We use an AdamW optimizer (Loshchilov and Hut-
ter, 2017) with a linear learning rate scheduler. We
used the UiO USIT ML nodes (University Cen-
tre for Information Technology, 2023), where we
trained on RTX 2080Ti GPUs.

4 Results: Improved Performance and
Efficiency

The test results for our best model configurations
and the benchmark models can be found in Table 1.
We see that all of our models outperform the bench-
mark model with respect to test set accuracy. The
best performing model is the fine-tuned BERT, fol-
lowed by the QA-GNN and the benchmark models.
The fine-tuned BERT without any subgraphs were
able to achieve higher performance than the one
from (Kim et al., 2023).

Additionally, our models were much faster to
train. While the GEAR model used 2-3 days to
train on an RTX3090 GPU (reported by the authors
by email), our QA-GNN only used 1.5 hours. The
training time of our fine-tuned BERT model was
greatly influenced by the size of the subgraphs we
used. With no subgraphs, it took about 2 hours to

134

Model One-hop Conjunction Existence Multi-hop Negation Total
BERT (no subgraphs) 67.71 67.48 62.51 73.28 64.23 68.99

BERT (direct) 80.24 83.30 59.05 77.62 74.58 79.64
BERT (contextual) 81.20 84.45 61.05 77.04 77.40 80.25
BERT (single-step) 97.40 97.51 97.31 80.32 92.54 93.49
QA-GNN (direct) 74.60 74.01 58.97 76.41 74.12 75.01

QA-GNN (contextual) 76.58 69.94 84.68 74.58 80.75 76.12
QA-GNN (single-step) 79.08 74.43 83.37 74.72 79.60 78.08

Table 2: Test-set accuracy for different subgraph retrieval methods on FACTKG. The direct approach only
includes knowledge triples where both nodes appear in the claim, the contextual also includes edges appearing
in the claim, and the single-step includes all knowledge triples where at least one node appear in the claim. The
QA-GNN models use the single-step subgraph if the direct or contextual is empty, while the BERT does not.

train, while with the one-hop subgraph it took 10
hours.

4.1 Successful Subgraphs Retrievals

We now look at the different configurations for
the subgraph retrievals, which greatly influenced
the performance of the models. Since the direct
and contextual approach only includes subgraphs
if a certain requirement is fulfilled, they will result
in some of the claims having empty subgraphs.
In the training and validation set, 49.0% of the
graphs were non-empty for the direct approach, and
62.5% were non-empty for the contextual approach.
The single-step method resulted in vastly bigger
subgraphs.

While the QA-GNN could handle the big
subgraphs efficiently, the fine-tuned BERT was
severely slowed down when the size of the sub-
graphs got bigger. Therefore, we substituted any
empty subgraphs with the single-step subgraph
when using QA-GNN, but kept the empty graphs
when using fine-tuned BERT.

The results can be found in Table 2. We see a
clear improvement in BERT when using the direct
subgraphs over none, a small improvement when
using the contextual subgraphs, and a big improve-
ment when using the single-step method. The same
is true for the QA-GNN, but the differences in per-
formance are smaller.

Since we used non-trainable subgraph retrieval
methods and a frozen BERT for embedding the
nodes and edges in the subgraphs, we performed
this processing before training the models. During
training, the models used a lookup table to get the
subgraphs and the word embeddings, which signif-
icantly decreased the training time. The retrieval
of all the subgraphs took about 15 minutes, and the
embedding of all the words appearing in them took

about 1 hour. We also tried training a QA-GNN
without frozen embeddings, but it ran so slow that
we were not able to carry out the training with our
available computational resources.

4.2 ChatGPT Works Better when Asking for
Explanations

The results for the ChatGPT prompting can be
found in Table 3. The accuracy is substantially
lower than from our best models, but not too far
from the benchmark models. The accuracy is fairly
consistent over the three runs, and we do not see
a big difference between the amount of questions
asked at a time.

Model Accuracy (mean ± std)
ChatGPT 25 questions 73.67 ± 0.5
ChatGPT 50 questions 76.33 ± 3.3
ChatGPT 100 questions 73.00 ± 1.4

Table 3: Test-set accuracy for different configurations
of ChatGPT prompting. The metrics are averaged over
three runs. The prompts included 25, 50 or 100 claims
at a time, but the same claims were used in all of the
configurations.

We started with an initial prompt asking for just
the truth values for a list of claims, and updated
it to also include some training examples and to
ask for explanations. Several configurations of the
prompt were tested, and it was also improved based
on feedback from ChatGPT.

We saw the biggest improvement when we asked
for a short explanation of the answers, instead of
just the truth values. Without asking for explana-
tions, the amount of answers were often longer or
shorter than the amount of questions, but this never
happened when explanations were included. We
added numbers to the questions to further help with
this issue. We also saw a slight improvement by

135

Task:
Determine the truth value (True or False) of the following claims based on information verifiable from Wikipedia, as represented
in the DBpedia knowledge graph. Provide your answers without using real-time internet searches or code analysis, relying
solely on your pre-trained knowledge.
Instructions:

• You will evaluate the following claims, presented one per line.

• Base your answers solely on your knowledge as of your last training cut-off.

• Provide answers in Python list syntax for easy copying.

• Respond with True for verifiable claims, and False otherwise.

• Include a brief explanation for each answer, explaining your reasoning based on your pre-training.

• If the claim is vague or lacks specific information, please make an educated guess on whether it is likely to be True or
False.

Output Format: Format your responses as a list in Python. Each entry should be a tuple, formatted as (claim number, answer,
explanation).
Example Claims:
1. The Atatürk Monument is located in Izmir, Turkey, where the capital is Ankara.
2. Yes, Eamonn Butler’s alma mater is the University of Texas System!
3. I have heard 300 North LaSalle was completed in 2009.
4. The band Clinton Gregory created an album in the rock style. ...
Example output:
[

(1, True, "The Atatürk Monument is indeed located in Izmir, and the capital of Turkey is Ankara."),
(2, False, "Eamonn Butler did not attend the University of Texas System; he is a British author and economist whose

educational background does not include this institution."),
(3, True, "300 North LaSalle in Chicago was indeed completed in 2009."),
(4, False, "Clinton Gregory is primarily known as a country music artist, not rock."),

...
]
Here are the actual claims you should answer:

Figure 3: Final prompt used to get truth values from ChatGPT 4o. The actual questions are not included, but
were in the format of the Example Claims. The Example Claims are from the training set, and the Example Output
is copy pasted from an actual ChatGPT answer.

formulating the prompt with bullet point lists in-
stead of just paragraphs, and by including some
example inputs and outputs from the training set.
The final prompt can be found in Figure 3.

5 Discussion

We were able to train better and more efficient mod-
els by simplifying the subgraph retrieval methods,
both by using a fine-tuned BERT and a slightly
modified QA-GNN model. While the QA-GNN
models trained the fastest, the fine-tuned BERT
clearly performed the best, significantly outper-
forming the benchmark models.

All of the models perform better the bigger the
subgraphs were. This suggests that the model archi-
tectures are able to utilise the relevant parts of the
subgraphs, without needing an advanced subgraph
retrieval step. This is emphasised by our fine-tuned
BERT model achieving a 93.49% test set accu-
racy by only using the single-step subgraphs, while

the GEAR model from (Kim et al., 2023), which
trained two language models to perform graph re-
trieval, achieved a 77.65% test-set accuracy.

One possible limitation of our subgraph retrial
methods is that they never include more than one
step away from an entity node, while the trained
approach from Kim et al. (2023) is dynamic and
may include more. This might make the hypothe-
sis that the simple subgraph retrieval methods will
perform worse on multi-hop claims than the dynam-
ically trained, however, we see the exact opposite
behaviour. The best BERT and QA-GNN models
score 80.32% and 74.72% at the multi-hop claims
respectively, while the dynamic benchmark model
scores 68.84%, even lower than the models not us-
ing the subgraphs at all. We do however see that
the best performing BERT model clearly performs
the worst on the multi-hop claims compared to the
other claim types, indicating that even bigger sub-
graphs might be beneficial.

136

While the sample size for the ChatGPT metrics
were small, it does indicate that non-fine-tuned
LLMs can achieve adequate few-shot performance.
The performance does not seem to be substan-
tially compromised when the amount of questions
prompted increases, so with a bigger access to com-
putational resources, it might be possible to prompt
the full test-set at once. The removal of fine-tuning
greatly increases the ease of use if one only needs
to verify a few claims. Therefore, despite not per-
forming as well as the trained model, this approach
could be useful if the performance of LLMs contin-
ues to increase.

6 Conclusion and Future Work

Our results show that with simple, yet efficient
methods for subgraph retrieval, our models were
able to improve with respect to both performance
and efficiency. The fine-tuned BERT model with
single-step subgraphs clearly achieves the best per-
formance, while the QA-GNN models are more
efficient to train.

This indicates that complex models with simple
subgraph retrieval methods perform better than the
opposite. Since the single-step subgraphs mostly
contain information not relevant for the claims, the
model is itself able to filter away irrelevant informa-
tion, and complex subgraph retrieval methods may
hence not be necessary for accurate fact verification.
Additionally, since the best performing model per-
formed the poorest with multi-hop claims, future
research could explore simple subgraphs retrieval
methods allowing for bigger depths than one.

We also encourage researchers that have access
to bigger computational resources to further ex-
plore the performance of LLMs for fact verification.
A core limitation of our ChatGPT prompting was
the inability to use the full test-set, and we consider
this crucial for further development. We also think
it would be especially interesting to make LLM and
KG hybrid models. Since our results indicate that
simple single-step subgraph retrievals outperform
more complex methods, a promising path would be
to simply use both the claims and the single-step
subgraphs as input to the LLM. If possible, the
LLM could also be fine-tuned on the dataset.

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama

Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,

Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Sébastien Bubeck, Varun Chandrasekaran, Ronen El-
dan, Johannes Gehrke, Eric Horvitz, Ece Kamar,
Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lund-
berg, et al. 2023. Sparks of artificial general intelli-
gence: Early experiments with gpt-4. arXiv preprint
arXiv:2303.12712.

Liying Cheng, Xingxuan Li, and Lidong Bing. 2023.
Is gpt-4 a good data analyst? arXiv preprint
arXiv:2305.15038.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong,
Zhangyin Feng, Haotian Wang, Qianglong Chen,
Weihua Peng, Xiaocheng Feng, Bing Qin, et al. 2023.
A survey on hallucination in large language models:
Principles, taxonomy, challenges, and open questions.
arXiv preprint arXiv:2311.05232.

Daniel Martin Katz, Michael James Bommarito, Shang
Gao, and Pablo Arredondo. 2024. Gpt-4 passes the
bar exam. Philosophical Transactions of the Royal
Society A, 382(2270):20230254.

Jiho Kim, Sungjin Park, Yeonsu Kwon, Yohan Jo, James
Thorne, and Edward Choi. 2023. Factkg: Fact veri-
fication via reasoning on knowledge graphs. arXiv
preprint arXiv:2305.06590.

Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch,
Dimitris Kontokostas, Pablo N Mendes, Sebastian
Hellmann, Mohamed Morsey, Patrick Van Kleef,
Sören Auer, et al. 2015. Dbpedia–a large-scale, mul-
tilingual knowledge base extracted from wikipedia.
Semantic web, 6(2):167–195.

Ilya Loshchilov and Frank Hutter. 2017. Decou-
pled weight decay regularization. arXiv preprint
arXiv:1711.05101.

Open AI. 2024. Hello gpt 4o. https://openai.com/
index/hello-gpt-4o/, Accessed 30.05.2024.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: a simple way to prevent neural networks
from overfitting. The journal of machine learning
research, 15(1):1929–1958.

University Of Oslo University Centre for Informa-
tion Technology. 2023. Machine learning infrastruc-
ture (ml nodes).

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

137

Petar Veličković, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Lio, and Yoshua Bengio.
2017. Graph attention networks. arXiv preprint
arXiv:1710.10903.

Ziwei Xu, Sanjay Jain, and Mohan Kankanhalli.
2024. Hallucination is inevitable: An innate lim-
itation of large language models. arXiv preprint
arXiv:2401.11817.

Michihiro Yasunaga, Hongyu Ren, Antoine Bosse-
lut, Percy Liang, and Jure Leskovec. 2021. Qa-
gnn: Reasoning with language models and knowl-
edge graphs for question answering. arXiv preprint
arXiv:2104.06378.

Yue Zhang, Yafu Li, Leyang Cui, Deng Cai, Lemao Liu,
Tingchen Fu, Xinting Huang, Enbo Zhao, Yu Zhang,
Yulong Chen, et al. 2023. Siren’s song in the ai ocean:
a survey on hallucination in large language models.
arXiv preprint arXiv:2309.01219.

Jie Zhou, Xu Han, Cheng Yang, Zhiyuan Liu,
Lifeng Wang, Changcheng Li, and Maosong Sun.
2019. Gear: Graph-based evidence aggregating
and reasoning for fact verification. arXiv preprint
arXiv:1908.01843.

138

4 Artificial Text Detection track

139

Cutting Down to Size: Efficient AI for Artificial Text Detection

Fernando Vallecillos Ruiz
Simula Research Laboratory

Oslo, Norway
fernando@simula.no

Abstract

Nowadays, it is a challenge to distinguish be-
tween human or machine-generated written
content. This poses a risk to the content in-
tegrity and increases the potential for misin-
formation and misuse. The following study
explores the use of structured pruning when
classifying texts as human-written or machine-
generated on five encoder-only models: BERT,
DeBERTa, RoBERTa, XLM-RoBERTa, and
DistilBERT. We make use of the SemEval-2024
Task 8 dataset as a framework to fine-tune these
models and assess their performance across the
different layers. Our findings reveal that prun-
ing can substantially reduce model size without
significantly impacting, and even improving,
classification accuracy. We demonstrate the
potential to create efficient, high-performing
models and thus promote sustainable AI prac-
tices. The code and materials are available in
the following repository.

1 Introduction

The increase of machine-generated text has raised
concerns regarding its detection in recent years.
Large language models produce human-like text
that can become indistinguishable from one written
by humans (Zhao et al., 2023). Even if this tech-
nology offers benefits, such as content creation or
language translation, it can also introduce multiple
challenges (Crothers et al., 2023). One of the main
challenges is the potential for misuse, for exam-
ple, the generation of false information, spam, or
other forms of content that can deceive people and
undermine trust (Uchendu et al., 2023).

Therefore, the capability to detect whether text
is human-written or machine-written has become
crucial. It has become essential not only to mitigate
risks associated with misinformation and misuse,
but also for content verification and to maintain
quality standards. Research in this area is currently
focusing on developing techniques and models able

to perform this binary classification task (Prova,
2024; Abdali et al., 2024). However, there is an
ongoing debate about the necessity of using large,
resource-intensive models for such tasks. These,
often large models, come with a large computa-
tional cost and environmental impact to train and
deploy (Patterson et al., 2021; Desislavov et al.,
2023). Consequently, there is a need to explore
more efficient alternatives.

In response to this challenge, this study explores
the effectiveness of pruned encoder-only models
for the task of binary classification of text as human-
written or machine-generated. We employ a struc-
tured pruning approach which progressively re-
moves layers from the encoder to evaluate how
such reductions affect performance. The study
aims to determine if smaller, pruned models can
achieve comparable results to their larger coun-
terparts, offering a more sustainable and environ-
mentally friendly solution. Our findings indicate
that pruning the models does not necessarily lead
to a dramatic decrease in classification accuracy,
suggesting that smaller models can achieve compa-
rable results to their larger counterparts.

To this end, Task 8 of SemEval-2024 (Wang
et al., 2024) provides an ideal framework. We focus
on the monolingual track of Subtask A, which con-
sists of the binary classification of human-written
versus machine-generated text on English language.
Leveraging the datasets provided, we conduct a
thorough evaluation of the five chosen encoder-only
models before and after pruning. Furthermore, we
stratified the evaluation by text length to determine
whether a larger number of neurons is required to
accurately classify longer texts.

The primary contributions of this paper are as
follows:

• Demonstrating that machine-generated text
detection can be achieved with pruned models.

• Analyzing the effects of the input lengths

140

when detecting whether a text is artificially
generated.

This study emphasizes the importance of optimiz-
ing the model size for practical applications without
compromising performance. Thereby, contributing
to the broader discussion on sustainable artificial
intelligence practices.

The remainder of this paper is structured as fol-
lows. Section 2 explains the problem presented in
the SemEval-2024 framework. Section 3 details
the methodology, including the chosen models and
pruning techniques. Section 4 describes the dataset
used. Section 5 details the experimental design and
implementation details. Section 6 presents the ex-
perimental results and analysis, and discusses the
implications of our findings. Section 7 briefly sum-
marizes the related work and Section 8 concludes
with a summary of the key contributions.

2 Problem Description

The framework used is the SemEval-2024 Task
8 which focuses on the detection of machine-
generated text. This main task is divided into sub-
tasks, with Subtask A specifically addressing bi-
nary classification of text as either generated by
a human or a machine. The primary objective of
this subtask is to develop a technique or a models
that can classify text into one of two categories:
human-written or machine-generated. This binary
classification task is crucial for applications such
as content verification, misinformation detection,
and maintaining the integrity of communications.

Tracks: Subtask A is divided into two tracks:
monolingual and multilingual. The monolingual
track involves only English sources, while the mul-
tilingual track extends to 8 different languages.
This study focuses on the monolingual track.

Dataset: This subtask provides a comprehen-
sive dataset for training and evaluation. The train-
ing data consists of 119,757 examples that cover
a balanced mix of human-written and machine-
generated texts. The development set contains
5,000 examples, equally balanced, to evaluate the
performance of the models. In a similar manner,
the test set contains 36,000 examples.

Evaluation Metric: The primary metric for eval-
uating the models in Subtask A is accuracy. Accu-
racy measures the proportion of correct predictions
out of the total number. This metric is straight-
forward and provides a clear-cut indication on the
effectiveness of the technique.

3 Methodology

We have chosen to address the binary classifica-
tion task of distinguishing between human-written
and machine-generated text using encoder-only
models. The selected models are the following:
BERT 1 (Devlin et al., 2019), DeBERTa 2 (He
et al., 2020), RoBERTa 3 (Liu et al., 2019), XLM-
RoBERTa 4 (Conneau et al., 2020), and Distil-
BERT 5 (Sanh et al., 2020). They are known for
their strong performance in various NLP tasks.

To fine-tune the models, we have used the train-
ing dataset described in the previous section, which
consists of 120,000 examples labeled as human-
written or machine-generated. The models have
been fine-tuned using their default hyperparame-
ters to ensure consistency and comparability.

We implemented structured pruning to explore
the impact of model size on performance. The
processes consist of incrementally removing layers
from the encoder, starting from the last layer, and
then assessing the effects on the chosen metric, ac-
curacy. This process aims to determine if smaller
models can maintain comparable performance to
their non-pruned counterparts. Furthermore, we
have stratified the evaluation results by text length.
This division aims to determine if longer texts re-
quire higher number of neurons, and therefore more
complex models, to maintain classification accu-
racy. Further experimental details are provided in
Section 5.

The goals of this work is to contribute to the de-
velopment of efficient and sustainable methods for
artificial text detection. To this end, the objectives
of the study are as follows.

• To assess the impact of structured pruning on
model performance and determine if models
size can be reduced without significant loss of
accuracy.

• To analyze the effect of text length on classi-
fication performance and determine if longer
texts require more complex models.

4 Dataset and Preprocessing

The training dataset contains 119,757 samples of
text of which 63,351 are generated by humans and

1BERT Model (Hugging Face)
2DeBERTa Model (Hugging Face)
3RoBERTa Model (Hugging Face)
4XLM-RoBERTa Model (Hugging Face)
5DistilBERT Model (Hugging Face)

141

[32
-10

52
0]

[10
52

1-2
10

09
]

[21
01

0-3
14

98
]

[31
49

9-4
19

87
]

[41
98

8-5
24

76
]

[52
47

7-6
29

65
]

[62
96

6-7
34

54
]

[73
45

5-8
39

43
]

[83
94

4-9
44

32
]

[94
43

3-1
04

92
2]

Text Length Bin

0.0

0.2

0.4

0.6

0.8

1.0
Pr

op
or

tio
n

Human
Machine

[0-
24

9]

[25
0-4

99
]

[50
0-7

49
]

[75
0-9

99
]

[10
00

-12
49

]

[12
50

-14
99

]

[15
00

-17
49

]

[17
50

-19
99

]

[20
00

-22
49

]

[22
50

-24
99

]

Text Length Bin

0

200

400

600

800

1000

Fr
eq

ue
nc

y

Human
Machine

Figure 1: Distribution of labels stratified by text length.

56,406 are generated by a machine. Although there
is a test set, as described in the previous section, we
have decided not to use it in the following experi-
ments. Instead, we discarded the original test set
and treated the development set as a test set. This
development set, referred to as test set from now on,
contains 5,000 samples of text, half generated by
humans and half by a machine. The reason being
that the goal of this study is to show the possibility
of pruning models to achieve similar results, not
to propose one single model that can overcome the
rest.

Our new test set, i.e. the original development
set, is used to evaluate the accuracy of the model
and to further analyze the results. The distribution
of labels when stratifying the test set can be seen
on the left of Figure 1. As it can be appreciated, the
distribution of labels is extremely skewed, since all
machine-generated examples are shorter. This is
likely due to the context window by which most
models are restricted.

To perform a more realistic analysis, we create
a subset by imposing a limit on the text length
of 2,500. This arbitrary division results in a
more balanced set that contains 2,491 examples
of machine-generated text and 1,722 examples of
human-generated text. The distribution can be seen
on the right of Figure 1.

5 Experimental Design

5.1 Model and Training Configurations

The following encoder-only models are selected
for this study: BERT, DeBERTa, RoBERTa, XLM-
RoBERTa, and DistilBERT. Each model and to-
kenizer were configured with its default settings
as provided by the respective implementations in
the transformers library. The selection of these
models was driven with the intent of covering a
wide range of common encoder-only models, with

DistilBERT included as a smaller condensed model
for comparative purposes.

5.2 Pruning Strategy

The layers were pruned incrementally, one by one,
starting from the last layer of the encoder. The
models were evaluated at each increment to assess
the performance drop, if any, and to determine the
minimum amount of layers required to maintain
accuracy.

5.3 Stratification by Text Length

Longer texts may require a higher number of neu-
rons and more complex models to maintain accu-
racy. To explore the effect of text length on model
performance, we stratified the evaluation results by
text length into 10 bins of the same size. The inputs
were categorized into different length ranges, and
accuracy scores were calculated for each range.

5.4 Implementation Details

The experiments were implemented using Python
3.10, PyTorch, and the transformers library. The
models were fine-tuned using the following param-
eters:

• Batch size: 8

• Number of epochs: 5

• Learning rate: 2× 10−5

• Weight decay: 0.01

The fine-tuning process was implemented using
the Trainer class from the transformers library.
The models were trained on an NVIDIA A100
GPU.

By following this experimental design, we aim
to provide a thorough evaluation of encoder-only
models for binary classification of human-written

142

0 1 2 3 4 5 6 7 8 9 10 11 12
Number of Layers Used

0.50

0.55

0.60

0.65

0.70

0.75

Ac
cu

ra
cy

 S
co

re

BERT
RoBerta
XLM-RoBerta
DeBerta
DistilBert

Figure 2: Average accuracy scores for each model.

versus machine-generated text. We also aim to
explore the potential to reduce the size of the model
through pruning without compromising accuracy.

6 Results and Discussion

6.1 Pruned Models

The pruning process reveals insights and trends
about the performance of the models when the num-
ber of layers used is decreased. Each model was
evaluated from using all their layers to none of the
layers in the encoder.

BERT displayed the highest accuracy score of
0.78 with 10 layers, which indicates that slightly
reducing the model size can enhance performance.
This may suggest that some layers may introduce
redundancy or noise. Even with further pruning
down to 7 or 8 layers, BERT is able to maintain
high accuracy, demonstrating its robustness and
efficiency.

On the other hand, RoBERTa showed a slightly
different trend. Although it also achieved high ac-
curacy scores with reduced layers, its performance
was more variable. The model accuracy peaked
at 7 layers with a score of 0.74, but a notable dip
occurred at 9 layers, where the accuracy dropped
to 0.62 before recovering. The variability shown
highlights how identifying specific pruning points
that can optimize performance is crucial.

XLM-RoBERTa displays stable performance
through the different pruning levels. It achieved
its highest accuracy of 0.78 with 11 layers, and
maintained strong performance with fewer layers,
such as 8 layers where it scored 0.77.

DeBerta demonstrated high accuracy throughout
the pruning process, peaking at 12 layers with an
accuracy of 0.78. Even with pruning, DeBerta
maintained competitive accuracy, scoring 0.77 with
11 layers and 0.74 with 9 layers.

DistilBERT, as a model already designed to be

compact, achieved its highest accuracy of 0.72 with
6 layers, i.e. all its original layers. The perfor-
mance of this model underscores the effectiveness
of smaller architectures in maintaining accuracy
while offering the benefits of reduced computa-
tional costs. Our results show that even smaller
distilled models may benefit from a reduction in
size. The stable performance of DistilBERT with
fewer layers displays the potential for deploying
lightweight models.

Overall, these results illustrate that pruning can
substantially reduce model size while maintaining
or even improving classification accuracy. Each
model showed that there are optimal pruning points
where performance is similar despite reduced com-
plexity. This can offer computational and envi-
ronmental benefits. Furthermore, it also improves
the practical applicability of these models in real-
world scenarios. Identifying these optimal pruning
points may lead to more efficient models, which
are computationally less expensive and environ-
mentally friendly. Future research can delve into
more nuanced pruning strategies and their effects
on a broader range of tasks and models.

6.2 Stratification by Text Length
The performance of all pruned models was further
evaluated based on the different lengths of the in-
puts. Figure 3 provides the accuracy scores for
each model with varying numbers of layers used
and ranges of text length.

BERT’s accuracy increased across all text length
ranges as more layers were used. The performance
was interesting for longer texts (i.e., 2000-2249
tokens), where the accuracy reached 0.70 with no
layers and improved to 0.83 with 10 layers. Shorter
texts (i.e., 0-249 tokens) also saw significant im-
provement, achieving an accuracy of 0.97 with 10
layers.

RoBERTa’s performance was less stable in re-
gards with text length. While shorter texts (0-249
tokens) saw improved accuracy up to 0.74 with
10 layers, the model’s accuracy for slightly longer
texts (750-999 tokens) was less stable, varying with
different layers. This may be due to the fact that
text length plays a significant role in its classifi-
cation accuracy. Therefore, the model may bene-
fit from pruning strategies that are based on text
length.

XLM-RoBERTa showed good and stable perfor-
mance throughout different text lengths and prun-
ing levels. The model consistently achieved high

143

[0-
24

9]

[25
0-4

99
]

[50
0-7

49
]

[75
0-9

99
]

[10
00

-12
49

]

[12
50

-14
99

]

[15
00

-17
49

]

[17
50

-19
99

]

[20
00

-22
49

]

[22
50

-24
99

]

0 Layers
1 Layers
2 Layers
3 Layers
4 Layers
5 Layers
6 Layers
7 Layers
8 Layers
9 Layers

10 Layers
11 Layers
12 Layers

BERT

[0-
24

9]

[25
0-4

99
]

[50
0-7

49
]

[75
0-9

99
]

[10
00

-12
49

]

[12
50

-14
99

]

[15
00

-17
49

]

[17
50

-19
99

]

[20
00

-22
49

]

[22
50

-24
99

]

0 Layers
1 Layers
2 Layers
3 Layers
4 Layers
5 Layers
6 Layers
7 Layers
8 Layers
9 Layers

10 Layers
11 Layers
12 Layers

RoBerta

[0-
24

9]

[25
0-4

99
]

[50
0-7

49
]

[75
0-9

99
]

[10
00

-12
49

]

[12
50

-14
99

]

[15
00

-17
49

]

[17
50

-19
99

]

[20
00

-22
49

]

[22
50

-24
99

]

0 Layers
1 Layers
2 Layers
3 Layers
4 Layers
5 Layers
6 Layers
7 Layers
8 Layers
9 Layers

10 Layers
11 Layers
12 Layers

XLM-RoBerta

[0-
24

9]

[25
0-4

99
]

[50
0-7

49
]

[75
0-9

99
]

[10
00

-12
49

]

[12
50

-14
99

]

[15
00

-17
49

]

[17
50

-19
99

]

[20
00

-22
49

]

[22
50

-24
99

]

0 Layers
1 Layers
2 Layers
3 Layers
4 Layers
5 Layers
6 Layers
7 Layers
8 Layers
9 Layers

10 Layers
11 Layers
12 Layers

DeBerta

[0-
24

9]

[25
0-4

99
]

[50
0-7

49
]

[75
0-9

99
]

[10
00

-12
49

]

[12
50

-14
99

]

[15
00

-17
49

]

[17
50

-19
99

]

[20
00

-22
49

]

[22
50

-24
99

]

0 Layers

1 Layers

2 Layers

3 Layers

4 Layers

5 Layers

6 Layers

DistilBert

0.0

0.2

0.4

0.6

0.8

1.0

Figure 3: Accuracy scores per model stratified by length.

144

accuracy for shorter texts (0-249 tokens), peaks at
0.98 with 11 layers, and maintained strong perfor-
mance for longer texts (2000-2249 tokens), reach-
ing 0.74 with 11 layers.

DeBerta’s scores were high across all text length
ranges and pruning levels, too. The model reached
its peak accuracy of 0.88 with 11 layers for texts in
the range of 1500-1749 tokens. We can conclude
that DeBerta is effective in handling both short and
long texts with minimal performance degradation.

DistilBERT, although a smaller and distilled
model, showed good performance through the
different text lengths. The accuracy for shorter
texts (0-249 tokens) peaked at 0.96 with 6 layers.
For longer texts (2000-2249 tokens), the model
achieved a high accuracy of 0.78 with 5 layers.

In summary, the stratification by text length and
its analysis underscore the robustness of these mod-
els in handling different text sizes. However, there
is an undeniable trend of performance improve-
ment with a higher number of layers. This may
suggest that, although pruning reduces model com-
plexity, maintaining certain number of layers is
crucial to achieve high accuracy through different
text lengths. These results reinforce how important
it is to balance model size and performance, espe-
cially when the classification relates to texts with
diverse lengths.

6.3 Comparison of Accuracy Differences with
Half Layers Discarded

Lastly, we compared the accuracy differences be-
tween the full model and when pruning half of the
layers for each model in Figure 4. Positive differ-
ences show a decrease in accuracy, while negative
differences indicate improved performance with
fewer layers. This can be used as a straightforward
and baseline strategy of structured pruning.

On average, all models display a decrease in ac-
curacy when half of the layers are discarded, which
is to be expected since pruning typically reduces
model capacity. For example, BERT saw its ac-
curacy decrease by 0.123 for texts in the range of
2250-2499 tokens, suggesting a substantial impact
when layers are pruned. RoBERTa also displayed
a notable decrease of 0.091 for shorter texts (0-249
tokens), further proving the general trend of perfor-
mance reduction with fewer layers. However, some
models showed less substantial decreases or even
slight improvements in performance for certain text
lengths. XLM-RoBERTa demonstrated robustness
and stability with a slight increase in accuracy of

[0-
24

9]

[25
0-4

99
]

[50
0-7

49
]

[75
0-9

99
]

[10
00

-12
49

]

[12
50

-14
99

]

[15
00

-17
49

]

[17
50

-19
99

]

[20
00

-22
49

]

[22
50

-24
99

]

Text Length Bin

0.050

0.025

0.000

0.025

0.050

0.075

0.100

0.125

Ac
cu

ra
cy

 S
co

re
 D

iff
er

en
ce

BERT
RoBerta
XLM-RoBerta
DeBerta
DistilBert

Figure 4: Difference in accuracy scores for each model
when half of the layers are removed. Positive differences
indicate a decrease in accurate and negative differences
show improved performance with half of its layers.

0.0057 for texts in the range of 0-249 tokens.

Overall, these results suggest that although prun-
ing generally reduces accuracy, it can also lead
to improvements in specific scenarios. This ex-
periment highlights the potential for optimizing
model architectures through more targeted pruning
strategies, balancing model complexity and perfor-
mance.

7 Related Work

7.1 Artificial Text Detection

Artificial text detection has gained significant trac-
tion due to the increase of synthetic text generated
by advanced models such as GPT-4 and other large-
scale language models (Wu et al., 2024). Previous
studies have approach the problem from different
perspectives to try to detect the differences between
text generated by a human or a machine. A promi-
nent and common method involves machine learn-
ing classifiers trained on features extracted from
text. This can include linguistic patterns, lexical
distributions, and syntactic structures (Liu et al.,
2015; Hassan et al., 2015). Other approaches have
focused on deep learning techniques such as re-
current neural networks and transformer models
(Zellers et al., 2020; Ruchansky et al., 2017). These
models directly learn the characteristics of artificial
text from large datasets. Furthermore, some studies
explore the effectiveness of ensemble and mixture
techniques, in which multiple classifiers are com-
bined to improve detection accuracy (Ruchansky
et al., 2017). However, the challenge of adapting
detection methods to increasingly large and more
sophisticated text generation models still remains.

145

7.2 Pruned Models

Pruning is a common technique in machine learn-
ing to reduce model size and computational cost
without substantially compromising performance
(Han et al., 2015). These pruned models can reduce
the number of parameters, leading to faster infer-
ence times and lower resource consumption (Cheng
et al., 2023). Studies have shown that pruned ver-
sions of neural networks retain substantial discrim-
inatory power, suggesting a viable route to deploy
lightweight models in resource-constrained envi-
ronments (Frankle and Carbin, 2019).

There are two primary pruning techniques: struc-
tured pruning, which removes entire units within
a network and changes the model’s shape, and un-
structured pruning, which maintains the model’s
shape but introduces zeros within the units. Ad-
vancements in both techniques have shown promis-
ing results enhancing model efficiency while main-
taining their performance (Lu et al., 2024).

8 Conclusion

This study evaluated the impact of structured prun-
ing on five encoder-only models to distinguish be-
tween text generated by a machine or a human.
Our findings show that pruning can significantly re-
duce model size while maintaining or even improv-
ing classification accuracy. Models such as BERT
and DeBERTa were benefitted from reduced layers,
which may indicate the removal of redundancy or
noise. However, the impact of pruning was not
consistent, with other models, like RoBERTa, dis-
playing more performance variability.

The stratification by text length revealed insights
on the importance of maintaining certain number
of layers to keep high accuracy across various text
lengths. Furthermore, the comparison of accu-
racy differences when directly discarding half of
the layers demonstrated that even straightforward
pruning approaches can offer substantial benefits.
These insights underscore the potential for opti-
mizing model architectures to balance complexity
and performance, conducing to more efficient and
environmentally-friendly models.

This research highlights the feasibility of struc-
tured pruning as a viable approach for sustain-
able AI, reducing environmental and computational
costs without substantially compromising effective-
ness. Future work could investigate more complex
pruning techniques through a wider range of mod-
els and tasks to further maintain efficiency.

References
Sara Abdali, Richard Anarfi, C. J. Barberan, and Jia

He. 2024. Decoding the AI Pen: Techniques and
Challenges in Detecting AI-Generated Text. Preprint,
arxiv:2403.05750.

Hongrong Cheng, Miao Zhang, and Javen Qinfeng Shi.
2023. A Survey on Deep Neural Network Pruning-
Taxonomy, Comparison, Analysis, and Recommen-
dations. Preprint, arxiv:2308.06767.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
Cross-lingual Representation Learning at Scale. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8440–
8451, Online. Association for Computational Lin-
guistics.

Evan Crothers, Nathalie Japkowicz, and Herna Viktor.
2023. Machine Generated Text: A Comprehensive
Survey of Threat Models and Detection Methods.
Preprint, arxiv:2210.07321.

Radosvet Desislavov, Fernando Martínez-Plumed, and
José Hernández-Orallo. 2023. Compute and Energy
Consumption Trends in Deep Learning Inference.
Sustainable Computing: Informatics and Systems,
38:100857.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
Deep Bidirectional Transformers for Language Un-
derstanding. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Jonathan Frankle and Michael Carbin. 2019. The Lot-
tery Ticket Hypothesis: Finding Sparse, Trainable
Neural Networks. Preprint, arxiv:1803.03635.

Song Han, Jeff Pool, John Tran, and William J. Dally.
2015. Learning both Weights and Connections for Ef-
ficient Neural Networks. Preprint, arxiv:1506.02626.

Naeemul Hassan, Chengkai Li, and Mark Tremayne.
2015. Detecting Check-worthy Factual Claims in
Presidential Debates. In Proceedings of the 24th
ACM International on Conference on Information
and Knowledge Management, CIKM ’15, pages
1835–1838, New York, NY, USA. Association for
Computing Machinery.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and
Weizhu Chen. 2020. DeBERTa: Decoding-enhanced
BERT with Disentangled Attention. In International
Conference on Learning Representations.

Xiaomo Liu, Armineh Nourbakhsh, Quanzhi Li, Rui
Fang, and Sameena Shah. 2015. Real-time Ru-
mor Debunking on Twitter. In Proceedings of the

146

24th ACM International on Conference on Informa-
tion and Knowledge Management, CIKM ’15, pages
1867–1870, New York, NY, USA. Association for
Computing Machinery.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
RoBERTa: A Robustly Optimized BERT Pretrain-
ing Approach. Preprint, arxiv:1907.11692.

Xudong Lu, Qi Liu, Yuhui Xu, Aojun Zhou, Siyuan
Huang, Bo Zhang, Junchi Yan, and Hongsheng Li.
2024. Not All Experts are Equal: Efficient Expert
Pruning and Skipping for Mixture-of-Experts Large
Language Models. Preprint, arxiv:2402.14800.

David Patterson, Joseph Gonzalez, Quoc Le, Chen
Liang, Lluis-Miquel Munguia, Daniel Rothchild,
David So, Maud Texier, and Jeff Dean. 2021. Car-
bon Emissions and Large Neural Network Training.
Preprint, arxiv:2104.10350.

Nuzhat Prova. 2024. Detecting AI Generated Text
Based on NLP and Machine Learning Approaches.
Preprint, arxiv:2404.10032.

Natali Ruchansky, Sungyong Seo, and Yan Liu. 2017.
CSI: A Hybrid Deep Model for Fake News Detection.
In Proceedings of the 2017 ACM on Conference on
Information and Knowledge Management, pages 797–
806.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2020. DistilBERT, a distilled ver-
sion of BERT: Smaller, faster, cheaper and lighter.
Preprint, arxiv:1910.01108.

Adaku Uchendu, Thai Le, and Dongwon Lee. 2023.
Attribution and Obfuscation of Neural Text Author-
ship: A Data Mining Perspective. ACM SIGKDD
Explorations Newsletter, 25(1):1–18.

Yuxia Wang, Jonibek Mansurov, Petar Ivanov, Jinyan
Su, Artem Shelmanov, Akim Tsvigun, Osama Mo-
hammed Afzal, Tarek Mahmoud, Giovanni Puccetti,
Thomas Arnold, Chenxi Whitehouse, Alham Fikri
Aji, Nizar Habash, Iryna Gurevych, and Preslav
Nakov. 2024. SemEval-2024 Task 8: Multidomain,
Multimodel and Multilingual Machine-Generated
Text Detection. Preprint, arxiv:2404.14183.

Junchao Wu, Shu Yang, Runzhe Zhan, Yulin Yuan,
Derek F. Wong, and Lidia S. Chao. 2024. A Sur-
vey on LLM-Generated Text Detection: Neces-
sity, Methods, and Future Directions. Preprint,
arxiv:2310.14724.

Rowan Zellers, Ari Holtzman, Hannah Rashkin,
Yonatan Bisk, Ali Farhadi, Franziska Roesner, and
Yejin Choi. 2020. Defending Against Neural Fake
News. Preprint, arxiv:1905.12616.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang,
Xiaolei Wang, Yupeng Hou, Yingqian Min, Beichen
Zhang, Junjie Zhang, Zican Dong, Yifan Du, Chen

Yang, Yushuo Chen, Zhipeng Chen, Jinhao Jiang,
Ruiyang Ren, Yifan Li, Xinyu Tang, Zikang Liu,
Peiyu Liu, Jian-Yun Nie, and Ji-Rong Wen. 2023.
A Survey of Large Language Models. Preprint,
arxiv:2303.18223.

147

148

Impact of Domain Variability in Training Data for Monolingual Artificial
Text Detection

Dans Reinicans
dansr@ifi.uio.no

Abstract
Artificial text detection is the task of identify-
ing whether the given text is generated by a
language model or written by a human. This
paper analyzes how the absence of texts written
or generated in a particular domain in the train-
ing set will influence the model’s performance
in distinguishing between human-written text
and language model-generated text. The results
demonstrate which domains and which models
used to generate text for training data are the
most and least impactful.

1 Introduction

Artificial text detection is a task in the field of
Natural Language Processing (NLP) that focuses
on identifying whether a given text is generated
by a human or an artificial intelligence, such as
a language model. With the growing popularity
of Large Language Models (LLM), the amount of
machine-generated texts also increased. With that,
research on artificial text detection focuses on sev-
eral essential tasks, such as fake news or plagiarism
detection. Much research has also been done on
the topic. For instance, a competition organized
by Yuxia Wang, Jonibek Mansurov, and Preslav
Nakov from Mohamed Bin Zayed University of
Artificial Intelligence showcases different methods
used to fine-tune LLMs or other methods in or-
der to distinguish between AI-generated text and
human-generated text. (Wang et al., 2024a) One
of the tasks of the competition focused on develop-
ing the best model for monolingual artificial text
detection, which focuses solely on English texts.

One of the challenges when developing a robust
artificial text detection model is its generalizability
across different domains. For example, a model
trained on a dataset consisting of social media
posts or fiction novels might struggle to determine
whether a machine or a human writes a scientific
text or a news article. This domain-specific perfor-
mance means the model must be trained across a

variety of domains in order to enhance its adapt-
ability and overall performance.

This paper investigates the importance and in-
fluence of different domains in training data for
monolingual texts, specifically English texts. It
specifically examines the AI-text detection dataset
(Wang et al., 2024b), analyzing which domains
present better training data for classification tasks
and how different text generated by different mod-
els also influences the different model’s overall
performance.

The structure of the paper is as follows: Sec-
tion 2 describes the data used for experiments. Sec-
tion 3 provides an overview of the models chosen
for testing. Section 4 outlines the experiments con-
ducted. Section 5 summarizes the findings and
results. Conclusions are given in the Section 6.
Section 7 concludes the paper with the suggestions
for future work.

2 Data

This paper makes use of the extension of
M4, a large-scale multi-generator, multi-domain,
and multi-lingual corpus, for detecting machine-
generated texts in a black-box scenario where there
is no access to a potential generator or its outputs
except for plain text. (Wang et al., 2024b) The
data used for this experiment focuses on the En-
glish language from five domains: Wikipedia, Red-
dit ELI5, WikiHow, PeerRead, and arXiv abstract.
The domains of these sources range from highly
formal and technical, represented by arXiv abstract
and PeerRead, to informal, represented by Reddit
ELI5, with Wikipedia and Wikihow falling some-
where in between, where Wikipedia represents an
encyclopedia-type data, and Wikihow represents
an instructional how-to guide. This dataset con-
tains parallel data of texts generated by several text-
generating models in the given domains. These
models are Davinci003, ChatGPT, Cohere, Dolly-

149

v2 (Conover et al., 2023), and BLOOMz (Muen-
nighoff et al., 2022). Davinci003, ChatGPT, Co-
here, and Dolly-v2 were used to generate texts for
the sources in the training dataset, and BLOOMZ
was used to generate texts for the sources in the test
dataset. The distribution of data per dataset, source,
and model can be seen in Table 1, and an example
of the instance in the dataset is in Table 2.

3 Models

For the task of artificial text detection, this paper
used several language models to evaluate how well
these models can distinguish between AI-generated
text and human-written text. The first model used
is the BERT (Bidirectional Encoder Representa-
tions from Transformers) language model intro-
duced by (Devlin et al., 2019). Specifically, I used
BERT-base, a transformer-based model pre-trained
on large text corpora tasks of Masked Language
Modelling (MLM) and Next Sentence Prediction
(NSP). It is mainly pre-trained using full texts from
Wikipedia articles, covering a variety of topics, lin-
guistic structures, and a broad range of information
across different areas of knowledge and domains.

A second model used for this task is RoBERTa
(A Robustly Optimized BERT Pretraining Ap-
proach), a base case model developed by Face-
book AI (Liu et al., 2019). RoBERTA is also a
transformer-based model with 12 transformer lay-
ers, 768 hidden dimensions, and 12 attention heads.
It is built upon the BERT model by optimizing the
pretraining strategies, for example, using more di-
verse datasets containing news articles, books, and
Wikipedia articles.

The third model used is the RoBERTA-based
OpenAI Detector developed by OpenAI (Solaiman
et al., 2019). This is also a transformer-based lan-
guage model. This model is pretrained explicitly
on the outputs of GPT-2 model-generated texts. Its
purpose is to predict whether a text is generated by
the GPT-2 model.

The last model used is the RoBERTa mixed
detector by (Sivesind and Winje, 2023). This is
a transformer-based language model. It is pre-
trained on 15,000 datapoints of GPT-wiki-intros
and 10,000 ChatGPT-Research-Abstracts. The
model’s purpose is to determine whether the text is
generated by a language model similar to ChatGPT
and GPT-3 or whether it is a human-written text.

The motivation for choosing these four models
is that in the competition mentioned before, the

best-performing models are transformer-based, so
all the chosen models are also transformer based.
The specific motivation for choosing the last two
models is to observe the results of a different model,
trained and fine-tuned on different data sets, com-
pared to the first two models, to distinguish be-
tween the human written text and a text generated
by a Language model. As there is no direct compar-
ison of performance between two similar models
trained on the different datasets, the author decided
to explore whether a model like RoBERTA-base-
OpenAI Detector, pre-trained to detect GPT-2 gen-
erated texts, could be used for the purpose of dis-
tinguishing between the texts generated by humans
or any other model and see the model performance
or how well a model trained to predict texts gen-
erated by GPT type models can be used to predict
texts generated by other models. The main goal of
this paper is to observe how the performance of the
models differs based on the data provided in the
training dataset and not achieve a result that can
compete in the leaderboards.

4 Experimentation

This paper carries out four experiments, each with
a different model. Subsection 4.1 concerns fine-
tuning the BERT-base model for detecting machine-
generated texts. Subsection 4.2 describes fine-
tuning the RoBERTa base-case for the detection
of machine-generated texts. Subsection 4.3 de-
scribes the prediction generation for the test set
using the RoBERTabase OpenAI Detector. Finally,
subsection 4.4 generates the predictions using the
RoBERTa mixed detector.

4.1 BERT-base

The goal of this experiment is to fine-tune the
BERT-base model using different sets of training
data. There are a total of 9 instances of training re-
sulting in 9 differently fine-tuned BERT-base mod-
els. The data is first read from the JSON file, omit-
ting either the source (Wikipedia, Wikihow, Peer-
read, Reddit, or arXiv) or the model generating
the text (davinci-003, ChatGPT, Cohere, Dolly-v2).
Afterwards, the data is tokenized and split into 80%
train and 20% development datasets. After pre-
processing the data, the fine-tuning phase starts.
The model is fine-tuned with these hyperparame-
ters: learning rate of 2e-5, batch size of 16, number
of training epochs of 3, and weight decay of 0.01.
After the fine-tuning process for three epochs is

150

Split Source davinci-003 ChatGPT Cohere Dolly-v2 BLOOMz Machine Human
Wikipedia 3,000 2,995 2,336 2,702 - 11,033 14,497
Wikihow 3,000 3,000 3,000 3,000 - 12,000 15,499

Train Reddit 3,000 3,000 3,000 3,000 - 12,000 15,500
arXiv 2,999 3,000 3,000 3,000 - 11,999 15,498

PeerRead 2,344 2,344 2,342 2,344 - 9,374 2,357
Wikipedia - - - - 500 500 500
Wikihow - - - - 500 500 500

Dev Reddit - - - - 500 500 500
arXiv - - - - 500 500 500

PeerRead - - - - 500 500 500

Table 1: Subtask A: Monolingual Artificial Text Detection. Data statistics over Train/Test splits. (Wang et al.,
2024a)

id identifier of the example
label label (human text: 0, machine text: 1)
text text generated by a machine or written by a human
model model that generated the data
source Wikipedia, WikiHow, Reddit, arXiv, and PeerRead

Table 2: Example of an instance in the train dataset

complete, the model is saved for later use in gener-
ating the predictions. After the model is saved, the
model is loaded in order to show the metrics of the
model’s performance and generate the predictions
for either the development or test set. After the pre-
dictions are generated, they are saved in the form
specified before as a JSON file. With the predic-
tions ready and saved, they are used together with
the test set to produce scores that can be analyzed.
The scores produced are f1-macro, f1-micro, and
accuracy.

4.2 RoBERTa base cased

Similar to the previous experiment, this experi-
ment’s goal is to fine-tune the RoBERTa-based
model using different sets of data. Again, there are
a total of 9 differently fine-tuned RoBERTa-base-
case models on the same nine sets of training data.
The same sources and models as in the previous
experiment are omitted from each training set. The
training development split of data stays the same,
with 80% of training data used for training and
20% of data used as development set. The same
method of fine-tuning the model using a Trainer
class with hyperparameters: learning rate of 2e-5,
batch size of 16, number of training epochs of 3,
and weight decay of 0.01 is used again. After the
model is fine-tuned and saved, it is used to generate
predictions and save them for the test set. In the

end, the same metrics are used to get and analyze
the result: f1-macro, f1-micro, and target metric
accuracy.

4.3 RoBERTa base OpenAI detector

The difference between this experiment and the
previous one is that this model did not undergo the
same fine-tuning process as the models before that.
It is pre-trained on the data mentioned in section
3 and used as it is to generate predictions for the
test set. Afterwards, the predictions are evaluated
on the previously mentioned metrics: f1-macro,
f1-micro, and accuracy.

4.4 RoBERTa-mixed-detector

As in a previous subsection, this model is not fine-
tuned on any of the train set data and is used straight
as is to generate the predictions for the test data set.
The predictions generated and saved are evaluated
using the same metrics: f1-macro, f1-micro, and
accuracy.

5 Results

This section provides a report and reviews the re-
sults of the experiments detailed in the Section 4.

151

5.1 BERT-base

Results for the BERT-base model can be seen in
the Table 3. The table mentions metrics used for
evaluation and the source/domain or model texts
that are not used in the fine-tuning process. The
target metric for the model’s performance is ac-
curacy. The first line in the table is the baseline,
where all the sources and domains are present in
the training set and are used to train the model. Ac-
cording to the results presented in the table, the
least influential resource for artificial text detection
in the case of the BERT-case model is PeerRead,
as it has produced the highest accuracy of 0.831,
meaning its absence from the training data did not
lower the accuracy drastically, but even increased
it in comparison to the baseline. The most influ-
ential source of information is Wikipedia, which
produced the lowest score when absent in the train-
ing data. When Wikipedia is not used, the model’s
performance drops drastically. In terms of models,
the model that least affected the performance by
being absent from the training data is Cohere, with
an accuracy score of 0.788, and the model whose
absence has most negatively impacted the perfor-
mance on the test set, is Dolly-v2, with an accuracy
score of 0.718. It is also worth noting that by ex-
cluding arXiv, PeerRead, Reddit, and Cohere, the
performance improved compared to the baseline.

Interestingly, excluding Wikihow as a domain
and chatGPT as a model from the training data pro-
duced identical accuracy scores of 0.749. The only
difference lies in F1-macro scores for both models.
With WikiHow excluded from the training data and
achieving an F1-macro score of 0.743, and Chat-
GPT, also excluded, achieving an F1-macro score
of 0.741, it appears that the model fine-tuned with-
out ChatGPT data can better distinguish between
human-written and AI-generated texts. Addition-
ally, not using WikiHow articles in the fine-tuning
process results in a more balanced and consistent
performance across both types of texts.

5.2 RoBERTa base cased

Results for the RoBERTa-base-cased model can be
seen in the Table 4. The table is built in the same
way as in the previous subsection, with the domain
or model excluded from the training data in the
first column and F1-macro, F1-micro, and accuracy
metrics in the subsequent columns. The baseline re-
sults with all the models and sources present in the
training data are in the first line of the table. The

target metric is accuracy. According to the results
in Table 4, the highest accuracy score is again with
the model that did not have a PeerRead human writ-
ten and AI-generated text in its training data. The
accuracy score for this model is 0.858. This model
outperforms the baseline by quite a lot: 0.15 points.
The domain whose absence in the training data
impacted the drop in accuracy the most is arXiv
this time, with an accuracy score of 0.615. This
is the lowest accuracy score across all domains
and models for both BERT-base and RoBERTa-
base-case models fine-tuned on the training data.
In terms of models used for text generation, the
model whose absence impacted the performance
the least is ChatGPT, with a score of 0.719, and the
model whose absence impacted the performance of
the RoBERTa-base-cased the most is Davinci-003,
with an accuracy score of 0.648. In general, the
RoBERTa-base-cased performed worse in compar-
ison to the BERT-base. There is the same tendency
as in the previous subsection. By excluding either
PeerRead texts or Reddit texts from the training
data, the model achieves a better result than the
baseline. There are more than half of the scores
lower than 0.70 accuracy in the RoBERTa-base-
cased model, while the BERT-base had accuracy
scores above the 0.70 mark. At the same time, the
RoBERTa-base-cased model produced the overall
best result of 0.858 across all the models exper-
imented within this paper, with PeerRead absent
in the training data. Overall, comparing BERT-
base and RoBERTa-base-cased models, the BERT
model performed better by around 0.05 - 0.1 points
in accuracy, with the exception of PeerRead and
Reddit, where RoBERTa had a superior accuracy
score.

5.3 RoBERTa base OpenAI detector and
RoBERTa-mixed-detector

As mentioned before, these two models were not
fine-tuned on any of the training data like the
models in subsections 5.1 and 5.2. The results
for these two models can be seen in the Table 5.
RoBERTA base OpenAI detector and RoBERTa-
mixed-detector have accuracy scores of 0.493 and
0.345, respectively. The baseline for both BERT
and RoBERTa models from previous subtasks out-
performs both RoBERTA base OpenAI detector
and RoBERTa-mixed-detector, resulting in them
being the two worst-performing models to be ex-
perimented with in this paper. One of the reasons
for such a weak performance in terms of accuracy

152

score might lay with the training data. RoBERTA-
based0 OpenAI Detector was trained only using
the outputs of the GPT2 model, and the RoBERTa
mixed detector also used data points generated by
GPT-type models.

6 Conclusion

This paper analyzes the effects of using differ-
ent sets of training data by excluding one of the
domains of AI-generated or human-written texts
or models used to generate text in the before-
mentioned domains from the training data and fine-
tuning different transformer-based models using
this training data in order to distinguish between an
AI-generated text and human-written text. By us-
ing the extension of the M4 dataset and BERT-base
and RoBERTa-base-cased models, it is found that
the domain that is the least impactful in differentiat-
ing between AI-generated texts and human-written
texts is PeerRead. One of the problems is correctly
identifying whether it is the highly former and sci-
entific domain that is least useful for distinguishing
between human-written texts or AI-generated texts
or the fact that PeerRead contains the least amount
of text in the dataset. By leaving PeerRead ab-
sent from the training dataset, it does not affect
the amount of data contained in the dataset, like
leaving out, for example Reddit texts, which are
around 13,000 and 28,000 texts, respectively. The
model least helpful in distinguishing between hu-
man texts and AI-generated texts is ChatGPT, as
its absence in the training data produced the high-
est average accuracy scores, and the most useful
model is Dolly-v2, as its absence in the training
data hindered the accuracy scores the most.

Moreover, based on accuracy scores from two
manually fine-tuned models and two pre-trained
models, it has been discovered that a much better
performance is generally achieved with a wider
variety of domains and models used in training data.
Though there are some exceptions, as was shown in
comparison to the baseline by omitting some of the
sources or models, it is possible to achieve a better
result than just using all the available data. This
finding could possibly be applied to other areas of
study within artificial text generation.

7 Future work

Given that this model tested only training datasets
that excluded one domain or one model per train-
ing iteration, it would be interesting to see how

combinations of different domains, models, or do-
mains and models would influence the accuracy
with which fine-tuned models can distinguish be-
tween AI-generated texts and human-written texts.

References
M. Conover, M. Hayes, A.t Mathur, J. Xie, J. Wan,

S. Shah, A. Ghodsi, P. Wendell, M. Zaharia, and
R. Xin. 2023. Free dolly: Introducing the world’s
first truly open instruction-tuned llm.

J. Devlin, M. Wei, C. Kenton, and L. Kristina Toutanova.
2019. Bert: Pre-training of deep bidirectional trans-
formers for language understanding. Proceedings of
NAACL-HLT 2019, pages 4171–4186.

Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen,
O. Levy, M. Lewis, L. Zettlemoyer, and V. Stoyanov.
2019. Roberta: A robustly optimized bert pretraining
approach.

N. Muennighoff, T. Wang, L. Sutawika, A. Roberts,
S. Biderman, T. Le Scao, M. Saiful Bari, S. Shen,
Z. Xin Yong, H. Schoelkopf, X. Tang, D. Radev,
A. Fikri Aji, K. Almubarak, S.l Albanie, Z. Alyafeai,
A. Webson, E. Raff, and C. Raffel. 2022. Crosslin-
gual generalization through multitask finetuning.

N. Thorer Sivesind and A. Bentzen Winje. 2023. Turn-
ing poachers into gamekeepers: Detecting machine-
generated text in academia using large language mod-
els.

I. Solaiman, M. Brundage, J. Clark, A. Askel,
A. Herbert-Voss, J. Wu, A. Radford, G. Krueger,
J. Wook Kim, S. Kreps, M. McCain, A. Newhouse,
J. Blazakis, K. McGuffie, and J. Wang. 2019. Re-
lease strategies and the social impacts of language
models.

Y. Wang, J. Mansurov, P. Ivanov, J. Su, A. Shelmanov,
A. Tsvigun, O. Mohammed Afzal, T. Mahmoud,
G. Puccetti, T. Arnold, C. Whitehouse, A. Fikri
Ajiand, N. Habash, I. Gurevych, and P. Nakov. 2024a.
Semeval-2024 task 8: Multidomain, multimodel and
multilingual machine-generated text detection.

Y. Wang, J. Mansurov, P. Ivanov, J. Su, A. Shelmanov,
A. Tsvigun, C. Whitehouse, O. Mohammed Afzal,
T. Mahmoud, T. Sasaki, T. Arnold, A. Fikri Aji,
N. Habash, I. Gurevych, and P. Nakov. 2024b. M4:
Multi-generator, multi-domain, and multi-lingual
black-box machine-generated text detection. Pro-
ceedings of the 18th Conference of the European
Chapter of the Association for Computational Lin-
guistics Volume 1: Long Papers, 1:1369–1407.

153

Source/domain/models excluded from the training F1-macro F1-micro Accuracy
- 0.770 0.777 0.777

arXiv 0.790 0.795 0.795
PeerRead 0.829 0.831 0.831

Reddit 0.778 0.784 0.784
Wikihow 0.743 0.749 0.749
Wikipedia 0.726 0.736 0.736
ChatGPT 0.741 0.749 0.749
Cohere 0.782 0.788 0.788

Davinci-003 0.753 0.761 0.761
Dolly-v2 0.701 0.718 0.718

Table 3: Result metrics for BERT-base models

Source/domain/models excluded from the training F1-macro F1-micro Accuracy
- 0.680 0.707 0.707

arXiv 0.550 0.615 0.615
PeerRead 0.855 0.858 0.858

Reddit 0.821 0.826 0.826
Wikihow 0.633 0.671 0.671
Wikipedia 0.741 0.756 0.756
ChatGPT 0.696 0.719 0.719
Cohere 0.657 0.689 0.689

Davinci-003 0.601 0.648 0.648
Dolly-v2 0.629 0.669 0.669

Table 4: Result metrics for RoBERTa-base-case models

Source/domain/models excluded from the training F1-macro F1-micro Accuracy
RoBERTa base OpenAI detector 0.366 0.493 0.493

RoBERTa-mixed-detector 0.342 0.342 0.342

Table 5: Result metrics for RoBERTa base OpenAI detector and RoBERTa-mixed-detector models

154

Overfitting in Artificial Text Detection:
Expanding on the SemEval-2024 Workshop Task 8

Sindre Bjørndal-Riis
University of Oslo
sindrsbj@uio.no

Abstract

In this paper we look at the tendencies of over-
fitting when doing artificial text detection, with
a basis in the SemEval-2024 workshop task 8.
The model trained for this paper uses many of
the same techniques as those used in the work-
shop, and should thus transfer well to those
models when looking at the case of overfitting.

The datasets used in the paper is 1) the same
dataset as that used in the workshop, and 2) an
unseen dataset, used to see whether the data is
varied enough for the models to function well
across domains.

The results of the experimentation show that
any overfitting of the models is probably not
caused by the dataset being too limited, but
rather due to the training of the model not stop-
ping early enough or not utilising regularisation.
However, the results does show some decrease
in performance across domains, which might
suggest some overfitting to the domains present
in the workshop dataset.

1 Introduction

Artificial text generation is becoming more and
more available to the general public. This leads to
concerns about people passing off texts written by
artificial intelligence (AI) as their own, which can
be problematic in several domains, and is of great
concern in academic circles, where there is a desire
to maintain academic integrity and ensure that the
research being done is correct and verifiable. To
combat this trend several researchers have been
working on making models that can distinguish
between artificially generated and human-written
text in recent years.

The task of artificial text detection was given
for the SemEval-2024 workshop, which is an in-
ternational natural language processing research
workshop. In the paper outlining the results from
the workshop, Wang et al. (2024a) reflects that the
models might generalise poorly across domains

and achieve worse results in those cases. Whether
this concern is warranted is what this paper will be
investigating.

In the workshop, the task of artificial text de-
tection consisted of several subtasks, but the one
that will be considered in this paper is subtask A,
which focused on making a binary classifier that
could detect whether a text is written by a human or
generated by artificial intelligence. Subtask A was
further separated into a monolingual part, which
only looked at English texts, and a multilingual
part, which included texts from many languages.
This paper will only focus on the monolingual part
of the task. The other subtasks were somewhat sim-
ilar to subtask A, but looked at respectively which
model had generated the artificial texts, and where
the boundary between human and artificial text oc-
curred in texts where there is a combination of both.
The approaches used for subtasks A and B were
fairly similar, and the results from this paper could
give an indication as to whether the models from
subtask B tend to generalise poorly across domains
as well. The aproaches used for subtask C differed
somewhat to those of the other subtasks, and differ
significantly from the approach used in this paper.

One potential risk when training machine learn-
ing models is that they are too specialised to the
data that they are trained on. This paper will look
into how robust a model trained on the dataset pro-
vided for the workshop is when tested on unseen
datasets.

The model used for the discussion in this paper
is a fine-tuned RoBERTa model. It is trained and
evaluated both on the dataset that was used for
the workshop, but is also evaluated on an unseen
dataset consisting of abstracts from articles about
coronaviruses, both human-written and artificially
generated.

When training the model on the dataset used in
the workshop and testing on the unseen dataset, the
predictions achieves an accuracy of just above 0.5,

155

which is what we would expect when using a model
without fine-tuning it. When training the model on
the unseen dataset and testing on the dataset used in
the workshop, the results are even worse, achieving
an accuracy of less than 0.5. These results suggests
that the models from the workshop do not tend to
overfit to the dataset provided for the task, and that
the dataset itself is still fairly varied and probably
not the reason for any potential overfitting.

2 Background

Roelofs et al. (2019) conducted an experiment to
analyse whether there is a tendency of overfitting in
machine learning competitions, based on 120 com-
petitions from the Kaggle platform. Their hypoth-
esis was that an overuse of test sets when training
models could lead to overfitting. The study found
that there was no significant evidence of overfitting
for the models trained in these competitions. This
might be an indication that the models developed
for the SemEval task will not be prone to overfitting
either.

Other articles have found that networks trained
to detect artificially generated texts tend to overfit
to the topics they are trained on, and do not work
well across domains (Su et al., 2023). Mitchell et al.
(2023) used a zero-shot model for evaluation, and
found that the model they trained worked well with
predicting artificial texts amongst news texts, but
the results were significantly worse for predicting
artificial scientific texts, and it failed totally for
German texts.

Ying (2019) researched solutions to overfitting.
They divided these into three categories. The first
is early stopping, which is stopping the training
before it optimises. The second is reducing noises
in the dataset, so that the models learn from rep-
resentative data as much as possible. This is done
by removing unhelpful or irrelevant data from the
dataset by either removing complex rules or cutting
down on the conditions in complex rules. The third
is expanding the data so that the models have more
data to train on. This could be done by combin-
ing datasets, or artificially expanding the dataset
by changing the existing data slightly, depending
on the task. The last strategy is regularisation,
which involves selecting only useful features and
not taking every feature into consideration. This
is achieved by limiting useless features by trying
to minimise a cost function, where a regularizor
is added. Depending on the strategy, the function

could prioritise minimising small weights, or focus
equally on making all the weights smaller regard-
less of original size.

One paper from earlier this year (Wang et al.,
2024b) found that generalisation is difficult across
domains, and that there is a lot of room for improve-
ment. The models they looked at tended to clas-
sify machine-generated texts as written by humans.
What they included, in contrast to previous work
(Guo et al., 2023; Shamardina et al., 2022; Zellers
et al., 2019), is a bigger variation of languages,
domains and models. Previously it has been com-
mon to only use one or two languages, one model
and one domain when training for artificial text
detection, which might cause more overfitting than
would otherwise be the case.

3 Setup

3.1 Model

One concern when training on a specialised dataset
is that the model will overfit to that dataset or that
domain, and achieve poorer results when testing on
an unseen dataset. To investigate whether that is
the case for this task, we need to have a model to
test the datasets on. This model will be used with
two different datasets, both the one presented in the
workshop and an unseen one for this task.

Many of the top-performing models developed
for subtask A in the workshop (Wang et al., 2024a)
used fine-tuning and two of the top three models
were fine-tuned on top of a pretrained RoBERTa
model. Because of this, the model that will be
used as a baseline for this experimentation will be
a fine-tuned RoBERTa model, although with fewer
additional features than most of the participating
teams used. The model is trained on the training
data from the workshop and evaluated on the de-
velopment data for each epoch before testing it on
the test data for the final accuracy score. For con-
sistency across results, the hyperparameters for the
model are not adjusted between any of the tests.
The only modification done for a few of the tests
is freezing the weights for all other layers than the
head to see if full fine-tuning is necessary for these
models and how it influences the effectiveness of
the model with regards to cross-domain generalisa-
tion.

This does mean that the model used for this paper
is not exactly the same as any of the final models
created for the workshop. Considering that the un-
derlying model and training data is the same as was

156

Split Source davinci-003 ChatGPT Cohere Dolly-v2 BLOOMz GPT-4 Machine Human
Wikipedia 3,000 2,995 2,336 2,702 - - 11,003 14,497
Wikihow 3,000 3,000 3,000 3,000 - - 12,000 15,499

Train Reddit 3,000 3,000 3,000 3,000 - - 12,000 15,500
arXiv 2,999 3,000 3,000 3,000 - - 11,999 15,498
PeerRead 2,344 2,344 2,344 2,344 - - 9,374 2,357
Wikipedia - - - - 500 - 500 500
Wikihow - - - - 500 - 500 500

Dev Reddit - - - - 500 - 500 500
arXiv - - - - 500 - 500 500
PeerRead - - - - 500 - 500 500

Test OutFox 3,000 3,000 3,000 3,000 3,000 3,000 18,000 16,272

Table 1: Dataset splits for subtask A in the SemEval
task.

used for many of the contributions in the workshop,
the model used in this paper should give an indi-
cation for how similar models from the workshop
would evaluate as well.

3.2 Dataset

The dataset used for the task during the workshop
consists of the splits seen in table 1. Since this is
the dataset used during the workshop, it will also
be used as a baseline for this paper, to make com-
parison as similar as possible. The dataset consists
of texts from Wikipedia, Wikihow, Reddit, arXiv
and PeerRead. arXiv and PeerRead contain aca-
demic articles and reviews of these. Wikipedia and
Wikihow contain articles not aimed at academics,
that anyone can edit. While most of these sites
contain articles, one is a social media platform,
Reddit, and contains posts written by the users of
the page, which can be expected to contain less for-
mal language than the data from the other sources.
However, this is still a dataset which focuses heav-
ily on more formal writing, with only 20% of the
data potentially containing more informal language,
dialects and slang.

To analyse how well the model works across do-
mains, the publicly available ai-ga (Theocharopou-
los et al., 2023) dataset is used in addition to the
dataset provided for the workshop. This dataset
consists of titles and abstracts from articles, where
some of the abstracts are AI generated, and the rest
are human-written. For the purposes of this pa-
per, only the abstracts will be used for training and
evaluating the model. The human-written abstracts
are collected from the COVID-19 Open Research
Dataset (CORD-19) (Wang et al., 2020), which
is an aggregation of several papers from multiple
sources that research Covid-19 and related viruses.
To produce the AI-generated part of the dataset,
Theocharopoulos et al. (2023) used GPT-3, giving
it the prompt ’Create an abstract for a scientific
journal with a formal tone, academic language, and
a background story of the topic in a unique para-

graph with the title: t̂’ where t̂ is the title from one
of the articles in the original CORD-19 datset. The
final dataset with both human-written and AI gener-
ated abstracts consists of 28 662 entries where half
are written by humans and half are generated by
GPT-3. This is similar in size to the workshop test
set. When training the model on the ai-ga dataset,
it is further split into training, validation, and test
sets.

The ai-ga dataset is very academically focused,
and does, similarly to the workshop dataset, contain
very formal language. However, it is unlikely that
many of the articles in the workshop dataset covers
exactly the theme presented in the ai-ga dataset,
and so it should function as a way to analyse over-
fitting and the robustness of the dataset from the
workshop.

In both datsets, every element also has a corre-
sponding label that indicates whether it is written
by a human (0) or machine (1), which are used for
binary classification.

4 Results

To investigate whether the models could be sensi-
tive to overfitting, they were run with several com-
binations of training and testing data, the results of
which can be seen in table 2 and figure 1.

If every element in the test data had been as-
signed a random label (0 or 1) indicating which
elements were predicted to be written by humans
and which were predicted to be generated by a ma-
chine, we would assume an accuracy of around
0.5, the equivalent of flipping a coin. However,
since we are basing our classifier on a pretrained
model, the experimentation started by investigating
how accurate predictions it yielded without train-
ing on the datasets at all. The results of this can be
seen in table 2. From this we can see that the base
assumption of 0.5 accuracy is fairly correct. There-
fore, the models should achieve a higher accuracy
score than 0.5 for us to be relatively certain that
they have learned something from the training data
rather than the models assigning labels by random
guessing.

4.1 Training on the workshop dataset

To get a baseline the model was run with train,
development and test data from the datasets used
during the workshop and described in table 1. As
can be seen from table 2, the model using the work-
shop dataset for both training and testing in this

157

Training data Testing data Accuracy
None Workshop dataset 0.525
None Ai-ga dataset 0.418
None Smaller test ai-ga datset 0.575
Workshop dataset Workshop dataset 0.707
Workshop dataset Ai-ga dataset 0.578
Frozen workshop dataset Workshop dataset 0.721
Frozen workshop dataset Ai-ga dataset 0.529
Ai-ga dataset Workshop dataset 0.484
Ai-ga dataset Ai-ga dataset 1.000
Frozen ai-ga dataset Workshop dataset 0.478
Frozen ai-ga dataset Ai-ga dataset 0.914

Table 2: Accuracy for the different training and test
datasets with both frozen and unfrozen weights.

Figure 1: Heatmap of accuracies. The x-axis shows the
dataset used for testing, and the y-axis the dataset used
for training.

paper performed somewhat worse than the baseline
from Wang et al. (2024a), which got an accuracy
score of 0.885.

Using the same parameters, the model was then
run using the full ai-ga dataset as the test set, but
still using the training and development data from
the workshop dataset. When comparing to the pre-
vious results, we can see that this scores lower. A
different dataset having a lower accuracy is to be
expected, but this being higher than when using
the model without fine-tuning is promising for the
model not overfitting.

In addition, the same two tests were run with
frozen weights, where the training only optimised
the head layers. Freezing layers is a way of com-
bating overfitting as it means that not all layers are
optimised to the training dataset. If the results for
the unseen dataset becomes noticeably higher or
the results of the workshop dataset becomes sig-
nificantly lower when using frozen layers, it could
indicate that the original model tends to overfit.

From these tests we can see that freezing the
weights did not have a significant effect on ei-
ther dataset combination. However, it achieved
a slightly higher result with the workshop dataset.
This further indicates that the model does not tend

to overfit to the training dataset. It could also
suggest that it is good enough to only train the
head layers, which significantly decreases the re-
quired training time, although it might then get
less general results, as the frozen weights achieved
a slightly worse result when testing on the ai-ga
dataset. When freezing the weights, the ai-ga
dataset only just got more than 0.5 accuracy, which
is still higher than what we achieved without fine-
tuning, but not by much.

4.2 Training on the ai-ga dataset
To investigate how well the baseline model per-
forms, it is also interesting to see how well the
model performs if we train it on the ai-ga dataset
and test it on respectively the ai-ga and workshop
datasets. The results of these experiments can give
an indication as to whether the workshop dataset is
varied enough to use for training a general classifier
across multiple domains or if it should be modified
somewhat for cross-domain use. If the result of
using the datasets this way is worse than when
training on the workshop dataset, it might indicate
that the original dataset is good enough to train a
model that generalises adequately for cross-domain
tasks. If it does not, it indicates that the workshop
dataset does not generalise well, considering that
the ai-ga dataset is very specialised in regards to
domain, as well as being fairly small.

It is in this experiment important to note that
the aggregated workshop training, validation and
test datasets are significantly larger than the ai-
ga dataset. This means that we can assume some
decrease in performance. Additionally, the ai-ga
dataset is a lot less varied with regards to topics
in the texts and the type of texts included, which
would further the assumption of a decrease in per-
formance. Although this might seem problematic,
for this experimentation it is helpful for giving an
indication as to how robust the workshop dataset
is, since the ai-ga dataset is exactly what we do not
want to see in training data for a general classifier.

Since the ai-ga dataset is not already split into
training, validation and testing datasets, it needed
to be split into those sections before training. The
dataset was split into a 60% / 20% / 20% split,
consisting of respectively 17 197, 5 732, and 5 732
samples. In comparison to the workshop dataset
the validation set is fairly similar in size, while the
other two are noticably smaller. When fine-tuning
all the weights and testing on the ai-ga dataset the
model achieved an accuracy of 1.000, which is

158

suspiciously high. This indicates either that the
model overfits to the training data or that the dataset
is not varied enough. When freezing the weights,
the accuracy drops a little, down to 0.914. Similarly
to what we saw in the previous section, this is not
a significant decrease in performance, and could
suggest that the model does not in fact overfit to
the dataset, but rather that the dataset is not varied
enough to have many unseen instances.

When testing on the workshop test dataset, the
same data was used for the training and validation
sets as when testing with only the ai-ga dataset,
that is respectively 60% and 20% of the full ai-ga
dataset. The workshop test set achieved a much
worse accuracy score than was seen when using
only the ai-ga dataset. When training on the ai-ga
dataset, the workshop test set got a slightly worse
accuracy for the frozen weights compared to train-
ing all of the layers, but not significantly so.

The fact that the workshop dataset gets a notice-
ably worse score when training on the ai-ga dataset,
and even worse than the other way around or with
no fine-tuning, suggest that this training combina-
tion tends to overfit to the training data more than
using the workshop dataset for training, which indi-
cates that the workshop dataset itself does not pose
a significant problem with regards to overfitting.

5 Discussion

Giving a definite conclusion as to whether the
model trained on the workshop dataset is prone
to overfitting or not is slightly difficult. On the
one hand, when testing on the unseen dataset, the
accuracy score is not much above 0.5. On the other
hand, it is noticably better than when testing with
the ai-ga dataset on the RoBERTa model that is not
fine-tuned. However, since the distance between
the accuracy score for the baseline model tested on
the baseline test set (0.707) and the baseline model
tested on the ai-ga dataset (0.578) is fairly small, it
is not very likely that it overfits.

What is interesting to look at when investigating
overfitting in machine learning, is whether it is the
dataset or the model that seems to be the root of the
problem. One reason for overfitting can be that the
dataset is not varied enough, and makes it so that
the model does not learn general enough features
to translate well to other domains. Another reason
can be that the model fine-tunes for too long so
that even if the dataset is in theory varied enough
to avoid overfitting, the model focuses too much

weight on random details that happen to be in the
training set rather than general features that are
relevant for the task.

From the results it does not seem that the dataset
given during the workshop is the main problem in
this case. Switching the datasets with regards to
which are used for training and which are used for
test shows that training on the ai-ga dataset yields
noticeably worse results on the workshop dataset
than the other way around.

The training of the model could of course also
be a problem, and it might look like that from the
results of the model trained on the ai-ga dataset,
but then a higher accuracy score would be expected
for the model trained on the workshop dataset as
well. Seeing as the model trained on the workshop
dataset achieves a lower accuracy score than the
baseline in the workshop, and not a lot higher than
the model tested on the ai-ga dataset, it does not
seem that the training of the model is a problem
either. There was also made efforts in assuring that
the model is not the problem in this case, such as
having fairly few epochs during training, so that it
will stop before it achieves the ’optimal’ weights.

As discussed in Mitchell et al. (2023), it is not un-
common for networks trained to detect artificially
generated texts to generalise poorly across domains,
which seems to be the case for this task as well.
One possible reason posed by Wang et al. (2024a)
was that all of the models trained for this task
are black-box models, whereas white-box mod-
els1 tend to show a greater sign of robustness with
regards to cross-domain utilisation. However, it
does not appear that the reason for the poor cross-
domain generalisation in this case is overfitting to
the training data.

It is worth noting that it is possible that the mod-
els used in the workshop tend less toward overfit-
ting than what is seen in this article, as there are
many different methods for training a model used
in the workshop and many variations on what has
been done in this paper, which might adjust for the
problems discussed. However, the model used for
the experimentation in this paper is based on what
most of the top-performing models in the work-
shop used and should give some indication as to
how they perform with cross-domain tasks.

1Models which have results that can be explained, e.g.
using patterns or rules (Loyola-González, 2019).

159

6 Future work

In the workshop several subtasks were presented,
but this article only focused on the first of these
subtasks. The subtasks presented are all focused
on detecting artificial texts, so the results from this
paper could be an indication of how the models
for the other subtasks perform as well in regards to
cross-domain utilisation. However, there needs to
be done further research into those tasks to deter-
mine whether that is the case.

Researching how models using different strate-
gies than fine-tuning compare could also be inter-
esting, as they might have different results with
regards to overfitting than what can be seen for the
models using fine-tuning.

7 Limitations

One of the main limitations of this article is that the
tests were only run on one unseen dataset, which
contains similar texts to parts of the original dataset.
This means that the resulting model has seen at
least some similar texts before, and seeing how
the model performs with texts from totally unseen
domains could make for an interesting compari-
son. Especially using a dataset with no articles,
but rather more informal languages, for instance
with conversations could be interesting. Doing so
could expand the results, giving a more thorough
understanding of how extensive the problem of
overfitting is in artificial text detection.

Additionally, the unseen dataset used is fairly
small, especially when split into training, devel-
opment and test splits. Using a larger dataset, of
similar size to the workshop dataset, to see how
that holds up in comparison to the original dataset
might give a fairer comparison, and thus more con-
clusive results.

8 Conclusion

In this paper we have looked at the tendencies
of overfitting when doing artificial text detection,
with a basis in the SemEval-2024 workshop task 8
subtask A. The model trained for this paper uses
the same techniques as several of the models used
in the workshop, and should thus transfer well to
those models when looking at the case of overfit-
ting. Specifically the model used for this paper uses
RoBERTa as the underlying model and is finetuned
on the datasets described in section 3.2.

The datasets used for the experimentation in this
paper were 1) the same dataset with the same splits

as in the workshop task, and 2) a different, un-
seen dataset based on abstracts from papers about
coronaviruses. The second dataset was used to see
whether the data provided in the workshop is var-
ied enough for the models to generalise well across
domains.

The results show that the classifier trained on the
workshop dataset achieves a much higher accuracy
when tested on the baseline test set, than it does
when tested on the ai-ga dataset. Similar results
can be seen when the classifier is trained on the
ai-ga dataset, but tested on the baseline test set.
However, training on the workshop dataset does
achieve slightly higher accuracies for the unseen
data than using the classifier without fine-tuning.
This is not the case when training on the ai-ga
dataset, which indicates that the dataset itself is
fairly varied, and any overfitting tendencies from
the models presented in the workshop is due to the
models not stopping training early enough or not
utilising regularisation.

All of this shows no tendency from the model
towards overfitting to the data. However, the model
still does not translate well across domains.

Acknowledgments

I would like to thank Vladislav Mikhailov for pre-
senting this track for the exam as well as giving
guidance during the home exam. Additionally, I
would like to thank all the reviewers who has given
me helpful feedback on how to present this paper
in a more thorough and understandable way.

References
Biyang Guo, Xin Zhang, Ziyuan Wang, Minqi Jiang, Jin-

ran Nie, Yuxuan Ding, Jianwei Yue, and Yupeng Wu.
2023. How close is chatgpt to human experts? com-
parison corpus, evaluation, and detection. Preprint,
arXiv:2301.07597.

Octavio Loyola-González. 2019. Black-box vs. white-
box: Understanding their advantages and weak-
nesses from a practical point of view. IEEE Access,
7:154096–154113.

Eric Mitchell, Yoonho Lee, Alexander Khazatsky,
Christopher D. Manning, and Chelsea Finn. 2023.
Detectgpt: Zero-shot machine-generated text de-
tection using probability curvature. Preprint,
arXiv:2301.11305.

Rebecca Roelofs, Vaishaal Shankar, Benjamin Recht,
Sara Fridovich-Keil, Moritz Hardt, John Miller, and
Ludwig Schmidt. 2019. A meta-analysis of over-
fitting in machine learning. In Advances in Neural

160

Information Processing Systems, volume 32. Curran
Associates, Inc.

Tatiana Shamardina, Vladislav Mikhailov, Daniil Cher-
nianskii, Alena Fenogenova, Marat Saidov, Anas-
tasiya Valeeva, Tatiana Shavrina, Ivan Smurov, Elena
Tutubalina, and Ekaterina Artemova. 2022. Findings
of the the ruatd shared task 2022 on artificial text
detection in russian. In Computational Linguistics
and Intellectual Technologies. RSUH.

Jinyan Su, Terry Yue Zhuo, Di Wang, and Preslav Nakov.
2023. Detectllm: Leveraging log rank information
for zero-shot detection of machine-generated text.
Preprint, arXiv:2306.05540.

Panagiotis C. Theocharopoulos, Panagiotis Anagnos-
tou, Anastasia Tsoukala, Spiros V. Georgakopou-
los, Sotiris K. Tasoulis, and Vassilis P. Plagianakos.
2023. Detection of fake generated scientific abstracts.
In 2023 IEEE Ninth International Conference on
Big Data Computing Service and Applications (Big-
DataService), pages 33–39.

Lucy Lu Wang, Kyle Lo, Yoganand Chandrasekhar,
Russell Reas, Jiangjiang Yang, Doug Burdick, Dar-
rin Eide, Kathryn Funk, Yannis Katsis, Rodney Kin-
ney, Yunyao Li, Ziyang Liu, William Merrill, Paul
Mooney, Dewey Murdick, Devvret Rishi, Jerry Shee-
han, Zhihong Shen, Brandon Stilson, Alex Wade,
Kuansan Wang, Nancy Xin Ru Wang, Chris Wil-
helm, Boya Xie, Douglas Raymond, Daniel S. Weld,
Oren Etzioni, and Sebastian Kohlmeier. 2020. Cord-
19: The covid-19 open research dataset. Preprint,
arXiv:2004.10706.

Yuxia Wang, Jonibek Mansurov, Petar Ivanov, Jinyan
Su, Artem Shelmanov, Akim Tsvigun, Osama Mo-
hammed Afzal, Tarek Mahmoud, Giovanni Puccetti,
Thomas Arnold, Chenxi Whitehouse, Alham Fikri
Aji, Nizar Habash, Iryna Gurevych, and Preslav
Nakov. 2024a. Semeval-2024 task 8: Multidomain,
multimodel and multilingual machine-generated text
detection.

Yuxia Wang, Jonibek Mansurov, Petar Ivanov, Jinyan
Su, Artem Shelmanov, Akim Tsvigun, Chenxi White-
house, Osama Mohammed Afzal, Tarek Mahmoud,
Toru Sasaki, Thomas Arnold, Alham Aji, Nizar
Habash, Iryna Gurevych, and Preslav Nakov. 2024b.
M4: Multi-generator, multi-domain, and multi-
lingual black-box machine-generated text detection.
In Proceedings of the 18th Conference of the Euro-
pean Chapter of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1369–
1407, St. Julian’s, Malta. Association for Computa-
tional Linguistics.

Xue Ying. 2019. An overview of overfitting and its
solutions. Journal of Physics: Conference Series,
1168(2):022022.

Rowan Zellers, Ari Holtzman, Hannah Rashkin,
Yonatan Bisk, Ali Farhadi, Franziska Roesner, and
Yejin Choi. 2019. Defending against neural fake

news. In Advances in Neural Information Processing
Systems, volume 32. Curran Associates, Inc.

161

162

Using Statistical Features to Improve the Performance of Large Language
Models in Artificial Text Detection

Andreas Poole
andrepoo@uio.no

Abstract

Artificial Text Detection (ATD) is the task of
identifying whether a text has been generated
by a machine or written by a human. This paper
explores how this task can be performed by us-
ing Large Language Models (LLMs), statistical
features (text statistics), and a combination of
the two. There is evidence that machines and
humans generate texts with different statistical
properties and the main question asked in this
paper is whether LLMs are able to fully com-
prehend these differences when used in ATD,
or if statistical features can improve the per-
formance of LLM-predictors. This study finds
some support for the second case.

1 Introduction

Artificial Text Detection (ATD) is the task of iden-
tifying if a text has been generated by a machine
or written by a human. The task is closely related
to that of detecting misusage of LLMs, where ma-
chine generated texts are presented as written by
humans, or vice versa. Cases of misuse have been
broad, with examples including LLMs infiltrating
internet discussion forums and public opinion web
pages (Crothers et al., 2023).

Misuse, both real and potential, highlights the
need for knowledge about ATD, which has sparked
some activity among researchers. One of these
activities is the academic research competition
"SemEval-2024 Task 8: Multigenerator, Mul-
tidomain, and Multilingual Black-Box Machine-
Generated Text Detection"1 which provides the set-
ting for this study.

2 The SemEval Competition

The competition was open and anyone could sub-
mit their contributions. It consisted of three sub-
tasks, where submissions are made independently

1https://github.com/mbzuai-nlp/
SemEval2024-task8

to each subtask, and even tracks of subtasks. This
paper simulates an artificial submission to Subtask
A: "Human vs Machine classification". This is a
binary classification task where the only goal is
to predict whether a text was written by a human
or generated by a machine. Machine generated is
assigned the positive class, which makes human
written the negative class.

The subtask consisted of two tracks: Monolin-
gual and multilingual. The monolingual track con-
sist of classification of only English texts, while
the multilingual deals with classification of texts in
several different languages.

A shared requirement for the task is to not use
external datasets, i.e. it is not allowed to use other
data than the data provided with tasks to train mod-
els entering the competition. This requirement has
been followed in this study.

More details about the competition can be found
in the SemEval Shared Task Paper (Wang et al.,
2024a).

2.1 Data
The dataset provided for the competition was an ex-
tension of the M4 dataset (Wang et al., 2024b). The
dataset consists of samples from different sources,
e.g., web domains like Wikipedia, which have both
human written and machine generated texts, gener-
ated by different generators, i.e., LLMs.

In the competition development phase, the partic-
ipants were provided with training sets and devel-
opment sets. For the monolingual track the training
set consisted of 119,757 samples of which 52.9%
was human written and 47.1% was machine gen-
erated. For the multilingual track the training set
consisted of 172,417 samples. As in the monolin-
gual training set the samples was fairly balanced
between human and machine generated texts. The
dataset was heavily skewed towards English. 79.2%
of the samples were English texts, while the re-
maining 20.8% was split between four different

163

Table 1: Subtasks A: Monolingual Binary Classification.
Data statistics over Train/Dev/Test splits (Reproduced
from Wang et al., 2024a, Table 1)

languages.
The development sets were blind datasets (i.e.

no gold labels). However, even with the gold labels
hidden, the organizers still gave the participants
the opportunity to view their performance on the
development sets during the development phase.
This meant that they had some possibility to tune
their models to perform better on the development
set. After the submission deadline, the gold labels
of the development set was released, along with the
test set used to rank the participants.

The monolingual test set was from a single sur-
prise source, Outerfox, not present in the training
data, the data also included a new generator, GPT-4,
in addition to the same generators as in the training
set. The test set consisted of an equal amount of
samples from each generator. Unfortunately, only
the gold labels for the test set was released after the
competition, the labels for the generators was not
released.

The multilingual test set was again heavily
skewed towards English texts, although to little
less degree than the training set, with 66.7% of the
texts being English. The test set included two new
surprise languages, but due to the dominance of
English there were few samples of these surprise
languages.

The special usage of the development set makes
it difficult to use in this "simulated" study, and for
this reason it is not used in this study. Only the
training set is utilized in the development phase
and the test data is used to measure performance
on the final models.

Data statistics for the monolingual track are
shown in Table 1 and for the multilingual track
in Table 2.

3 Research Questions

Studies, e.g., by Fröhling and Zubiaga (2021) and
Adilazuarda (2023) show that statistical text fea-

Table 2: Subtasks A: Multilingual Binary Classification.
Data statistics over Train/Dev/Test splits (Others gener-
ators are Cohere, Dolly-v2 and BLOOMz) (Reproduced
from Wang et al., 2024a, Table 2)

tures (features) show some predicting power in the
ATD setting. LLM’s have also been widely ap-
plied to this task. It should be obvious that when
a LLM is trained or fine-tuned to the ATD task, it
will learn at least some of the differences in the
features and implicitly use them when making pre-
dictions. However, this does not necessarily mean
that all information in the features are absorbed by
an LLM. In our study we attempt to look at this
effect by investigating if a combined model using
both a LLM and features can benefit in the ATD
task compared to LLM-only predictors. In addition
we study if any benefit from features depends on
the size of the LLM used, if smaller LMs benefit
to a higher degree than larger LMs.

The main focus of the study is on the monolin-
gual track, however we also attempt the multilin-
gual track. Where the research question is how well
the prediction power of features, which mostly is
designed to use on English texts, transfers to other
languages.

4 Predictor Models

4.1 LLM

LLMs, and specifically fine-tuning LLM, are the
"go to candidate"-models for most NLP tasks these
days. This is also a natural candidate for ATD,
and was also chosen as a baseline in the SemEval-
competition.

LLMs have the advantage that they work very
well over a broad spectrum of tasks, but at the cost
of being expensive when it comes to computing
resources and also score low on interpretability.

The selected LLMs for this study were the same
as the baseline models used in the competition:
RoBERTa (Liu et al., 2019) for the monolingual
track and XLM-RoBERTa (Conneau et al., 2020)

164

for the multilingual track. To investigate how
model size influence results, we used RoBERTa
with two different size configurations in the mono-
lingual track, base2 with 125 million parameters
and large3 with 355 million parameters. For the
multilingual track only the base XLM-RoBERTa4

model was used.
The fine-tuning of the LLMs was conducted in

a similar way to how it was done in the organizers
baseline code5. The hyperparameters used for fine-
tuning the LLMs were:

• Train-Validation set split: 90%-10%

• Number of epochs: 5, early stopping with pa-
tience of 2

• Batch size: base models: 32, large model: 16

• Learning rate: 2 · 10−5

• Weight decay: 0.01

The validation set was used to decide early stop-
ping during training.

4.2 Feature based
The feature based approach, sometimes also called
stylometric attribution (e.g., by Uchendu et al.
(2023)) to text analysis is about calculating sta-
tistical measurements on texts and using these mea-
surements to infer properties of the texts. This can
be done at character level, word level, n-gram level
or text level, depending on how the texts are sub-
sampled when calculating the statistics. There are
several such features which can be measured on
text. An extensive survey can be found in Lagutina
et al..

In the context of ATD: "The feature-based ap-
proach to discriminate between human and ma-
chine text is grounded on the assumption that there
are certain dimensions in which both types differ."
(Fröhling and Zubiaga, 2021).

There are several reasons one may hypothe-
size that humans and machines may generate texts
which may, on average, may score differently on
such metrics.

2https://huggingface.co/FacebookAI/
roberta-base

3https://huggingface.co/FacebookAI/
roberta-large

4https://huggingface.co/FacebookAI/
xlm-roberta-base

5https://github.com/mbzuai-nlp/
SemEval2024-task8/tree/main/subtaskA/baseline

Zipf (1949) connected human behavior to texts
written by humans through the principle of least
effort. This might suggest that humans tend to
use shorter words, write shorter sentences and use
fewer stop words than machines, simply for the
case of minimizing effort.

Further; Gehrmann et al. (2019) "describe that
language models fail to use synonyms and refer-
ences as humans do, but rather stick to the repeti-
tion of the same expressions, leading to a lack of
syntactic and lexical diversity in machine text." (as
cited in Fröhling and Zubiaga, 2021). Which might
lead to higher Vocabulary Richness in human texts.

In this study the selected features were mostly
based on the features described in Adilazuarda
(2023), with the exception of stop word frequency
and maximum sentence length which was also in-
cluded in this study.

The features used in this study were:

• Vocabulary Richness: Rate of number of
unique words to total number of words (aka.
type-token ratio for word tokens)

• Average Word Length: Average length of
words measured in characters

• Average Sentence Length: Average length
of sentences, measured in number of words
(signs removed)

• Maximum Sentence Length: Maximum length
of sentence in text, measured in number of
words (signs removed)

• Stop Word Frequency: Rate of occurrences of
stop words to total number of words.

The Natural Language Toolkit, nltk6 by Bird
et al. (2009), was used in the calculation of these
features. Word tokenizer was used to separate
words, sentence tokenizer to separate sentences,
and the English stop words list were utilized when
calculating stop word frequency.

The feature based classifier was a simple logistic
regression classifier7. The values for the hyperpa-
rameters used by this classifier were:

• Regularization parameter: 1

• Penalty: ℓ2
6https://www.nltk.org/
7https://scikit-learn.org/stable/

modules/generated/sklearn.linear_model.
LogisticRegression.html

165

• Solver: lbfgs

In many ways, the feature based approach has
opposite properties to that of the LLM approach.
Features are cheap and fast to compute, and also
are highly interpretable. Unfortunately they often
perform poorly. Fröhling and Zubiaga (2021) com-
pares their performance with Solaiman et al. (2019)
and finds that for their feature based predictor "our
best ensemble model lagging behind 18 percentage-
points in accuracy" for the largest test set used by
both authors.

4.2.1 Multilingual Track
Many of these features are designed with English
and similar languages in mind and might not trans-
fer well to other languages. English stop words,
does of course not transfer to any other languages.
Other features should transfer well to other lan-
guages using alphabetic writing systems, but most
likely do not transfer well to other languages using
logograms or syllabaries, like Chinese.

4.3 Combined Model

In the combined model the probabilities created
by the LLM were converted to logits. The logits
were used in addition to the text features as input
to a logistic regression classifier. The values for the
hyperparameters for this classifier was the same as
described in 4.2. The general idea here is that the
features might be able to help the LLM in samples
where the LLM is in doubt, i.e. the probability
assigned to the predicted class is low (close to 0.5
in the binary case), and the features might just push
the predictions from the wrong to the correct class
(more often then it does the opposite).

5 Data Analysis

A nice feature with features is that they are highly
interpretable, and are easy to use to get some in-
sight into the dataset. Figures 1 to 5 shows the
densities of values for the selected features for the
samples in the monolingual training set.

From these visualizations it can be observed
some trends in differences between feature statis-
tics for human written and machine generated texts,
in the training set. Some of the features statistics
are in line with the hypotheses and citations pre-
sented in 4.2. Human written texts do on average
have shorter words, lower stop word frequency and
higher vocabulary richness than machine generated
texts. However, human written texts tend to have

Figure 1: Vocabulary Richness

Figure 2: Average Word Length

Figure 3: Average Sentence Length

166

Figure 4: Maximum Sentence Length

Figure 5: Stop Word Frequency

Metric LLM Features LLM+Features
Accuracy 82.11% 65.55% 85.51%
Precision 77.38% 64.64% 83.42%
Recall 93.17% 75.94% 90.37%
F1-Score 84.55% 69.84% 86.75%

Table 3: Performance metrics, monolingual track,
RoBERTa-base LLM-only, features-only and
LLM+Features

longer sentences than machine generated texts, and
specifically tends to have higher maximum sen-
tence lengths.

6 Results

6.1 Monolingual Track
The performance metrics for RoBERTa-base, fea-
tures based model and combined model using this
LLM are shown in Table 3.

Not surprisingly the features-only model score
poorly, and a LLM alone scores substantially better.
For both models, recall is higher than precision.
This means that the models tend to predict that
texts are machine generated in too many cases, at
the cost of many false positives. This is not an
effect of tending to predict to the majority class,
as machine is actually the minority class in the
training set.

The results from the participants in the SemEval
competition showed a similar pattern, with many
participants posting recalls in the 90-ties, but very
few posting similarly strong values for precision
(Wang et al., 2024a, Table 9).

One can be tempted to assume this effect is
caused by the introduction of the surprise source
Outerfox. That the new source represents a distri-
butional shift, fooling the models to believe many
of the human written texts in the test set are gener-
ated by machines, but the effect is even stronger in
the multilingual track, and in that case in can not
be attributed to the introduction of this source.

For accuracy, the results in our study are in line
with previous research. For the features alone the
results are in the same range as those achieved
by (Adilazuarda, 2023, Table 3). This study uses
similar features as our study. The results for fine-
tuned LLMs in the same study is also similar. As
shown in (Fröhling and Zubiaga, 2021, Table 1)
their study achieves somewhat higher scores for
their feature approach, on average in the high 70-
ties, but their study uses more complex features
than our study.

167

Metric LLM LLM+Features
Accuracy 76.04% 84.54%
Precision 69.91% 82.01%
Recall 95.47% 90.39%
F1-Score 80.71% 86.00%

Table 4: Performance metrics, monolingual track,
RoBERTa-large LLM-only and LLM+Features

For the combined model, the problem of over-
predicting to the positive class is less prominent.
The model predicts the machine class in less cases
and gives more balanced predictions. This gives a
lower recall, but higher scores overall. This hap-
pens even if the feature based model has the same
problem with over-predicting to the machine class.
What we may see here is that the features in some
way regularize the LLM-predictions towards pre-
dictions to the majority class, which is human writ-
ten texts. This gives an increase in false negative
predictions, but the decrease in false positives is
higher leading to higher overall scores.

The performance metrics for RoBERTa-large
and combined model using this LLM are shown in
Table 4.

Using a larger LLM yields yet more surprising
results. When fine-tuned in a similar fashions, the
larger LLM scores worse than the smaller LLM.
The effect of over predicting to the machine class
is even stronger in this case, dropping precision to
a very low level and along with it also the overall
scores. The combined model scores worse than the
one using RoBERTa-base, but the outperformance
compared with the LLM-only predictor is higher.
It’s regularizing effect has an even stronger effect.
The decrease in recall is larger than for the smaller
LLM, but a significant increase in precision more
than weight up for this. In a way this illustrates how
our combined model profits from poor behavior of
the LLM.

This result makes it difficult to draw any conclu-
sions about whether the benefit from features de-
pends on the size of the LLM. Such insight would
require the larger LM to perform better than the
smaller LM.

6.2 Multilingual Track
The performance metrics for XLM-RoBERTa-base,
features based model and combined model using
this LLM are shown in Table 5.

For the LLM the performance is a little worse
than for the monolingual case. Again, we observe

Metric LLM Features LLM+Features
Accuracy 80.48% 67.78% 86.42%
Precision 72.94% 65.04% 79.80%
Recall 99.60% 82.89% 99.07%
F1-Score 84.21% 72.89% 88.40%

Table 5: Performance metrics, multilingual track,
XLM-RoBERTa-base LLM-only, features-only and
LLM+Features

that recall is much higher than precision, and even
higher than in the monolingual track.

Looking at the performance of the participants
in the competition (Wang et al., 2024a, Table 10)
we also see an even stronger trend towards high
recall and low precision than in the monolingual
track.

For the features the performance is just as good
as in the monolingual track. Considering the domi-
nance of English texts and that all languages in the
test set use alphabetic writing systems (i.e., are sim-
ilar languages), the results are not unreasonable.

The combined model shows similar improve-
ment compared to the LLM-only predictor, as in
the monolingual track. The regularization effect
again seems successful, giving a boost to precision,
but in this case with only a small drop in recall.
This means that most of the changed predictions
from the positive to the negative class was correct,
leading to an substantial increase in overall perfor-
mance on this particular test set.

For all models, it would have been interesting
to study the variance in performance between the
different languages, but unfortunately this is not
feasible due to missing language labels for the sam-
ples in the test set.

7 Limitations of study

The study is limited in general, as it is quite one
dimensional, in the sense that it explores little varia-
tions in the choices made when designing the exper-
iments. The only variation in the experiments was
to run the monolingual model for RoBERTa in two
size configurations. The results are therefore also
limited to the selected LLMs. To further validate
the results across multiple language models, the
study could have used multiple LLMs, including
decoder only models like GPT.

The features used in the study is only a small
subset of the features that can be relevant for ATD.
In addition, the selected features are simple in na-
ture and limited to word and sentence level. There

168

are several other features that could have been in-
cluded.

One candidate is type-token ratio for n-grams,
which could have measured repetition of word se-
quences, and supplemented the single word variant
used in this study.

Another interesting feature is Perplexity, as it
measures the improbability of a text, from the point
of view of a LLM, and it could be hypothesized
that a LLM would assign higher Perplexity to texts
written by a human than to texts generated by a
machine, thus making it relevant for ATD.

Some features used in this study can be con-
nected to work by Zipf (1949). Further features
that measure how well texts follow Zipf’s Law, e.g.,
features that measure goodness of fit of a texts word
length frequencies compared to expected frequen-
cies according to Zipf’s law, could be interesting,
as this law is directly related to human behavior
and as such can be relevant for ATD.

Another limitation of this study is that it has no
feature selection, in the sense that all available fea-
tures are fed into the logistic regression classifier.
The inclusion of additional features would neces-
sitate the inclusion of a proper feature selection
method, where features that might have negative
predictive power are not used when fitting the clas-
sifier.

In summary, there are several limitations to this
study. These could have been expanded on to make
it a more interesting study, with more robust results.

8 Conclusion

The results in this study show that combining
LLMs with features can improve results in ATD,
both in monolingual and multilingual settings.
However, this result can be attributed to applying
the method to a case where LLM-predictors show
somewhat extreme behavior, which makes the con-
clusion depend on presence of this kind of behav-
ior of LLMs. A more interesting question would
be what would happen in a case where LLMs did
not show this behavior? E.g. a case where LLM-
predictors produced similar rates of false positives
and false negatives. Most likely, the method would
not perform as well in this case, but might there
still be some benefits from combining features with
LLMs, or will there be no or even a negative effect?
This question will remain unanswered in our study,
but may lay the ground for future work.

References
Muhammad Farid Adilazuarda. 2023. Beyond Tur-

ing: A Comparative Analysis of Approaches for
Detecting Machine-Generated Text. arXiv preprint
arXiv:2311.12373.

Steven Bird, Ewan Klein, and Edward Loper. 2009. Nat-
ural Language Processing with Python. O’Reilly
Media, Inc.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsuper-
vised Cross-lingual Representation Learning at Scale.
CoRR, abs/1911.02116.

Evan Crothers, Nathalie Japkowicz, and Herna Viktor.
2023. Machine-generated Text: A Comprehensive
Survey of Threat Models and Detection Methods.
IEEE Access, PP.

Leon Fröhling and Arkaitz Zubiaga. 2021. Feature-
based detection of automated language models: tack-
ling GPT-2, GPT-3 and Grover.

Sebastian Gehrmann, Hendrik Strobelt, and Alexander
Rush. 2019. GLTR: Statistical Detection and Visual-
ization of Generated Text. pages 111–116.

Ksenia Lagutina, Nadezhda Lagutina, Elena Boychuk,
Inna Vorontsova, Elena Shliakhtina, Olga Belyaeva,
and Ilya Paramonov. A Survey on Stylometric Text
Features.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
RoBERTa: A Robustly Optimized BERT Pretraining
Approach. CoRR, abs/1907.11692.

Irene Solaiman, Miles Brundage, Jack Clark, Amanda
Askell, Ariel Herbert-Voss, Jeff Wu, Alec Radford,
Gretchen Krueger, Jong Wook Kim, Sarah Kreps,
Miles McCain, Alex Newhouse, Jason Blazakis, Kris
McGuffie, and Jasmine Wang. 2019. Release Strate-
gies and the Social Impacts of Language Models.

Adaku Uchendu, Thai Le, and Dongwon Lee. 2023. At-
tribution and Obfuscation of Neural Text Authorship:
A Data Mining Perspective.

Yuxia Wang, Jonibek Mansurov, Petar Ivanov, Jinyan
Su, Artem Shelmanov, Akim Tsvigun, Osama Mo-
hammed Afzal, Tarek Mahmoud, Giovanni Puccetti,
Thomas Arnold, Chenxi Whitehouse, Alham Fikri
Aji, Nizar Habash, Iryna Gurevych, and Preslav
Nakov. 2024a. SemEval-2024 Task 8: Multidomain,
Multimodel and Multilingual Machine-Generated
Text Detection.

Yuxia Wang, Jonibek Mansurov, Petar Ivanov, Jinyan
Su, Artem Shelmanov, Akim Tsvigun, Chenxi White-
house, Osama Mohammed Afzal, Tarek Mahmoud,
Toru Sasaki, Thomas Arnold, Alham Aji, Nizar

169

Habash, Iryna Gurevych, and Preslav Nakov. 2024b.
M4: Multi-generator, multi-domain, and multi-
lingual black-box machine-generated text detection.
In Proceedings of the 18th Conference of the Euro-
pean Chapter of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1369–
1407, St. Julian’s, Malta. Association for Computa-
tional Linguistics.

George Kingsley Zipf. 1949. Human Behavior and the
Principle of Least Effort: An Introduction to Human
Ecology. Addison-Wesley.

170

Zero-shot Artificial Text Detection Using Instruct Fine-Tuned LLMs

Zoia Butenko
zoiab@uio.no

Taras Andrushko
tarasan@uio.no

Abstract

The rapid development of large language mod-
els (LLMs) has revolutionized various fields by
enabling the generation of high-quality text, but
it also raises concerns about the proliferation of
machine-generated content and its detection.
This paper investigates the effectiveness of
instruction-tuned LLMs for zero-shot and few-
shot detection of machine-generated text, a task
that has gained importance in the context of in-
creasing online content generated by AI. We
evaluate the performance of these approaches
in comparison to a fine-tuned model using data
from the SemEval2024 Task 8. Our findings
indicate that both zero-shot and few-shot setups
with instruction-tuned LLMs perform poorly,
exhibiting a significant bias towards labeling
texts as human-written. In contrast, the fine-
tuned model, optimized with LoRA and trained
on a small subset of instances, demonstrates su-
perior performance, although its effectiveness
varies across different text domains. These re-
sults highlight the limitations of zero-shot and
few-shot methods for this task and suggest that
fine-tuning remains crucial for accurate detec-
tion of AI-generated text. Additionally, our
study underscores the importance of consider-
ing domain-specific biases and other factors
such as text length and the generator used in
developing robust AI detection models.

1 Introduction

The rapid development of large language mod-
els in recent years has not only led to advanced
chatbots facilitating many tasks but also to big
amounts of artificially generated data that is nearly
impossible to spot with an untrained eye. The im-
plications of advanced generative technology in the
fields of computer vision, sound, or textual data
have led to complete mistrust of image or sound
evidence by some while being extremely deceptive
for others. Leveraging large language models for
large-scale production of artificially generated texts

is now becoming a new industry, both profit- and
politically-driven. On one hand, generated tasks
can be used to fill in gaps in resources (for example,
automatically translated pages), on the other hand,
the deceptive nature of artificially generated textual
data is ethically ambiguous.

Detectors for artificially generated text have
become incredibly popular, for example, those
implemented in university anti-plagiarism tools
have been a subject of discussion since the release
of ChatGPT made artificially generated texts as
widespread as they are today. The misinterpreta-
tion of anti-plagiarism tools’ results has repeatedly
led to issues with employment and enrollment for
those whose works have been mistakenly flagged
as AI generated when the detector showed prob-
abilities higher than a certain threshold. On the
other hand, AI-generated content has flooded so-
cial media platforms and search engine results, a
report by Europol estimating that as much as 90%
of content online may be AI-generated by 2026
(Europol, 2022).

The SemEval2024 Task 8 introduced a shared
task that focuses on the detection of Machine-
Generated Text (MGT) (Wang et al., 2024a). In-
terestingly, the best systems in all categories used
LLMs to achieve the result, although a plethora
of approaches were present, including perplexity-
based, probabilistic features, training neural net-
works from scratch, and fine-tuned models. In Sub-
task A (Monolingual Binary Classification), most
teams employed LLMs either for feature extrac-
tion or fine-tuning. Zero-shot approaches, however,
were less popular, with only 2 teams represented.
In this work, we will attempt to prompt LLMs using
zero- and few-shot techniques for binary classifica-
tion. Prompting LLMs for any task, let alone a task
of such complexity as artificial text detection, is
incredibly tricky. The results vary significantly de-
pending on the prompt formulation and generation
parameters such as temperature. Instruction-tuned

171

large language models are a class of language mod-
els that have been fine-tuned on datasets consisting
of natural language instructions paired with desired
outputs, making it easier to prompt LLMs for most
popular tasks (Zhang et al., 2023). During the Se-
mEval2024 Task 8 instruction-tuned LLMs were
not used by any of the teams, but could signif-
icantly improve performance in few-shot setups.
We will thus try leveraging instruction-tuned mod-
els for few-shot approaches and report the perfor-
mance comparison. We will also analyze the results
in respect to domain-specific data to see whether
few-shot setups with instruction-tuned LLMs could
have bias in that regard.

2 Data, existing approaches, task
formulation

2.1 Dataset

The monolingual binary classification subtask
A dataset consists of 119,757 instances in the train
subset and 5,000 instances in the development sub-
set. Each instance is annotated for the label (0
for human-written and 1 for artificially generated),
the model used to generate (’human’ if the text
is human-written), and the source of data. The
overview of generative models represented in the
dataset can be found in Figure 2, overview of
sources of data is in Figure 3. Overall, the dataset
is more or less balanced for both features.

One of the most important aspects of textual data
is the length since different models have different
context windows. Figure 1 provides the distribu-
tion of text lengths in tokens for the training subset
of data. The mean length of text is 471 tokens,
minimum – 2, maximum – 34,192. This is es-

Figure 1: Distribution of text lengths (in tokens)

pecially important for few-shot approaches, since
the examples provided to the model need to be
short enough to fit in the prompt, while also being
around mean to represent the average data. When
it comes to fine-tuning, on the other hand, shorter
text lengths can negatively impact the models per-
formance, as suggested in the paper introducing the
M4 dataset used in our work (Wang et al., 2024b).
They have found that for texts shorter than 1,000
tokens F1 scores dropped from 0.99 (for length >=
1,000) to 0.96 (for length = 500). Considering our
mean length and the distribution (Figure 1), it is
important to consider the effect of this factor on the
models’ performance as well.

2.2 Related work
In the benchmark (Wang et al., 2024a) two zero-

shot approaches were discussed.
The first one was proposed by the team Ma-

sonTigers (Puspo et al., 2024). Their approach
was based on T5Tokenizer(Raffel et al., 2020) and
FlanT5(Chung et al., 2024) with zero-shot prompt-
ing. However, approach proposed by MasonTigers
with zero shot architecture was not that successful
and their F1 score was equal to 0.49. We think that
the result could be improved with an instruction-
tuned model. They also did full fine-tuning without
quantization / PEFT methods (like LoRA(Devalal
and Karthikeyan, 2018) or QLoRA(Dettmers et al.,
2024)) on the t5-small(Raffel et al., 2020) model as
well and in that case, they achieved a result of F1
equal to 0.57 on the development dataset. During
the training, they used an NVIDIA A100 GPU with
80GB.

The other approach with zero-shot which was
mentioned in the benchmark paper was proposed
by the team KInIT(Spiegel and Macko, 2024). Al-
though they used a zero-shot approach in their
methodology, it was used only with statistical meth-
ods such as Entropy, Rank, and Binoculars. Their
main method used Falcon-7B(Almazrouei et al.,
2023) and Mistral-7B(Jiang et al., 2023) fine-tuned
models which demonstrated amazing results on
multilingual development dataset with F1 score
equal to 95.34 and the team took fourth place in the
competition. Nevertheless, on the monolingual de-
velopment dataset their result was not as impressive
with F1=79.12 on the development dataset.

2.3 Task formulation
In our case, the task of artificial text detection

can be formulated as a binary classification prob-

172

Figure 2: Distribution of models Figure 3: Distribution of sources

lem, where the goal is to determine whether a given
text input is artificially generated or human-written.
Formally, let X be the input text, and Y be the bi-
nary label indicating whether the text is artificial
(Y=1) or real (Y=0).

We frame this task as a textual entailment prob-
lem, where the input text X is treated as the premise,
and two hypotheses are constructed: H1: "The
given text is artificially generated." H2: "The given
text is human-written."

3 Fine-tuned model

As the baseline, we fine-tuned the gemma-
2b(Team et al., 2024) model on 300 examples from
M4 corpus described in 2. The training process was
conducted on GPU P100 and took around 40 min-
utes on 2 epochs. We applied early stopping and 2
epochs were enough for the model to converge.

It is worth mentioning, that amount of training in-
stances play a significant role in the accuracy of pre-
dictions. During the fine-tuning stage we have ex-
perimented with different sizes of training dataset
and we mentioned that the model that was fine-
tuned on 100 instances performed with an F1 score
equal to 55 but the model that was fine-tuned on
300 instances performed dramatically better with
an f1 equal to 0.74. Nevertheless, we fine-tuned
our model on only 300 instances in comparison to
MaisonTiger t5-small which was trained on the full
train corpus, we achieved much better results on
development dataset with F1 equal to 0.74. But we
have to mention that our model has dramatically
more parameters than t5-small and we used LoRA
PEFT method which allowed us to fine-tune the
model really fast and efficiently.

4 Few-shot with instruct fine-tuned LLMs

Few-shot prompting can be leveraged for artifi-
cial text detection tasks using LLMs. The approach
has various advantages: mainly the ability to gen-
erate prediction with no labeled data, no training
time, and no parameter-tuning, all of which would
be necessary for fine-tuning. Additionally, it is less
resource-intensive and does not require a technical
understanding of model architecture. On the other
hand, few-shot approaches are extremely sensitive
to prompt formulation and usually perform well on
more general tasks, e.g. translation (since such ex-
amples are likely to be present in the training data).
The task of artificial detection is more complicated
for the model to grasp without additional training
on language- and domain-specific data since it is
less likely to appear in the training set for both raw
and instruction-tuned data.

We have conducted experiments for both zero-
shot and few-shot approaches. For the zero-shot
setup, 3 different prompts were tested to ensure
diversity.

List of prompts:

1. "You need to determine whether a text is
human-written or artificially generated. An-
swer 0 if the text is human-written and 1 if it
is not. DO NOT write anything else, only 0 or
1. Text: "

2. "Is the text written by a human or generated
by AI? Write 0 if you think it was written by a
human, write 1 if you think it is AI-generated.
DO NOT write anything else, only 0 or 1.
Text: "

3. "Given an article, classify it into one of two
classes: [0,1], where 0 – text is written by a

173

human, 1 – text is generated artificially. DO
NOT write anything else, only 0 or 1. Article:
"

Each prompt was inserted into an instruct-
formatted text together with the article text:

<s>[INST]{prompt}\n {article}\[/INST]

The Mistral-7B-Instruct-v0.2 model (Jiang et al.,
2023) was then passed the prompt to generate pre-
dictions, with a max of 2 new tokens.

For the few-shot setup, one example for each
class was selected randomly. The lengths of
both examples were around the mean length in
the dataset. The prompt was then passed in the
following format:

"Given a text, answer 0 if it's human-written
or 1 if it is AI-generated.
DO NOT write anything else, only 0 or 1.
Example:
[Text]: ...
[Label]:0
[Text]: ...
[Label]:1
[Text]: {article}
[Label]:"

5 Results

Table 1 gives an overview of the results
based on accuracy, precision, recall, and F1-score.
Clearly, fine-tuning has yielded dramatically bet-
ter results than zero-shot and few-shot approaches.
Across different prompts, zero-shot had a mean ac-
curacy of 0.5031 (std=0.0056) and a mean F1-score
of 0.3531 (std=0.0131).

The poor performance of few-shot setups is
clearly visible from confusion matrices in Figure
4&5. The model is incredibly biased to classify
any text as human-written, and only rarely pre-
dicts AI-generated label. Interestingly, there was a
similar finding in (Wang et al., 2024b) in respect
to the BLOOMZ generator specifically: all other
generators showed decent results, while BLOOMZ
had the worst performance score and simultane-
ously the lowest recall for label 1 (AI-generated).
This may suggest that detectors could be biased
to classify text as human-written in nature. More-
over, both for zero-shot and few-shot approaches
it is more likely to tag human-written text as AI-
generated than predict AI-generated correctly. This

could suggest that the behavior is rather random,
with the model tagging articles as AI-generated
13% of the time in a few-shot setup, and 1.5% of
the time in a zero-shot setup. This suggests that
even an instruction-tuned model does not have an
understanding of artificially generated texts, while
a fine-tuned model (even on a small subset of sam-
ples) shows decent results.

One of the factors which can impact the perfor-
mance quite significantly is the domain of the data.
As has been mentioned earlier, the dataset contains
texts from 5 different sources: Wikipedia, Wiki-
how, Reddit, Arxiv, and peerread. In order to see
the effect of domain-specific data, table 2 provides
confusion matrices for different approaches across
domains. The three rows are approaches (zero-shot,
few-shot, and fine-tuned) used, while the 5 columns
are data sources / domains (Wikipedia, Wikihow,
Reddit, Arxiv, and Peerread).

The best result seen in the table is the perfor-
mance of the fine-tuned model on Wikipedia texts
(third row, first column): the confusion matrix
shows strong contrast between correctly predicted
instances (top left – true negative, and bottom right
– true positive) and mistakes (bottom left – false neg-
atives, top right – false positives). Being the most
sensible result, it is a good point of comparison
for other matrices. For instance, the entire top row
shows the same outline – strong contrast between
the left and right half of the matrix, meaning the
model almost exclusively outputs 0 as the predic-
tion (i.e. is biased to label texts as human written,
as we have discussed above). The few-shot setup
results depicted in the second row demonstrate a
similar picture except for Arxiv data: the model
was more likely to label human-generated texts as
AI than correctly, while almost exclusively labeling
AI-generated data as human-written. Although the
most obvious explanation for such performance is
domain specificity of the texts (academic writing
style), the same data with a fine-tuned model shows
incredibly sensible results. Finally, in the third row
– results of the fine-tuned model – the matrices are
the most sensible, with exceptions for Reddit and
Peerread data, where the model was actually bi-
ased to label texts as AI-generated. It is important
to note that the samples used for fine-tuning the
model were randomly selected from the dataset
and did not exhibit a disproportional ratio in do-
main representation. We thus conclude that there
is no domain that would consistently impact the
performance for all approaches, and bias towards a

174

Approach Accuracy Precision Recall F1
Fine-tuned (300 instances) 0.7424 0.7512 0.7424 0.7401
Zero-shot1 0.4956 0.4307 0.4956 0.3409
Zero-shot2 0.5046 0.6289 0.5046 0.3472
Zero-shot3 0.5092 0.5772 0.5092 0.3713
Few-shot 0.4616 0.4156 0.4616 0.3764
MasonTigers(FLAN-T5 prompting) 0.49 - - -
KINIT 0.7271 0.6614 0.9844 0.7912

Table 1: Comparison of Different Approaches

Figure 4: Zero-shot CM Figure 5: Few-shot CM Figure 6: Fine-tuned CM

particular label is also specific to the approach used:
zero-shot and few-shot setups are biased to clas-
sify texts as human-written, while the fine-tuned
model is biased to classify texts as AI-generated
for certain domains.

In conclusion, the results show that performance
does indeed vary across domains. Moreover, the
bias exhibited by the model are dependant on both
the approach and the domain, suggesting that both
factors need to be kept in mind when interpreting
the results of artificial text detectors.

6 Discussion

Although the zero-shot setup can be deemed
ineffective for our task, Table 2 suggests that the
few-shot setup has potential while being heavily
influenced by the provided examples. However,
upon inspection of performance across genres, we
have found that the difference in performance be-
tween zero-shot and few-shot setups is only within
data from Arxiv. Moreover, the confusion ma-
trix of performance of the few-shot setup on texts
from Arxiv suggests that it is actually less sensible
than for other genres. We thereby have to con-
clude that both zero-shot and few-shot setups have
proven completely ineffective in our task, even with
instruction-tuned models.

The fine-tuned model shows the best results both
overall and upon inspecting domain-specific results.
However, there is a significant difference in perfor-

mance across domains for the fine-tuned model:
while Wikipedia and Arxiv data demonstrated the
best results, other sources of data vary in observed
performance. This suggests that the domain of
data is incredibly important even for a model that
demonstrates satisfactory results on the entire cor-
pus: for example, the model was extremely biased
to label Reddit text as AI-generated. The zero-shot
and few-shot approaches also demonstrate bias, but
in the opposite direction (to label every text as
human-generated). We believe that it should be
part of a bigger conversation of bias in artificial
text detectors.

For instance, a study by researchers at Stanford
University revealed that popular GPT detectors
tend to falsely label texts written by non-native
English speakers as AI-generated. The researchers
evaluated seven widely used GPT detectors on 91
essays written by non-native English speakers for
the TOEFL (Test of English as a Foreign Language)
exam. More than half of these essays were incor-
rectly classified as AI-generated by the detectors,
with one detector flagging nearly 98% of the essays
as AI-written. The reason for this bias lies in the
way these detectors evaluate text perplexity, which
measures how surprising or uncommon the word
choices are in a given text. Non-native English writ-
ers often use simpler and more common vocabulary,
resulting in lower perplexity scores that are more
likely to be flagged as AI-generated by the detec-

175

Wikipedia Wikihow Reddit Arxiv Peerread

Zero-shot

Few-shot

Fine-tuned

Table 2: Overview of performance across approaches and domains

tors (Liang et al., 2023). The approaches we have
explored in this paper are not perplexity-based, and
would therefore have other mechanisms responsi-
ble for the bias. However, as we have found in this
paper, non-perplexity based methods can also be
biased in both directions, depending on the domain
of data and the approach used.

As has been mentioned in 2.1, the length of texts
may also impact performance when it comes to
artificial text detection. Considering that the mean
length of text in our dataset (471 tokens) is signifi-
cantly lower than the cutoff found in (Wang et al.,
2024b) to negatively impact performance (1000
tokens), we believe it can also be worth investigat-
ing, especially in regards to zero-shot and few-shot
setups.

Finally, we believe it is worth investigating the
results for each generator individually. As depicted
in figure 2, the dataset is balanced in regards to the
generator used to produce artificial, 4 generators
represented: dolly, davinci, cohere, and chatGPT.
Considering that (Wang et al., 2024b) found signif-
icant differences in performance across generators
of their fine-tuned RoBERTa detector, we believe
it could be impactful in our case as well.

7 Conclusion

In this paper we have attempted to leverage
instruction-tuned LLMs for few-shot detection of
artificially generated texts. We have found that
both few-shot and zero-shot approaches are unable
to surpass the baseline, and are incredibly biased
to classify texts as human-written. Nonetheless,
the fine-tuned model, while being optimized with
LoRA and trained on only a small subset of in-
stances, significantly surpassed the performance of
both zero-shot and few-shot setups. We have also

found that the domain of data significantly affects
the model performance, especially in the case of
the fine-tuned model, which was biased to classify
texts from Reddit and Peerread as AI-generated.
We believe other factors such as the generator used
and the length of texts could be investigated to
further explore the bias of AI-detectors.

References
Ebtesam Almazrouei, Hamza Alobeidli, Abdulaziz Al-

shamsi, Alessandro Cappelli, Ruxandra Cojocaru,
Mérouane Debbah, Étienne Goffinet, Daniel Hesslow,
Julien Launay, Quentin Malartic, Daniele Mazzotta,
Badreddine Noune, Baptiste Pannier, and Guilherme
Penedo. 2023. The falcon series of open language
models. Preprint, arXiv:2311.16867.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret
Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, et al.
2024. Scaling instruction-finetuned language models.
Journal of Machine Learning Research, 25(70):1–53.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and
Luke Zettlemoyer. 2024. Qlora: Efficient finetuning
of quantized llms. Advances in Neural Information
Processing Systems, 36.

Shilpa Devalal and A Karthikeyan. 2018. Lora
technology-an overview. In 2018 second interna-
tional conference on electronics, communication
and aerospace technology (ICECA), pages 284–290.
IEEE.

Europol. 2022. Facing reality? law enforcement and
the challenge of deepfakes, an observatory report
from the europol innovation lab, publications office
of the european union, luxembourg. Technical report,
Publications Office of the European Union.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, Lélio Renard Lavaud,

176

Marie-Anne Lachaux, Pierre Stock, Teven Le Scao,
Thibaut Lavril, Thomas Wang, Timothée Lacroix,
and William El Sayed. 2023. Mistral 7b. Preprint,
arXiv:2310.06825.

Weixin Liang, Mert Yuksekgonul, Yining Mao, Eric
Wu, and James Zou. 2023. Gpt detectors are bi-
ased against non-native english writers. Preprint,
arXiv:2304.02819.

Sadiya Sayara Chowdhury Puspo, Md Nishat Raihan,
Dhiman Goswami, Al Nahian Bin Emran, Amrita
Ganguly, and Ozlem Uzuner. 2024. Masontigers
at semeval-2024 task 8: Performance analysis of
transformer-based models on machine-generated text
detection. arXiv preprint arXiv:2403.14989.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the lim-
its of transfer learning with a unified text-to-text
transformer. Journal of machine learning research,
21(140):1–67.

Michal Spiegel and Dominik Macko. 2024. Kinit
at semeval-2024 task 8: Fine-tuned llms for mul-
tilingual machine-generated text detection. arXiv
preprint arXiv:2402.13671.

Gemma Team, Thomas Mesnard, Cassidy Hardin,
Robert Dadashi, Surya Bhupatiraju, Shreya Pathak,
Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale,
Juliette Love, et al. 2024. Gemma: Open models
based on gemini research and technology. arXiv
preprint arXiv:2403.08295.

Yuxia Wang, Jonibek Mansurov, Petar Ivanov, Jinyan
Su, Artem Shelmanov, Akim Tsvigun, Osama Mo-
hammed Afzal, Tarek Mahmoud, Giovanni Puc-
cetti, Thomas Arnold, et al. 2024a. Semeval-2024
task 8: Multidomain, multimodel and multilingual
machine-generated text detection. arXiv preprint
arXiv:2404.14183.

Yuxia Wang, Jonibek Mansurov, Petar Ivanov, Jinyan
Su, Artem Shelmanov, Akim Tsvigun, Chenxi White-
house, Osama Mohammed Afzal, Tarek Mahmoud,
Toru Sasaki, Thomas Arnold, Alham Aji, Nizar
Habash, Iryna Gurevych, and Preslav Nakov. 2024b.
M4: Multi-generator, multi-domain, and multi-
lingual black-box machine-generated text detection.
In Proceedings of the 18th Conference of the Euro-
pean Chapter of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1369–
1407, St. Julian’s, Malta. Association for Computa-
tional Linguistics.

Shengyu Zhang, Linfeng Dong, Xiaoya Li, Sen Zhang,
Xiaofei Sun, Shuhe Wang, Jiwei Li, Runyi Hu, Tian-
wei Zhang, Fei Wu, et al. 2023. Instruction tuning
for large language models: A survey. arXiv preprint
arXiv:2308.10792.

177

178

5 Predicting a Prompt from a Generated Text track

179

Exploring Prompt Prediction: Methods, Performance, and Challenges

Dennis Adelved
University of Oslo / Blindernveien 11

dennis.adelved@geo.uio.no

Abstract

Generative AI advancements have enabled the
creation of high-quality texts using pre-trained
language models. However, the task of prompt
prediction, retrieving the original prompt used
to generate a specific piece of text remains
under-explored. In this paper, we investigate
the prompt prediction tasks from a sequence-
to-sequence and a sequence classification ap-
proach. We experiment with generating syn-
thetic data, using a pre-trained language model
to generate synthetic prompts-response pairs
in a zero-shot configuration and demonstrate
that the addition of the synthetics can improve
the generalization to other, unseen instruction
datasets. Our findings suggest that predicting
the exact prompt used to generate a text can
be challenging, especially for longer prompts.
However, we are able to extract the overall in-
tent/sentiment of the prompts.

1 Introduction

The rapid advancements of generative AI have sig-
nificantly altered the landscape of artificial intelli-
gence, allowing for the generation of high-quality
texts. This progress can mainly be attributed to
the development and utilization of pre-trained Lan-
guage Models (LMs). These LMs are initially
trained on vast amounts of textual data and can
learn robust and general features of the languages
they model on consumer-grade hardware. Some of
these pre-trained LMs are released as open-source,
which can be accessed, fine-tuned and shared using
the Hugging Face transformers library and commu-
nity platform (Wolf et al., 2020). Other companies
develop proprietary pre-trained models, such as
OpenAI’s ChatGPT (OpenAI, 2021) and release
them as a service. This is often referred to as Lan-
guage Models as a Service (LMaaS), which allows
users to interact with the pre-trained model through
some specific API to solve various language tasks
by specifying task-specific prompts (Sun et al.,

2022). Utilizing in-context learning, these models
can be fine-tuned with specific training examples
provided by the user in few-shot or zero-shot con-
figurations (Brown et al., 2020). This has made the
use and training of language models accessible to
the general public, allowing individuals and actors
to utilize LMs to generate content for various use
purposes. However, this also gives rise to malicious
uses such as the generation of fake news (Zellers
et al., 2019) or fake product reviews (Adelani et al.,
2019). This has given rise to the field of artificial
text detection, which aims to mitigate and com-
bat the effectiveness of malicious use of generative
AI, by identifying if a text have been written by a
human or been generated by a machine (Crothers
et al., 2023). The prompt prediction task, which
involves predicting the prompt used to generate
a specific piece of text, is an under-explored area
in natural language processing. This task reverses
the usual workflow of predicting a response from a
prompt. By understanding the relationship between
a text and its originating prompt, we can develop a
system to extract the best prompts for generating
a reference text. For instance, one could identify
the best prompts for generating viral tweets by ex-
tracting the prompts from a set of viral reference
tweets. Another use case could be uncovering the
original intent behind a text, which would be useful
in detecting and preventing malicious content.

In this work, we aim to investigate prompt pre-
diction using two different approaches. First, we
tackle the problem as a sequence-to-sequence task,
fine-tuning two different pre-trained model archi-
tectures (encoder-decoder and decoder-only) on
prompt-response pairs. Secondly, we approach the
problem as a sequence classification task, where we
aim to classify the prompt category from the text.
We compare our trained model using a instruction-
tuned pre-trained Llama3-8B-Instruct (AI@Meta,
2024) in a zero-shot configuration. Given the
scarcity of open-source instruction datasets, we

180

generating synthetic prompt-response pairs by para-
phrasing the original prompts and respond to them
using a pre-trained model in a zero-shot con-
figuration. We have achieved promising results
in the sequence-to-sequence approach, with our
best model reaching a BERT score of 0.925 and
a Rouge-L score of 0.511 on the test set. We
also show that the inclusion of synthetic prompt-
response pairs can be beneficial when generalizing
to other datasets. Furthermore, we observe that
exact prompt prediction is both challenging and
biased towards shorter prompts. However, we can
demonstrate that the models can capture the gen-
eral intent of the prompt that was used to generate
a text.

2 Related work

To the author’s knowledge, there are currently no
publications on predicting the prompt that was used
to generate a text. However, several related areas
of research can provide useful insight and serve as
inspiration. One such area is prompt engineering,
which often requires extensive manual work to ob-
tain reasonable results in zero-shot and few-shot
configurations (Liu et al., 2021). To reduce this bur-
den, research has been working towards automating
this process through automatic prompt-tuning. The
goal is to optimize the prompts, such that when
combined with the pre-trained LM, yields the high-
est performance on a given task. This has been il-
lustrated using both gradient-based prompt-tuning
of parameterized prompts (Lester et al., 2021), or
by training a light-weight prompt generation model
to enhance the in-context learning if a target LM
(Ha et al., 2023). Another similar field of research
is artificial text detection, where the goal is to iden-
tify machine-generated texts with the use of AI.
This problem is often primarily formulated as a
supervised binary classification task, where input
texts are either classified as human or machine-
generated (Wang et al., 2024). Although research
on directly predicting prompts from a generated
text has been limited, there seems to be a growing
interest in the topic. For instance, earlier this year,
Kaggle posted a competition for recovering the
prompt that was used to stylistically rewrite a given
text. E.g., "Rewrite this paragraph but do it using
the writing style of J.R.R. Tolkien" (Will Lifferth,
2024).

3 Methodology

3.1 Dataset
We train and evaluate our models using the
databricks-dolly-15k dataset, which is an open-
source dataset of instruction-following records,
consisting of 15.000 human-made prompts in eight
different instruction categories in English (Conover
et al., 2023). The categories in the dataset includes:
closedQA, classification, openQA, information ex-
traction, brainstorming, generalQA, summariza-
tion, and creative writing. The dataset is unbal-
anced, with an over-representation of the openQA.
Thus, we perform a stratified split in the train-
development and test set, ensuring a similar repre-
sentation of each category in both sets. Due to data
scarcity, we limit the test size of 0.1 to maintain
as much data as possible for training and develop-
ment, resulting in a train-development/test set of
13.500/1500 samples. The test set will be locked
away and not touched until the final model eval-
uation. General dataset statistics and the prompt
category distribution can be found in Appendix A.

3.2 Synthetic Data
We generate the synthetic training data in the
following way: first, we use the pre-trained
Llama3-8B-Instruct in a zero-shot configuration
to paraphrase the instruction prompts in the train-
development set. The paraphrased prompts are
then fed back into the model to generate synthetic
responses to the paraphrased synthetic prompts,
which will effectively double the number of prompt-
response pairs at our disposal. The synthetic gener-
ation process can be seen in Figure 1. The details

Figure 1: Synthetic zero-shot generation pipeline. The
original dataset is displayed in blue and the synthetic
prompt-response pairs displayed in orange.

concerning the exact generation of the paraphrased
prompts, and the generation of the model responses
is further outlined in Section 4.1.

3.3 Sequence-to-Sequence Approach
We consider two architectures (encoder-decoder
and decoder-only) for prompt prediction to evalu-

181

ate if there is any difference based on architecture
type. Since we aim to instruct our model to re-
trieve the prompt used to generate a specific piece
of text, we opt for pre-trained language models
that have been further fine-tuned on a wide range
of instructions, as they provide a better starting
point for learning the prompt prediction task. For
the decoder-only architecture, we use the Llama3-
8B-Instruct, which is a pre-trained Llama3 with
8B parameters, which have been instruction tuned
(AI@Meta, 2024). To be comparable to the 8B
Llama3, we must select a sufficiently large encoder-
decoder model, such as the FLAN-T5 XL model
with 2.85B parameters, which is pre-trained and
instruction-tuned on a wide variety of tasks (Chung
et al., 2024). We compare the fine-tuned models to
a Llama3-8B-Instruct in a zero-shot configuration,
which we name the Baseline model. The models in
the sequence-to-sequence approach is summarized
in Table 1.

Given the relatively recent release of these mod-
els, we must consider the possibility of data leak-
age, where the data used in our experiment might
have been included in the pre-training of the mod-
els. The knowledge cutoff for the Llama3-8B-
Instruct model is March 20231, and the most recent
dataset used in the instruction fine-tuning of the
FLAN-T5-XL model is from 2022 (Chung et al.,
2024). The official release of the Databrick-Dolly-
15k dataset was in April 20232, making it reason-
able to assume that this dataset was not included in
the pre-training of either model.

Name Configuration
FLAN-T5-XL fine-tuned
Llama3 fine-tuned
Baseline (Llama3) zero-shot

Table 1: The models used in the sequence-to-sequence
approach. Llama3 refers to the Llama3-8B-Instruct.

Evaluation To evaluate the model’s ability to pre-
dict prompts, we employ two primary approaches.
First, we assess the model’s capability to exactly
reconstruct the prompt, utilizing the Rouge-L score
as a metric. The Rouge-L score measures the
longest common sub-sequence between the pre-
diction and the reference (Lin, 2004). Secondly,

1https://huggingface.co/meta-llama/
Meta-Llama-3-8B-Instruct

2https://github.com/databrickslabs/dolly/
commit/d000e3030970379aabbf6d291f50ffdd3b715b64

we evaluate the model’s ability to capture the gen-
eral intent of the prompt. For this task, we use
the BERT score, which compares the similarity
between the prediction and reference embeddings,
providing an evaluation of the semantic similarity
between the two texts (Zhang* et al., 2020).

Quantization and Low-Rank Adaptation
Since we are limited to a single GPU setup,
we find it necessary to quantize both the 2.85B
FLAN-T5-XL and the Llama3-8B-Instruct from
their respective float32 and float16 into 4-bit.
The quantized 4-bit FLAN-T5 XL can be can
trained in its entirety on a single GPU. However,
the 4-bit LLama3-8B-Instruct must be fine-tuned
using Low-Rank Adapter weights (LoRA) (Hu
et al., 2022). To achieve comparable results to the
float 16 models in a 4-bit setting, we follow the
Quantized Low-Rank Adapter (QLoRA) approach
outlined by Dettmers et al. (2023), using the same
LoRA configurations for their small LLMs case
(7-13B parameters) and adding LoRA modules
to all linear layers of the base models with LoRA
parameters: r=16, α=64 and dropout=0.01.

3.4 Sequence Classification Approach

We aim to investigate the prompt prediction task
from a classification perspective. As detailed in
Section 3.1, the databrick-dolly-15k are labeled
into 8 distinct prompt categories: closedQA, clas-
sification, openQA, information extraction, brain-
storming, generalQA, summarization, and creative
writing, which will serve as our classes. By us-
ing an encoder-only transformer, we can process
input sequences and generate a fixed-size repre-
sentation that matches the number of classes in our
dataset. One such model is the BERT model, which
is based on a multi-layer bidirectional transformer
that has been trained on masked word prediction
tasks (Devlin et al., 2019). We use the bert-uncased-
base pre-trained model (110M parameters), with
12 transformer blocks, 12 attention heads, and a
hidden size of 768, which has been pre-trained on
lower-cased English text (Turc et al., 2019) as the
base model, and attach a classification head that
converts the encoder’s output into the desired num-
ber of classes. The model will be evaluated using
the macro F1-score, which is the harmonic mean
of precision and recall. This metric is particularly
useful for imbalanced datasets as it provides a bal-
anced measure of performance across all classes.

182

4 Experiment

4.1 Synthetic Data Generation

Both in the paraphrasing and in the synthetic re-
sponse generation we use the default sampling pa-
rameters with temperature = 0.6 and top_p =
0.9 (AI@Meta, 2024). To get desirable output in
a zero-shot configuration, we follow the Llama3-
8B-Instruct chat template, where we provide some
initial instruction through the system role, before
prompting the model to paraphrase the user’s input
or to generate a synthetic response. The prompts,
with the initial system instruction and the user input
instruction is detailed in Appendix B. Due to the
generation process being highly time-consuming,
we were only able to generate synthetic data for
11.500 samples of the 13.500 samples, resulting in
a total train-development dataset of 23.0000 sam-
ples.

4.2 Finetuning Sequence-to-Sequence

We conducted our fine-tuning experiment for the
sequence-to-sequence using the combined prompt-
response (synthetic + real) pairs. Based on the
tokenized dataset statistics (Appendix A), we set
the maximum prompt/response lengths to 128/384
for both the Llama3-8B-Instruct and FLAN-T5-XL
model. The train-development split was set to 0.1.
We use the same prompt template for both models
and is as follows:

"Predict the prompt that was used to
generate the following text:{response}"

Both models are loaded and fine-tuned using the
same quantization outlined by Dettmers et al.
(2023), using 4-bit NormalFloat, with double quan-
tization and bf16 computation datatype.

Llama3-8B-Instruct We add LoRA modules on
all linear layers with the LoRA parameters r=16,
α=64 and dropout=0.01. We use an AdamW opti-
mizer (Loshchilov and Hutter, 2019) with β1 = 0.9
and β2 = 0.999 and a weight decay of 0.01. The
learning rate is set to 5 × 10−5 and we use a lin-
ear learning rate schedule with 100 warmup steps.
We used a batch size of 16 and trained the model
for 2 epochs which took around 12 hours on an
A100 GPU, saving the best performing model on
the development set.

FLAN-T5-XL The FLAN-T5-XL is trained in
its entirety, without LoRA. We use an AdamW opti-
mizer with β1 = 0.9 and β2 = 0.999 and a weight

decay of 0.01. We experiment with four learning
rates: 1×10−5, 2×10−5, 3×10−5, and 5×10−5. In
all experiments, we use a linear learning rate sched-
ule with 100 warmup steps. The batch size is set to
2 and the model for 4 epochs which took around 3
hours on an A100 GPU, saving the best-performing
model on the development set. To facilitate the
use of sequence-to-sequence generation after fine-
tuning, we use the T5ForConditionalGeneration3

class, which attaches a language modelling head on
top of the TF5 architecture. Using the same setup
as outlined above, we also fine-tune three models
with learning rate 1×10−5, 3×10−5, and 5×10−5

on the real dataset only, to observe the effect of gen-
erating synthetic prompt-response pairs.

4.3 Finetuning Sequence Classification

The pre-trained BERT and the classification head
are fine-tuned using the same dataset as before, con-
sisting of 23.000 samples using a 0.2 development
split. Based on the tokenized dataset statistics (Ap-
pendix A), we set the max sequence length to 128,
which includes most of the prompts in the dataset.
We use an AdamW optimizer with β1 = 0.9 and
β2 = 0.999 and a weight decay of 0.01. To avoid
catastrophic forgetting we initialize the training
with learning rate 1 × 10−5, similar to the one
found effective by Sun et al. (2020) and we use
a linear learning rate schedule with 2000 warmup
steps. The batch size is set to 24, and we train
four models with dropout rates of 0.1, 0.2, 0.3, and
0.5. Dropout is applied to the embedding layer,
the self-attention mechanism within each encoder
layer, the attention output, and the feed-forward
network output. Additionally, dropout is applied
to the classification head. This regularization strat-
egy aims to improve generalization and prevent
overfitting.

5 Results

5.1 Quality of Synthetic Zero-Shot Prompts

Ideally, a good paraphrased prompt should pre-
serve the meaning of the original prompt, while
being different enough to introduce diversity to the
dataset. This corresponds to a high BERT score
with a low to moderate Rouge-L score. To get an
idea of the generated prompt quality, we analyze
the Rouge-L and BERT scores between the original
and paraphrased prompts for each category. The

3https://huggingface.co/transformers/v2.10.0/
model_doc/t5.html#t5forconditionalgeneration

183

BERT score for each category is high (greater than
0.9), while the Rouge-L score is moderate (0.5 >
Rouge-L > 0.3) (Appendix C.1), aligning well with
our notion of a good synthetic prompt. While both
metrics are important, the BERT score seems to
better reflect a paraphrased prompt’s usefulness,
as the intent can be preserved even without any
common sub-sequence.

Low Rouge-L values appear to be detrimental
to prompt quality only if the BERT score is also
low. This combination is associated with the low-
est prompt quality, where the model tends to re-
spond to the input prompt instead of paraphrasing
or omits essential information, such as the list of
objects to classify in a classification prompt. Mod-
erate BERT scores are associated with generally
useful prompts, especially when combined with
moderate Rouge-L scores. These prompts typi-
cally exhibit increased verbosity, often in the form
of over-specification. High BERT scores paired
with a low to moderate Rouge-L score indicates
the highest quality prompts, since they introduce
the most diversity to the dataset while preserving
the meaning of the original input. Having both
a high BERT score and Rouge-L score also pro-
duces good prompts. However, they are often very
similar to the original prompt, where often only
single words are changed. Finally, when both met-
rics approach 1, the result is closer to generating
duplicates, which is undesirable as these synthetic
prompts introduce redundancy rather than diversity.
Assigning numerical cutoffs for synthetic prompt
quality is challenging and varies by prompt cat-
egory. Therefore, we include all prompts in the
training without setting specific cutoffs. However,
representative values and examples for the different
types of prompt quality discussed can be found in
Appendix C.2.

5.2 Sequence-to-Sequence
The training-development loss for the FLAN-T5-
XL experiments is detailed in Appendix D.1. In
both scenarios, a lower learning rate of 1 × 10−5

yields the best model, seemingly converging with-
out overfitting. To distinguish between the two, we
will refer to the encoder-decoder models as FLAN-
T5-XL-S and FLAN-T5-XL-R for the FLAN-T5-
XL trained on the combined (synthetic + real)
dataset and the real dataset, respectively.

The training-development loss for the Llama3-
8B-Instruct model is detailed in Appendix D.2.
Due to the extended training duration, we could

not evaluate both models over the same number
of epochs, which is a limitation. No overfitting
behaviour was observed, suggesting that the model
could benefit from further training.

Generation Using the prompt template from Sec-
tion 4.2, we generate predictions for the develop-
ment and test sets with the same sampling param-
eters used for synthetic data in Section 4.1. Ad-
ditionally, we generate predictions on the test set
using greedy decoding to compare the two methods
and to provide a deterministic evaluation metric.

Evaluation The evaluation of our results is
divided into two distinct sections. First, we
will assess the models trained on the combined
dataset, specifically FLAN-T5-XL-S and Llama3-
8B-Instruct, and compare them to the zero-shot
Baseline model using both the development set and
the test set. Secondly, we will evaluate the impact
of the synthetic data by comparing FLAN-T5-XL-
S to FLAN-T5-XL-R on the test set and on 8000
random samples from the Alpaca dataset4, which
is a instruction dataset generated using OpenAI’s
text-davinci-003 engine (Taori et al., 2023).

The evaluation results for the best-performing
FLAN-T5-XL-S, the Llama3-8B-Instruct, and the
Baseline model on the development and test set
are presented in Table 2. The FLAN-T5-XL-S
achieves the highest BERT and Rouge-L scores, fol-
lowed by the fine-tuned Llama3-8B-Instruct, with
the zero-shot Baseline model. All models exhibit
high BERT scores on both the development and test
sets, with only a small relative difference between
the two. In contrast, the Rouge-L scores show a
significantly higher relative difference between the
development and test sets.

The comparison in Table 3, shows that FLAN-
T5-XL-R outperforms FLAN-T5-XL-S on the test
set, while FLAN-T5-XL-S outperforms FLAN-T5-
XL-R on the Alpaca test set.

5.3 Sequence Classification
The training and development losses for the four
models trained with the hyperparameters detailed
in Section 4.3 which can be found in Appendix D.3.
To address the overfitting observed with the default
dropout rate of 0.1, we conducted experiments with
varying dropout rates. We use model checkpoint-
ing, only saving the best-performing model on the

4Released March 2023. Leakage should not be a prob-
lem with FLAN-T5-XL https://github.com/tatsu-lab/
stanford_alpaca/commits/main/alpaca_data.json

184

Model BERT score Rouge-L
Development set
Baseline 0.843 0.155
Llama3-8B-Instruct 0.907 0.463
FLAN-T5-XL-S 0.942 0.618
Test set
Baseline 0.835 0.125
Llama3-8B-Instruct 0.897/0.892 0.387/0.362
FLAN-T5-XL-S 0.923/0.921 0.492/0.483

Table 2: BERT score and Rouge-L metrics for the two
fine-tuned models and the Baseline model are provided.
Entries separated by a slash, shows scores derived from
texts generated using sampling on the right-hand side
and greedy decoding on the left-hand side.

Model BERT score Rouge-L
test set
FLAN-T5-XL-S 0.923 0.492
FLAN-T5-XL-R 0.925 0.511
Alpaca
FLAN-T5-XL-S 0.908 0.441
FLAN-T5-XL-R 0.906 0.422

Table 3: BERT score and Rouge-L metrics for FLAN-
T5-XL-S and FLAN-T5-XL-R using greedy decoding.

development set. Although increasing the dropout
rate across most layers helped reduce overfitting,
the lowest development loss was still achieved with
a dropout rate of 0.1 at epoch 3. This suggests
that applying dropout uniformly across all layers
may be too aggressive that negatively impact model
performance. Following our model selection strat-
egy we select the model with dropout rate of 0.1,
with the checkpoints from epoch 3. The calculated
macro F1-scores on the development and test sets
are 0.641 and 0.639, respectively.

6 Discussion

In this section, we will take a closer look at the
results discussed in Section 5, analyzing the dif-
ferences observed in the sequence-to-sequence ap-
proach w.r.t. model architecture and inclusion of
synthetic data. Finally, we examining the poor per-
formance noted in the classification task.

6.1 Key Findings: Sequence-to-Sequence

The FLAN-T5-XL models achieves the highest
evaluation metrics across both BERT score and
Rouge-L among the models in the sequence-to-
sequence approach. The fine-tuned Llama3-8B-

Instruct model also performs well, especially when
compared to the zero-shot Baseline. Additionally,
the generation method shows minimal impact on
evaluation metrics, with deterministic greedy de-
coding having a slight edge over the default gener-
ation parameterization.

Model Architecture and Limitations Since
FLAN-T5-XL is smaller than the Llama3-8B-
Instruct model, we can train the full model (in 4-bit
quantization) without using parameter-efficient tun-
ing methods like LoRA, which complicate model
comparison. A significant limitation is the longer
training time for Llama3-8B-Instruct, with each
epoch taking approximately 3-4 times longer than
FLAN-T5-XL, even with QLoRA (4-bit quantiza-
tion). Therefore, we are cautious about making
strong claims in comparing the two models, al-
though their test set performances are relatively
similar and both outperform the Baseline model.
One main advantage of FLAN-T5-XL is its smaller
size, allowing for greater flexibility and more fre-
quent experimentation. Additionally, FLAN-T5-
XL benefits from being an encoder-decoder model,
which is conceptually simpler and more intuitive
to train compared to a decoder-only model.

Real vs Synthetic Comparing the fine-tuning
of FLAN-T5-XL-S and FLAN-T5-XL-R models,
with and without synthetic data, reveals that includ-
ing synthetic data slightly degrades performance
on the test set for both metrics. The difference in
BERT score is marginal, and illustrates that both
models are able to capture the intent of the original
prompt. The impact observed on the Rouge-L score
is much larger, which shows that the inclusion of
synthetic samples degrades the models ability to
capture the structure of the original prompts. As
shown in Figure 2 the Rouge-L score differences
are most pronounced in the information extraction,
summarization, and QA categories. These cate-
gories typically feature short, concise prompts that
are difficult to paraphrase. This often results in
overly verbose and complex formulations, some-
times including partial answers, which are signifi-
cantly different in structure to the original prompts.
Occasionally, the model ignores the paraphrasing
and directly responds to the input prompt, which
seems to be more frequent in these categories. Ex-
amples of this behavior are included in the Ap-
pendix E.

Apart from the direct responses, we believe that
both the partial responses and verbose/complex

185

paraphrasings are valuable for learning, as they in-
crease the diversity of the dataset. This is supported
by the evaluation on the Alpaca dataset, where the
FLAN-T5-XL-S model outperforms the FLAN-T5-
XL-R model, especially in the Rouge-L score. This
suggests that the inclusion of the synthetic data
allows for better generalization to datasets with
different prompt structures. This further supports
the idea that the performance drop observed for
the FLAN-T5-XL-S on the test set is likely due to
the structural differences in the synthetic prompts
compared to the original prompts, rather than the
synthetic prompts being of poor quality.

Seeing that the performance on the test set is
sensitive to the structure of the synthetic prompts,
we suggest that further work should experiment
with adding synthetic prompts generated using a
few-shot configuration. By providing the model
with prompt examples, we may be able produce
synthetic prompts that are more structurally similar
to those in the original prompts in each category.

Figure 2: The Rouge-L scores in each prompt category
for the FLAN-T5-XL-S and FLAN-T5-XL-R on the test
set.

Prediction Quality The definition of a quality
prediction varies based on the goal. Sometimes, a
perfect match is required, while other times, un-
derstanding the prompt’s intent is more important.
Since FLAN-T5-XL-R performed best on the test
set, we select this model for evaluating the predic-
tion quality. We establish the following criteria and
query only the matching predictions:

Strict An exact match where both the Rouge-L
and BERT scores are 1, requiring an exact character
and case match.

Moderate Rouge-L score must be greater than
0.8. Requires a high degree of match in common

sequence.

Lenient BERT score must be greater than
0.8. No requirement for a common sequence, only
semantic similarity.

Using the predicted prompts with greedy de-
coding, around 10% of the predictions meet the
strictest criterion, with an average token length of
9. This indicates that case sensitivity and exact
character match requirements cause the model to
struggle, often rejecting valid predictions due to
minor differences like missing question marks or
incorrect capitalization.

The moderate criterion captures 20% of the pre-
dictions, with an average token length of 12. By
emphasizing a high Rouge-L score, we retrieve
nearly identical prompts, allowing minor devia-
tions in character order.

The lenient criterion, focused on a high BERT
score, includes 60% of the predictions with an av-
erage token length of 13. This approach priori-
tizes semantic similarity, making it useful for un-
derstanding the general intent of the prompt. From
this we gather that, exact prompt prediction is a
challenging task, with only 20% meeting our mod-
erate criterion, indicating that our model is not able
to exactly retrieve the prompt from the response.
From the average token length, it seems like ex-
actly matching prompts are biased towards shorter
prompts. This can be related to there being less
room for variability in a short piece of text. How-
ever, the model seems to be better at matching the
general intent of the prompts, where we can re-
trieve 60% of the predictions of relatively good
quality (Appendix F).

Investigating the Low F1-score As noted in Sec-
tion 5, both the development and test F1-scores for
the prompt classifier are lower than expected. Fig-
ure 3 shows the confusion matrix for the test set.
We identify some categories such as classification
and brainstorming to be doing well, with many
correct classifications and few misclassifications.
The openQA category does have a large amount of
correct classifications. However, we observe a sig-
nificant amount of confusion between openQA and
the other QA-categories. Examining the prompts
in the QA-categories, we see that some examples
are impossible to distinguish, such as the gener-
alQA "what is a dog?", the openQA "what is a
debit card?" and the closedQA "what is a Druid?".
This confusion is strongest between generalQA and

186

openQA. Similar issues can be observed for sum-
marization and information extraction and the QA-
categories.

Figure 3: Confusion matrix for the test set. Ground
truth/Prediction on the vertical/horizontal axis.

Summarization, information extraction, and
closedQA tasks use a supplementary reference text
as context5. This context is sometimes explicitly
mentioned in the prompts, e.g., "From the passage
below..", which allows them to be separated from
openQA and generalQA. However, this also makes
these tasks more susceptible to being confused with
one another. Finally, the worst-performing cate-
gory is creative writing. While some prompts in
this class are very distinct, others could easily be
mistaken for prompts from the QA categories. The
low F1-score can be attributed to the fact that the
majority of the samples in the dataset belong to
classes that are often confused with one another,
due to ambiguity in these class definitions.

Suggestion for Improvements One of the main
issues with the classification is the significant over-
lap between some of the prompt categories, mak-
ing them practically indistinguishable based on
the prompt alone. Therefore, any further attempts
at prompt classification should focus on curating
the dataset to remove ambiguities between the cat-
egories. Suggestions to address these issues in-
clude: 1) merging openQA and generalQA into a
single category, and 2) removing QA-style prompts
without reference to the provided context from
summarization, closedQA, and information extrac-
tion. Since openQA and generalQA are the most
frequent categories, this merge will amplify the
dataset imbalance. Thus, generating synthetic data

5https://huggingface.co/datasets/databricks/
databricks-dolly-15k

to target underrepresented categories, such as cre-
ative writing, can also be considered.

7 Conclusion

In this study, we explored the prompt predic-
tion task using both sequence-to-sequence and se-
quence classification approach. In the sequence-
to-sequence approach we fine-tuned an encoder-
decoder model (FLAN-T5-XL) and a decoder-only
model (Llama-8B-Instruct). Additionally, we in-
vestigated the impact of incorporating synthetic
data by generating synthetic prompt-response pairs,
paraphrased from our dataset using Llama3-8B-
Instruct in a zero-shot configuration. Our ex-
periments revealed that fine-tuning the encoder-
decoder architecture produced better and faster re-
sults compared to the larger decoder-only model,
given our single GPU hardware constraint. The
inclusion of synthetic data led to a marginal de-
cline in the BERT score and a more significant
decline in the Rouge-L score. We attribute these
declines to structural differences between the syn-
thetic prompts and the original dataset, resulting
in lower performance on the real test set. How-
ever, the synthetic dataset introduced useful data
diversity, allowing the FLAN-T5-XL-S model to
generalize better on a different instruction dataset
not included in the fine-tuning process.

Both the high BERT score (> 0.9) and the
marginal difference between the real and synthetic
case suggest that extracting the general intent of
a prompt can be effectively learned and is less de-
pendent on the dataset compared to learning the
structure of the prompts. Our qualitative analysis
revealed that approximately 10% of the predicted
prompts in the real test set can be regarded as ex-
act matches (under our moderate criterion), high-
lighting the challenge of predicting exact matches,
particularly for longer prompts. The sequence clas-
sification approach was less successful, which we
largely attribute to the ambiguity in the defined
classes when considering only the prompt and the
class label.

Overall, our findings suggest potential for further
research in prompt prediction techniques, particu-
larly in improving the prediction of exact matches
and addressing class ambiguity in classification
tasks. We hope this work can serve as inspiration
for future studies to refine these methods and over-
come the challenges identified in this research.

187

References
David Ifeoluwa Adelani, Haotian Mai, Fuming Fang,

Huy H. Nguyen, Junichi Yamagishi, and Isao
Echizen. 2019. Generating sentiment-preserving
fake online reviews using neural language models and
their human- and machine-based detection. Preprint,
arXiv:1907.09177.

AI@Meta. 2024. Llama 3 model card.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877–1901. Curran Associates,
Inc.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret
Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, Al-
bert Webson, Shixiang Shane Gu, Zhuyun Dai,
Mirac Suzgun, Xinyun Chen, Aakanksha Chowdh-
ery, Alex Castro-Ros, Marie Pellat, Kevin Robinson,
Dasha Valter, Sharan Narang, Gaurav Mishra, Adams
Yu, Vincent Zhao, Yanping Huang, Andrew Dai,
Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Ja-
cob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le,
and Jason Wei. 2024. Scaling instruction-finetuned
language models. Journal of Machine Learning Re-
search, 25(70):1–53.

Mike Conover, Matt Hayes, Ankit Mathur, Jianwei Xie,
Jun Wan, Sam Shah, Ali Ghodsi, Patrick Wendell,
Matei Zaharia, and Reynold Xin. 2023. Free dolly:
Introducing the world’s first truly open instruction-
tuned llm.

Evan Crothers, Nathalie Japkowicz, and Herna L. Viktor.
2023. Machine-generated text: A comprehensive
survey of threat models and detection methods. IEEE
access, 11:1–1.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and
Luke Zettlemoyer. 2023. Qlora: Efficient finetuning
of quantized llms. In Advances in Neural Information
Processing Systems, volume 36, pages 10088–10115.
Curran Associates, Inc.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Hyeonmin Ha, Jihye Lee, Wookje Han, and Byung-Gon
Chun. 2023. Meta-learning of prompt generation for
lightweight prompt engineering on language-model-
as-a-service. In Findings of the Association for Com-
putational Linguistics: EMNLP 2023, pages 2433–
2445, Singapore. Association for Computational Lin-
guistics.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2022. Lora: Low-rank adaptation of
large language models. In ICLR 2022.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 3045–3059, Online and Punta Cana, Domini-
can Republic. Association for Computational Lin-
guistics.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74–81, Barcelona, Spain.
Association for Computational Linguistics.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang,
Hiroaki Hayashi, and Graham Neubig. 2021. Pre-
train, prompt, and predict: A systematic survey of
prompting methods in natural language processing.
CoRR, abs/2107.13586.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. arXiv.org.

OpenAI. 2021. Chatgpt: A large-scale generative
model for open-domain chat. https://github.
com/openai/gpt-3.

Chi Sun, Xipeng Qiu, Yige Xu, and Xuanjing Huang.
2020. How to fine-tune bert for text classification?
Preprint, arXiv:1905.05583.

Tianxiang Sun, Yunfan Shao, Hong Qian, Xuanjing
Huang, and Xipeng Qiu. 2022. Black-box tuning
for language-model-as-a-service. In Proceedings of
ICML.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B. Hashimoto. 2023. Stanford alpaca:
An instruction-following llama model. https://
github.com/tatsu-lab/stanford_alpaca.

Iulia Turc, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. 2019. Well-read students learn better:
On the importance of pre-training compact models.
arXiv preprint arXiv:1908.08962v2.

Yuxia Wang, Jonibek Mansurov, Petar Ivanov, Jinyan
Su, Artem Shelmanov, Akim Tsvigun, Osama Mo-
hammed Afzal, Tarek Mahmoud, Giovanni Puccetti,
Thomas Arnold, Chenxi Whitehouse, Alham Fikri
Aji, Nizar Habash, Iryna Gurevych, and Preslav
Nakov. 2024. Semeval-2024 task 8: Multidomain,
multimodel and multilingual machine-generated text
detection. arXiv.org.

188

Sohier Dane Ashley Chow Will Lifferth, Paul Mooney.
2024. Llm prompt recovery.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le
Scao, Sylvain Gugger, Mariama Drame, Quentin
Lhoest, and Alexander M. Rush. 2020. Transform-
ers: State-of-the-art natural language processing. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Rowan Zellers, Ari Holtzman, Hannah Rashkin,
Yonatan Bisk, Ali Farhadi, Franziska Roesner, and
Yejin Choi. 2019. Defending against neural fake
news. In H. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Ad-
vances in Neural Information Processing Systems 32,
pages 9054–9065. Curran Associates, Inc.

Tianyi Zhang*, Varsha Kishore*, Felix Wu*, Kilian Q.
Weinberger, and Yoav Artzi. 2020. Bertscore: Eval-
uating text generation with bert. In International
Conference on Learning Representations.

189

A Appendix: Dataset statistics

Figure 4: Class distribution of the original databrick-dolly-15k dataset.

Model Type Min Length Max Length Avg Length 95th Perc 99th Perc
flan-t5-xl Prompt 1 5924 18 42 78

Response 1 5636 83 270 589
meta-llama-3-8b-instruct Prompt 1 5373 16 37 68

Response 1 5262 77 251 550
bert-base-uncased Prompt 1 6405 16 37 69

Response 1 5191 75 247 533

Table 4: Dataset statistics for the real prompts and responses for the different model tokenizers.

Model Type Min Length Max Length Avg Length 95th Perc 99th Perc
flan-t5-xl Prompt 1 313 19 38 63

Response 2 340 93 192 266
meta-llama-3-8b-instruct Prompt 1 236 17 33 55

Response 2 256 84 172 256
bert-base-uncased Prompt 1 261 17 34 55

Response 2 296 85 175 243

Table 5: Dataset statistics for the synthetic prompts and responses for the different model tokenizers.

190

Model Type Min Length Max Length Avg Length 95th Perc 99th Perc
flan-t5-xl Prompt 1 5924 18 40 71

Response 1 5636 88 215 428
meta-llama-3-8b-instruct Prompt 1 5373 16 35 62

Response 1 5262 80 197 394
bert-base-uncased Prompt 1 6405 16 35 62

Response 1 5191 80 197 390

Table 6: Dataset statistics for the combined (synthetic + real) prompts and responses for the different model
tokenizers.

191

B Appendix: Zero-shot Prompt for Synthetic Data Generation

Prompt-paraphrasing
Role Content
System You are an AI system that helps the user to rephrase their prompt.

The response must preserve the exact meaning of the user’s prompt.
The response should be brief and clear.
The response should only include the rephrased prompt, without starting with ’Here are’.

User Rephrase the following: {prompt}
Generating responses
System Provide a single paragraph response without additional details.
Context {context} If available
User {synthetic_prompt}

Table 7: Zero-shot prompt structure for LLama3-8B-Instruct. Generating synthetic prompts by paraphrasing the
human-made instructions from the databricks-dolly-15k dataset and for generating synthetic responses with the
synthetic prompts.

192

C Appendix: Synthetic Prompt Quality

C.1 BERT score and Rogue-L score across the different prompt categories

Category BERT score Rouge-L
Brainstorming 0.915 0.320
Classification 0.921 0.478
Closed QA 0.924 0.388
Creative Writing 0.908 0.304
General QA 0.922 0.329
Info Extraction 0.923 0.433
Open QA 0.925 0.401
Summarization 0.918 0.403

Table 8: Quantitative assessment of the synthetic prompt paraphrasing task using BERT score and Rouge-L scores
for each class.

C.2 Qualitative Examples
Low Quality : answering
reference: What are some things I could do as a tourist near Honolulu?
prediction: Explore popular attractions and activities in and around Honolulu,
such as visiting Pearl Harbor, hiking Diamond Head, or relaxing on Waikiki Beach.
BERT score: 0.638 | Rouge-L: 0.059

reference: What do you do as a player playing RollerCoaster Tycoon 2?
prediction: Design and manage your own theme park, making decisions
on ride placement, staff hiring, and customer satisfaction.
BERT score: 0.605 | Rouge-L: 0.0

reference: what is a dog?
prediction: Canine species, typically characterized by their furry coats,
wagging tails, and ability to be domesticated.
BERT score: 0.594 | Rouge-L: 0.0

Low Quality : missing context
reference: classify the following as good stuff vs bad stuff:
inflation
wars
collaboration
renewable energy
soil erosion
peace
harmony
violence
bloodshed
prediction: Distinguish between positive and negative concepts:
BERT score: 0.613 | Rouge-L: 0.0

Moderate Quality : Useful, but verbose and over-specific
reference: Why should I visit Netherlands?
prediction: What are the top attractions and experiences
that make the Netherlands a must-visit destination?

193

BERT score: 0.704 | Rouge-L: 0.1

reference: Please extract the characteristics of a desert
from this passage and list in bullet format.
prediction: Identify and summarize the key features of a desert
as described in the passage, presenting them in a concise bullet-point list.
BERT score: 0.742 | Rouge-L: 0.378

reference: Tell me about StarCraft.
prediction: What is the background and gameplay of the popular
real-time strategy video game StarCraft?
BERT score: 0.727 | Rouge-L: 0.105

reference: What is a Wonton?
prediction: What are wontons, and what do they typically consist of?
BERT score: 0.756 | Rouge-L: 0.143

reference: What is the history of coffee?
prediction: Explore the origins and evolution of coffee
from its ancient discovery to its global popularity today.
BERT score: 0.718 | Rouge-L: 0.273

High Quality : high Rouge-L
reference: What are the ingredients of a classic Greek salad?
prediction: What are the typical components of a traditional Greek salad?
BERT score: 0.925 | Rouge-L: 0.737

reference: What is the Canada's national sport?
prediction: What sport is officially recognized as Canada's national sport?
BERT score: 0.847 | Rouge-L: 0.706

reference: What is the name of Google's email service?
prediction: What is the name of Google's popular email platform?
BERT score: 0.969 | Rouge-L: 0.842

High Quality : moderate Rouge-L

reference: What is the best way to answer an interview question?
prediction: How can I effectively respond to an
interview question to make a positive impression?
BERT score: 0.801 | Rouge-L: 0.333

reference: What principles does conversion rate optimization
share with direct response marketing?
prediction: What similarities exist between the methodologies of
conversion rate optimization and direct response marketing?
BERT score: 0.847 | Rouge-L: 0.56
reference: Classify these as things you would want to wear for a rainy day or a very hot day:
umbrella, ball cap, rain jacket, t-shirt, sunglasses, rain boots, flip-flops
prediction: Categorize these items as suitable for a rainy day or a hot day:
umbrella, rain jacket, rain boots, ball cap, sunglasses, t-shirt, flip-flops.
BERT score: 0.919 | Rouge-L: 0.618

194

High Quality : low Rouge-L
reference: Why are visualisations useful for communicating information?
prediction: What benefits do visualizations offer in conveying complex data effectively?
BERT score: 0.836 | Rouge-L: 0.0

reference: Which sport is similar to baseball?
prediction: What game shares similarities with baseball in terms of gameplay and rules?
BERT score: 0.815 | Rouge-L: 0.111

195

D Appendix: Training

D.1 FLAN-T5-XL

Figure 5: Training and development loss (dashed) for FLAN-T5-XL with the designated learning rates. FLAN-T5-
XL-R (left) and FLAN-T5-XL-S (right).

D.2 Llama-8B-Instruct

Figure 6: Training and development loss for Llama3-8B-Instruct.

196

D.3 Testing Dropout - Sequence Classification

Figure 7: Training and development loss (dashed) for the four different dropout rates for the BERT-classifier. The
lowest observed development loss before overfitting occurs at epoch 3 with dropout=0.1.

197

E Appendix: Paraphrasing Issues for Short Concise Prompts

Summarization
Direct Answer

Reference: What is Chess?
Prediction: A two-player strategy board game where players
move pieces to capture the opponent's king.

Partial Answer

Reference: What is Attack on Titan?
Prediction: Can you tell me about the popular Japanese manga and anime series
that takes place in a world where humans are under attack by giant humanoid creatures?

Verbose and Complex

Reference: What was the Byzantine Empire?
Prediction: What was the historical empire that succeeded
the Roman Empire and existed from the 4th to the 15th century,
primarily in the region of modern-day Greece, Turkey, and Eastern Europe?

General QA
Direct Answer

Reference: What is knitting?
Prediction: Knitting is the process of creating fabric by manipulating
yarn with needles or other tools to create rows of interconnected loops.

Partial Answer

Reference: What is non dual philosophy?
Prediction: What is the concept of non-dualism, which posits that reality is
fundamentally unified and lacks distinctions between subject and object, self and other,
or consciousness and the external world?

Verbose and Complex

Reference: What is hot pot?
Prediction: What is the concept of a communal, simmering broth-based dish
where diners cook their own ingredients at the table?

Open QA
Direct Answer

Reference: What is comparative genomics?
Prediction: Comparative genomics is the study of the similarities and
differences between multiple genomes to identify evolutionary relationships,
functional conservation, and genetic variations.

Partial Answer

198

Reference: What is DeFi?
Prediction: What does the term "Decentralized Finance" (DeFi) refer to?

Verbose and Complex

Reference: Who were the Sumerians?
Prediction: What was the identity of the ancient civilization that
inhabited Mesopotamia and is credited with developing writing, governance, and architecture?

Closed QA
Direct Answer

Reference: What do you do as a player playing RollerCoaster Tycoon 2?
Prediction: Design and manage your own theme park,
making decisions on ride placement, staff hiring, and customer satisfaction.

Partial Answer

Reference: What is Ontology?
Prediction: What is the study of the nature of existence,
including the relationships between concepts and entities?

Verbose and Complex

Reference: What is Autism and how varied is the spectrum?
Prediction: What are the defining characteristics of
Autism Spectrum Disorder (ASD) and how does it manifest in individuals
with varying degrees of severity and symptom presentation?

Information Extraction
Direct Answer

Reference: What is The Silmarillion?
Prediction: A detailed description of J.R.R. Tolkien's collection of stories
and legends about the ancient history of Middle-earth.

Partial Answer

Reference: What is Snow White and the Seven Dwarfs?
Prediction: What is the classic fairy tale about a princess named
Snow White who takes refuge with a group of seven small miners, the dwarfs,
to escape the wrath of her evil stepmother?

Verbose and Complex

Reference: What is the central limit theorem
Prediction: Can the average of a large sample of independent
and identically distributed random variables be approximated by a
normal distribution, regardless of the underlying distribution of the variables?

199

F Appendix: Prediction Quality Assessment

Strict Constraint

generalQA
reference: What programming language should I learn?
prediction: What programming language should I learn?
BERT-score: 1.0 | Rouge-L: 1.0

reference: What is the most popular sport in the UK?
prediction: What is the most popular sport in the UK?
BERT-score: 1.0 | Rouge-L: 1.0

OpenQA
reference: What is Bar Method?
prediction: What is Bar Method?
BERT-score: 1.0 | Rouge-L: 1.0

reference: What is the difference between benefits and compensation?
prediction: What is the difference between benefits and compensation?
BERT-score: 1.0 | Rouge-L: 1.0

Summarization
reference: What is Penguin Books?
prediction: What is Penguin Books?
BERT-score: 1.0 | Rouge-L: 1.0

reference: Who was Robert Ross Munro?
prediction: Who was Robert Ross Munro?
BERT-score: 1.0 | Rouge-L: 1.0

Brainstorming
reference: Are there more wheels or doors in New York City?
prediction: Are there more wheels or doors in New York City?
BERT-score: 1.0 | Rouge-L: 1.0

reference: Who are the greatest hockey players of all time?
prediction: Who are the greatest hockey players of all time?
BERT-score: 1.0 | Rouge-L: 1.0

Information Extraction
reference: What is a fishing vessel?
prediction: What is a fishing vessel?
BERT-score: 1.0 | Rouge-L: 1.0

reference: When was George Washington born?
prediction: When was George Washington born?
BERT-score: 1.0 | Rouge-L: 1.0

ClosedQA
reference: What is a PFD?
prediction: What is a PFD?
BERT-score: 1.0 | Rouge-L: 1.0

200

reference: What is the Pareto principle?
prediction: What is the Pareto principle?
BERT-score: 1.0 | Rouge-L: 1.0

Classification
reference: Identify which instrument is string or percussion: Octoban, Socavon
prediction: Identify which instrument is string or percussion: Octoban, Socavon
BERT-score: 1.0 | Rouge-L: 1.0

reference: Identify which instrument is string or percussion: Kirikoketa, Ichigenkin
prediction: Identify which instrument is string or percussion: Kirikoketa,Ichigenkin
BERT-score: 1.0 | Rouge-L: 1.0

Moderate Constraint
generalQA
reference: Why do humans like dogs?
prediction: Why do people like dogs?
BERT-score: 0.975 | Rouge-L: 0.8

reference: How do I get to Juneau, Alaska?
prediction: How do you get to Juneau, Alaska?
BERT-score: 0.981 | Rouge-L: 0.857

OpenQA
reference: What is the paleolithic?
prediction: What is Paleolithic?
BERT-score: 0.953 | Rouge-L: 0.857

reference: Who is John D. Rockefeller?
prediction: Who is John Rockefeller?
BERT-score: 0.955 | Rouge-L: 0.889

Summarization
reference: Where is the annual indoor rowing World Championship?
prediction: Where is the indoor rowing world championship held?
BERT-score: 0.948 | Rouge-L: 0.875

reference: Who were the major players in the Watergate conspiracy?
prediction: Who were the key players in the Watergate conspiracy?
BERT-score: 0.986 | Rouge-L: 0.889

Brainstorming
reference: List the five French mother sauces used in classic french cuisine.
prediction: What are the five French mother sauces used in classic French cuisine?
BERT-score: 0.862 | Rouge-L: 0.87

reference: What are some places to visit in Anchorage?
prediction: What are some good places to eat in Anchorage?
BERT-score: 0.962 | Rouge-L: 0.824

Information Extraction

201

reference: How many games did Edwin play in the NBA?
prediction: How many games did Edwin played in the NBA?
BERT-score: 0.985 | Rouge-L: 0.889

reference: What were the original four federal
holidays in the United States?
prediction: What are the original four federal
holidays in the United States?
BERT-score: 0.989 | Rouge-L: 0.909

ClosedQA
reference: Where in Australia is Palm Cove located?
prediction: Where is Palm Cove located?
BERT-score: 0.935 | Rouge-L: 0.833

reference: Given this paragraph, what is the strongest
part of the scapholunate ligament?
prediction: What is the strongest part of
the scapholunate ligament?
BERT-score: 0.932 | Rouge-L: 0.857

Classification
reference: Which characters belong to DC or Marvel Universe? Atom, Hank Pym
prediction: Identify which characters belong to DC or Marvel Universe: Hank Pym, Atom
BERT-score: 0.862 | Rouge-L: 0.87

reference: Classify each of the
following music genres as broadly popular or niche:
Rock, Hip Hop, Pop, Heavy Metal, Bluegrass, Country
prediction: Classify each of the following
as either "broadly popular" or "niche":
Rock, Hip Hop, Pop, Country, Bluegrass
BERT-score: 0.9 | Rouge-L: 0.811

Lenient Constraint

generalQA
reference: Which products apple sell?
prediction: What kind of products does Apple sell?
BERT-score: 0.803 | Rouge-L: 0.545

reference: What are submersibles for?
prediction: What is a submersible?
BERT-score: 0.907 | Rouge-L: 0.25

OpenQA
reference: What is an earphone?
prediction: What are earphones?
BERT-score: 0.94 | Rouge-L: 0.286

reference: Why do people prefer Windows over Linux?
prediction: What is the difference between Linux and Windows?
BERT-score: 0.801 | Rouge-L: 0.133

202

Summarization
reference: How long have musical instruments been in existence?
prediction: What was the first musical instrument?
BERT-score: 0.801 | Rouge-L: 0.143

reference: Why are cats so picky about what they eat?
prediction: What do cats like to eat?
BERT-score: 0.819 | Rouge-L: 0.267

Brainstorming
reference: Is it better to rebuild or remodel a house?
prediction: Should I build or remodel my house?
BERT-score: 0.853 | Rouge-L: 0.375

reference: I have a small ball, what games can I play?
prediction: What sports can you play with a small ball?
BERT-score: 0.847 | Rouge-L: 0.316

Information Extraction
reference: What are the names of the main islands
of Hawaii in alphabetical order?
prediction: What are the names of the islands
in the Hawaiian Islands?
BERT-score: 0.874 | Rouge-L: 0.64

reference: What was the Ghazi Attack in Indian subcontinent?
prediction: What was the Ghazi submarine?
BERT-score: 0.877 | Rouge-L: 0.615

ClosedQA
reference: Who composed the theme song for the movie Marvin's Room?
prediction: Who wrote and performed Marvin's room?
BERT-score: 0.804 | Rouge-L: 0.444

reference: Which is the most popular Italian Song Festival
prediction: What is the most famous music festival in Italy?
BERT-score: 0.814 | Rouge-L: 0.471

Classification
reference: Tell me which continent the following cities are in:
- Seattle
- Helsinki
- Lagos
- Osaka
- Istanbul
prediction: Tell me whether these cities are
located in North America, Europe, Africa, Asia or neither:
Seattle, Helsinki, Lagos, Osaka, Istanbul
BERT-score: 0.812 | Rouge-L: 0.588

reference: Classify each of the following music

203

genres as broadly popular or niche: Rock, Hip Hop, Pop,
Heavy Metal, Bluegrass, Country
prediction: Classify each of the following
as either "broadly popular" or "niche":
Rock, Hip Hop, Pop, Country, Bluegrass
BERT-score: 0.9 | Rouge-L: 0.811

204

Uncovering Hidden Intentions: Exploring Prompt Recovery for
Deeper Insights into Generated Texts

Louis Give Timo Zaoral Maria Antonietta Bruno
University of Oslo

{louisgi,timoz,marabru}@uio.no

Abstract

Today, the detection of AI-generated content is
receiving more and more attention. Our idea is
to go beyond detection and try to recover the
prompt used to generate a text. This paper, to
the best of our knowledge, introduces the first
investigation in this particular domain without
a closed set of tasks. Our goal is to study if this
approach is promising. We experiment with
zero-shot and few-shot in-context learning but
also with LoRA fine-tuning. After that, we
evaluate the benefits of using a semi-synthetic
dataset. For this first study, we limit ourselves
to text generated by a single model. The results
show that it is possible to recover the original
prompt with a reasonable degree of accuracy.

1 Introduction

The rapid evolution of Natural Language Gener-
ation (NLG) in creating human-like text has in-
troduced new challenges within the field of NLP.
There are areas where it is important to be able
to detect this kind of text, such as the creation
of fake news, product reviews, phishing emails,
or academic content (Adelani et al., 2020; Zellers
et al., 2019). Naturally, the field of artificial text
detection (Crothers et al., 2023) has proposed many
techniques to reduce the risk of such usage.

While this field has seen significant advance-
ments, recovering the original prompt remains an
underexplored area. Indeed, it would help us to
better understand the vast corpus of texts generated
by language models and the underlying intentions
of their creators. There is some related work about
prompt generation (Shin et al., 2020; Zhou et al.,
2022; Singh et al., 2023) but they are limited to a
closed set of non-creative tasks. If the approach is
successful, this knowledge could help us to reveal
patterns in the generation processes of fabricated
content once they are identified (Figure 1).

This paper introduces initial work in this area,
employing techniques such as zero-shot and few-

Input (AI-generated text): Dear Mr. Smith, I am

writing to express my keen interest in the entry-

level Financial Analyst position at ABC Corp, as

advertised. With a strong foundation in finance and

a passion for analytical problem-solving, I am

confident in my ability to contribute effectively

to your team and drive meaningful results. [...]

Output (Prompt): Write a cutting-edge cover letter

for an entry-level role as a financial analyst.

Ensure it makes my application stand out.

Input (AI-generated text): France, the land of

love, fashion, and cheese, is often regarded as one

of the most beautiful and culturally rich countries

in the world. However, beneath the surface, lies a

dark and disturbing reality that makes France the

worst country in the world. [...]

Output (Prompt): Generate an article on why France

is the worst country in the world.

Figure 1: Potential usage

shot learning (Wei et al., 2022), but also Low-Rank
Adaptation (LoRA) fine-tuning (Hu et al., 2022),
to explore the feasibility of recovering the initial
prompts. Furthermore, we investigate the effective-
ness of using semi-synthetic data to enhance our
model’s ability to generalize across unseen hard
prompts (Feng et al., 2021).

Our experiments focus on text generated by a sin-
gle model, setting a controlled framework for the
initial exploration. The findings reveal a promis-
ing potential for prompt recovery, suggesting path-
ways for further research on generalization. This
initial study lays the groundwork for future inves-
tigations that could expand to text generated from
many models and more diverse data scenarios, ul-
timately aiming to improve the interpretability of
the intention behind AI-generated text and their
traceability.

205

2 Method

2.1 Data Collection and Generation
To be able to reconstruct a prompt from a generated
text, the most important thing is the dataset. We use
human prompts and generate their response with
an LLM. However, this kind of dataset may not
be enough to handle our initial task. To generate
additional instruction data, we use a pre-trained lan-
guage model to create new prompts in the manner
of the Stanford Alpaca project (Taori et al., 2023) or
SELF-INSTRUCT (Wang et al., 2023). This process
creates a semi-synthetic dataset, rich in diversity
and complexity (Feng et al., 2021). The details of
the datasets are available in section 3.

2.2 Model
We follow a very common NLG approach. Our
baseline consists of using a pre-trained LLM in a
zero-shot configuration to establish initial prompt
prediction performance (Wei et al., 2022). Follow-
ing this, we perform a couple of tests in a few-shot
configuration. Then, we fine-tune the model using
Low-Rank Adaptation (LoRA) (Hu et al., 2022),
a technique that enables parameter-efficient fine-
tuning of large models. This approach uses only a
small set of trainable parameters which are much
smaller than the original weight matrices and main-
tain good performance.

2.3 Evaluation
To measure the effectiveness of our approach, a
combination of quantitative and qualitative metrics
is used. Quantitative evaluation involves standard
NLG metrics such as ROUGE-L for measuring
surface-level textual similarity between the pre-
dicted prompts and the original prompts, more
precisely the longest common subsequence (Lin,
2004). BERTScore (Zhang et al., 2020) and the
MiniLM embedding cosine similarity (Wang et al.,
2020) are used to evaluate semantic similarity. Fi-
nally, a qualitative analysis is carried out to provide
an interpretable measure and better assess the fea-
sibility of the task and potential limitations.

3 Data

3.1 Human Instructions
The initial dataset was constructed using the
databricks-dolly-15k dataset (Conover et al.,
2023). The dataset contains over 15,000 human-
written records that are question/answer pairs, clas-
sified into eight different categories of instruction:

other

what

w
ho

give
w
hy

how be

where

write

which

please

in

when
list

name

provide

Icand
o

tell
should

be

do

ki
nd

m
ak

e

be

w
in

w
rite

invent

list idea
sum

m
ary
w
ay

be like
have do

m
any

make be

get

be go

be
go

find

come

story

paragraph

letter

email

be

country
state

team

give
provide

summarize
list

Song

be
in
be

become

list
point

title

name
book
movie

team

list
summary

be

have
want
need
give

tell
write

summarize

have

story
point
way

buy
use

Loading [MathJax]/extensions/MathMenu.js

(a) Dolly dataset

oth
er

write

create

generate

design

compose

develop

describe

draft
craft

paint

illustrate
Pen
make
draw

imagine
plan

construct
use

devise
produce

story letter

article
script
story

recipe
list

poem

recipe
list

article

story

logo

game

poster

cover

song

poem
piece

symphony

plan
recipe

profile

script

dream

emotion

scene
painting

speech
letter

article
story

letter

story
conversation

narrative

picture
portrait
landscape

scene

scene
map
feeling
series

Pen
collage

story

map
picture

world

trip

story

photograph

(b) Synthetic dataset

Figure 2: Instructions representation: The top 20 most
common 1st word (inner circle) and their top 4 parents
or direct noun objects (outer circle, with lemmatization)

Open QA, general QA, summarization, brain-
storming, classification, closed QA, information
extraction, and creative writing.

To keep only retrievable prompts, we remove the
following categories: classification, closed QA, and
information extraction. There is no point in trying
to find the original prompt if the answer is only
“Yes”. This procedure leaves us with approximately
9,000 instructions (Figure 2a).

Figure 3: Base dataset creation

Then we use Mistral-7B-Instruct (Jiang et al.,
2023) to generate a response for each prompt (Fig-
ure 3). We also employ sampling1 (Holtzman et al.,

1temperature: 0.5, top_p: 0.9, top_k: 50

206

2020) to be more representative of online data.
The dataset is split as follows: 80% train, 10%

validation, and 10% test.
The primary limitation of this preliminary study

is that we use only one model to generate responses.
If this initial approach is found to be promising,
it would be interesting to investigate the general-
ization of this approach to get closer to the data
available on the internet. Some samples will be
shown in the qualitative analysis (Figure 6).

3.2 Synthetic Instructions
In order to improve the robustness of our model,
we experiment with synthetic prompt generation
(Feng et al., 2021). We take inspiration from SELF-
INSTRUCT (Wang et al., 2023) and the Stanford
Alpaca project (Taori et al., 2023) where they fine-
tuned an LLM on instructions and responses gener-
ated by another LLM.

We focus on “creative writing” prompts, the
most complex category, and the closest to online
data. Creative writing presents a challenge for
prompt prediction due to its complexity, high vari-
ability, evaluation difficulties, and inherent subjec-
tivity (Figure 2b).

We generate around 3,000 instructions (Figure 4)
with following setup:

• Model: Mistral-7B-Instruct

• Prompt: “You are asked to come up with a
set of 20 creative task instructions. These task
instructions will be given to a GPT model
and we will evaluate the GPT model for com-
pleting the instructions. You can write some-
thing like that: "Write a poem inspired by
the colors of a sunset" or "Write a short story
about a character who can communicate with
animals" or "Create a news about the diffi-
culty of finding housing in San Francisco" or
"Adress a letter to my mom to convince her
that I should be able to get a cat." or "Generate
a scholarly abstract on the impact of climate
change on agriculture from a global perspec-
tive."”

• Temperature: 1.5

• Top_p: 0.9

• Top_k: 200

The response to these instructions is then created
in the same way as for human prompts (Figure 3).
They are only added to the train set.

We now have a so-called semi-synthetic dataset.

Figure 4: Length distribution of the instructions and
generated responses

4 Experimental Results

4.1 Zero-shot and Few-shot Learning
Setup
To create a baseline, we carry out zero-shot and
few-shot in-context learning as our first experi-
ments. These are both performed with the Mistral-
7B-Instruct model. On the one hand, this allows
us to create a comparison for our later fine-tuned
models, and, on the other hand, we can also test
how the model is fundamentally suitable for the
task of prompt prediction.

The first step in implementing zero-shot and few-
shot learning is to set up a suitable prompt. The
right choice of words and a clear task for the model
must be taken into account. All in all, we create the
following two prompts which are then both used
individually for the experiments:

1. "<s>[INST] What prompt was used to
generate this Text using LLM?
Text: {generatedText}
Prompt: [/INST]"

2. "<s>[INST] Predict and return only
the prompt which was used to generate
the Text.
Text: {generatedText}
Prompt: [/INST]"

With the two prompts presented, we have a ques-
tion as a task with prompt n°1 and a request with
prompt n°2. This gives us some variation in the
experiments. We also use a low temperature of

207

Method Metric Category Average
Brainstorming Creative Writing General QA Open QA Summarization (balanced)

Zero-shot
ROUGE-L 0.28 0.32 0.29 0.31 0.28 0.30
MiniLM similarity 0.67 0.69 0.69 0.71 0.71 0.70
BERTScore 0.96 0.96 0.96 0.96 0.96 0.95

Few-shot
ROUGE-L 0.38 0.37 0.50 0.48 0.37 0.42
MiniLM similarity 0.80 0.74 0.84 0.83 0.76 0.79
BERTScore 0.96 0.96 0.96 0.96 0.96 0.96

LoRA
ROUGE-L 0.45 0.40 0.50 0.57 0.44 0.47
MiniLM similarity 0.82 0.75 0.83 0.84 0.81 0.81
BERTScore 0.96 0.97 0.97 0.97 0.97 0.97

LoRA w/
synthetic data

ROUGE-L 0.47 0.43 0.56 0.58 0.46 0.50
MiniLM similarity 0.83 0.78 0.87 0.85 0.82 0.83
BERTScore 0.96 0.97 0.97 0.97 0.96 0.97

Table 1: Prompt recovery quantitative metrics (higher is better) on the human test set

Prompt Method ROUGE-L MiniLM BERTScore

1 zero-shot 0.18 0.54 0.95
1 three-shot 0.37 0.75 0.96
2 zero-shot 0.30 0.70 0.95
2 three-shot 0.42 0.79 0.96

Table 2: Comparison of both prompts between zero-shot
and three-shot with ROUGE-L and BERTScore.

0.4 to reduce repetitions. This setting means that
everything is ready for the zero-shot experiments.

For the few-shot in-context learning, three ex-
amples still have to be selected from our data set.
These are then given to the model as a template
for processing the task. In the final prompt, the
examples are placed as follows:

"<s>[INST] Predict and return only
the prompt which was used to
generate the Text.
Text: {sampleText1}
Prompt: {samplePrompt1}
Text: {sampleText2}
Prompt: {samplePrompt2}
Text: {sampleText3}
Prompt: {samplePrompt3}
Text: {generatedText}
Prompt: [/INST]"

Results
We evaluate zero-shot and few-shot performance
for each instruction of the test set (900 human in-
structions) (Table 2). We can see that prompt n°2
performs better in every metric. In addition, it can
be seen for both prompts that, as expected, three-
shot learning represents a significant improvement
compared to zero-shot learning. In both cases, the
ROUGE-L score is almost doubled.

Category Method Qualitative Score
Prompt n°1 Prompt n°2

Brainstorming
zero-shot 2.0 2.2
three-shot 1.9 2.3

Creative Writing
zero-shot 1.7 1.7
three-shot 2.0 2.0

General QA
zero-shot 2.2 2.3
three-shot 2.5 3.1

Open QA
zero-shot 1.8 2.1
three-shot 2.3 2.6

Summarization
zero-shot 2.0 1.9
three-shot 1.9 2.5

Table 3: Comparison of both prompts between zero-shot
and three-shot based on qualitative analysis. Scale:
4 – Perfect instruction
3 – Correct instruction with minor imperfections
2 – Valid instruction with errors
1 – Irrelevant or invalid

Since we cannot interpret in detail from the
ROUGE-L and BERTScore to what extent the pre-
diction is satisfying, we conduct a qualitative anal-
ysis of 200 examples in total (Table 3). It con-
firms the findings obtained previously with the
other three metrics. On the one hand, a significant
improvement can be seen when using three-shot
learning, and, on the other hand, the performance
of prompt n°2 is also slightly better.

Overall, it seems that the model is able to pre-
dict a similar instruction. What is clearly recog-
nizable is that in categories such as General QA
and Open QA, the model also shows better perfor-
mance, probably because they are easier. This is
also confirmed by the quantitative metrics in the
Table 1. As we can see, the “creative writing” cate-

208

gory performs the worst, which again confirms our
intention to generate synthetic data of this type.

4.2 Fine-tuning

Setup Once we have obtained correct results with
our baseline, we fine-tune the model using LoRA
(Hu et al., 2022), a parameter-efficient fine-tuning
method. We follow the recommendations of the au-
thors by setting r = 32 and α = 64. Now we have
“only” 85 million parameters to train compared to
the 7 billion from Mistral-7B, our frozen backbone.
We apply the same prompt as in the zero-shot ex-
periment to limit the total runtime. This prompt is
also masked out during back-propagation so that
we don’t train the model to predict it. Training
takes 45 minutes for 3 epochs with an NVIDIA
A100.

Results We make the following observations from
the results in Table 1. The use of LoRA brings a
12% increase in ROUGE-L and 3% in our sentence
similarity metric compared to the best few-shot
technique. This success underscores the potential
of parameter-efficient fine-tuning techniques like
LoRA in enhancing the capabilities of large lan-
guage models without the extensive costs typically
associated with full model fine-tuning.

4.3 Adding Synthetic Data

Setup To improve our results we experiment with
the addition of synthetic prompts, more precisely
in the worst-performing category (creative writ-
ing) because some others are already really good
(Table 1). The generation process is described in
section 3. We use the same fine-tuning technique
(4.2).

Results The addition of synthetic data leads to
create our best-performing model with a new im-
provement of metrics. Table 1 shows a increase of
6% for ROUGE-L and 2% in MiniLM similarity.
Figure 5 and 6 present the key point of this study:
the low number of bad-quality predictions.

4.4 Qualitative Analysis

The best model shows a significant improvement
with the metrics used, almost doubling ROUGE-L
over the zero-shot baseline. To understand this per-
formance on quantitative metrics, we also analyzed
qualitatively the results obtained in 4.3, as we did
with the zero and three-shot in 4.1.

Global analysis The Figure 6 shows the distribu-
tion of the scores awarded for the individual exper-

Figure 5: Fine-tuning performance following the cate-
gory with semi-synthetic data

Figure 6: Qualitative analysis. 50 annotations for each
method (10 for each category)

iments. It shows a similar improvement trend to
the quantitative metrics. This can be seen starting
from zero-shot, three-shot through fine-tuning, and
finally to the best fine-tuning with the addition of
synthetic data. In the last one, 60% of the prompts
received a score of 3 or 4, which indicates a good
to very good prediction whereas the invalid part is
less than 5%, which confirms that it is possible to
train a model to recover the original prompt.

Detailed analysis In the Table 4, we have listed
examples of the original and the corresponding
predicted prompts of our best solution. The top
two prompts show two very good examples of how
the model predicts the prompt.

The first example shows a perfect prediction of
a slightly easier prompt.

The second example shows a slightly more diffi-
cult prompt, which the model also predicts almost
perfectly. Only the sentence structure is slightly
different and the Bernoulli principle itself is asked
for, but this does not change the meaning of the
prompt.

209

Generated Response (Input) Predicted
Prompt

Original
Prompt

Qual.
Score

Spokane, Washington does not have a widely recognized or commonly
used nickname. The city’s official nickname is "The Lilac City,"
which is derived from the large number of lilac bushes that were
planted in the city in the late 1800s. However, this nickname is not
as commonly used as some other city nicknames, and it may not be
well-known outside of the Spokane area.

What is the
nickname of
Spokane, Wash-
ington?

What is the
nickname for
Spokane, Wash-
ington?

4

Bernoulli’s principle is an empirical law that relates the pressure,
velocity, and potential energy of a fluid in motion. It states that
an increase in the velocity of a fluid in a tube causes a decrease in
pressure, and vice versa, while the potential energy remains constant.
This principle can be derived from Newton’s second law of motion
by considering the net force acting on a small element of fluid in a
pipe. [...]

What is
Bernoulli
principle and
how can we
derive it from
Newton’s sec-
ond law of
motion?

How can
Bernoulli’s prin-
ciple be derived
from Newton’s
second law of
motion?

3

All twelve months have at least 28 days. However, only February in a
normal year (a non-leap year) has exactly 28 days. All other months
have more than 28 days. For example, March has 31 days, April has
30 days, and May through December each have at least 31 days. In a
leap year, February has 29 days instead of 28.

What is the num-
ber of days in
each month of a
normal year?

How many
months have 28
days?

1

Blue light therapy is a form of phototherapy that uses light-emitting
diodes (LEDs) or cool white fluorescent lamps to emit blue light.
People like blue light therapy for several reasons: 1. Treatment of
Seasonal Affective Disorder (SAD) [...]

What is blue
light therapy
used for?

Why do people
like Blue Light
Therapy?

2

In the age of software and technology, personal privacy has become
a hotly debated topic. With the increasing interconnectedness of our
lives, the collection and use of personal data have become ubiquitous.
On one hand, technology has brought about incredible conveniences
and efficiencies, making our lives easier in countless ways. On the
other hand, it has raised serious concerns about who has access to
our personal information, how it is being used, and what the potential
consequences might be. From a personal perspective, the loss of
privacy can feel like an invasion of our most intimate spaces. Every
time we use a search engine, make a purchase online, or engage in
social media, we are leaving a digital footprint that can be traced and
analyzed. [...]

Write a thought-
ful and persua-
sive essay on
the importance
of personal pri-
vacy in the age
of software and
technology.

Write a point
of view on per-
sonal privacy in
the age of soft-
ware and tech-
nology.

3

Table 4: Original and predicted instructions from our model fine-tuned on semi-synthetic data. (randomly selected)

The third and fourth prompts seem easy to pre-
dict at first glance, but they show how easily the
models can still be misled. For example, the third
example asks for specific months that have 28 days.
However, as other months also appear in the gener-
ated text, this is not clear and so the prediction is
promptly too inaccurate.

In the fourth example, the question of why and
what is somewhat confused. This also occurs a few
times when question words are mixed up and the
context is slightly different.

In the last example, we present an example of a
creative writing task. This shows how the model

predicts this prompt very well from a content per-
spective. However, the wording of the prompt does
not completely match the original, but is it really
possible if we use sampling during response gener-
ation?

Nevertheless, even the worst examples shown
here are not a complete failure. The three positive
examples (score ≥ 3) are representative of the 60%
of how this prediction works and looks. (Figure 6).

No significant difference could be crystallized
in the qualitative analysis between the fine-tuning
approach on the human training data and the one
enriched with synthetic data. However, this may

210

be due to the small number of examples analyzed.
This could be investigated in more detail in a further
study.

To summarize, the qualitative analysis identi-
fied some very good predictions based on the fine-
tuning approaches. This confirms that a model can
achieve an accuracy of at least 60% on a prompt re-
covery with a given generated text from one model.

5 Related Work

Instruction generation Our study is not the first
work about generating prompts. A series of recent
works (Shin et al., 2020; Zhou et al., 2022; Singh
et al., 2023) cover the subject in a different man-
ner with autoprompting not prompt recovering. It
seeks the optimal prompt for a specified human-
generated text formatted as “Input: [X] Output:
[Y]”. Tasks typically include style transformations,
sentiment analysis, basic logic, or language trans-
lation. However, this approach, restricted to a pre-
defined set of non-creative tasks, does not apply to
the varied nature of online-generated text.
Reverse engineering of models There is a growing
area of interest in reverse engineering architecture
and hyperparameters of models (Oh et al., 2018;
Asnani et al., 2023). This improved knowledge of
AI-generated content provides new descriptors for
tracing them, which is in line with our final goal. It
also reveals the limits of proprietary models.
Instruction-tuned LMs More generally, several
studies (Ouyang et al., 2022; Wei et al., 2022; Wang
et al., 2023) have demonstrated that base language
models can successfully follow general language
instructions when fine-tuned with "instructional"
datasets. This explains why our solution works if
the underlying LM has already been trained on this
type of data.
Language models for data augmentation As de-
tailed by this survey (Feng et al., 2021), data aug-
mentation with LMs enhances the diversity and
volume of training data, thereby improving model
robustness and performance.

6 Conclusion

This study presents a preliminary experiment to as-
sess the feasibility of backtracking from generated
text to its original prompt.

The findings from our experiments demonstrate
that it is indeed possible to recover the original
prompts with a reasonable degree of accuracy.

While our results are promising, they are not
without limitations. The scope of this study was
confined to texts generated by a single model. Gen-
eralizing to multi-model generated texts seems to
be the next step toward a real-world application.

References
David Ifeoluwa Adelani, Haotian Mai, Fuming Fang,

Huy H Nguyen, Junichi Yamagishi, and Isao Echizen.
2020. Generating sentiment-preserving fake on-
line reviews using neural language models and their
human-and machine-based detection. In Advanced
information networking and applications: Proceed-
ings of the 34th international conference on ad-
vanced information networking and applications
(AINA-2020), pages 1341–1354. Springer.

Vishal Asnani, Xi Yin, Tal Hassner, and Xiaoming Liu.
2023. Reverse engineering of generative models:
Inferring model hyperparameters from generated im-
ages. IEEE Transactions on Pattern Analysis and
Machine Intelligence.

Mike Conover, Matt Hayes, Ankit Mathur, Jianwei Xie,
Jun Wan, Sam Shah, Ali Ghodsi, Patrick Wendell,
Matei Zaharia, and Reynold Xin. 2023. Free dolly:
Introducing the world’s first truly open instruction-
tuned llm.

Evan Crothers, Nathalie Japkowicz, and Herna L Viktor.
2023. Machine-generated text: A comprehensive
survey of threat models and detection methods. IEEE
Access.

Steven Y. Feng, Varun Gangal, Jason Wei, Sarath Chan-
dar, Soroush Vosoughi, Teruko Mitamura, and Ed-
uard Hovy. 2021. A survey of data augmentation
approaches for NLP. In Findings of the Association
for Computational Linguistics: ACL-IJCNLP 2021,
pages 968–988, Online. Association for Computa-
tional Linguistics.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and
Yejin Choi. 2020. The curious case of neural text de-
generation. In International Conference on Learning
Representations.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2022. LoRA: Low-rank adaptation of
large language models. In International Conference
on Learning Representations.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, et al. 2023. Mistral
7b. arXiv preprint arXiv:2310.06825.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74–81, Barcelona, Spain.
Association for Computational Linguistics.

211

Seong Joon Oh, Max Augustin, Bernt Schiele, and
Mario Fritz. 2018. Towards reverse-engineering
black-box neural networks. International Confer-
ence on Learning Representations.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instruc-
tions with human feedback. Advances in neural in-
formation processing systems, 35:27730–27744.

Taylor Shin, Yasaman Razeghi, Robert L. Logan IV, Eric
Wallace, and Sameer Singh. 2020. AutoPrompt: Elic-
iting Knowledge from Language Models with Auto-
matically Generated Prompts. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 4222–4235,
Online. Association for Computational Linguistics.

Chandan Singh, John X. Morris, Jyoti Aneja, Alexan-
der Rush, and Jianfeng Gao. 2023. Explaining data
patterns in natural language with language models.
In Proceedings of the 6th BlackboxNLP Workshop:
Analyzing and Interpreting Neural Networks for NLP,
pages 31–55, Singapore. Association for Computa-
tional Linguistics.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B. Hashimoto. 2023. Stanford alpaca:
An instruction-following llama model. https://
github.com/tatsu-lab/stanford_alpaca.

Wenhui Wang, Furu Wei, Li Dong, Hangbo Bao, Nan
Yang, and Ming Zhou. 2020. Minilm: deep self-
attention distillation for task-agnostic compression
of pre-trained transformers. In Proceedings of the
34th International Conference on Neural Information
Processing Systems.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa
Liu, Noah A. Smith, Daniel Khashabi, and Hannaneh
Hajishirzi. 2023. Self-instruct: Aligning language
models with self-generated instructions. In Proceed-
ings of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 13484–13508, Toronto, Canada. Association
for Computational Linguistics.

Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu,
Adams Wei Yu, Brian Lester, Nan Du, Andrew M.
Dai, and Quoc V Le. 2022. Finetuned language mod-
els are zero-shot learners. In International Confer-
ence on Learning Representations.

Rowan Zellers, Ari Holtzman, Hannah Rashkin,
Yonatan Bisk, Ali Farhadi, Franziska Roesner, and
Yejin Choi. 2019. Defending against neural fake
news. In Advances in Neural Information Processing
Systems 32.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q.
Weinberger, and Yoav Artzi. 2020. Bertscore: Eval-
uating text generation with bert. In International
Conference on Learning Representations.

Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han,
Keiran Paster, Silviu Pitis, Harris Chan, and Jimmy
Ba. 2022. Large language models are human-level
prompt engineers. In NeurIPS 2022 Foundation Mod-
els for Decision Making Workshop.

212

	Scandinavian Language Identification track
	Enhancing Language Identification Models: Insights from Annotated Sentences and Baseline Model Analysis (Victoria Ovedie Chruickshank Langø, Lise Chen, Mathias Strømberg Durkis)
	Optimizing the Performance and Reducing Complexity of Simple Neural Classifiers for Scandinavian Language Identification (Magnus Jørgenvåg)
	Fine-Tuning Language Identification Models for Scandinavian Languages: Insights and Comparisons (Arezo Shakeri)
	Improving Scandinavian Language Identification (Jonas Sebulon Frydenberg)
	Successes and Downfalls: Error Analysis of Scandinavian Language Identification (Marthe Løken Midtgaard, Victoria Handford, Solveig Helene Willoch)
	Transformers do (not) outperform FastText on Scandinavian language identification (Mariia Fedorova)

	Pretraining Tiny Language Models track
	An empirical study of recent optimizers in tiny language models (Sander Finnset Ørnes)
	From bad babies to good language students? - An experiment of training tiny language models on ESL data (Erling Midtgard)
	Parameter Sharing for Tiny Language Models (Eirik Eggset, Torkild Finne, Rayyan Syed)
	TinyLM: Back to basics (Peder August Darre Fasting, Vebjørn Haug Kåsene)
	Curriculum Learning in Tiny Language Models (Magnus Sandem Dhelie)

	Fact-Checking with Graph Evidence track
	Enhancing Fact Verification with Hybrid Models: Integrating Graph Neural Networks and BERT Using the FactKG Dataset (Aleksandar Davidov)
	FactGenius: Combining Zero-Shot Prompting and Fuzzy Relation Mining to Improve Fact Verification with Knowledge Graphs (Sushant Gautam)
	Fact or Fiction? Exploring Diverse Approaches to Fact Verification with Language Models (Tobias Opsahl)

	Artificial Text Detection track
	Cutting Down to Size: Efficient AI for Artificial Text Detection (Fernando Vallecillos Ruiz)
	Impact of Domain Variability in Training Data for Monolingual Artificial Text Detection (Dans Reinicans)
	Overfitting in Artificial Text Detection: Expanding on the SemEval-2024 Workshop Task 8 (Sindre Bjørndal-Riis)
	Using Statistical Features to Improve the Performance of Large Language Models in Artificial Text Detection (Andreas Poole)
	Zero-shot Artificial Text Detection Using Instruct Fine-Tuned LLMs (Zoia Butenko, Taras Andrushko)

	Predicting a Prompt from a Generated Text track
	Exploring Prompt Prediction: Methods, Performance, and Challenges (Dennis Adelved)
	Uncovering Hidden Intentions: Exploring Prompt Recovery for Deeper Insights into Generated Texts (Louis Give, Timo Zaoral, Maria Antonietta Bruno)

