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BACKGROUND

• Generative LLMs are widely used on a daily basis:
• Conversational systems;
• Text-writing and code-writing assistants;
• Machine translation systems;
• and many more.

• However, the LLMs are widely misused for malicious purposes:
• Spreading disinformation and propaganda;
• Generating fake news and content on social media;
• Generating fake product reviews, phishing emails, etc.
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BACKGROUND

• With advancements of generative LLMs, it is becoming more diffi-
cult to identify generated content (Ippolito et al., 2020; Karpinska
et al., 2021).

Figure 1: Source: the CNN news article.

• How we can mitigate these risks?
• Manual fact-checking;
• Generated text detection;
• Other targeted mitigation strategies.
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DISINFORMATION AND PROPAGANDA

Creating majority opinions
• Spreading political opinions on social media using bots, e.g., the
2016 U.S. presidential election (Hampton, 2019).

Figure 2: Source: the Newsweek article.
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DISINFORMATION AND PROPAGANDA

Producing extremist or anti-Semitic content
• GPT-3 can be used to generate content that emulates content pro-
duced by extremist communities (McGuffie and Newhouse, 2020).

Figure 3: An example of the model output (McGuffie and Newhouse, 2020).
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DISINFORMATION AND PROPAGANDA

Generating fake news
• Example: a GPT-written blog post was ranked #1 on Hacker News,
and only a few people noticed it was generated.

Figure 4: Source: the MIT Technology Review article.
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DISINFORMATION AND PROPAGANDA

Generating fake news
• Fake news, fact-checking, and propaganda is a niche research di-
rection in NLP (Nakov and Da San Martino, 2020).

Figure 5: Source: The GROVER-based tools demo.

9

https://grover.allenai.org
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SCAM, FRAUD, AND OTHER MANIPULATION

• Increasing the effectiveness of scams, causing financial and psy-
chological harms (Weidinger et al., 2022).

Figure 6: An example of generating a phishing email Weidinger et al. (2022).
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SCAM, FRAUD, AND OTHER MANIPULATION

• Generating fake product reviews at scale (Adelani et al., 2020).

Figure 7: An example of generating fake product reviews (Adelani et al., 2020).
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MITIGATION STRATEGIES: GENERATED TEXT DETECTION

• Generated text detection is one of the rapidly developing area of
research (Jawahar et al., 2020; Uchendu, 2023):

• Creating datasets and benchmarks consisting of human-written and
model-generated texts.

• Developing computational approaches to detecting generated texts
to assist humans (e.g., browser extensions).

14



MITIGATION STRATEGIES: GENERATED TEXT DETECTION

• Responsible AI development: releasing the model output detec-
tors together with the models.

Figure 8: Detecting the ChatGPT output using the GPT-2 output detector.
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https://huggingface.co/openai-detector/


MITIGATION STRATEGIES: GENERATED TEXT DETECTION

Benchmarks
• Binary classification: is the text created by a human or a model?

Figure 9: Performance of detectors on human-written and ChatGPT-generated
texts (Pegoraro et al., 2023). TPR=True positive rate. TNR=True negative rate.
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MITIGATION STRATEGIES: GENERATED TEXT DETECTION

Benchmarks
• Human-model mixed detection: when is the text continued by a
model? (Wang et al., 2024)

• Example: We have added a 2+ page discussion on the experi-
mental results, highlighting the superiority of the ARC-basedmod-
els and their impact on the field of deep learning.
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MITIGATION STRATEGIES: GENERATED TEXT DETECTION

Detectors

• Feature-based detectors (Fröhling and Zubiaga, 2021):
• Interpreting detector’s behavior or analyzing text properties;
• Least transferable w.r.t. model, decoding strategy, and domain.

• Zero-shot detectors (Gehrmann et al., 2019):
• Generally perform worse than simple feature-based detectors;
• Token probabilities can be used as the input features.

• Transformer-based detectors (Fagni et al., 2021):
• Tradeoff between performance and computational costs
• Better transferability w.r.t. model, decoding strategy, and domain.
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MITIGATION STRATEGIES: GENERATED TEXT DETECTION

Applications
• Web-services to warn users about generated content:

Figure 10: Source: Detect GPT.
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MITIGATION STRATEGIES: GENERATED TEXT DETECTION

Applications
• Web-services for polishing generated content:

Figure 11: Source: Stealthwriter.
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