Exercise Session 4
The Dawn of Oblig 1

Oleks Shturmov

<olekss@uio.no> / <oleks@oleks.info>

University of Oslo
IN[59]570: Distributed Objects

February 18, 2019

The source code for these slides is maintained here:
https://github.com/emerald/in5570v19/tree/master/exercise-sessions/04


https://github.com/emerald/in5570v19/tree/master/exercise-sessions/04

Agenda

o s~ b=

Elements of Programming in This Course
Discussion: Why Would You Write a Report?
What Should Be Clear from Your Report
What Is Less Clear Without Yourt Report
Conclusion: What To Include In Your Report



Elements of Programming in This Course

A refresher from Exercise Session 1:

1. Writing programs

» Submit readable, preferably working code
» Test your code, and tell us how to reproduce your test results
» Refactor your code once it works, and before you submit

2. Writing programs in a text-based programming language

» Use indentation to indicate program structure
Use adequate naming
Organize code into methods and classes

Organizecode-intofiles-and-directories (Maybe later)

| 2
| 4
>
» Apply other common elements of (text-based) programming style

3. Writing programs for distributed execution

» Program fragments execute concurrently on (distant) nodes

» Program fragments coordinate to get common tasks done

» Nodes are unreliable (the software/hardware beneath you may fail)
» Node-to-node communication is unreliable



Why Would You Write a Report?

Discussion



What Should Be Clear from Your Report

(Without looking at your code!)

In-how-far you have solved a given task
In-how-far you have tested your solution

How to compile and run your code (if possible)

=

How to reproduce your test results



What Is Less Clear Without Your Report

1. Your code, especially the nitty-gritty details
2. The reasoning behind your design decisions

3. What to expect when we compile and run your code



Conclusion: What To Include In Your Report

For each task, you should:

» Give an overview of your submission
» What is located where?

» Give a high-level overview of your solution

» Use diagrams, pseudo-code, prose, etc.
» Explain limitations, shortcomings, or additions, if any

» Justify your design decisions

» Why this way, and not in some other way?

v

Explain the non-trivial parts of your implementation

» For example, if you implemented a special data structure

» Explain how to reproduce your test results

» How do we compile your code?
» How do we run your tests?
» What should we expect to see in case of success, in case of failure?



