
Exercise Session 10
Towards Home Exam 2

Oleks Shturmov
<olekss@uio.no> / <oleks@oleks.info>

University of Oslo
IN[59]570: Distributed Objects

April 29, 2019 (Revised on May 6, 2019)

The source code for these slides is maintained here:
https://github.com/emerald/in5570v19/tree/master/exercise-sessions/10

https://github.com/emerald/in5570v19/tree/master/exercise-sessions/10

Agenda

1. Parametric Polymorphism (in Emerald)
2. The PCRType from Home Exam 2
3. Emulating Unavailability (using Docker)

Polymorphism in Emerald

In a language with polymorphism,
we can write code that works for many datatypes,

not just one particular type of data

I Emerald supports inclusion polymorphism, due to its
conformance relation: In place of a particular type, Emerald
hapily accepts a value of a different, but conforming type
I You know about conformance from previous weeks

I Emerald also supports parametric polymorphism, where
types depend on the actual parameters (e.g.,
the parameters to a method call)
I See also Section 7.4 on pages 18-19 of [Raj et al., 1991]

Passing the Type Parameter Implicitly

Showing the contents of implicit.m
const main <- object main

op showType[a : t] % Where does t come from?
forall t
stdout.putstring[t$name || "\n"]

end showType
initially

self.showType[5] % From here!
end initially

end main

$ emx implicit.x
integertype

I The forall clause introduces an unconstrained type variable
I We can then (somewhat backwards) use t in the signature

preceeding the forall clause (op showType[a : t])
I We must use a forall clause, as otherwsie t is undefined /
I t gets the type ConcreteType; t can be inspected at runtime

There Are No Runtime Costs

All types are determined at compile-time!

I Watch out for “type must be manifest” errors from the
Emerald compiler; if you get these, it means that the type of
some expression cannot be determined at compile-time

Passing the Type Parameter Explicitly

Showing the contents of explicit.m

const main <- object main
op showType[t : Type, a : t] % t is an explicit parameter

stdout.putstring[(typeof a)$name || "\n"]
end showType
initially

self.showType[Integer, 5] % but still comes from here
end initially

end main

$ emx explicit.x
integertype

I Recall that, in Emerald, types are also objects
I As another example, recall how you must explicitly pass a type

to the Array.of constructor, to get an Array of that type
I Unfortunately, we can’t do much with t directly (see line 3)
I Values of type Type are assumed to only be available at runtime

A Brief Interlude: typeof vs. syntactictypeof

Quite unlike many popular languages, Emerald provides two ways
to ask for the type of an expression — typeof and syntactictypeof:

I typeof gives the actual type at runtime
I syntactictypeof gives the type determined at compile time

The Emerald system guarantees that the runtime type of an
expression will conform to its compile-time type.

typeof vs. syntactictypeof Illustrated

What happens if we ask for typeof t instead of typeof a above?

$ diff explicit.m typeof.m
3c3
< stdout.putstring[(typeof a)$name || "\n"]

> stdout.putstring[(typeof t)$name || "\n"]
$ emx typeof.x
pat

What about syntactictypeof t?

$ diff explicit.m syntactictypeof.m
3c3
< stdout.putstring[(typeof a)$name || "\n"]

> stdout.putstring[(syntactictypeof t)$name || "\n"]
$ emx syntactictypeof.x
typetype

Constraining Type Variables Such That . . .

Showing lines 1–8 of replicate.m

const RType <- typeobject RType
operation replicate[X : t, N : Integer]

forall t
suchthat
t *> typeobject ot

op clone -> [result : t]
end ot

end RType

I Use a suchthat clause
I *> means conforms to, and the expression on the right-hand

side can be any type-valued expression

Building Values with Types Such That . . .

Showing lines 10–21 of replicate.m

const Replicator : RType <- object Replicator
export operation replicate[X : t, N : Integer]

forall t
suchthat
t *> typeobject ot

op clone -> [result : t]
end ot
for i : Integer <- 0 while i < N by i <- i + 1
const c <- X.clone[]

end for
end replicate

end Replicator

I t has to be available at compile-time
I Unfortunately, the only way to do so is with a forall clause
I Parametric polymorphism can be quite verbose in Emerald /

Relicating Integers and Strings

Showing lines 23–40 of replicate.m

const RInt <- class RInt[value : Integer]
export operation clone -> [result : RIntType]

stdout.putstring["Cloning " || value.asstring || "..\n"]
result <- RInt.create[value]

end clone
end RInt
const RString <- class RString[value : String]

export operation clone -> [result : RStringType]
stdout.putstring["Cloning " || value || "..\n"]
result <- RString.create[value]

end clone
end RString
const main <- object main

initially
Replicator.replicate[RInt.create[5], 3]
Replicator.replicate[RString.create["Hello"], 5]

end initially
end main

Constructing Dependent Types

Showing the contents of replicas.m

const RaType <- typeobject RaType
operation replicas[X : t] -> [Array.of[rt]]
forall t
where

rt <- typeobject rt
operation read -> [o : t]
operation write[o : t]

end rt
end RaType

I Use a where clause
I The type rt depends on the given type t

I Constructing a value of this particular type however, is even
more tricky than for RType; that is, without resorting to type
assertions (view ... as ...)

The PCRType in Home Exam 2

Showing the contents of typedefs.m

const PCRType <- typeobject PCRType
operation replicate[X : t, N : Integer]
forall t
suchthat

t *> typeobject ot
op clone -> [result : t]

end ot
operation replicas[X : t] -> [Array.of[rt]]
forall t
where

rt <- typeobject rt
operation read -> [o : t]
operation write[o : t]

end rt
end PCRType

Emulating Unavailability (using Docker)

I Docker containers connect to the web via a network “bridge”
I You can connect and disconnect containers from such a bridge
I If a container is not connected to a network bridge,

for all intents and purposes, it is offline
I This way, we can simulate temporary node unavailability

Creating A (New) Network Bridge

Although a Docker container is by default connected to a default
network bridge, you can exert grander control

by creating your own network bridge

I To create a network bridge:
$ docker network create \

--subnet=172.18.0.0/24 \
--ip-range=172.18.0.0/24 \
--driver=bridge \
unavail

I The subnet and IP range arguments effectively make the
following IP address available for containers to use:
I 172.18.0.2
I 172.18.0.3
I . . .
I 172.18.0.254

I This bridge is named unavail (see last argument)

Connecting Running Containers to the Bridge

I Start a Docker container
I Let it have the container ID 85a87446465

I To connect 85a87446465 to unavail at address 172.18.0.2:

$ docker network connect --ip=172.18.0.2 unavail 85a87446465

I To disconnect 85a87446465 from unavail:

$ docker network disconnect unavail 85a87446465

In a similar vein, you can connect up a range of containers,
and methodically take them offline one-by-one.

I See attached monitor.m for a sample program that monitors
the list of available nodes

More Network Operations

As you experiment with Docker and bridge networks,
you might find the following useful:

I To inspect the state unavail

(e.g., see list of connected containers):

$ docker network inspect unavail

I To remove unavail

$ docker network rm unavail

Further Reading

Raj, Tempero, Levy, Black, Hutchinson, and Jul (1991),
Technical Report: The Emerald Programming Language
https://www.uio.no/studier/emner/matnat/ifi/INF5510/v15/pensum/Report.pdf

https://www.uio.no/studier/emner/matnat/ifi/INF5510/v15/pensum/Report.pdf

