
Lecture 2: Emerald Objects and Types
An OO Language for Distributed Applications

Oleks Shturmov
<olekss@uio.no> / <oleks@oleks.info>

University of Oslo

January 31, 2019

Lecture slides derived from the 2018 lectures slides byEric Jul:
https://www.uio.no/studier/emner/matnat/ifi/INF5510/v18/lectures-v18/f2/

The source code for these slides is maintained here:
https://github.com/emerald/in5570v19/tree/master/lectures/2

https://www.uio.no/studier/emner/matnat/ifi/INF5510/v18/lectures-v18/f2/
https://github.com/emerald/in5570v19/tree/master/lectures/2

The People Behind Emerald
I Work done at the University of Washington in the early to mid-1980s
I See HOPL paper for more details on the history of Emerald1

Runtime and Mobility Language Design

PhD Students

Eric Jul

2

Norm Hutchinson

3

Faculty

Hank Levy

4

Andrew Black

5

1
https://www.uio.no/studier/emner/matnat/ifi/INF5510/v16/material/emerald-hopl.pdf

2Today, Professor at the University of Oslo
3Today, Associate Professor at the University of British Columbia
4Today, Chair in Computer Science & Engineering at the University of Washington
5Today, Professor at Portland State University

https://www.uio.no/studier/emner/matnat/ifi/INF5510/v16/material/emerald-hopl.pdf

Principle: Everything Is an Object6

I Basic types (integers, booleans, strings, etc.) are objects
I Classes are objects (in Emerald, mere syntactic sugar)
I Types are objects (of a special built-in type, Signature)
I Language constructs however, are not objects

(e.g., declarations, if-statements, for-loops, programs)

Alternative interpretation:
Every valid expression evaluates to an object

Consequently:

I Type names and declarations are expressions
I Class names and declarations are expressions

6Well, almost everything

Some Non-Objects: Trivial Emerald Programs

I An Emerald program is a list of constant declarations
I Each bearing a name, an expression, and optionally, a type
I The following (trivial) programs produce no output

With type inference:

const a <- 4
const b <- true
const c <- ’x’
const d <- "Hello, World!\n"

With type annotations:

const a : Integer <- 4
const b : Boolean <- true
const c : Character <- ’x’
const d : String <- "Hello, World!\n"

Some Hello-World Objects (1/3)
Time for some output!

const main <- object main
initially

stdout.putstring["Hello, World!\n"]
end initially

end main

To compile and run:

$ ec hello.m # Assuming you call the above file hello.m
$ emx hello.x # Assuming ec went well, you’ll get a hello.x

I The use of the name(s) “main” is purely conventional
I Emerald merely evaluates the declarations of a program

(and their expressions) in order, from top to bottom
I An initially-block can contain a list of declarations and

statements, and end in fault-handling code; more on
fault-handling in subsequent lectures

Some Hello-World Objects (2/3)

The following is also a valid Emerald program:

const alice <- object female
initially

stdout.putstring["Hello, I am Alice!\n"]
end initially

end female

const bob <- object male
initially

stdout.putstring["Hello, I am Bob!\n"]
end initially

end male

Compile and run:

$ ec hello.m
$ emx hello.x
Hello, I am Alice!
Hello, I am Bob!

Some Hello-World Objects (3/3)

So is this:

const main <- object main
initially

stdout.putstring["Hello, World!\n"]
stdout.putstring["Hello?\n"]
stdout.putstring["Is there anyone out there?\n"]

end initially
end main

Compile and run:

$ ec hello.m
$ emx hello.x
Hello, World!
Hello?
Is there anyone out there?

A More Elaborate Object (1/3)
% A random number generator
% Derived from https://stackoverflow.com/a/3062783/5801152
const rand <- object rand

var seed : Integer <- 123456789
const a <- 1103515245
const c <- 12345
const m <- 2147483648
op next -> [retval : Integer]

seed <- (a * seed + c) # m
retval <- seed

end next
initially

stdout.putstring[rand.next.asstring || "\n"]
stdout.putstring[rand.next.asstring || "\n"]
stdout.putstring[rand.next.asstring || "\n"]

end initially
end rand

I Many built-in types define an asstring method
I Append a line break (|| "\n") to flush stdout

A More Elaborate Object (2/3)

If we export the operation, we can use it outside:

const rand <- object rand
var seed : Integer <- 123456789
const a <- 1103515245
const c <- 12345
const m <- 2147483648
export op next -> [retval : Integer] % See here

seed <- (a * seed + c) # m
retval <- seed

end next
end rand % Here

%
const main <- object main %

initially
stdout.putstring[rand.next.asstring || "\n"]
stdout.putstring[rand.next.asstring || "\n"]
stdout.putstring[rand.next.asstring || "\n"]

end initially
end main % And here

A More Elaborate Object (3/3)
Now, with a bit more class:
const rand <- class rand % See here

var seed : Integer <- 123456789
const a <- 1103515245
const c <- 12345
const m <- 2147483648
export op next -> [retval : Integer]

seed <- (a * seed + c) # m
retval <- seed

end next
end rand

const main <- object main
initially

const r <- rand.create % And here
stdout.putstring[r.next.asstring || "\n"]
stdout.putstring[r.next.asstring || "\n"]
stdout.putstring[r.next.asstring || "\n"]

end initially
end main

What Is A Class (in Emerald) Anyway?

A class declares (1) an object type, and
(2) a means to create instances of that type

Consequently, an Emerald class C is syntactic sugar
for an Emerald object exporting the following methods:

getSignature -> Signature
create [p1, p2, ...] -> C

where

I Signature is a built-in type of all type objects
I The value (object) returned by create will “conform to”

the signature returned by getSignature

More on type objects and conformity after an example

A More Elaborate (Class) Object
The class from before, without syntactic sugar:
const rand <- object RandCreator

const RandType <- typeobject RandType
op next -> [seed : Integer]

end RandType
export function getSignature -> [r : Signature]

r <- RandType
end getSignature
export op create -> [r : RandType]

r <- object Rand
var seed : Integer <- 123456789
const a <- 1103515245
const c <- 12345
const m <- 2147483648
export operation next[] -> [r : Integer]

seed <- (a * seed + c) # m
r <- seed

end next
end Rand

end create
end RandCreator

Type Objects

I Special objects of the built-in type Signature

I Constructed using the typeobject keyword
I Every Emerald object has an associated type object
I Use the typeof operator to fetch the type of an object
I Use the getSignature method to fetch the type of a class
I Compare type objects with the *> (conforms to) operator

Type Objects: Examples (1/3)

const RandType <- typeobject RandType
op next -> [seed : Integer]

end RandType

const RandObject <- object RandObject
export op next -> [retval : Integer]

retval <- 42
end next

end RandObject

const main <- object main
initially

const r : Boolean <- (typeof RandObject) *> RandType
stdout.putstring[r.asstring || "\n"]

end initially
end main

Type Objects: Examples (2/3)

const RandType <- typeobject RandType
op next -> [seed : Integer]

end RandType

const RandClass <- class RandClass
export op next -> [retval : Integer]

retval <- 43
end next

end RandClass

const main <- object main
initially

const r : Boolean <- RandClass.getSignature *> RandType
stdout.putstring[r.asstring || "\n"]

end initially
end main

Type Objects: Examples (3/3)

const RandClass <- class RandClass
export op next -> [retval : Integer]

retval <- 42
end next

end RandClass

const RandObject <- object RandObject
export op next -> [retval : Integer]

retval <- 43
end next

end RandObject

const main <- object main
initially

const r <- (typeof RandObject) *> RandClass.getSignature
stdout.putstring[r.asstring || "\n"]

end initially
end main

Type Conformity Is Everywhere

When using an object where a particular type is expected,
the object type must conform to the expected type

I Conformity is checked at compile time; no runtime costs!

const RandType <- typeobject RandType
op next -> [seed : Integer]

end RandType

const RandClass <- class RandClass
export op next -> [retval : Integer]

retval <- 43
end next

end RandClass

const main <- object main
initially

const r : RandType <- RandClass.create
end initially

end main

Type Conformity: Definition

A type S conforms to a type T iff for each operation

o[pT1 , pT2 , . . . pTn]->[r
T
1 , rT2 , . . . , rTm] in T

there is a corresponding operation7

o[pS1 , p
S
2 , . . . pSn]->[r

S
1 , r

S
2 , . . . , rSm] in S

where

1. pTi conforms to pSi , for all i ∈ 1, 2, . . . n, and
2. rSi conforms to rTi , for all i ∈ 1, 2, . . . n

NB! Formal parameters conform one way, while results the other.

7Having the same name, number of formal parameters, and results.

Some Special Cases: Any and None

Any and None are special built-in types
None is the type of the keyword (expression) nil

They have the following interesting properties:

1. Everything conforms to Any

2. None conforms to anything
3. Nothing conforms to None

Notably, nil conforms to Any, and anything at all

Type Conformity: Example (1/3)

Consider the types of some waste bins, which we can pick at:

typeobject AnyBin
op Pick -> [Any]

end AnyBin

typeobject PaperBin
op Pick -> [Paper]

end PaperBin

Now, imagine being a waste picker8:

I If you accept any trash (i.e., AnyBins), then you are also
willing accept specialized trash (e.g., PaperBins).

I If you only accept specialized trash (e.g., PaperBins), then
you are not willing to accept any trash (i.e., AnyBins).

Hence, PaperBin conforms to AnyBin, but not vice-versa.

8Waste-picking is an admirable profession for an autonomous drone

Type Conformity: Example (2/3)

Now, instead consider bins we can throw something into:

typeobject AnyBin
op Throw[Any]

end AnyBin

typeobject PaperBin
op Throw[Paper]

end PaperBin

I A bin that accepts anything (i.e., AnyBin), can
also act as a specialized bin (e.g., PaperBin).

I A specialized bin however (e.g., PaperBin), cannot
act as a bin for anything (i.e., AnyBin).

Hence, AnyBin conforms to PaperBin, but not vice-versa.

Type Conformity: Example (3/3)

Combining the two examples however, yields non-conforming bins:

typeobject AnyBin
op Pick -> [Any]
op Throw[Any]

end AnyBin

typeobject PaperBin
op Pick -> [Paper]
op Throw[Paper]

end PaperBin

This makes sense:

I You cannot throw anything into a PaperBin,
so it cannot act as an AnyBin.

I You can throw anything into an AnyBin, so it cannot act as a
PaperBin, from which you only ever want to pick Paper.

Hence, neither AnyBin conforms to PaperBin, nor vice-versa.

Further Reading

Raj, Tempero, Levy, Black, Hutchinson, and Jul (1991),
Emerald: A general-purpose programming language.
Software: Practice and Experience, Vol. 21, No. 1.
https://www.uio.no/studier/emner/matnat/ifi/INF5510/v15/pensum/SPE-paper-1991.pdf

Raj, Tempero, Levy, Black, Hutchinson, and Jul (1991),
Technical Report: The Emerald Programming Language
https://www.uio.no/studier/emner/matnat/ifi/INF5510/v15/pensum/Report.pdf

https://www.uio.no/studier/emner/matnat/ifi/INF5510/v15/pensum/SPE-paper-1991.pdf
https://www.uio.no/studier/emner/matnat/ifi/INF5510/v15/pensum/Report.pdf

