Lecture 2: Emerald Objects and Types
An OO Language for Distributed Applications

Oleks Shturmov

<olekss@uio.no> / <oleks@oleks.info>

University of Oslo

January 31, 2019

Lecture slides derived from the 2018 lectures slides byEric Jul:
https://www.uio.no/studier/emner/matnat/ifi/INF5510/v18/lectures-v18/f2/

The source code for these slides is maintained here:
https://github.com/emerald/in5570v19/tree/master/lectures/2

https://www.uio.no/studier/emner/matnat/ifi/INF5510/v18/lectures-v18/f2/
https://github.com/emerald/in5570v19/tree/master/lectures/2

The People Behind Emerald

» Work done at the University of Washington in the early to mid-1980s
> See HOPL paper for more details on the history of Emerald®
Runtime and Mobility Language Design

PhD Students

Faculty

Hank vevyv/ Andrew Black

https://www.uio.no/studier/emner/matnat/ifi/INF5510/v16/material/emerald- hopl.pdf
Today, Professor at the University of Oslo
Today, Associate Professor at the University of British Columbia

Today, Chair in Computer Science & Engineering at the University of Washington

g~ W N R

Today, Professor at Portland State University

https://www.uio.no/studier/emner/matnat/ifi/INF5510/v16/material/emerald-hopl.pdf

Principle: Everything Is an Object®

» Basic types (integers, booleans, strings, etc.) are objects
» Classes are objects (in Emerald, mere syntactic sugar)
» Types are objects (of a special built-in type, Signature)

» Language constructs however, are not objects
(e.g., declarations, if-statements, for-loops, programs)

Alternative interpretation:
Every valid expression evaluates to an object

Consequently:

» Type names and declarations are expressions

» Class names and declarations are expressions

SWell, almost everything

Some Non-Objects: Trivial Emerald Programs

» An Emerald program is a list of constant declarations
» Each bearing a name, an expression, and optionally, a type

» The following (trivial) programs produce no output

With type inference:

const a <- 4

const b <- true

const c <- 'x’

const d <- "Hello, World!\n"

With type annotations:

const a : Integer <- 4

const b : Boolean <- true

const c : Character <- ’'x’

const d : String <- "Hello, World!'\n"

Some Hello-World Objects (1/3)

Time for some output!
const main <- object main
initially
stdout.putstring["Hello, World!\n"]
end initially
end main

To compile and run:

$ ec hello.m # Assuming you call the above file hello.m
$ emx hello.x # Assuming ec went well, you’ll get a hello.x

» The use of the name(s) “main” is purely conventional

» Emerald merely evaluates the declarations of a program
(and their expressions) in order, from top to bottom

» An initially-block can contain a list of declarations and

statements, and end in fault-handling code; more on
fault-handling in subsequent lectures

Some Hello-World Objects (2/3)

The following is also a valid Emerald program:

const alice <- object female
initially
stdout.putstring["Hello, I am Alice!\n"]
end initially
end female

const bob <- object male
initially
stdout.putstring["Hello, I am Bob!\n"]
end initially
end male

Compile and run:

$ ec hello.m

$ emx hello.x
Hello, I am Alice!
Hello, I am Bob!

Some Hello-World Objects (3/3)

So is this:

const main <- object main
initially
stdout.putstring["Hello, World!\n"]
stdout.putstring["Hello?\n"]
stdout.putstring["Is there anyone out there?\n"]
end initially
end main

Compile and run:

$ ec hello.m

$ emx hello.x

Hello, World!

Hello?

Is there anyone out there?

A More Elaborate Object (1/3)

% A random number generator
% Derived from https://stackoverflow.com/a/3062783/5801152
const rand <- object rand
var seed : Integer <- 123456789
const a <- 1103515245
const c <- 12345
const m <- 2147483648
op next -> [retval : Integer]
seed <- (a x seed + c) #m
retval <- seed
end next
initially
stdout.putstring[rand.next.asstring || "\n"]
stdout.putstring[rand.next.asstring || "\n"]

stdout.putstring[rand.next.asstring || "\n"]
end initially
end rand

» Many built-in types define an asstring method
» Append a line break (|| "\n") to flush stdout

A More Elaborate Object (2/3)

If we export the operation, we can use it outside:

const rand <- object rand
var seed : Integer <- 123456789
const a <- 1103515245
const c <- 12345
const m <- 2147483648
export op next -> [retval : Integer] % See here
seed <- (a x seed + c) # m
retval <- seed
end next
end rand % Here

o°

const main <- object main

initially
stdout.putstring[rand.next.asstring || "\n"]
stdout.putstring[rand.next.asstring || "\n"]
stdout.putstring[rand.next.asstring || "\n"]

end initially
end main % And here

A More Elaborate Object (3/3)

Now, with a bit more class:

const rand <- class rand % See here
var seed : Integer <- 123456789
const a <- 1103515245
const c <- 12345
const m <- 2147483648
export op next -> [retval : Integer]
seed <- (a x seed + C) # m
retval <- seed
end next
end rand

const main <- object main

initially
const r <- rand.create % And here
stdout.putstring[r.next.asstring || "\n"]
stdout.putstring[r.next.asstring || "\n"]
stdout.putstring[r.next.asstring || "\n"]

end initially
end main

What Is A Class (in Emerald) Anyway?

A class declares (1) an object type, and
(2) a means to create instances of that type

Consequently, an Emerald class C is syntactic sugar
for an Emerald object exporting the following methods:

getSignature -> Signature
create [pl, p2, ...] -> C

where

» Signature is a built-in type of all type objects

» The value (object) returned by create will “conform to”
the signature returned by getSignature

More on type objects and conformity after an example

A More Elaborate (Class) Object
The class from before, without syntactic sugar:

const rand <- object RandCreator
const RandType <- typeobject RandType
op next -> [seed : Integer]
end RandType
export function getSignature -> [r : Signature]
r <- RandType
end getSignature
export op create -> [r : RandTypel]
r <- object Rand
var seed : Integer <- 123456789
const a <- 1103515245
const c <- 12345
const m <- 2147483648
export operation next[] -> [r : Integer]
seed <- (a x seed + Cc) #m
r <- seed
end next
end Rand
end create
end RandCreator

Type Objects

Special objects of the built-in type Signature

Constructed using the typeobject keyword

Every Emerald object has an associated type object

Use the typeof operator to fetch the type of an object
Use the getSignature method to fetch the type of a class

vVvyvyvyyvyy

Compare type objects with the +> (conforms to) operator

Type Objects: Examples (1/3)

const RandType <- typeobject RandType
op next -> [seed : Integer]
end RandType

const RandObject <- object RandObject
export op next -> [retval : Integer]
retval <- 42
end next
end RandObject

const main <- object main

initially
const r : Boolean <- (typeof RandObject) x> RandType
stdout.putstring[r.asstring || "\n"]

end initially
end main

Type Objects: Examples (2/3)

const RandType <- typeobject RandType
op next -> [seed : Integer]
end RandType

const RandClass <- class RandClass
export op next -> [retval : Integer]
retval <- 43
end next
end RandClass

const main <- object main

initially
const r : Boolean <- RandClass.getSignature x> RandType
stdout.putstring[r.asstring || "\n"]

end initially
end main

Type Objects: Examples (3/3)

const RandClass <- class RandClass
export op next -> [retval : Integer]
retval <- 42
end next
end RandClass

const RandObject <- object RandObject
export op next -> [retval : Integer]
retval <- 43
end next
end RandObject

const main <- object main

initially
const r <- (typeof RandObject) *> RandClass.getSignature
stdout.putstring[r.asstring || "\n"l]

end initially
end main

Type Conformity Is Everywhere

When using an object where a particular type is expected,
the object type must conform to the expected type

» Conformity is checked at compile time; no runtime costs!

const RandType <- typeobject RandType
op next -> [seed : Integer]
end RandType

const RandClass <- class RandClass
export op next -> [retval : Integer]
retval <- 43
end next
end RandClass

const main <- object main
initially
const r : RandType <- RandClass.create
end initially
end main

Type Conformity: Definition

A type S conforms to a type T iff for each operation

o[plT,pzT,.‘.pnT]->[rT,r2T,...,rnf] in T

there is a corresponding operation’

olpy,p5,...p21->1r, 15, ..., ral inS
where

1. p/ conforms to p?, forall i € 1,2,...n, and

2. r? conforms to ., forall i€1,2,...n

NB! Formal parameters conform one way, while results the other.

"Having the same name, number of formal parameters, and results.

Some Special Cases: Any and None

Any and None are special built-in types
None is the type of the keyword (expression) nil

They have the following interesting properties:

1. Everything conforms to Any
2. None conforms to anything
3. Nothing conforms to None

Notably, nil conforms to Any, and anything at all

Type Conformity: Example (1/3)

Consider the types of some waste bins, which we can pick at:

typeobject AnyBin typeobject PaperBin
op Pick -> [Any] op Pick -> [Paper]
end AnyBin end PaperBin

Now, imagine being a waste picker®:
» If you accept any trash (i.e., AnyBins), then you are also
willing accept specialized trash (e.g., PaperBins).
» If you only accept specialized trash (e.g., PaperBins), then
you are not willing to accept any trash (i.e., AnyBins).

Hence, PaperBin conforms to AnyBin, but not vice-versa.

8Waste-picking is an admirable profession for an autonomous drone

Type Conformity: Example (2/3)

Now, instead consider bins we can throw something into:

typeobject AnyBin typeobject PaperBin
op Throw[Any] op Throw[Paper]
end AnyBin end PaperBin

» A bin that accepts anything (i.e., AnyBin), can
also act as a specialized bin (e.g., PaperBin).

» A specialized bin however (e.g., PaperBin), cannot
act as a bin for anything (i.e., AnyBin).

Hence, AnyBin conforms to PaperBin, but not vice-versa.

Type Conformity: Example (3/3)

Combining the two examples however, yields non-conforming bins:

typeobject PaperBin
op Pick -> [Paper]
op Throw[Paper]
end PaperBin

typeobject AnyBin
op Pick -> [Any]
op Throw[Any]
end AnyBin

This makes sense:
» You cannot throw anything into a PaperBin,
so it cannot act as an AnyBin.
» You can throw anything into an AnyBin, so it cannot act as a
PaperBin, from which you only ever want to pick Paper.

Hence, neither AnyBin conforms to PaperBin, nor vice-versa.

Further Reading

[4 Raj, Tempero, Levy, Black, Hutchinson, and Jul (1991),
Emerald: A general-purpose programming language.
Software: Practice and Experience, Vol. 21, No. 1.

https://www.uio.no/studier/emner/matnat/ifi/INF5510/v15/pensum/SPE- paper-1991.pdf

[4 Raj, Tempero, Levy, Black, Hutchinson, and Jul (1991),
Technical Report: The Emerald Programming Language

https://www.uio.no/studier/emner/matnat/ifi/INF5510/v15/pensum/Report.pdf

https://www.uio.no/studier/emner/matnat/ifi/INF5510/v15/pensum/SPE-paper-1991.pdf
https://www.uio.no/studier/emner/matnat/ifi/INF5510/v15/pensum/Report.pdf

