
© Richard Jones, Eric Jul, 1999-2000 OOPSLA 2000 Tutorial: Garbage Collection 1

Introduction to
Memory Management &

Garbage Collection
or How to Live with Memory Allocation Problems

Richard Jones
Computing Laboratory

University of Kent at Canterbury

Eric Jul
DIKU Department of Computer Science

University of Copenhagen

OOPSLA 2000 Tutorial no. 70
Tuesday 17 October 2000

©Richard Jones, Eric Jul, 2000. All rights reserved.

© Richard Jones, Eric Jul, 1999-2000 OOPSLA 2000 Tutorial: Garbage Collection 7

What is the problem?
Memory is a scarce and precious resource
Some applications can manage with a bounded amount of memory
using static allocation combined with stack allocation.

Others use dynamic allocation of memory because:
• Some objects live longer than the method that creates them.
• Recursive data structures such as lists and trees.
• Avoids fixed hard limits on data structure sizes.

If we had unbounded amounts of memory, we’d never worry.

The PROBLEM is that we don’t have unbounded memory.

© Richard Jones, Eric Jul, 1999-2000 OOPSLA 2000 Tutorial: Garbage Collection 8

What can we do?
Dynamically allocate and deallocate memory.

REUSE deallocated memory.

Dynamical memory allocation is available in many languages, e.g.,
using languages features:

• New allocates a new object
• Delete X deallocated the object X

Such features allows programmer to handle allocation themselves.

Objects that no longer are needed are called garbage.

© Richard Jones, Eric Jul, 1999-2000 OOPSLA 2000 Tutorial: Garbage Collection 9

Garbage Collection
Identifying garbage and deallocating the memory it occupies
is called garbage collection.

We can try to handle the garbage collection housekeeping
chores related to object allocation and deallocation ourselves.

Such housekeeping can be simple but for many applications
the chores become complex – and error prone.

Can we do it ourselves? – Or should it be automatic??

© Richard Jones, Eric Jul, 1999-2000 OOPSLA 2000 Tutorial: Garbage Collection 10

Why AUTOMATIC Garbage
Collection?

Because human programmers just can’t get it right.
Either

too little is collected leading to memory leaks, or

too much is collected leading to broken programs.

© Richard Jones, Eric Jul, 1999-2000 OOPSLA 2000 Tutorial: Garbage Collection 11

Space leaks?

Human programmers can:
• Forget to delete an object when it is no longer needed.
• Return a newly allocated object – but when will it be deallocated?
• Not figure out when a shared objects should be deleted.

Sharing is a significant problem
Can be handled by using the principle last one to leave the room turns off
the light.
However, this is easily forgotten, and, worse, in a large building, it can be
close to impossible to detect that you are the last!

© Richard Jones, Eric Jul, 1999-2000 OOPSLA 2000 Tutorial: Garbage Collection 12

Dangling Pointers

Eager human programmers can delete objects too
early leading to dangling pointers

Consider an object that is shared between two different parts of a program
each having its own pointer to the object.

If one of the pointers is deleted then the other pointer is left pointing to a
non-existent object – we say that it is a dangling pointer.

(My wife, who is effective at throwing things out, introduced me to the
concept of dangling pointers quite early in our marriage.)

© Richard Jones, Eric Jul, 1999-2000 OOPSLA 2000 Tutorial: Garbage Collection 13

Sharing is a Real Problem
Sharing is a significant problem

Memory leaks and dangling pointers are two sides of the same coin:

The difficulty is managing objects in the presences of sharing.

Example
Consider the principle: last one to leave the room turns off the light.

However, this is easily forgotten, and, worse, in a large building, it can be
close to impossible to detect that you are the last to leave!

© Richard Jones, Eric Jul, 1999-2000 OOPSLA 2000 Tutorial: Garbage Collection 17

Part 2: Object Allocation
In the following, we review how objects are
allocated

• Object & Machine Model?

• Explicit Allocation

• Dangers of Explicit Allocation

© Richard Jones, Eric Jul, 1999-2000 OOPSLA 2000 Tutorial: Garbage Collection 20

Allocation
Allocation means finding a free piece of memory in the heap
and reserving it for the representation of an object.

Deallocation means changing the status of a piece of
memory from allocated to free.

Liveness An object is live as long as it still is reachable
from some part of the program’s computation.

© Richard Jones, Eric Jul, 1999-2000 OOPSLA 2000 Tutorial: Garbage Collection 21

Objects in Memory
Objects are typically allocated in the heap.

An Object Reference is a pointer to an object (typically
merely the heap address of the start of the object).

Variables contain object references (ignoring primitive
data).

Each object can contain a number of variables and
thereby reference other objects.

© Richard Jones, Eric Jul, 1999-2000 OOPSLA 2000 Tutorial: Garbage Collection 22

Static & dynamic allocation
Static allocation — allocation takes place when a program
starts – basically memory is laid out by the compiler

Dynamic allocation — allocate new objects while the
program is executing.

A simple form of dynamic allocation is stack allocation where
objects are allocated on the program stack and deallocated
using a stack discipline.

Heap allocation is the most general form of allocation:
objects are allocated in the heap.

© Richard Jones, Eric Jul, 1999-2000 OOPSLA 2000 Tutorial: Garbage Collection 23

Dangers of Explicit
Deallocation

With explicit deallocation the programmer ends up:

Doing too little
• Garbage objects are not deallocated and slowly but surely clutters

memory and so the program runs out of memory (such a failure to
delete garbage objects is called a memory leak).

Doing too much
• Throwing away a non-garbage object. Subsequent use of a live

reference to the object will cause the program to fail in inexplicable
ways. Such a reference is a dangling reference.

• Throwing away a garbage object twice! Likely to break the memory
manager.

© Richard Jones, Eric Jul, 1999-2000 OOPSLA 2000 Tutorial: Garbage Collection 24

The REAL bad thing about
explicit deallocation

The problems of:
• Memory leaks
• Dangling references
• Double deallocation

are real and omnipresent in explicit deallocation systems and they
cause the real problem:

Wasting huge amounts of debugging time!

and despite this, programs may still fail in mysterious ways long
after being put into production.
Finding and fixing MM bugs can account for 40% of debug time.

© Richard Jones, Eric Jul, 1999-2000 OOPSLA 2000 Tutorial: Garbage Collection 36

Part 4: Automatic
Memory Management

Automatic memory management
including garbage collection handles
the most significant of the problems
that we tried to solve until now.
Doing it yourself has is cumbersome
to do – and quite error prone.
In the following, we present automatic
memory management

© Richard Jones, Eric Jul, 1999-2000 OOPSLA 2000 Tutorial: Garbage Collection 37

What is garbage?
Almost all garbage collectors assume the following definition of live
objects called liveness by reachability: if you can get to an object,
then it is live.

More formally: An object is live if and only if:
it is referenced in a predefined variable called a root,
or
it is referenced in a variable contained in a live object
(i.e. it is transitively referenced from a root).

Non-live objects are called dead objects, i.e. garbage.

© Richard Jones, Eric Jul, 1999-2000 OOPSLA 2000 Tutorial: Garbage Collection 38

Graphs & Roots
The objects and references can be considered a directed graph:
The live objects of the graph are those reachable from a root.
The process executing a computation is called the mutator
because it is viewed as dynamically changing the object graph.

What are the roots of a computation?

Determining roots is, in general, language-dependent

In common language implementations roots include
• words in the static area
• registers
• words on the execution stack that point into the heap.

© Richard Jones, Eric Jul, 1999-2000 OOPSLA 2000 Tutorial: Garbage Collection 39

Why garbage collect?

Language requirement
• many OO languages assume GC, e.g. allocated

objects may survive much longer than the method
that created them

Problem requirement
• the nature of the problem may make it very

hard/impossible to determine when something is
garbage

© Richard Jones, Eric Jul, 1999-2000 OOPSLA 2000 Tutorial: Garbage Collection 42

Composing components

Modules should be reusable in different
contexts

• Cohesive
• Loosely-coupled
• Communicate with as few other modules

as possible and exchange as little
information as possible [Meyer]

• Interfaces should be simple and well-
defined

© Richard Jones, Eric Jul, 1999-2000 OOPSLA 2000 Tutorial: Garbage Collection 43

But…

Liveness is a global property
• An object is live if it can be used by any part of the

program
• This cannot (in general) be determined by

inspection of a single code fragment

Adding MM book-keeping clutter to interfaces
• Weakens abstractions
• Reduces extensibility of modules

© Richard Jones, Eric Jul, 1999-2000 OOPSLA 2000 Tutorial: Garbage Collection 45

Liveness
An object is only live if it can effect future computation

• Must be able to load it (or a part of it) into registers.
• Well-behaved programs that do not access random

addresses in memory.

What data is known (and can be manipulated)?
• Global data held in static areas
• Local variables, parameters and compiler temporaries that

may be held on the stack or in machine registers
Hence the program may also use

• Any objects that can be reached by way computations on
known objects.

© Richard Jones, Eric Jul, 1999-2000 OOPSLA 2000 Tutorial: Garbage Collection 46

Liveness by reachability
Almost all garbage collectors assume the following definition of live
objects called liveness by reachability:

if you can get to an object, then it is live.

More formally: An object is live if and only if:
it is referenced in a predefined variable called a root,
or
it is referenced in a variable contained in a live object
(i.e. it is transitively referenced from a root).

Non-live objects are called dead objects, i.e. garbage.

© Richard Jones, Eric Jul, 1999-2000 OOPSLA 2000 Tutorial: Garbage Collection 47

A conservative estimate
‘Liveness by reachability’ provides a conservative
estimate of the set of live objects.

• Contains all objects that could be used by a
well-behaved program

• May contain objects that will never be used again.

Thing a = someComputation();
if(a.property())

E1();
else

E2();

Reference to a may be held on stack — hence
considered reachable — until E1/E2 has
completed.
But static analysis may reveal that a could be
discarded after the conditional test.

Stack

E2()

a Thing

© Richard Jones, Eric Jul, 1999-2000 OOPSLA 2000 Tutorial: Garbage Collection 48

Help the collector
Help the GC that you are finished with an object

r = new FileReader(filename)
// use the reader
…
reader.close();
reader = null;

• This is a simple, local, decision
• Don’t null the reference if it is about to disappear (e.g. local

variable in a method that’s about to return),
• Do dispose of components when you have finished with them if

your framework (e.g. AWT) that requires you to.
e.g. myWindow.dispose();

MyObject

FileReader

Root

r

© Richard Jones, Eric Jul, 1999-2000 OOPSLA 2000 Tutorial: Garbage Collection 49

Cost Metrics for GC
Execution time

• total execution time
• distribution of GC execution

time
• time to allocate a new

object

Memory usage
• additional memory

overhead
• fragmentation
• virtual memory and cache

performance

Delay time
• length of disruptive

pauses
• zombie times

Other important metrics
• comprehensiveness
• implementation

simplicity and
robustness

© Richard Jones, Eric Jul, 1999-2000 OOPSLA 2000 Tutorial: Garbage Collection 50

No silver bullet
Often not necessary for simple programs

• But beware reuse of simple code

Hard real-time code

GC doesn’t cure problem of data structures that grow without limit
• Surprisingly common e.g. caching
• Benign in small problems, bad for large or long running ones
• Java’s References model

Abstraction may hide concrete representations
• E.g. stack as an array

[Problem is that this assumes concept of tracing GC. Put it later?]

© Richard Jones, Eric Jul, 1999-2000 OOPSLA 2000 Tutorial: Garbage Collection 51

The basic algorithms
• Reference counting: Keep a note on each object in your garage,

indicating the number of live references to the object. If an object’s
reference count goes to zero, throw the object out (it’s dead).

• Mark-Sweep: Put a note on objects you need (roots). Then
recursively put a note on anything needed by a live object. Afterwards,
check all objects and throw out objects without notes.

• Mark-Compact: Put notes on objects you need (as above). Move
anything with a note on it to the back of the garage.
Burn everything at the front of the garage (it’s all dead).

• Copying: Move objects you need to a new garage. Then recursively
move anything needed by an object in the new garage. Afterwards,
burn down the old garage (any objects in it are dead)!

© Richard Jones, Eric Jul, 1999-2000 OOPSLA 2000 Tutorial: Garbage Collection 52

Reference counting

A mechanism to share ownership

Goal
• identify when you are the only owner
• You can make the disposal decision.

Basic idea: count the number of references
from live objects.

© Richard Jones, Eric Jul, 1999-2000 OOPSLA 2000 Tutorial: Garbage Collection 53

ST

R root

ST

R root

Update(left(R), S)

Reference counting: principle
Each object has a reference count (RC)

• when a reference is copied, the referent’s RC is incremented
• when a reference is deleted, the referent’s RC is decremented
• an object can be reclaimed when its RC = 0

© Richard Jones, Eric Jul, 1999-2000 OOPSLA 2000 Tutorial: Garbage Collection 58

Advantages of
reference counting

ü Simple to implement

ü Costs distributed throughout program

ü Good locality of reference: only touch old and new targets'
RCs

ü Works well because few objects are shared and many are
short-lived

ü Zombie time minimized: the zombie time is the time from when
an object becomes garbage until it is collected

ü Immediate finalisation is possible (due to near zero zombie
time)

© Richard Jones, Eric Jul, 1999-2000 OOPSLA 2000 Tutorial: Garbage Collection 59

Disadvantages of
reference counting

û Not comprehensive (does not collect all garbage):
cannot reclaim cyclic data structures

û High cost of manipulating RCs:
cost is ever-present even if no garbage is collected

û Bad for concurrency; RC manipulations must be atomic —
need Compare&Swap operation

û Tightly coupled interface to mutator

û High space overheads

û Recursive freeing cascade is only bounded by heap size

O
H
P

© Richard Jones, Eric Jul, 1999-2000 OOPSLA 2000 Tutorial: Garbage Collection 61

Tracing GC: idea
We can formalise our definition of reachability:
live = { N Î Objects | ($ r Î Roots . r ® N) Ú

($ M Î live . M ® N) }

We can encode this definition simply
• Start at the roots; the live set is empty
• Add any object that a root points at to our live set
• Repeat

Add any object a live object points at to the live set
Until no new live objects are found

• Any objects not in the live set are garbage

© Richard Jones, Eric Jul, 1999-2000 OOPSLA 2000 Tutorial: Garbage Collection 62

Mark-Sweep
Mark-sweep is such a tracing algorithm — it works by following (tracing)
references from live objects to find other live objects.

Implementation of the live set:
Each object has a mark-bit associated with it, indicating whether it is a
member of the live set.

There are two phases:
• Mark phase: starting from the roots, the graph is traced and

the mark-bit is set in each unmarked object encountered.
At the end of the mark phase, unmarked objects are garbage.

• Sweep phase: starting from the bottom, the heap is swept
– mark-bit not set: the object is reclaimed
– mark-bit set: the mark-bit is cleared

© Richard Jones, Eric Jul, 1999-2000 OOPSLA 2000 Tutorial: Garbage Collection 63

root

mark-bit

© Richard Jones, Eric Jul, 1999-2000 OOPSLA 2000 Tutorial: Garbage Collection 66

Marking exercise
root

mark-bit

A

B C

D
E

F G

H I

© Richard Jones, Eric Jul, 1999-2000 OOPSLA 2000 Tutorial: Garbage Collection 84

”Must do” for pointer
members in C++

For all pointer members check:

• Initialisation in each constructor
• Deletion in assignment operator
• Deletion in destructor
• Does copy constructor create shared objects?
• Is creation paired with deletion?

© Richard Jones, Eric Jul, 1999-2000 OOPSLA 2000 Tutorial: Garbage Collection 85

General advice C++
In general:

• Exploit the concept of ownership
• Check return value of new – it may be null!
• Adhere to convention, e.g., write delete if you

write new
• Consider passing and returning objects by value.
• Writing a function that returns a dereferenced

pointer is a memory leak waiting to happen!

© Richard Jones, Eric Jul, 1999-2000 OOPSLA 2000 Tutorial: Garbage Collection 86

The Smart Pointer Concept
Basic idea: allow the programmer to write code that is executed
every time a pointer is manipulated:

• Creation
• Assignment
• Copy constructor

Smart pointers is a powerful language concept that can be used
for many purposes including Garbage Collection.

The point: Smart pointers can be thought of as adding a level of
indirection: Instead of having a reference to an object, you get a
reference to a smart pointer object which executes some code
every time you use the original reference. The smart pointer object
contains a reference to the real object in question.

© Richard Jones, Eric Jul, 1999-2000 OOPSLA 2000 Tutorial: Garbage Collection 87

RC with smart pointers
Common C++ technique:

The basic idea is that the smart pointer object maintains a
reference count together with the object reference count.

Template<typename T> class shared_ptr {
T *ptr;
long *rc;

public:
shared_ptr(T* p) : ptr(p) {

rc = new long;
}
~shared_ptr() { delete ptr; delete rc;}

© Richard Jones, Eric Jul, 1999-2000 OOPSLA 2000 Tutorial: Garbage Collection 88

Using Smart Pointers for RC
More smart pointer RC implementation

T& operator*() { return *ptr;}
T* operator->() { return ptr;}
shared_ptr& operator= (other object r) {

if (--*rc == 0) { delete ptr;} // last reference to object
increment reference count for r

}

© Richard Jones, Eric Jul, 1999-2000 OOPSLA 2000 Tutorial: Garbage Collection 89

Smart Pointers comments

Smart pointers are ingenious but their actual
implementation is quite gory.

However, they work and can be utilise for many
purporses including RC GC.

ADVICE: start by using a publicly available
implementation such as the one given in the notes.

© Richard Jones, Eric Jul, 1999-2000 OOPSLA 2000 Tutorial: Garbage Collection 102

Part 6: Advanced collectors
Simple tracing collectors suffer from several
drawbacks

• disruptive delays
• repeated work on long-lived objects
• poor spatial locality

We now outline the approaches taken by
sophisticated garbage collectors.

© Richard Jones, Eric Jul, 1999-2000 OOPSLA 2000 Tutorial: Garbage Collection 103

Generational GC

Weak generational hypothesis
“Most objects die young”

It is common for 80-95% objects to die before a further
megabyte has been allocated

• 95% of objects are ‘short-lived’ in many Java programs
• 50-90% of CL and 75-95% of Haskell objects die before

they are 10kb old
• SML/NJ reclaims 98% of any generation at each collection
• Only 1% Cedar objects survived beyond 721kb of allocation

© Richard Jones, Eric Jul, 1999-2000 OOPSLA 2000 Tutorial: Garbage Collection 105

Not a universal panacea
Generational GC is a successful strategy for many but
not all programs.
There are common examples of programs that do not
obey the weak generational hypothesis.

It is common for programs to retain most objects for a
long time and then to release them all at the same time.

Generational GC imposes a cost on the mutator:

û pointer writes become more expensive

© Richard Jones, Eric Jul, 1999-2000 OOPSLA 2000 Tutorial: Garbage Collection 106

Incremental garbage collection

Incremental garbage collection

• runs collector in parallel with mutator

• attempts to bound pause time

• many soft real-time solutions

• but no general hard real-time solutions yet

© Richard Jones, Eric Jul, 1999-2000 OOPSLA 2000 Tutorial: Garbage Collection 107

Making GC incremental
Sequential GC can be made incremental by interleaving
collection with allocation.

At each allocation, do a small amount of GC work.

Tune the rate of collection to the rate of allocation to
prevent mutator running out of memory before collection
is complete

© Richard Jones, Eric Jul, 1999-2000 OOPSLA 2000 Tutorial: Garbage Collection 108

A B

C

root

�

A B

C

root

A B

C

root

�

Asynchronous execution of mutator and collector introduces a
coherency problem. For example, in the marking phase

Synchronisation

Update(right(B), right(A))
right(A) = nil �
Update(right(A), right(B))
right(B) = nil �

Collector
marks A

Collector
scans A

Collector
marks B

Collector
scans B

© Richard Jones, Eric Jul, 1999-2000 OOPSLA 2000 Tutorial: Garbage Collection 109

Two ways to prevent
disruption

There are two ways to prevent the mutator from
interfering with a collection by writing white pointers into
black objects.

1) Ensure the GC sees objects before the mutator does
• when mutator attempts to access a white object,

the object is visited by the collector
• protect white objects with a read-barrier

2) Record where mutator writes pointers so that the GC can
(re)visit objects
• protect objects with a write-barrier

© Richard Jones, Eric Jul, 1999-2000 OOPSLA 2000 Tutorial: Garbage Collection 110

In conclusion

Points:
• Garbage collection is useful
• You can live without – albeit that can be painful
• Automatic mechanisms for GC are better – even at a slight

extra execution time cost
• Conservative collectors actually work
• Classic algorithms reviewed
• There are many advanced collector available

© Richard Jones, Eric Jul, 1999-2000 OOPSLA 2000 Tutorial: Garbage Collection 111

Final Remarks
Garbage collection is a relatively mature technology.

But hard problems remain.

Commercial deployment of collector technology is still at an
early stage. There are few players, and they use a small set of
solutions.

There is no one magic solution to all problems: know your
application!

Resources
• www.cs.ukc.ac.uk/people/staff/rej/gc.html

© Richard Jones, Eric Jul, 1999-2000 OOPSLA 2000 Tutorial: Garbage Collection 112

Registers

free
scan

Tospace

Fromspace

C

F GD E

B

A

Registers

free
scan

Tospace

Fromspace

C

F GD E

B

A

A'

A'

copy root
and update pointer,

leaving forwarding address

Registers

free
scan

Tospace

Fromspace

C

F GD E

B

A

B'

A'

A'

B' C'

C'

scan A'
copy B and C,

leaving forwarding addresses

Registers

free
scan

Tospace

Fromspace

C

F GD E

B

A

D' E'B' C'

B' C'

A'

A'

D' E'

scan B'
copy D and E,

leaving forwarding addresses

Registers

free
scan

Tospace

Fromspace

C

F GD E

B

A

D' E'B' C'

B' C'

A'

A' F'

G'

D' E' F' G'

scan C'
copy F and G,

leaving forwarding addresses

Registers

free
scan

Tospace

Fromspace

C

F GD E

B

A

F' G'

D' E'

D' E'

B' C'

B' C'

A'

A' F'

G'

scan D' and E'
nothing to do

Registers

free
scan

Tospace

Fromspace

C

F GD E

B

A

F' G'

D' E'

D' E'

B' C'

B' C'

A'

A' F'

G'

scan F'
use A's forwarding address

Registers

free
scan

Tospace

Fromspace

C

F GD E

B

A

F' G'

D' E'

D' E'

B' C'

B' C'

A'

A' F'

G'

scan G'
nothing to do

Registers

free
scan

Tospace

Fromspace

C

F GD E

B

A

F' G'

D' E'

D' E'

B' C'

B' C'

A'

A' F'

G'

scan=free
so collection is complete

C
op

yi
ng

 G
C

 E
xa

m
pl

e

