
The Emerald Spring Cleaning
Garbage Collector

An Example of a Distributed, Robust
Systems Application

Eric Jul
Professor, IfI, UiO

What’s my point?

A distributed “application” that is robust,
decentralized, and works in a hostile
environment.

Hostile:
– Machine crash (fail-stop) quite often.
– Non-crashed machines continuously modify

distributed state.

Emerald Spring Cleaning Collector 2

What’s the Problem?

Distributed Garbage Collection

Why interesting?
• Tough correctness criteria
• Exemplifies lots of interesting distributed

system principles

Emerald Spring Cleaning Collector 3

Specific Problem

Take: A distributed OO system with object mobility
Already has:
– Fast, local GC for node-local garbage
– Non-comprehensive, non-robust Distributed GC

WANT:
Comprehensive, robust, on-the-fly collector

Emerald Spring Cleaning Collector 4

Criteria for Our Solution

Comprehensive: 100% of garbage collected
On-the-fly: System keeps running
Robust (despite wild Kalashnikov):

Starts, runs, complete even when:
N nodes booted up, run for some time.
Kill 25% of nodes.
Every 5 seconds: kill one more; reboot one!

Emerald Spring Cleaning Collector 5

Background

Emerald Spring Cleaning Collector 6

Emerald Virtual Machine

• (Original) compiler generates native code
• More or less std. virtual machine

implemented as a single UNIX process
• All objects in memory in large, shared heap
• Software fault mechanism for calls to remote

objects
• Remote Object Reference Table
– an entry for each incoming/outgoing ref

Emerald Spring Cleaning Collector 10

High level view of problem

• Standard graph formulation:
– graph nodes are objects
– graph arcs are references
– graph partitioned into non-overlapping parts; one

for each location
– each object is located at most at one node
– immutable objects are omnipresent

Emerald Spring Cleaning Collector 11

Problem formulation

Build a distributed GC that starting from root
objects will:

• remove all garbage objects: comprehensive
• operate while mutators continue: on-the-fly
• start, run, complete despite crashed

machines: robust
• no single controller: decentralized

Emerald Spring Cleaning Collector 12

Let’s do it

Emerald Spring Cleaning Collector 13

Comprehensive

Algorithm: standard Mark and Sweep collector
Liveness: reachbility from root objects
Trace from root objects thru all reachable objects by

scanning each live object for references
New objects are considered live by definition
Threads: just consider activation records to be live

“objects” in the graph.

Emerald Spring Cleaning Collector 14

How on-the-fly?
An analogy:

Louis XIV at Versailles

King must experience a clean castle every
morning.

Crew of thousand working early every
morning (stop-mark-and-sweep).

Expensive…

Emerald Spring Cleaning Collector 15

New, cheap cleaning contract

• Promise king clean castle
• Use small, agile crew

Emerald Spring Cleaning Collector 16

How the Scam Works

• Clean the kings bedroom quitely as he sleeps
(cheap, just one room)

• King wakes up: claim entire palace is clean!
• Invite king for inspection tour
• IF he moves toward another room:
– stall him for a moment (bribe his court jester!)
– quickly clean the room
– let him enter the room

Emerald Spring Cleaning Collector 17

Liveness by Reachability

To be live, means that something live can REACH
you.

(Something live might be yourself, e.g., if you
have an executing process inside yourself.)

Transitive closure of reachable.

Emerald Spring Cleaning Collector 18

Objects as an Object Graph

For the purpose of garbage collection, the sea of
objects is considered a graph:

• Each node is an object
• Each reference is an arc

Roots:
• Each process that can execute – or is waiting

for, e.g., I/O, a timer, etc.
• Each object that is inherently rechable.

Emerald Spring Cleaning Collector 19

Classic MARK-AND-SWEEP
Start at the “roots” and simply trace thru the live part

of the object graph.
As do this one step at a time, we add a marking to each

object.

Emerald Spring Cleaning Collector 20

Classic black, gray, white marking
Black

object found to be live and object has been scanned and
point to black/gray objects only.

Gray
object found to be live but the object has not been
scanned and so may contain pointers to white objects

White
object liveness unknown; not scanned

Initially all objects are white *

Emerald Spring Cleaning Collector 21

Classic Mark and Sweep

Classic Mark and Sweep:
– mark each of the roots grey
– for each gray object:

• mark each referenced white object gray
• thereafter mark the object black

– sweep thru entire storage, deallocating any white
object: it is garbage!

*

Emerald Spring Cleaning Collector 22

Our On-the-fly Operation

Want Collector to work while Threads
(mutators) continue executing:

• Stop all threads on ready queue
• Repeatedly
– pick one
– scan and mark top activation record black
– put it back on the ready queue

• Scan and mark all roots black

Emerald Spring Cleaning Collector 23

Important Invariants

1. Black objects only point to black or gray
2. Black or gray objects are live
3. Mutators only see black objects
4. New objects are created black
5. Once black always black
6. Once gray eventually black

Emerald Spring Cleaning Collector 24

Object Faulting

On invocation of a gray object:
• fault – uses the software fault designed for

catching remote invocations
• scan object refs and mark refs gray
• mark object black
• continue invocation
An example of a Read Barrier

Emerald Spring Cleaning Collector 25

Background collector

Keep a set of gray objects.
Let the collector run a background thread that

repeatedly takes a gray object, and makes it
black – by scanning it and marking referenced
objects gray (if not black already).

Emerald Spring Cleaning Collector 26

Multiple Machines

• Any random machine starts a Spring Cleaning
Collection

• ANY interaction with another machine
includes a piggybacked notice to start a new
collection.

• A background collector on each machine.

Emerald Spring Cleaning Collector 27

Remote Invocations

• Source object is black, destination may be gray
or white

• On arrival:
– start the (node-local) collection, if not started
– scan the destination object marking its refs gray
– mark the destination object black

*

Emerald Spring Cleaning Collector 28

Scanning Remote Refs

During a scan we may meet a reference to a remote
white object.

Mark the OUTGOING reference gray in the object table
Eventually send a “mark gray” message to the machine

that holds the object which then makes it black – and
returns a “made black” message.

Batch multiple “mark gray” requests.
Same for “made black” requests.
Piggyback on any net-traffic – or eventually send.

Emerald Spring Cleaning Collector 29

Checkpointed Objects

Objects may checkpoint themselves.
Non-checkpointed objects just go away on crash.
Checkpointed ones come back – with a lot of old

references!
Recovery section can reinitialize the object, e.g.,

check that references are still valid and fix
invalid references.

Emerald Spring Cleaning Collector 30

Robustness

Our Spring Cleaner must periodically checkpoint
its state.

When node reboots:
– Restart the collection from checkpoint
– mark references to dead objects black

Emerald Spring Cleaning Collector 31

Crashed Machines

• Assumption: eventually a crashed machine reboots
(if permanently down: easy!)

• GC State of objects also checkpointed.
• A collector with a gray ref. to a downed machine

must wait for the downed machine to reboot.
• Eventually the gray ref. is “pushed” to the other

machine – and eventually a “made black” is
returned.

• If the gray ref is to a non-checkpointed object: forget
it.

Emerald Spring Cleaning Collector 32

Termination Problem
Collection ends when every gray set on every

machine is empty SIMULTANEOUSLY
Non-trivial to detect
What’s the problem?
When to start detecting termination?
How to do it?

Emerald Spring Cleaning Collector 33

Termination Solution
Solution is well-known: Distributed Consensus
Our solution uses a two-phase commit termination

protocol: any report of a gray object nullifies the
termination attempt

ANY machine can initiate the termination attempt –
and any one that detects the termination commit
can declare the mark phase done

Emerald Spring Cleaning Collector 34

Fast, local Garbage Collector

• Spring Cleaning Collector: slow.
• Have a node local collector, e.g., a node local

version that runs frequently and fast.
• Each remotely referenced object is marked as

externally visible (one bit) when a reference to
it is given out to another node.

• Local collector considers ALL such marked
objects as LIVE – puts them in the root set.

• Local collector has its own set of marking bits.
Emerald Spring Cleaning Collector 35

Sweep Phase

• Simple: go thru Object Table and reclaim
objects marked white.

• UPS: Dual Collector Design: risk both local and
Spring Cleaning Collector tries to reclaim same
object!

Emerald Spring Cleaning Collector 36

Spring Cleaning Sweep Phase

• Each remotely referenced object is marked as
externally visible (one bit)

• Sweep merely resets this bit(!)
• Node-local collector actually does the

reclaiming
• Advantage: no synchronization conflicts with

local collector

Emerald Spring Cleaning Collector 37

Mobility Complications

Remote object reference system uses forwarding
addresses.

Forwarding address chains may be broken by
crashed machines.

Broken Forwarding address chains are reliably
fixed.

Forwarding addresses are colored.
Objects in transit: must be scanned before

transit.

Emerald Spring Cleaning Collector 38

Pipelining

• Can be pipelined
• Multiple coloring bits: we use 4x, so up to

three collections outstanding.
• Later collections help older collections (if live

later, certainly live earlier).
• Sequence number: anyone can bump it and

start a new collection within the 4x window.

Emerald Spring Cleaning Collector 39

Spring Cleaning

• Run seldom
• Slow: may have to wait days for downed

machines to reboot
• Permanently dead nodes manually declared

dead

Emerald Spring Cleaning Collector 40

Conclusion

Non-trivial, distributed application operating in
a hostile “Kalashnikov” environment

Emerald Spring Cleaning Collector 41

URLs

See Teaching Material:

Two papers: one workshop paper and Niels Chr.
Juul’s Ph.D.

This PowerPoint presentation
OOPSLA 2000 GC Tutorial

Emerald Spring Cleaning Collector 42

