
The Development of the Emerald Programming Language

Andrew P. Black
Portland State University

black@cs.pdx.edu

Norman C. Hutchinson
University of British Columbia

norm@cs.ubc.ca

Eric Jul
University of Copenhagen

eric@diku.dk

Henry M. Levy
University of Washington
levy@cs.washington.edu

Abstract
Emerald is an object-based programming language and sys-
tem designed and implemented in the Department of Com-
puter Science at the University of Washington in the early
and mid-1980s. The goal of Emerald was to simplify the
construction of distributed applications. This goal was re-
flected at every level of the system: its object structure, the
programming language design, the compiler implementa-
tion, and the run-time support.

This paper describes the origins of the Emerald group, the
forces that formed the language, the influences that Emerald
has had on subsequent distributed systems and programming
languages, and some of Emerald’s more interesting technical
innovations.

Categories and Subject Descriptors D.3.0 [Programming
Languages]: General; D.3.2 [Language Classifications]:
Object-oriented languages; D.3.3 [Language Constructs
and Features]: Abstract data types, Classes and objects, In-
heritance, Polymorphism

General Terms abstract types, distributed programming,
object mobility, object-oriented programming, polymor-
phism, remote object invocation, remote procedure call.

Keywords call-by-move, Eden, Emerald, mobility, type
conformity, Washington

1. Introduction
Emerald was one of the first languages and systems to sup-
port distribution explicitly. More importantly, it was the first

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
HOPL III June 2007, San Diego, California
Copyright c© 2007 ACM [to be supplied]. . . $5.00

language to propose and implement the notion of object mo-
bility in a networked environment: Emerald objects could
move around the network from node to node as a result
of programming language commands, while they contin-
ued to execute. Object mobility was supported by location-
independent object addressing, which made the location of
the target of an object invocation semantically irrelevant to
other objects, although facilities were provided for placing
objects on particular machines when required. At a high
level, Emerald invocation could be thought of as an early im-
plementation of remote procedure call (RPC) [14], but with
a much more flexible and dynamic binding system that al-
lowed an object to move from one node to another between
(and during) invocations of methods. Furthermore, as seen
from a programmer’s point of view, Emerald removed the
“remote” from “remote procedure call”: the programmer did
not have to write any additional code to invoke a remote ob-
ject compared to a local object. Instead, all binding, mar-
shaling of parameters, thread control, and other tedious work
was the responsibility of the implementation, i.e., the com-
piler and the run-time system.

In addition, Emerald sought to solve a crucial problem
with distributed object systems at the time: terrible perfor-
mance. Smalltalk had pioneered an extremely flexible form
of object-oriented programming, but at the same time had
sacrificed performance. Our stated goal was local perfor-
mance (within a node) competitive with standard program-
ming languages (such as C), and distributed performance
competitive with RPC systems. This goal was achieved by
our implementation.

1.1 Ancient History

Emerald forms a branch in a distributed systems research
tree that began with the Eden project [3] at the University
of Washington in 1979. Setting the context for Emerald re-
quires some understanding of Eden and also of technology at
that time. In 1980, at the start of the Eden project, local area
networks existed only in research labs. Although early Eth-

Permission to make digital/hard copy of part of this work for personal or
classroom use is granted without fee provided that the copies are not
made or distributed for profit or commercial advantage, the copyright
notice, the title of the publication, and its date of appear, and notice is
given that copying is by permission of the ACM, Inc. To copy
otherwise, to republish, to post on servers, or to redistribute to lists,
requires prior specific permission and/or a fee. Permission may be
requested from the Publications Dept., ACM, Inc., 2 Penn Plaza, New
York, NY 11201-0701, USA, fax:+1(212) 869-0481,
permissions@acm.org
©2007 ACM 978-1-59593-766-7/2007/06-ART11 $5.00
DOI 10.1145/1238844.1238855
http://doi.acm.org/10.1145/1238844.1238855 11-1

ernet [76] systems had been in use at Xerox PARC for some
time, the industrial Ethernet standard had only recently been
completed and the first products were still in development.
To the extent that network applications existed at all, out-
side of PARC, they were fairly primitive point-to-point ap-
plications such as FTP and email. UNIX did not yet support
a socket abstraction, and programming networked applica-
tions required explicit message passing, which was difficult
and error-prone.

Eden was a research project proposed by a group of faculty
at the University of Washington (Guy Almes, Mike Fischer,
Helmut Golde, Ed Lazowska, and Jerre Noe). The project
received one of the first grants from what seemed even at the
time to be a very far-sighted program at the National Sci-
ence Foundation called Coordinated Experimental Research
(CER), a program that sought to build significant expertise
and infrastructure at a number of computer science depart-
ments around the United States. The stated goal of Eden was
to support “integrated distributed computing.” While nobody
had distributed systems at the time, it was clear that some-
day in the future such systems would be commonplace, and
that programming them using existing paradigms would be
extremely difficult. The key insight of the Eden team was
to use objects — a computational model and technology that
was still controversial in both the operating system and the
programming language worlds at that time.

Eden was itself a descendant of Hydra [108], the father of all
object-based operating systems, developed by Bill Wulf and
his team at Carnegie-Mellon in the early 1970s. Guy Almes,
a junior faculty member at UW, had written his thesis on
Hydra at CMU [4], and brought those ideas to Washington.
The idea behind an object-based distributed system was that
every resource in the network — a file, a mail message, a
printer, a compiler, a disk — would be an object. At the time
we looked on an object as nothing more than some data
bound together with program code that operated on that data
to achieve a specific goal, such as printing a file object, or
sending a mail message object, or running a compiler object
on a file object. The code was partitioned into what are now
referred to as methods for printing, sending, running, etc.,
but at the time we just thought of the code as a bunch of
procedures that implemented operations on the object’s data.

The great thing about objects was that client programs could
use an object simply by invoking an operation in that object
and supplying appropriate parameters; they didn’t have to
concern themselves with how the object was implemented.
Thus, objects were a physical realization of Parnas’ princi-
ple of information hiding [85]. The key insight behind dis-
tributed object-based computing was that the same principle
applied to the location of the object: a client could use an ob-
ject without worrying about where that object was actually
located in the network, and two conceptually similar objects
(for example, two files) that were located in disparate places

might have completely different implementations. The Eden
system would take care of finding the object, managing the
remote communication, and invoking the right code, all in-
visibly to the programmer.

Several other research projects also explored the distributed
object notion, notably Argus at MIT [71] and Clouds at
Georgia Tech [2]. Argus, as a language design, was essen-
tially complete before the Emerald project started. Thus, Ar-
gus was contemporary with Eden rather than with Emerald,
and indeed shared with Eden the idea that there were two
kinds of objects — “large” objects that were remotely acces-
sible (and, in the case of Argus, transactional), and small
local objects (essentially, CLU objects). Some of the Clouds
ideas moved to Apollo Computer with the principals, and
appeared in the Apollo Domain system; there were several
visits between Apollo and Eden personnel.

This distributed object model is now the dominant paradigm
for Internet programming, whether it is Java/J2EE, Mi-
crosoft .NET, CORBA, SOAP, or whatever. We take it for
granted. So it is hard to convey how controversial the dis-
tributed object idea was in the early 1980s. People thought
that distributed objects would never work, would be way too
slow, and were just dumb. Objects had not yet been accepted
even in the non-distributed world: Simula was not main-
stream, C++ would not be invented for some years [100], and
Java wouldn’t appear for a decade and a half. Smalltalk had
just been released by PARC and was gathering a following
amongst computing “hippies,” but unless one had a Dorado,
it was not fast enough for “real” applications. Alan Born-
ing, our colleague at Washington, had distributed copies of
the influential 1981 Smalltalk issue of Byte magazine, but in
our opinion, the focus of Smalltalk was on flexibility to the
detriment of performance. Smalltalk, although an impressive
achievement, contributed to the view that poor performance
was inherent in object-oriented languages.

Emerald was a response to what we had learned from our
early experience with Eden and from other distributed ob-
ject systems of that time. In fact, it was a follow-on to Eden
before Eden itself was finished. Before describing that ex-
perience and its implications, we discuss the team and their
backgrounds and the beginnings of the project.

1.2 The People and the Beginning of Emerald

The Emerald group included four people:1

• Andrew Black joined UW and the Eden project as a
Research Assistant Professor in November 1981. He had
a background in language design from his D.Phil. at
Oxford (under C.A.R. Hoare), including previous work
on concurrency and exception handling. Andrew brought

1 Another Ph.D. student, Carl Binding, participated in some of the initial
discussions with a view to being responsible for a reasonable GUI for
Emerald; he decided to do a different Ph.D., so the GUI of the Emerald
system remained quite primitive.

11-2

the perspective of a language designer to Eden, which
had been exclusively a “systems” project.
• Eric Jul came to UW as a Ph.D. student in September

1982 with a Master’s degree in Computer Science and
Mathematics from the University of Copenhagen. He had
previous experience with Simula 67 [15, 41] and Con-
current Pascal [29, 30] at the University of Copenhagen,
where he had ported Concurrent Pascal to an Intel 8080
based microcomputer [96], and also written a master’s
thesis [57] that described his implementation of a small
OS whose device drivers were written entirely in Concur-
rent Pascal.
• Norm Hutchinson also came to UW in September 1982,

having graduated from the University of Calgary. He had
spent the previous summer on an NSERC-funded re-
search appointment implementing a compiler for Simula
supervised by Graham Birtwistle, an author of SIMULA
Begin [15] and an object pioneer.
• Henry (Hank) Levy had spent a year at UW in 1980 on

leave from Digital Equipment Corp., where he had been
a member of the VAX design and implementation team.
While at UW he was part of the early Eden group and
also wrote an MS thesis on capability-based architec-
tures, which eventually became a Digital Press book [70].
Hank rejoined UW as a Research Assistant Professor in
September 1983, and brought with him a lot of systems-
building and architecture experience from DEC.

Shortly after his return to UW in 1983, Hank attended a
meeting of the Eden group in which Eric and Norm gave
talks on their work on the project. Although Hank was a
coauthor of the original Eden architecture paper [67], Hank
wasn’t up to date on the state of the Eden design and im-
plementation, and hearing about it after being away for two
years gave him more perspective. Several things about the
way the system was built — and the way that it performed —
did not seem right to him. After the meeting, Hank invited
Eric and Norm to a coffee shop on “the Ave”, the local name
for University Way NE, close by the UW campus.

At the meeting, the three of them discussed some of the
problems with Eden and the difficulties of programming
distributed applications. Hank listened to Eric’s and Norm’s
gripes about Eden, and then challenged them to describe
what they would do differently. Apparently finding their
proposals reasonable, Hank then asked, “Why don’t you do
it?”: thus the Emerald effort was born.

1.3 The Eden System

The problems with Eden identified at the coffee shop on the
Ave were common to several of the early distributed object
systems. Eden applications (that is, distributed applications
that spanned a local-area network) were written in the Eden
Programming Language (EPL) [21] — a version of Concur-
rent Euclid [50] to which the Eden team had added support

for remote object invocation. However, that support was in-
complete: while making a remote invocation in Eden was
much easier than sending a message in UNIX, it was still
a lot of work because the EPL programmer had to partici-
pate in the implementation of remote invocations by writing
much of the necessary “scaffolding”. For example, at the in-
voking end the programmer had to manually check a status
code after every remote invocation in case the remote opera-
tion had failed. At the receiving end the programmer had to
set up a thread to wait on incoming messages, and then ex-
plicitly hand off the message to an (automatically generated)
dispatcher routine that would unpack the arguments, execute
the call, and return the results. The reason for the limited
support for remote invocation was that, because none of the
Eden team had real experience with writing distributed ap-
plications, we had not yet learned what support should be
provided. For example, it was not clear to us whether or not
each incoming call should be run in its own thread (pos-
sibly leading to excessive resource contention), whether or
not all calls should run in the same thread (possibly leading
to deadlock), whether or not there should be a thread pool
of a bounded size (and if so, how to choose it), or whether
or not there was some other, more elegant solution that we
hadn’t yet thought of. So we left it to the application pro-
grammer to build whatever invocation thread management
system seemed appropriate: EPL was partly a language, and
partly a kit of components. The result of this approach was
that there was no clear separation between the code of the
application and the scaffolding necessary to implement re-
mote calls.

There was another problem with Eden that led directly to
the Emerald effort. While Eden provided the abstraction of
location-independent invocation of mobile distributed ob-
jects, the implementation of both objects and invocation
was heavy-weight and costly. Essentially, an Eden object
was a full UNIX process that could send and receive mes-
sages. The minimum size of an Eden object thus was about
200-300 kBytes — a substantial amount of memory in 1984.
This clearly precluded using Eden objects for implement-
ing anything “small” such as a syntax tree node. Further-
more, if two Eden objects were co-located on the same ma-
chine, the invocation of one by the other would still require
inter-process communication, which would take hundreds of
milliseconds — slow even by the standards of the day. In
fact, things were even worse than that, because in our pro-
totype the Eden “kernel” itself was another UNIX process,
so sending an invocation message would require two con-
text switches even in the local case, and receiving the reply
another two. This meant that the cost of a single invocation
between two Eden objects located on the same machine was
close to half the cost of a remote call (137 ms vs. 300 ms).
The good news was that Eden objects enjoyed the benefits
of location independence: an object did not have to know
whether the target of an invocation was on the same com-

11-3

puter or across the network. The bad news was that if the
invoker and the target were on the same computer, the cost
was excessive.

Because of the high cost of Eden objects, both in terms of
memory consumption and execution time, another kind of
object was used in EPL programs — a light-weight language-
level object, essentially a heap data structure as implemented
in Concurrent Euclid. These objects were supported by
EPL’s run-time system. EPL’s language-level objects could
not be distributed, i.e., they existed within the address space
of a single Eden object (UNIX process) and could not be
referenced by, nor moved to, another Eden object. How-
ever, “sending messages” between these EPL objects was
extremely fast, because they shared an address space and an
invocation was in essence a local procedure call.

The disparity in performance between local invocations of
EPL objects and Eden objects was huge — at least three
orders of magnitude.2 This difference caused programmers
to limit their use of Eden objects to only those things that
they felt absolutely needed to be distributed. Effectively, pro-
grammers were using two different object semantics — one
for “local” objects and one for “remote” objects. Worse, they
had to decide a priori which was which, and in many cases,
needed to write two implementations for a single abstraction,
for example, a local queue and a distributed queue. In part,
these two different kinds of objects were a natural outgrowth
of the two (unequal) thrusts of the Eden project: the primary
thrust was implementing “the system”; providing a language
on top was an afterthought that became a secondary goal
only after Andrew joined the project. However, in part the
two object models were a reflection of the underlying imple-
mentation: there were good engineering reasons for the two
implementations of objects.

The presence of these two different object models was one of
the things that had bothered Hank in the Eden meeting that
he had attended. In their discussions, Eric, Norm and Hank
agreed that while the two implementations made sense, there
was no good reason for this implementation detail to be visi-
ble to the programmer. Essentially, they wanted the language
to have a single object abstraction for the programmer; it
would be left to the compiler to choose the most appropriate
implementation based on the way that the object was used.

1.4 From Eden to Oz

The result of the meeting on the Ave was an agreement be-
tween Eric, Hank and Norm to meet on a regular basis to
discuss alternatives to Eden — a place that Hank christened
the land of Oz, after the locale of L. Frank Baum’s fantasy
story [9]. A memo Getting to Oz dated 27 April 1984 (refer-
ence [69], included here as Appendix A) describes how the
discussions about Oz first focused on low-level kernel issues:

2 A local invocation in Eden took 137 ms in October 1983, while a local
procedure call took less than 20 µs.

processes and scheduling, the use of address spaces, and so
on. This led to the realization that compiler technology was
necessary to get adequate performance: rather than calling
system service routines to perform dynamic type-checking
and to pack up data for network interchange, a smart com-
piler could perform the checking statically and lay down the
data in memory in exactly the right format.

The memo continues:

It is interesting that up to this point our approach had
been mostly from the kernel level. We had discussed
address spaces, sharing, local and remote invocation,
and scheduling. However, we began to realize more
and more that the kernel issues were not at the heart
of the project. Eventually, we all agreed that language
design was the fundamental issue. Our kernel is just
a run-time system for the Oz language (called Toto)
and the interesting questions were the semantics sup-
ported by Toto.

Eventually the name Toto was dropped; Hank thought that
it was necessary to have a “more serious” name for our
language if we wanted our work to be taken seriously. For
a time we used the name Jewel, but eventually settled on
Emerald, a name that had the right connotations of quality
and solidity but preserved our connection to the Land of
Oz. Moreover, the nickname for Seattle, where Emerald was
developed, is The Emerald City.

The Emerald project was both short and long. The core of
the language and the system, designed and implemented by
Eric and Norm for their dissertations, was completed in a lit-
tle over 3 years, starting with the initial coffee-shop meeting
in the autumn of 1983, and ending in February 1987 when
the last major piece of functionality, process mobility, was
fully implemented. However, this view neglects the consid-
erable influence of the Eden project on Emerald, and the long
period of refinement, improvement and derived work after
1987. Indeed, Niels Larsen’s PhD thesis on transactions in
Emerald was not completed until 2006 [66]. Figure 1 shows
some of the significant events in the larger Emerald project;
we will not discuss them now, but suggest that the reader
refer back to the figure when the chronology becomes con-
fusing.

1.5 Terminology

A note on terminology may help clarify the remainder of
the paper. The terms message and message send, introduced
by Alan Kay to be consistent with the metaphor of an ob-
ject as a little computer, were generally accepted in the
object-oriented-language community. However, we decided
not to adopt these terms: in the distributed-systems commu-
nity, messages were things that were sent over networks be-
tween real, not metaphorical computers. We preferred the
term operation for what Smalltalk (following Logo) called
a method, and we used the term operation invocation for

11-4

Emerald Timeline

IEEE TSE article appears

Norm defends his Ph.D. at UW; joins U

of A Tucson

Process mobility worked

Eric leaves UW, joins DIKU in

Copenhagen

Andrew leaves UW, joins Digital in

Mass.

"Much ado about NIL"

restrict designed and implemented in a

day

Fine-Grained Object Mobility published

Andrew and Norm working on Types,

using graph theory

Eric defends his Ph.D. at UW

Andrew reformulates conformity as limit

of relation, proves transitivity

Jade presented at ECOOP in Notingham

Types and Polymorphism in the Emerald

Programming Language submitted to

PoPL. Rejected.
Joint Arizona/CRL TR: Typechecking

polymorphism in Emerald

Emerald: a general-purpose

programming language published in

SwP&E

Paper on comprehensive and robust

garbage collection published

Andrew presents "Types for the

Working Programmer" at OOPSLA

Heteorogeneous Emerald SOSP paper

Handwritten paper "The Lattice of Data

Types"

Revision of TR 86-02-04 Distribution

and Abstract Types (became IEEE TSE

article)
TR 85-08-05 Distribution and Abstract

Types (without fomal def of conformity)

Need to think about types!

Meetings intensify

Getting to Oz manifesto

Coffee shop meeting

Hank arrives at UW as a Research

Assistant Professor

Norm and Eric arrive at UW and start as

RAs on Eden

Andrew Black arrives at UW as a

Research Assistant Professor

Eden starts
Eden CER Grant starts

Larry Carter sabbatical at UW

MicroVAX II arrive

Digital Grant for five MicroVAX II

TR 86-02-04 Distribution and Abstract

Types (includes def. of conformity)

TR 86-04-03 Object Structure (became

1986 OOPSLA paper)

Object Structure in the Emerald System

presented at OOPSLA

Object mobility worked

Jan 78 Jan 79 Jan 80 Jan 81 Jan 82 Jan 83 Jan 84 Jan 85 Jan 86 Jan 87 Jan 88 Jan 89 Jan 90 Jan 91 Jan 92 Jan 93 Jan 94 Jan 95 Jan 96 Jan 97

Figure 1: Some significant events in the Emerald Project

message send. In some ways this was unfortunate: language
influences thought, and because we avoided the use of the
terms message and message send, it was many years before
some of us really understood the power of the messaging
metaphor.

Emerald used the term process in the same sense as Con-
current Pascal and Concurrent Euclid. A process was light
in weight and was protected by the language implementa-
tion rather than by an operating system address space; to-
day the term thread is used to describe the same concept.
Similarly, Emerald used the term kernel in the same sense
as its predecessor languages: it meant the language-specific
run-time support code that implemented object and process
creation and process scheduling, and translated lower-level
interrupts into operations on the language’s synchronization
primitives. Successor languages now often use the term Vir-
tual Machine about such run-time support. Indeed, if we cre-
ated Emerald today, we would have used the term Emerald
Virtual Machine.

2. The Goals of Emerald
Beyond “Improving on Eden,” Emerald had a number of
specific goals.

• To implement a high-performance distributed object-
oriented system. While the Eden experience had con-
vinced us that objects were indeed a good abstraction
for writing distributed systems, it did nothing to dispel
doubts about the performance of distributed objects. We
believed that distributed objects could be made efficient
and wanted to demonstrate this efficiency goad by con-
struction. Norm saw that by exploiting compiler technol-
ogy, we could not only make run-time operations more
efficient, but could eliminate many of them altogether
(by moving the work to compile time). Eric was already
concerned with wide-area distribution: even during the
planning phases of the project he was thinking of send-
ing objects from Copenhagen to Seattle, although this did
not become possible for several years citeFolmer93.
• To demonstrate high-performance objects. Stepping back

from distributed objects, we were also concerned with
validating the ideas of object-oriented programming per
se. Smalltalk-80 had created a lot of excitement about
the power and flexibility of objects, but there was also
a lot of skepticism about whether or not objects could
ever be made reasonably efficient. The failure of the In-
tel iAPX 432 architecture [79] effort had, in the minds
of some people, reinforced the view that objects would

11-5

always impose excessive overhead. Dave Ungar’s disser-
tation research at Stanford was investigating how hard-
ware could help overcome the inherent costs of support-
ing objects [102]. One of our goals was to show that op-
erations similar to those found in a low-level language
like C could be executed in Emerald with comparable ef-
ficiency. Thus, we wanted the cost of incrementing an
integer variable to be no higher in Emerald than in C.
Of course, the cost of invoking a remote object would be
higher than the cost of a C procedure call. An important
principle was that of no-use, no-cost: the additional cost
of a given functionality, e.g., distribution, should be im-
posed only on those parts of the program that used the
additional functionality.
• To simplify distributed programming. Although Eden was

a big step forward with respect to building distributed ap-
plications, it still suffered from major usability problems.
The Eden Programming Language’s dual object model
was one, the need to explicitly receive and dispatch in-
coming invocation messages was another, and the need
to explicitly check for failure and deal with checkpoint-
ing and recovery was yet another. One of the goals for
Emerald was to make programming simpler by automat-
ing many of the chores that went along with distributed
programming. If a task was difficult enough to make au-
tomation impossible, then the goal was to automate the
bookkeeping details and thus free the programmer to deal
with the more substantive parts of the task. For example,
we had no illusion that we could automate the placement
of objects in a distributed system, and left object loca-
tion policy under the explicit control of the programmer.
However, the mechanisms for creating the objects on, or
moving them to, the designated network node, and of in-
voking them once there, could all be automated.
• To exploit information hiding. We believed in the prin-

ciple of information hiding [85], and wanted our lan-
guage to support it. The idea that a single concept in the
language, with a single semantics — the object — might
have multiple implementations follows directly from the
principle of information hiding: the details of the imple-
mentation are being hidden, and the programmer ought to
be able to rely on the interface to the object without car-
ing about those details. In the Getting to Oz memo [69]
we wrote: “Another goal, then, and a difficult one, is to
design a language that supports both large objects (typ-
ically, operating system resources such as files, mail-
boxes, etc.) and small objects (typically, data abstractions
such as queues, etc.) using a single semantics.”
• To accommodate failure. Emerald was intended for build-

ing distributed applications. What distinguishes dis-
tributed applications from centralized ones is that both
the individual computers on which the application runs
and the network links that connect them can fail; nev-

ertheless, the application as a whole should continue to
run. We realized that handling failures was a natural part
of programming a distributed application, in fact, failures
were anticipated conditions that arose from distribution:
computers and programs would crash and restart, net-
work links would break, and consequently objects would
become temporarily or permanently unavailable. We saw
it as the programmer’s job to deal with these failures,
and therefore as the language designer’s job to provide
the programmer with appropriate tools. It was explicitly
not a goal of Emerald to provide a full-blown exception-
handling facility [69], or to impose on the programmer
a particular way of handling failure, as Argus was doing
with its pioneering support for transactions in distributed
systems [71].
• To minimize the size of the language. We wanted Emerald

to be as small and simple as possible while meeting our
other goals. We planned to achieve this by “pulling out”
many of the features that in other languages were built-
in, and instead relying on the abstraction provided by
objects to extend the language as necessary. Our goal
was a simple yet powerful object-based language that
could be described by a language report not substantially
larger than that defining Algol 60 [8]. We did not want
to go as far as Smalltalk and rely on library code for the
basic control structures: this would have conflicted with
our efficiency goal. We also felt that not allowing the
programmer to define new control structures would not
adversely affect the writing of distributed applications.
We did decide to build in only the simplest kind of fixed-
length Vector, and to rely on library code to provide all
the common data structures, such as arrays of variable
size, and lists. This meant that the type system had to be
adequate to support user-defined container objects; striv-
ing to do this led us to make several innovations in object-
oriented type systems, even though inventing a type sys-
tem was not one of our primary goals. The same idea
of pulling out functionality into a library was applied
to integer arithmetic. We had to decide whether to in-
clude infinite-precision or fixed-length integers. Infinite-
precision arithmetic was clearly more elegant and would
lead to simpler programs and a more concise language
definition, but it would not help us in our quest to make
x ← x + 1 as fast as in the C language. So we included
fixed-precision integers in the base language, and allowed
the programmer to define other kinds of integers in li-
brary code.
• To support object location explicitly. We knew that the

placement of objects would be critical to system per-
formance, and so our information-hiding goal could not
be allowed to hide this performance-critical information
from the programmer. So “we decided that the concept
of object location should be supported by the language”

11-6

and that “the movement of objects should be easily ex-
pressible in the language” [69]. Early on we envisaged
language support for determining the location of an ob-
ject, moving the object to a particular host, and fixing an
object at a particular host. The idea of call-by-move was
floated in the 1984 Getting to Oz memo; call-by-move
was a new parameter passing mechanism in which the
invoker of an operation indicated explicitly that a param-
eter should be moved to the target object’s location. By
March 1985 call-by-move was established, and Andrew
was arguing for a separation of concerns between the lan-
guage’s semantics, which he thought should be similar to
those of any other object-based language (for example,
all parameters would be passed by object reference), and
its locatics — a term that we invented to mean the part
of the language concerned with the placement of objects.
We adopted this separation: the primitives that controlled
the placement of objects were designed to be orthogonal
to the ordinary operational semantics of the language. For
the most part we were successful in maintaining this sep-
aration, but locatics does inevitably influence failure se-
mantics. For example, if two objects are co-located, then
an invocation between them can never give rise to a ob-
ject unavailable event.

3. How We Worked
The Emerald group was informal and largely self-organized.
Hank kept Eric and Norm in line by requiring regular meet-
ings, minutes, and written progress reports. He was also the
prime mover in getting the first external funding that the
project received: a grant of five MicroVAX computers from
Digital Equipment Corp. Andrew attended some of the meet-
ings, and had many impromptu and as well as scheduled dis-
cussions with Norm about the language design, and in par-
ticular the type system.

Minutes from March 1985 reveal an intent to meet three
times per week. They state: “It will be Norm’s job to see that
local invocations execute as fast as local procedure calls, and
Eric’s to make sure that remote invocations go faster than
Eden.” This captured the major distribution of work: Norm
implemented the compiler, while Eric worked on the run-
time system, which we called the Emerald kernel.

They pursued an incremental implementation strategy. The
first compiler was for a simplified version of the language
and produced byte-codes that were then interpreted. The in-
terpreter ran on top of a kernel that provided threads. Initially
there was no I/O other than a println instruction provided by
the interpreter. In this way, they very quickly had a work-
ing prototype, even though it could execute only the sim-
plest of programs. Over time, the compiler was modified to
generate VAX assembly language, which ran without need-
ing interpretation, but which still called kernel procedures
for run-time support. This incremental strategy brought new

functionality and better performance every day, and was a
real catalyst for the development of the prototype. Looking
back, we realize that we pioneered many of the techniques
that have now become popular as part of agile development
practices such as XP [10], although there is no evidence to
suggest that those who invented XP were aware of what we
had done.

A hallmark of Emerald was the close integration between the
compiler and the run-time kernel. In part, this was achieved
by putting the compiler writer (Norm) and the kernel imple-
mentor (Eric) in the same office, together with two worksta-
tions. (It was unusual at the time to allocate expensive work-
stations to graduate students.) Norm and Eric could clarify
even minor details immediately. But there was also a techni-
cal side to this integration. The compiler and the kernel had
to agree on several basic data structures. For example, the
structure of an object descriptor was laid down in memory
by the compiler, and manipulated by the kernel. The alter-
native approach in which this structure is encapsulated in a
single kernel module would have simplified the software en-
gineering, but it would also have meant that whenever the
compiler wanted the code that it was generating to create an
object, it would be forced to lay down code that made a call
to the run-time kernel. This would have conflicted with our
efficiency goal.

To ensure compatibility between the compiler and the ker-
nel, all of these basic data structures were defined in a single
file, both in C (for the compiler) and in assembly language
(for the kernel). Careful use of the C preprocessor meant that
this file could be treated either as a C program with assembly
language comments, or as assembly language with C com-
ments. The development of the shared description of the data
structures was aided by the presence of a whiteboard where
the important data structures were described; by convention,
the truth was on the whiteboard, and the rest of the system
was made to conform to it (see Figure 2). We avoided di-
vergence by rebuilding the compiler and run-time system
completely every night and during lunch breaks. Even lan-
guage changes were handled efficiently. Because all existing
Emerald programs were stored on Norm’s and Eric’s Mi-
croVAX workstations, we could decide to change the syntax
or semantics of the language and within hours change the
compiler, the run-time system and all existing Emerald pro-
grams to reflect the modification. Typically, such changes
were made before lunch so that a rebuild could happen over
lunch with a full afternoon to verify that things still worked.

Initial development took place on the VAX 11/780 and two
VAX 11/750s of the Eden project, which were called June,
Beaver, and Wally. In December 1985 we obtained our
grant of MicroVAX workstations from DEC; the worksta-
tions themselves arrived a few months later. Three of these
(Roskilde, Taber, and Whistler) were used as personal devel-
opment machines by Eric, Norm and Hank. The others were

11-7

Figure 2: The whiteboard that defined the basic data structures in the Emerald system, February 1986.

used remotely in distribution experiments. We used micro-
benchmarks to find the fastest instruction sequences for
common operations, and found that sometimes sequences
of RISC operations were faster than the equivalent single
CISC instruction. One example of this was copying a small
number of bytes, where repeated reads and writes were faster
than using the VAX block move (MOVC3) instruction.

The interpreter itself was written in C, but in a way that
treated C as a macro-assembler. We would first identify the
most efficient assembly-language sequence for the task at
hand; for example, we found that non-null loops were more
efficient if the termination test came at the end rather than at
the beginning, because this avoided an unconditional branch.
We then wrote the C code that we knew would generate the
appropriate assembly language sequence, for example, using
if (B) do . . . while (B) rather than while (B) . . .

Over time, more and more data structures were defined to en-
able the compiler to transmit information to the interpreter.
These included a source-code line number map, which en-
abled us to map back from the program counter to the source
code line for debugging, and templates for the stack and
for objects, which enabled us to distinguish between object-
references and non-references. The latter information was
essential for implementing object mobility, because object
references were implemented as local machine addresses,
and had to be translated to addresses on the new host when

an object was moved. (The same information is of course
useful for garbage collection, but the garbage collector was
not implemented until later.)

By June 1985 we had realized that we needed to think se-
riously about types. We had decided that utility objects like
variable-sized arrays and sets should not be built into the
language, but would be provided in a library, as they were
in Smalltalk. This would keep the language simple. How-
ever, we wanted these objects to have the same power, and
offer the same convenience to programmers, as the built-in
arrays and sets of Pascal. We had also decided early on that
Emerald was to be statically typed, both for efficiency and to
make possible the early detection and reporting of program-
ming errors. We therefore needed a way of declaring that an
array or a set would contain objects of a certain type — in
other words, we needed parameterized types. We were influ-
enced by the Russell type system [43], one of the few con-
temporary systems that supported parameterized types. We
were also aware of CLU’s decision to provide a parameteri-
zation mechanism that allowed procedures and clusters to be
dependent on manifest values, including types; this mecha-
nism (which used square brackets and operated at compile
time) was completely separate from the mechanism used to
pass arguments to procedures (which used parentheses and
operated at run time). However, we realized that an open dis-
tributed system could not make a clear distinction between

11-8

compile time and run time: it is possible to compile new
pieces of program and add them to the running system at
any time. Thus, while we planned to check types statically
whenever this was possible, we knew from the outset that
sometimes we would have to defer type checking until run
time, for the very good reason that the object that we needed
to check arrived over the network at run time, having been
compiled on a different computer. So we followed Russell,
and made types first-class values that existed at run time and
could be manipulated like any other values. In an object-
oriented language, the obvious way to do that was to make
types objects, so that is what we did in Emerald.

4. Technical Innovations
As we have discussed, the goals of Emerald centered on sim-
plifying the programming of distributed applications. The
way in which Emerald supports distribution has been de-
scribed in a journal article [59] that was widely cited in the
1980s and 1990s but may not be familiar to this audience.
In addition, Emerald made a number of other, lesser-known
technical contributions that are nevertheless historically in-
teresting. In this section we first summarize Emerald’s object
model and then discuss a few of these other contributions.

4.1 Emerald’s Object Model

Key to any object-based language or system is its object
model: the story of how its objects can be created and used,
and what properties they enjoy. We have previously de-
scribed the motivation for Emerald’s single object model:
the problem with having both heavyweight and lightweight
objects visible to the programmer, and the need for the pro-
grammer to choose between them. This was a reflection of
the state of the art in the early 1980s, which recognized two
very distinct object worlds: object-oriented programing lan-
guages, such as Smalltalk, and object-based operating sys-
tems, such as Eden and Hydra. In object-oriented languages,
the conceptual model of an object was a small, lightweight
data structure whose implementation was hidden from its
clients. In object-oriented operating systems, the conceptual
model of an object was a heavyweight, possibly remote oper-
ating system resource, such as a remote disk, printer, or file.
Consequently, these systems frequently used an OS process
to implement an object.

4.1.1 A Single Object Model

An important goal of Emerald was to bridge the gulf between
these two worlds and to provide the best of each in a unified
object model. On the one hand, we wanted an Emerald object
to be as light in weight as possible — which meant as light as
an object provided by a procedural programming language
of the time. On the other hand, we wanted an Emerald
object to be capable of being used in the OS framework,
for example as a distributed resource that was transparently
accessible across the local-area network.

Emerald achieved this goal. It provided a single, simple ob-
ject model. An object, once created, lived forever and was
unique, that is, there was only one instance of it at any time.
Each object had (1) a globally unique name, (2) a represen-
tation, i.e., some internal state variables that contained prim-
itive values and references to other objects, and (3) a set of
operations (methods) that might be invoked on the object.
Some of these operations could be declared to be functional,
which meant that they computed a single value but had no
effect and did not access any mutable state outside of the ob-
ject itself. Any Emerald object could also have an associated
process, which meant that an object could be either active
(having its own process) or passive (executing only as a re-
sult of invocation by another process); the process model is
described fully in Section 4.3.1.

4.1.2 Immutability

One of our more powerful insights was to recognize the im-
portance of immutability in a distributed system. With ordi-
nary, mutable objects, the distinction between the original of
an object and a copy is very important. You can’t just go off
and make a copy of an object and pass it off as the origi-
nal, because changes to the original won’t be reflected in the
copy. So programmers must be kept aware of the difference,
and the object and the copy must have separate identities.
However, with immutable objects, the copy and the original
will always have the same value. If the language implemen-
tation lies and tells the programmer that the two objects have
the same identity — that they are in fact one and the same —
the programmer will never find out.

The idea of an immutable object was familiar to us from
CLU. While this idea did at first seem strange — after all,
one of the main distinctions between objects and values was
that objects can change state — a little thought showed that
it was inevitable. Even the most ardent supporter of mutable
objects would find it difficult to argue that 3, π and ‘h’
should be mutable. So, the language designer is forced either
to admit non-objects into the computational universe or to
allow immutable objects. Once immutable primitive objects
have been admitted, there are strong arguments in favor of
allowing user-defined immutable objects, and little reason
to protest. For example, Andrew knew that CLU’s designers
had eventually found it expedient to provide two versions of
all the built-in container objects, one mutable and the other
immutable, even though they had initially decided to provide
only mutable containers [92, 28].

Once we accepted that some objects were immutable, we
found that there were many benefits to formally distinguish-
ing immutable from mutable objects by introducing the im-
mutable keyword. Emerald made wide use of the fact that
some objects were known to be immutable. Although the
language semantics said that there was a unique integer ob-
ject 3, it would have been ridiculous to require that there re-
ally be only a single 3 in a distributed system. Because inte-

11-9

gers were immutable, the implementation was free to create
as many copies of 3 as was expedient, and to insist (if any-
one asked, by using the == operation to test object identity)
that they were all the very same object. The implementation
was lying to the user, of course, but it was lying so well and
so consistently that it would never betray itself.

Another place where Emerald used immutability was for
code objects. Logically, each Emerald object owned its own
code, but if a thousand similar objects were created contain-
ing the same code, there was clearly no need to create a
thousand copies of the code. But neither was it reasonable
to insist that there could be only a single copy: in practice,
the code needed to be on the same computer as the data that
it manipulated. The obvious implementation was to put one
copy of the code on each computer that hosted one of the
objects; if an object were moved to a new computer, a copy
of the code would be placed there too, unless a copy were
there already. Because the code was immutable, we could
pretend that all of these copies were logically the same, and
this pragmatic use of copying by the implementation did not
“show through” in the language semantics. Indeed, from the
programmer’s point of view, code objects did not exist at all.

Immutability applied to programmer-defined objects as well
as built-in objects. Indeed, any object could be declared as
immutable by the programmer: immutability was an asser-
tion that the abstract state of the object did not change. It was
quite legal, for example, to maintain a cache in an immutable
object for efficiency purposes, provided that the cache did
not change the object’s abstract state.

Functional operations on immutable objects had the prop-
erty that they always returned the same result. This meant
that they could be evaluated early without changing the pro-
gram’s semantics. In particular, functional operations on im-
mutable objects could be evaluated at compile time: they
were manifest. This turned out to be vitally important to
Emerald’s type system, because we required types of vari-
ables and operations to be manifest expressions: the declara-
tor Array.of [Integer] is an invocation of the function of on
the immutable object Array, with the immutable object Inte-
ger as argument.

Our decision to trust the programmer to say when an ob-
ject was immutable or an operation was functional, rather
than attempting to enforce these properties in the compiler,
arose from our experience with Concurrent Euclid (CE).
Concurrent Euclid distinguished between functions and pro-
cedures, and in CE the compiler would enforce the distinc-
tion by emitting an error message if a function attempted to
do something that had an effect. We had found it to be enor-
mously frustrating to get an error message when we were
trying to debug a program by putting a print statement in a
function. (The compiler was smarter than we thought. We
eventually found out that the error messages were actually
warnings: the compiler generated perfectly good code de-

spite the existence of the print statement!) What we learned
from this was that programmers resent tools that get in their
way: a language should help programmers to express what
they need to express, rather than always trying to second-
guess them. Interestingly, in “A History of CLU” Liskov ex-
plains that she rejected the idea of immutability declarations
exactly because the compiler would not have been able to
check them [72, p. 484–5].

4.1.3 Objects Were Encapsulated

Because of our background in distributed systems, we took
encapsulation much more seriously than did those who
thought that encapsulation was just something that one did
to get software engineering brownie points. The only way to
access an object in Eden was to send a message to the ma-
chine that hosted it: there were no “back doors” that could
be left ajar. In Emerald, because all of the objects that were
co-located shared a single address space, it would have theo-
retically been possible to provide a back door through which
a co-located object could sneak a look at some private data.
But this would clearly be a really bad idea: such a back door
would need to be slammed shut if the target object moved
to another machines, and objects could move at any time.
Moreover, as system implementors, we had to know all of
the references leading into and out of each object, and we
had to know that those references were used only through
legitimate invocations of the object. This knowledge is what
made mobility possible; if an object could somehow “cons
up” a direct reference to the internal state of another ob-
ject, then mobility would be next to impossible. Moreover,
Emerald objects were concurrent (see Section 4.3), so it was
necessary to ensure that any access to the internal state of
an object was subject to some kind of synchronization con-
straint.

In the Emerald language, we indicated encapsulation by
distinguishing between operations that could be invoked on
an object from the outside (which were flagged with the
export keyword), and operations that could be invoked only
on the object itself. The compiler used the list of exported
operations to determine the signature of the object: attempts
to invoke other operations were not only forbidden by the
type system, but would in any case not be supported at run
time.

It is worthwhile comparing this approach to encapsulation
to that taken by Java. In Java (and in C++), encapsulation is
class-based rather than object based: a field or a method that
is designated as private can in fact be accessed by any other
object that happens to be implemented by the same class.
However, access to fields of remote objects is not supported
by Java RMI, and consequently Java can’t make local and
remote objects look the same.

11-10

4.1.4 One Object Model, Three Implementations

Although many of the newer languages with which we were
familiar — Alphard, CLU, Euclid, and so on — claimed to
support “abstract data types”, we realized that most of them
didn’t. To us, abstract meant that two different implemen-
tations of the same type could coexist, and that client code
would be oblivious to the fact that they were different. Other
languages actually supported concrete data types: only a sin-
gle implementation of each data type was permitted.

If we took encapsulation seriously — and, as we have dis-
cussed in Section 4.1.3, distribution meant that we had to —
then Emerald objects would be characterized by truly ab-
stract types. This meant that so long as two objects had the
same set of operations, client code would treat them identi-
cally, and the fact that they actually had different implemen-
tations would be completely hidden from the programmer.
When the object implementation and the client code were
compiled separately — this might mean separate in space as
well as separate in time — the difference would also be hid-
den from the compiler.

However, when the implementation and the client code were
not compiled separately, then the compiler could take advan-
tage of the ability for multiple implementations of the same
type to coexist. The same source code could be compiled
into different representations, if the compiler decided that
there was a reason to do so. Thus, the compiler could choose
a customized representation that took advantage of the fact
than an object was used in a restricted way. Norm designed
the compiler to examine the object constructors in the code
that it was compiling and to choose between two alternative
implementations for the object under construction.

Global was the most general implementation. A global ob-
ject could move to other machines and could be invoked
by any other object regardless of location. References to
a global object were implemented as pointers to an object
descriptor.

Local was an implementation optimized for objects that
could never be referenced from a remote machine. The
compiler chose this implementation when it could as-
certain that a reference to the object could never cross a
machine boundary. For example, if object A defined an
internal object B but never passed a reference to B out-
side of its own boundary, then the compiler knew3 that
B could only be invoked by code in A. This allowed the
compiler to strip away all code related to remote refer-
encing, including the object descriptor.

There was actually a third implementation, direct, which we
used to implement objects of “primitive” types (Boolean,
Character, Integer, etc.). However, direct objects were a

3 More precisely: the compiler could figure this out, using techniques from
what is now called escape analysis.

bit of a cheat, because for these types we gave up on type
abstraction. Primitive types are discussed in Section 4.2.5.

Letting the compiler choose the implementation meant that
programs that did not use distribution could be compiled into
code similar to that produced for a comparable C program.
In particular, integer arithmetic and vector indexing were
implemented by single machine instructions on the VAX.
Moreover, we were able to provide multiple representations
without boxing, and could thus represent integers by a direct
bit pattern, just as in C. The result was that Emerald achieved
performance very close to that of C — for the kind of simple
non-distributed programs that could have been written in C.
Nevertheless, the very same source code, used in a program
that exploited distribution, could create remotely accessible
distributed objects.

4.1.5 Object Constructors Replace Classes

During the initial development of Emerald we were unhappy
about adopting Smalltalk’s idea of a class that could change
dynamically. Smalltalk allowed a class to be modified, for
example by adding an instance variable or a method, while
instances of that class were alive; all of the instances im-
mediately reflected the changes to their class. This worked
well in a single-user centralized system, but we did not see
how to adapt it to a distributed system. For performance rea-
sons, the class would have to be replicated on every node
that hosted an instance of the class; if the class were sub-
sequently modified, we would be faced with the classic dis-
tributed update problem. The problem was compounded in
Emerald by the fact that some machines might be inaccessi-
ble when the update occurred. For us, the semantics of class
update seemed impossible to define in a satisfying manner:
the only implementable semantics that we could think of was
that the update would take effect eventually, but perhaps at
widely differing times on different machines, and possibly
far in the future.

The difficulty of defining update for classes was one of the
reasons that we considered classes harmful. 4 Another reason
was that we wanted Emerald to be a simple language in
which everything was an object. This implied that if we had
classes they should also be objects, which would in turn need
their own classes. Smalltalk’s metaclass hierarchy resolved
this apparent infinite regression, but at the cost of significant
complexity, which we also wanted to avoid.

We noted that in classic OO languages, such as Simula 67
and Smalltalk, the concept of class was used for several
different purposes: as a classification scheme for object in-
stances, as a template describing the internal structure of
those instances, as a repository for their code, and as a fac-
tory for generating new instances [17, p. 85].

4 During our car trip from Seattle to Portland for the first OOPSLA in 1986,
we bounced around the idea of writing a paper about Classes Considered
Harmful.

11-11

Because we had a type system, we did not need to use classes
for classification. Code storage was managed by the ker-
nel, because it was heavily influenced by distribution. To
describe the internal structure of an instance, and to gen-
erate new instances, we invented the idea of an object con-
structor, based on the record constructor common in con-
temporary languages. An object constructor was an expres-
sion that, each time it was executed, generated a new object;
the details of the internals of the object were specified by
the constructor expression. Object constructors could create
fully-initialized instances; in combination with block struc-
ture, this meant that the initial state of an object could de-
pend on the parameters of the surrounding context. More-
over, because object constructors could be nested, it was
easy to write an object that acted like a factory, that is, an
object that would make other objects of a certain kind when
requested to do so. It was also easy to write an object that
acted like a prototype, in that it created a clone of itself when
requested to do so.

4.1.6 Objects Are Not Fragmented

An important early decision was that the whole of an ob-
ject would be located on a single machine. The alternative
would have been to allow an object to be fragmented across
multiple machines, but this would then require some other
inter-machine communication mechanism (apart from oper-
ation invocation), thus making the language much larger. It
would also seriously complicate reasoning about failure. We
were also not convinced that fragmented objects were neces-
sary: a distributed resource could after all be represented by
a distributed collection of communicating (non-distributed)
objects that held references to each other. One of the conse-
quences of this design decision was that if any part of an ob-
ject were locally accessible, then all other parts were also lo-
cally accessible. This allowed the compiler to strip away all
distributed code for intra-object invocations and references.

4.1.7 The Unit of Mobility and the Concept of
Attachment

Because we had decided that Emerald objects would be
mobile, it might seem that we had also determined the unit
of mobility: the object. Unfortunately, things were not quite
that simple. An object contained nothing more than variables
that were references to other objects, so moving an object to
a new machine would achieve little: every time the code in
the object invoked an operation on one of its variables, that
operation would be remote.

If the variable referred to a small immutable object, it would
clearly make sense to copy that object when the enclosing
object was moved. Mutable objects could not be copied,
but they could be moved along with the object that refer-
enced them. A working memo written by Eric in August
1986 discusses various ways of defining groups of objects
that would move together; the memo describes both imper-

ative and declarative language features. We eventually de-
cided to introduce the concept of attachment by allowing
the attached keyword to be applied to a variable declaration,
with the meaning that the object referenced by the attached
variable should be moved along with object containing the
variable itself. Although this appeared to make attachment
a static property, we realized that this was not in fact the
case. An object could maintain two variables a and u that
referenced the same object, a being attached and u not at-
tached; by assigning u to a, or assigning nil to a, attachment
could be controlled dynamically. Thus, the concept of at-
tachment was powerful enough to implement dynamically
composable groups efficiently. Joining or leaving a group
could be as simple as a single assignment. Furthermore, in
many cases when a new object joined a group, it would be as-
signed to a variable anyway, and so the additional cost would
be zero. Attachment was also very simple to implement, be-
cause it required nothing more than a bit in the template that
described the object’s layout in memory (described in Sec-
tion 4.6) and thus there was no per-object overhead, nor was
there any cost for an object not using the concept.

4.2 The Emerald Type System

At the time we started the Emerald project, none of us knew
very much about type theory, and innovation in type theory
was not one of Emerald’s explicit goals. However, we found
that the goals that we had set for Emerald seemed to require
features that were not mainstream; indeed, in 2007 some
of them are still not mainstream. So we set about figuring
out how to support the features we needed. The aim of this
section is to describe that process and its end point; it draws
from material originally written by Andrew and Norm in an
unpublished paper dated 1989.

4.2.1 Emerald’s Goals as They Relate to Types

We had decided from the first that Emerald needed the fol-
lowing features.

• Type declarations and compile-time type checking for
improved performance. We had all done most of our
programming in statically typed languages, and felt that
Smalltalk’s dynamic type checking was one of the rea-
sons for its poor performance.
• A type system that was used for classification by behav-

ior rather than implementation, or naming. This was de-
manded by our view that programming in Emerald con-
sisted of adding new objects to an existing system of ob-
jects (as in Smalltalk) rather than writing standalone pro-
grams, (as in Euclid or Object Pascal). We might know
nothing at all about the implementation of an object com-
piled elsewhere; we could demand that the object sup-
ported certain operations, but not that it had a particular
implementation, or inherited from some other implemen-
tation.

11-12

• A small language in which utilities such as collection ob-
jects were not built-in, but could instead be implemented
(and typed) in the language itself.

The second goal was most influential. The Smalltalk idea
of operation-centric protocols formed the starting point for
our work on what came to be known as abstract types and
conformity-based typing.

4.2.2 The Purpose of Types

As we implied in Section 4.2.1, Emerald’s compile-time typ-
ing was more an article of faith than a carefully reasoned
decision: we believed that compile-time typing would help
the compiler to generate more efficient code. However, the
decision to declare types in Emerald did not tell us what
those declarations should mean. In a language like Pascal
or Concurrent Euclid, a type declaration determined the data
layout of the declared identifier. In Simula, a declaration de-
termined the class of the object referenced by the identifier.
But, as discussed in Sections 4.1.4 and 4.1.5, neither of these
functions of types would be applicable in Emerald. So, what
purpose should type declarations serve?

We turned for inspiration to two recently published papers
on types. According to Donahue and Demers [44], the pur-
pose of a type system was to prevent the misinterpretation
of values — to ensure that the meaning of a program was in-
dependent of the particular representation of its data types.
This independence would be necessary if we wished to ab-
stract away from representation details — for example, so
that some of them could be left to the compiler. Cardelli and
Wegner [40] made the same point more colorfully:

A major purpose of type systems is to avoid embar-
rassing questions about representations, and to forbid
situations in which these questions might come up. A
type may be viewed as a set of clothes (or a suit of
armor) that protects an underlying untyped represen-
tation from arbitrary or unintended use.

In fact, Donahue and Demers stated that a programming
language was strongly typed exactly when it prevented this
misinterpretation of values [44].

However, for the most part these papers discussed typing for
values rather than objects. One of the properties of an ob-
ject was encapsulation: the object’s own operations were the
only ones that could be applied to its data. The only mech-
anism that was needed to enforce this encapsulation was
static scoping as found in Simula 67 and Smalltalk. There
was thus no need for Emerald’s type system to forbid “em-
barrassing questions about representations”: object encapsu-
lation already did exactly this. So, should we abandon the
idea of making Emerald statically typed? We thought not:
we felt that a type system could usefully serve other goals.
Amongst these goals were the classification of objects, ear-
lier and more meaningful error detection and reporting, and
improved performance.

In Smalltalk, objects were classified by class, and the in-
heritance relation between classes was important to under-
standing a Smalltalk program. However, classes conflated
two issues: how the object behaved, and how it was imple-
mented. Because Emerald took encapsulation seriously (see
Section 4.1.3), we had to separate these issues. We decided
that the programmer should use types to classify an object’s
behavior, while implementation details should be left to the
compiler. This led to the view of a type being the set of
operations understood by the object, as discussed in Sec-
tion 4.2.3.

A second problem we perceived with Smalltalk was that (al-
most) the only error that we saw was “message not under-
stood”, and we didn’t see this error until run time. As pro-
grammers who had grown up with Pascal and Concurrent
Euclid, when we accidentally added a boolean and an in-
teger we expected an explicit compile time error message.
We wanted to see similar error messages from the Emerald
compiler whenever possible — which was quite often (see
Section 4.2.4).

We also believed that at least some of Smalltalk’s perfor-
mance problems were caused by the absence of static typing
We felt that if only the compiler had more information avail-
able to it about the set of operations that could be invoked
on an object, it could surely optimize the process of find-
ing the right code, called method lookup. We may have been
right, although subsequent advances such as inline caches
have largely eliminated the “lookup penalty”. The way that
we used this extra information to eliminate method lookup
is described in Section 4.2.5.

In summary, we came to the conclusion that there were
three motivations for types in Emerald: to classify objects
according to the operations that they could understand, to
provide earlier and more precise error messages, and to
improve the performance of method lookup. We now discuss
in more detail the consequences of each of these motivations
for types on the development of Emerald’s type system.

4.2.3 Types Were Sets of Operations

We were aware from our experience with Eden that a dis-
tributed system was never complete: it was always open to
extension by new applications and new objects. Today, in
the era of the Internet, the fact that the world is “under con-
struction” has become a cliché, but in the early 1980s the
idea that all systems should be extensible — we called it the
“open world assumption” — was new.

A consequence of this assumption was that an Emerald pro-
gram needed to be able to operate on objects that did not
exist at the time that the program was written, and, more
significantly, on objects whose type was not known when the
application was written. How could this be? Clearly, an ap-
plication must have some expectations about the operations
that could be invoked on a new object, otherwise the appli-

11-13

cation could not hope to use the object at all. If an existing
program P had minimal expectations of a newly injected ob-
ject, such as requiring only that the new object accept the run
invocation, many objects would satisfy those expectations.
In contrast, if another program Q required that the new ob-
ject understand a larger set of operations, such as redisplay,
resize, move and iconify, fewer objects would be suitable.

We derived most of Emerald’s type system from the open
world assumption. We coined the term concrete type to de-
scribe the set of operations understood by an actual, concrete
object, and the term abstract type to describe the declared
type of a piece of programming language syntax, such as an
expression or an identifier. The basic question that the type
system attempted to answer was whether or not a given ob-
ject (characterized by a concrete type) supported enough op-
erations to be used in a particular context (characterized by
an abstract type). Whenever an object was bound to an iden-
tifier, which could happen when any of the various forms
of assignment or parameter binding were used, we required
that the concrete type of the object conform to the abstract
type declared for the identifier. In essence, conformity en-
sured that the concrete type was “bigger” than the abstract
type, that is, the object understood a superset of the required
operations, and that the types of the parameters and results
of its operations also conformed appropriately.

Basing Emerald’s type system on conformity distinguished it
from contemporary systems such as CLU, Russell, Modula-
2, and Euclid, all of which required equality of types. It also
distinguished Emerald’s type system from systems in lan-
guages like Simula that were based on subclassing, that is, on
the ancestry of the object’s implementation. In a distributed
system, the important questions are not about the implemen-
tation of an object (which is what the subclassing relation
captures) but about the operations that it implements.

For our purposes, type equality was not only unnecessary:
it was counterproductive. Returning to the example above,
there was no need to require that new objects presented to P
supported only the operation run; no harm could come from
the presence of additional operations, because P would never
invoke them. The idea of conformity was that a type T con-
formed to a type U, written T ◦> U, exactly when T had
all of U’s operations, when the result types of those oper-
ations conformed, and when the argument types conformed
inversely. We chose the symbol ◦> to convey the idea that the
type to the left had more operations than the type to the right.
Nowadays, this relation is usually written <: and called sub-
typing, which seems to convey exactly the opposite intuition.

Having settled on a conformity-based type system, we still
had to address the question of whether conformity should be
deduced or declared. In other words, would it be sufficient
for an object to have all of the operations demanded by a
type, or would it also be necessary for the programmer to
say that it had them? Because URLs would not be invented

for another 10 years, and even local-area distributed file sys-
tems were rare and primitive, there was no simple way for a
programmer to state that one type (declared right here) con-
formed to another type (declared in some other program on
some other computer). Also, our experience with Eden had
taught us that we would often not appreciate the need for a
“supertype” (a type with fewer operations) until after some-
one else had written a program using a subtype. It seemed
quite impractical to have to ask some other programmer, pos-
sibly in some other organization, to change his or her code
to say that one of the types that it used conformed to a su-
pertype definition that we had written later. It also seemed
pointless: it was easy enough to check type conformity di-
rectly.

This question of whether type compatibility should be de-
duced or declared is currently still open; the current jargon
is to call deduced conformity structural and declared confor-
mity nominal. Four or five years after we had chosen struc-
tural equivalence for Emerald, Cardelli and his colleagues
wrote:

there is a strong argument for switching to struc-
tural equivalence, which is that structural equivalence
makes sense between types that occur in different pro-
grams, while name equivalence makes sense only be-
tween types that occur in the same program. This ad-
vantage becomes significant when type-safety is ex-
tended to distributed systems. . . or to permanent data
storage systems [39, p. 207].

Modula-3, a version of Modula designed for distributed sys-
tems, moved from the nominal typing of Modula-2 to struc-
tural typing [38].

We were not, of course, the first to use structural equiva-
lence — Algol–68 and Euclid were there before us. Neither
were we the first to realize that in an object-based language,
“structure” meant not the layout of data fields, but the avail-
ability of operations — Smalltalk had done that, and its lead
has since been followed by more recent languages such as
Python and Ruby, which call it “duck typing”. (The name
comes from the idea that if it looks like a duck, walks like
duck, and quacks like a duck, it must be a duck [107].) But
we were perhaps the first to apply static duck typing to ob-
jects.

4.2.4 Type Checking and Error Messages

Another consequence of the open world assumption was
that sometimes type checking had to be performed at run
time, for the very simple reason that neither the object to
be invoked nor the code that created it existed until after
the invoker was compiled. This requirement was familiar to
us from our experience with the Eden Programming Lan-
guage [21]. However, Eden used completely different type
systems (and data models) for those objects that could be

11-14

created dynamically and those that were known at compile
time.

For Emerald, we wanted to use a single consistent object
model and type system. Herein lies an apparent contradic-
tion. By definition, compile-time type checking is done at
compile time, and an implementation of a typed language
should be able to guarantee at compile time that no type er-
rors will occur. However, there are situations where an ap-
plication must insist on deferring type checking, typically
because an object with which it wishes to communicate will
not be available until run time.

Our solution to this dilemma provided for the consistent ap-
plication of conformity checking at either compile time or
run time. If enough was known about an object at compile
time to guarantee that its type conformed to that required
by its context, the compiler certified the usage to be type-
correct. If not enough was known, the type-check was de-
ferred to run time. In order to obtain useful diagnostics, we
made the design decision that such a deferral would occur
only if the programmer requested it explicitly, which was
done using the view. . . as primitive, which was partially in-
spired by qualification in Simula 67 [15, 41].

Consider the example

var unknownFile: File
. . .

r← (view unknownFile as Directory).Lookup ["README "]

Without the view. . . as Directory clause, the compiler would
have indicated a type error, because unknownFile, as a File,
would not understand the Lookup operation. With the clause,
the compiler treated unknownFile as a Directory object,
which would understand Lookup. In consequence, view . . .
as required a dynamic check that the type of the object bound
to unknownFile did indeed conform to Directory. Thus, suc-
cessfully type-checking an Emerald program at compile time
did not imply that no type errors would occur at run time;
instead it guaranteed that any type errors that did occur at
run time would do so at a place where the programmer had
explicitly requested a dynamic type check.

The view. . . as primitive later appeared in C++.

Partially inspired by the inspect statement of Simula 67 [15,
41], we also introduced a Boolean operator that returned the
result of a type check. This allowed a programmer to check
for conformity before attempting a view. . . as.

4.2.5 Types and efficiency

A primary goal of Emerald was to demonstrate the viability
of using a single object model for both small (Integer) and
large (Directory) objects. One of our performance goals was
to achieve the performance of C for simple operations like
adding integers and invoking operations on local objects. We
believed that static typing would lead to improved efficiency

and we used information from the type system in two places:
primitive types and operation invocation.

Primitive types

We realized that a few primitive types must behave correctly
for the language to be usable. In particular, consider the
Boolean type. The correctness of the if statement and while
loop depend on the proper behaviour of the two Boolean
objects true and false5. We therefore insisted that a few
types would not follow the normal rules for conformity: no
non-primitive type conforms to Boolean. Eventually, we ex-
tended this notion for performance as well as correctness and
defined a collection of primitive object types that included
Boolean, Character, Integer, Real, String, and Vector. When
the compiler knew that a variable had a primitive type, it also
knew the implementation of the object bound to the variable,
and used the direct object implementation shown in Figure 9.
This meant that operations on such objects could be inlined
and be made as efficient as in a conventional language.

Operation Invocation

A performance problem plaguing object systems that were
contemporary with Emerald was the cost of finding the
code to execute when an operation was invoked on an ob-
ject. This process was then generally known by the name
“method lookup”; indeed it still is, but we in the Emerald
team called it operation invocation. In Smalltalk, method
lookup involved searching method dictionaries starting at
the class of the target object and continuing up the inheri-
tance class hierarchy until the code was located. We thought
that if Emerald didn’t do static type checking, each operation
invocation would require searching for an implementation of
an operation with the correct name, which would be expen-
sive — although, because we did not provide inheritance,
not as expensive as in Smalltalk. In a language like Sim-
ula in which each expression had a static type that uniquely
identified its implementation, each legal message could be
assigned a small integer and these integers could be used
as indices into a table of pointers to the code of the various
methods. In this way, Simula was able to use table lookup
rather than search to find a method (and C++ still does so).
We though that static typing would give Emerald the same
advantage, and this was one of the motivations for Emerald’s
static type system.

However, even with static typing, there is still a problem in
Emerald: except for the above-mentioned primitive types,
knowing the type of an identifier at compile time tells us
nothing about the implementation of the object to which it
will be bound at run time. This is true even if the program
submitted to the compiler contains only a single implemen-
tation that conforms to the declared type, because it is al-

5 Even in Smalltalk, in which conditional statements are represented by
message sends, messages such as ifTrue:ifFalse: are known to the compiler
and treated specially; it is not in practice feasible to re-implement Boolean.

11-15

ways possible for another implementation to arrive over the
network from some other compiler. Thus, the Emerald im-
plementation would still have to search for the appropriate
method: the only advantage that static typing would give us
would be a guarantee that such a method existed.

It is often the case that dataflow analysis can be used to
ascertain that an object has a specific concrete type, and
the Emerald compiler used dataflow analysis quite exten-
sively to avoid method lookup altogether, by compiling a
direct subroutine call to the appropriate method. However,
the point that we did not fully appreciate when we started
the Emerald project was that static typing, in itself, would
not help us to avoid method lookup.

In those cases where dataflow analysis could not assign a
unique concrete type to the target expression, we avoided
the cost of searching for the correct method by inventing
a data structure that took advantage of Emerald’s abstract
typing. This data structure was called an AbCon, because
it mapped Abstract operations to Concrete implementa-
tions. The run-time system constructed an AbCon for each
〈type, implementation〉 pair that it encountered. An object
reference consisted not of a single pointer, but of a pair of
pointers: a pointer to the object itself, and a pointer to the
appropriate AbCon, as shown in Figure 3.

The AbCon was basically a vector containing pointers to
some of the operations in the concrete representation of the
object. The number and order of the operations in the vector
were determined by the abstract type of the variable; oper-
ations on the object that were not in the variable’s abstract
type could never be invoked, and so they did not need to
be represented. In Figure 3, the abstract type InputFile sup-
ports just the two operations Read and Seek, so the vector
is of size two, even though the concrete objects assigned
to f might support many more operations. AbCon vectors
were created where necessary when objects were assigned
to identifiers of a different type, and were cached whenever
possible to avoid recomputing them. AbCons increased the
cost of each assignment slightly, but made operation invoca-
tion as efficient as using a virtual function table. In practice
it was almost never necessary to generate them during an
assignment, because the number of different concrete types
that an expression would take on was limited, often to one.
We compare AbCons with more recent technologies in Sec-
tion 6.4.

4.2.6 Type:Type

As we mentioned in Section 3, the occasional need to de-
fer type checking until run time implied that types would
have to be representable at run time. Because Emerald was
object-based, it seemed like an obviously good idea that
types should themselves be represented as objects. The alter-
native would be to increase the size of the language dramat-
ically by providing one set of declaration and parameteriza-

tion constructs for objects and another parallel set for types.
Our minimality goal discouraged full exploration of this al-
ternative. A consequence of this decision was that Emer-
ald’s type system would have the Type:Type property, that
is, the property of an object being a type would be a type
property, just like the property of being an integer or the
property of being a set. At this time, the papers investigat-
ing Type:Type [36, 77] had not yet been published, and we
didn’t see Type:Type as a bad thing. Later, we realized that
one of the consequences of Type:Type was that Emerald’s
type system was undecidable: there were certain pathologi-
cal type checks involving infinite type objects that would not
terminate. But this didn’t seem to be a real problem either:
these infinite type checks would occur only at run time, and
the possibility of computations that did not terminate at run
time had always been with us.

Once types were objects, the distinction between types and
non-types was no longer one of syntax, but one of value.
Thus, arbitrary expressions might appear in positions that
required types. Such expressions were evaluated by the com-
piler, resulting in type objects, the values of which were used
to do type checking. For example, in the declaration

var x : Integer

the expression Integer was evaluated, resulting in an object
v. The type system then inspected v (i.e., it looked at v’s
value) in order to assign a type to the identifier x. Clearly,
the context implied that v’s value should be a type, in other
words, that v ◦> Type6; if it did not, the compiler signaled an
error. Thus, we see that the values of certain objects, called
type objects, were manipulated at compile time to do type
checking. These same type objects were also available at run
time to perform dynamic type checking.

For pragmatic reasons, the compiler restricted the expres-
sions that could appear in a type position to those that
were manifest. Intuitively, a manifest expression was one
that the compiler could evaluate without fear of either non-
terminating computations or (side) effects. We could guar-
antee a computation to be free from effects by insisting that
only functions on immutable objects with immutable ar-
guments that returned immutable results were evaluated at
compile time. In addition, while it was obviously not decid-
able whether or not an arbitrary computation would diverge,
the compiler placed restrictions on what it was willing to
evaluate to guarantee that compilation terminated. It turned
out that we never found a need for alternation (if) or itera-

6 The identifier that we initially chose to denote the type of all types was
AbstractType; we used the keyword type to signify the start of a type
constructor, a special form of an object constructor that created a type
object. Later, we reversed this decision: we used Type for the type of all
types, and typeobject for the special object constructor. In this article we
use the more recent syntax consistently; we felt that changing notation part
way though the text, although historically accurate, would be unnecessarily
confusing.

11-16

Figure 3: This figure, taken from reference [18], shows a variable f of abstract type InputFle. At the top of the figure (part a), f references
an object of concrete type DiskFile, and f ’s AbCon (called an Operation vector in the legend) is a two-element vector containing references
to two DiskFile methods. At the bottom of the figure (part b), f references an object of concrete type InCoreFile, and f ’s AbCon has been
changed to a two-element vector that references the correspondingly named methods of InCoreFile. (Figure c©1987 IEEE; reproduced by
permission.)

tion (for, while) in our manifest expressions. Thus, when we
wrote

var v : Vector.of [Integer]

although Vector was just a constant identifier that happened
to name a built-in object, and of was just an operation on
that object, because the objects named by Vector and Integer
were both immutable, and because of was a function, the
evaluation of the expression Vector.of [Integer] could pro-
ceed at compile time; we knew that the value of this expres-
sion would be the same at compile time as it would be at run
time.

Once types were first-class objects, and comparison for con-
formity (rather than equality) was the norm, we realized that

it would be a small step to allow an object that was a type
also to have additional operations. For example, the object
denoted by the predefined identifier Time, in addition to be-
ing a type, also had a create operation that made a new time
from a pair of integers representing the number of seconds
and µs since the epoch. The Emerald programmer was thus
able to define objects that acted as types and also had arbi-
trary additional operations; this was particularly useful for
factory objects, which could be both the creators of new ob-
jects and their types.

4.2.7 Conformity, nil, and the Lattice of Data Types

The Nature of Conformity. The role of conformity in
Emerald was so central that in our early discussions we

11-17

treated it as a relation between an object and a type. Other
operations on objects could be defined in terms of confor-
mity. For example, to ascertain whether or not an object o
possessed an operation f with one argument and one result,
we could evaluate:

o ◦> typeobject T
operation7 f [None8]→ [Any]

end T

However, in working with Larry Carter in 1985-6 to formal-
ize the definition of conformity, we realized that conformity
needed to be a relation between types: the definition of con-
formity is recursive and depends on the conformity of pa-
rameters and results. Consequently, the paper that presents
that definition [18] is somewhat inconsistent, referring in
places to objects conforming to types, and elsewhere to types
conforming to each other.

Unlike languages with which we were familiar, the notion
of conformity meant that every object had not one but many
types. Referring to Figure 4, any object that had type Scan-
ableDirectory also had type Directory. DeleteOnlyDirec-
tory, AppendOnlyDirectory and Any, among others. Thus,
we found ourselves talking not about “the” type of an ob-
ject but about its “best-fitting type”, meaning the type that
captured all of the operations understood by the object. We
realized that ◦> induced a partial order on types, as depicted
in Figure 4. Because in Emerald the type Any had no oper-
ations, it was the least element in this partial order. Some
types were incomparable: the type with Add as its only op-
eration seemed to be incomparable to the type with only
Delete. Nevertheless, these two types had Any as their great-
est lower bound.

The Partial Order of Types. Although this partial order
was for the most part simple and intuitive, we were aware of
two problems with it. The first problem, which confused us
for a long time, arose when two types had operations with the
same name but with different arities, i.e., different numbers
of arguments or results. For example, consider two types,
one with the operation Add [String]→ [] (Add with a single
String argument and no result), and one with the operation
Add [Integer]→ [Integer] (Add with a single argument and
a single result, both Integer). Not only are these types in-
comparable, but they seemed to have no upper bound: there
was no type to which they both conformed, because no type
could have an single Add operation with both of these arities.

A second problem was how to type nil, the “undefined”
object. We typically wish to use nil in assignments:

var d : Directory
d← nil

7 The syntax operation name[T]→ [U] means that the method name takes
one argument, which is of type T , and returns one result, of type U.
8 None is the type that includes every possible operation, and Any is the type
that includes no operations, as described later in this Section.

Figure 4: An example of a directed acyclic graph (July 1988) that
illustrates the partial order on types induced by conformity. Each
box represents a type; above the line is the name of the type, and
below is a list of the type’s operations. The arrows represent the
conformity relation, for example, ScanableDirectory ◦> Directory
because it has a superset of Directory’s operations.

and in tests:

if d 6= nil then r← d.Lookup[“key”] end if

It should be clear that for nil to be assignable to d, it must
support all the Directory operations. Similarly, for nil to be
assignable to var i : Integer it must support all of the Integer
operations. By extension, nil must possess all of the oper-
ations of all possible types that might ever be constructed!
This seemed like a contradiction, because operationally we
knew that nil, far from being an all-powerful object, actually
did nothing at all.

The conventional solution to this dilemma, and the one that
we initially adopted for Emerald, was to make nil a special
case. Either nil would refer to a single special object that
did not otherwise fit into the type system, or, as in Algol 68,
there would be a separate nil for each reference type, and
a syntactic mechanism for disambiguating the overloaded
symbol nil that denoted them all [103, §2.1 and §3.2].

From Partial Order to Lattice. We eventually stumbled
on an elegant solution to both the arity problem and the nil
problem. In the partial order so far described, every pair of

11-18

types T and U had a “meet” (also known as greatest lower
bound) T uU that contained just those operations that were
common to T and U. If T and U had no operations in com-
mon their meet was Any, so Any was the least element in
the partial order. If T and U had in common just operation
α [f] → [g] then the type containing just α with that sig-
nature was their meet T uU. However, because of the arity
problem, we could not see how to define the “join” (least
upper bound) of arbitrary types. When an operation α had
different arities in types T and U, the meet of T and U was
well-defined (it would omit α completely), but it seemed that
the join did not exist.

Meets and joins arose rather naturally when performing type
checking. For example, if a variable could take on either a
value of type T or a diferent value of type U, all that we
could say about the type of that variable is that it is the meet
of T and U. Because of contravariance, computing this meet
might involve computing a join, for example, if T and U both
supported operations α with the same arity but with differ-
ent signatures, say, α [fT]→ [gT] and α [fU]→ [gU], then
T uU was the type containing α [fT t fU] → [gT u gU] —
provided that fT t fU (the join of the fτ) was defined. This
definition generalized in the obvious way to types with more
than one operation, and to operations with multiple argu-
ments and results.

The problem with this definition was the inelegant caveat
that the required meets and joins must all exist. Because of
contravariance, once some joins did not exist, it was also
possible for some meets not to exist: the problem cascaded.
Black had studied at Oxford under Stoy and Scott, and knew
that the conventional mathematical solution to this problem
was to ensure that all upper and lower bounds exist, i.e., to
embed the partial order in a complete lattice. He also knew
that we would not lose any generality by this embeding,
because such a lattice always exists [98, pp. 88-91, 414].
However, for a long time we could not see how to construct
it, because we could not see what to do about an operation
that had different arities in T and U.

The solution, like many good ideas, is quite simple and in
hindsight quite obvious: we needed to treat operations with
different arities as if they had different names. For practi-
cal purposes this meant that we changed the language to al-
low overloading by arity; formally, we equipped every op-
eration name with two subscripts, representing the number
of arguments and results. This meant, for example, that the
two add operations mentioned above became Add1,0 and
Add1,1. Now that the operations had distinct names, the up-
per bound could contain both of them, and as a consequence
we were able to turn the partial order into a lattice.

None. Of course, every lattice has a unique top element;
what surprised us initially was the discovery that the top
element of Emerald’s type lattice was semantically useful.
We realized that it provided a type for nil, so we called it

None; this also seemed like an appropriate name for the dual
of Any.

We defined T uU as the largest type (that is, the type with
the largest number of operations) such that T ◦> (T uU)
and U ◦> (T uU), and defined T tU as the smallest type
such that (T tU) ◦> U and (T tU) ◦> T . The type of all
objects, which we called Any, was then nothing more than
the bottom element of the lattice induced by the conformity
relation: Any was the maximal type such that for all types
T , T ◦> Any. Dually, we defined None to be the top of this
lattice: None was the minimal type such that for all types
T , None ◦> T . The keyword nil then simply denoted the
(unique) object of type None. By this definition, nil sup-
ported all possible operations, with all possible signatures. In
other words, nil supported the operation Add with 1, 3, and
17 arguments of the most permissive types, as well as the
operation Halt [Turing-machine, Tape] → [Boolean]. This
didn’t initially sound like the nil with which we were famil-
iar! However, we finally realized that the conformity lattice
spoke only about type checking. If any of these all-powerful
operations were actually invoked, the implementation would
immediately break — which is exactly the behavior we ex-
pected of nil.

Restriction and Capabilities. In Eden, object were ad-
dressed using a capabilities that included not only a refer-
ence to the object but also a set of access rights that described
which operations were invocable using the capability. Appli-
cations could create capabilities with restricted access rights
and send them to clients. For example, the creator of a mail
message object would have the right to perform all opera-
tions on it, but might send the recipients restricted capabil-
ities that gave then the right to read the message but not to
modify it. The access rights were implemented as a fixed-
length bit vector, which provided a small name space and
did not mesh well with subtyping [22].

Emerald’s type system provided a similar facility, in that
clients of an object could be given a reference with a re-
stricted type. However, the view. . . as facility meant that the
type restriction could always be circumvented. Apart from
this fatal flaw, the type-based mechanism was better than
Eden’s access rights: it resolved the small-name-space prob-
lem, and it was compatible with subtyping.

During the summer of 1987, Norm visited Seattle and met
Eric at a Lake Washington café. Over breakfast they de-
signed a new language primitive restrict. . . to, which re-
moved the flaw by limiting the power of the view facility. To
see how restrict works, consider the code in Figure 5, which
references a Directory object using the types of Figure 4. In
the figure, a single object conforming to Directory is bound
to d, l, and lr. Both l and lr have type LookupOnlyDirectory,
but whereas l’s reference is unrestricted, and can be “lifted”
back up to Directory by a view expression, lr’s reference is
restricted to LookupOnlyDirectory. Thus, the view expres-

11-19

var d, d1, d2 : Directory
var l, lr : LookupOnlyDirectory
d← . . .
l← d
lr← restrict d to LookupOnlyDirectory
d1← view l as Directory
d2← view lr as Directory

Figure 5: The restrict. . . to primitive can be used to limit the oper-
ations invokable on an object. The types Directory and LookupOn-
lyDirectory are shown in Figure 4.

sion in the assignment to d1 will succeed, whereas the view
expression in the assignment to d2 will fail. This is because
the restricted reference stored in lr cannot be viewed above
the level of the LookupOnlyDirectory in the type lattice.

The restrict mechanism was implemented by late afternoon
of the day on which it was designed. The implementation
was simple. AbCons already contained a reference to the
concrete type of the object; all that was necessary was to
introduce an extra field that specified the largest type al-
lowed in a view. . . as expression. Upon creation of an Ab-
Con this field was initialized to the concrete type, but a re-
strict. . . to R expression would create an AbCon containing
the restricted type R.

Overloading. In spite of this rather theoretical genesis, our
decision to include overloading by arity but not by type was
made because it worked well for the practicing programmer.
We now believe that overloading by arity represents a “sweet
spot” in the space of possibilities for overloading. It supports
the most common uses, such as allowing unary and binary
versions of the same operation, and allowing the program-
mer to provide default values for parameters. Nevertheless,
it is always easy for the programmer (and the compiler) to
know which version of the operation is being used. In con-
trast, overloading by type, as provided in Ada at the time
of Emerald’s development and as now adopted in Java, is
simply a bad idea in an object-oriented language. Many pro-
grammers confuse overloading with dynamic dispatch; it is
difficult for both the programmer and the compiler to dis-
ambiguate; and it does little more than encourage the pro-
grammer to be lazy in inventing good names, for example,
by permitting both moveTo(aPoint) and moveBy(aVector) to
be called move. In a procedural or functional language, it is
hard to argue that procedures like print and functions like =
and + should not be overloaded. But in an object-based lan-
guage, these things are just operations on objects, and several
operations with the same name can be implemented by dif-
ferent objects without any need for type-based overloading.

Implementing nil. There was no difficulty in implement-
ing nil for objects that were represented by pointers: we just
chose a particular invalid address for nil whereby we had a
free hardware check for invocations of nil. However, the at-
tentive reader will recall from Section 4.1.4 that reals and in-

tegers were primitive and were represented directly, without
using pointers. We wanted to avoid a software-based (and
thus highly inefficient) check for nil on integer and real op-
erations. We couldn’t find a perfectly clean representation
for nil that was also efficient, and in the end in our imple-
mentation of Emerald we cheated just a little. We reserved
a special nil value that could be assigned to real and integer
variables. The bit pattern 0x80000000 was illegal as a VAX
floating-point number, so by using this value to represent nil
we could be sure that a legitimate floating-point operation
would never result in nil. Moreover, the hardware would trap
if this bit pattern were used in a floating-point instruction, so
it was easy to detect an attempt to invoke an operation on
nil. For integers, the same bit pattern represented −231, so
by using this value for nil we were “stealing” the most neg-
ative value from the range of valid integers. If the program
asked whether or not an integer variable was nil, the answer
would be right. However, we did not implement checks to
ensure that invocations on integer nil always failed or that
normal arithmetic operations didn’t generate nil by accident.
We were not happy with the idea that multiplying −230 by 2
would evaluate to nil; neither were we happy that multiply-
ing −230 by 3 would give the wrong answer. The decision
not to implement checks for integer overflow and underflow
was entirely a matter of efficiency: we wanted built-in inte-
gers to be as efficient as C’s integers, and C didn’t do any
checks, so we didn’t do any either. Of course, if a program-
mer wanted a integral numeric type that did all of the check-
ing, or had a greater range, or whatever, such a integer could
be implemented as an Emerald object — with the consequent
performance penalty. But the built-in Integer type was quick,
and in this case just a little bit dirty.

4.2.8 Polymorphism

In 1985, we felt that any “modern” programming language
should have a type system that provided support for poly-
morphic operations, that is, operations that might be in-
voked in several different places with an argument of dif-
ferent types. The contemporary authority on types, a survey
paper by Cardelli and Wegner [40], distinguished two broad
classes of polymorphism, ad hoc and universal, We were not
particularly concerned with ad hoc polymorphism; of uni-
versal polymorphism they wrote:

Universally polymorphic functions work with an in-
finite number of types, so long as these types share
a common structure. As suggested by the name, only
universal polymorphism is considered true polymor-
phism. Within this broad class are two sub-divisions:

inclusion polymorphism
An object can be viewed as belonging to many
different types that need not be disjoint.

parametric polymorphism
A function has an implicit or explicit type param-

11-20

eter which determines the type of the argument for
each application of the function.

We found these definitions confusing because the distinc-
tion between parametric polymorphism and inclusion poly-
morphism appeared to break down in Emerald. Consider the
passing of an argument o of type S to an operation that ex-
pects an argument of type T such that S ◦>T . This could be
said to be an example of inclusion polymorphism because
the object o has a number of different types including S and
T (as well as Any and a host of others). An alternative expla-
nation is that, because o knows its own type, the type of o is
an implicit argument to every operation to which o is passed,
making this an example of parametric polymorphism.

We finally realized that the distinction was still a valid one
for Emerald: it lay in the way that the operation used its
argument. If the operation treated o as having a fixed type
T , then the inclusion polymorphism view was appropriate,
but if it treated o parametrically, then the parametric view
was appropriate (See the typechecking technical report [26]
for some examples.)

As a consequence, we included two features in the Emerald
type system, one for each of these two kinds of polymor-
phism. First, basing type checking on conformity rather than
equality supported inclusion polymorphism: every operation
that expected an argument of type T would also operate cor-
rectly on an argument whose type conformed to T .

Second, Emerald types were values (more precisely, ob-
jects), and we allowed arbitrary expressions to appear in syn-
tactic positions that required types. This implied that types
could be passed as parameters to operations. An operation
could also return type as its result, and that type could then
be used in a declaration. Figure 6 is an example of the sort
of parametric polymorphism that we provided in Emerald:
a polymorphic pair factory that insists that both elements of
the pair are of the same type. A trivial application of this
object to create a pair of strings might appear as follows.

const p← pair.of [String].create[“Hello”, “World”]

The of function of pair accepts any type as its argument,
but returns a pair that has no operations other than first
and second. Suppose that we want the pair to also have an
equality operation = that tests the component-wise equality
of one pair against another. Obviously, such a pair cannot
be constructed for arbitrary element types: the element type
must itself support an = operation. We therefore need to
be able to express a constraint on the argument to the of
operation on pair. This can be done by adding a constraint
on the value of the argument T passed to of . The constraint
that we need is that:

T ◦> typeobject eq
function = [eq]→ [Boolean]

end eq

const pair← immutable object pPair
export function of [T : Type]→ [r : PairCreator]

where
PairCreator← typeobject PC

operation create[T, T]→ [Pair]
end PC

where
Pair← typeobject P

function first→ [T]
function second→ [T]

end P
forall T 9

r← immutable object aPairCreator
export operation create[x : T, y : T]→ [r : Pair]

r← object thisPair
export function first→ [r : T]

r← x
end first
export function second→ [r : T]

r← y
end second

end thisPair
end create

end aPairCreator
end of

end pPair

Figure 6: A polymorphic pair factory (after an example in a Novem-
ber 1988 working paper).

Syntactically, we gave Emerald a suchthat clause to cap-
ture this constraint. Types constrained in this way provide
what Canning and colleagues later called F-bounded poly-
morphism [34] because the bound on the type T is expressed
as a function of T itself. The where clause of CLU [73] pro-
vided similar power, although we were unaware of this at
the time. We eventually realized that the ◦> relation in the
suchthat did not denote the conformity relation that we had
defined between types, but was actually a higher-order oper-
ation on type generators. In the types technical report [26]
we called this operation matches, and denoted it by the sym-
bol . . Subsequently, Kim Bruce adopted an equivalent def-
inition for an operation that he denoted by ≤meth [32], and
eventually also called matches [33].

Two other changes are necessary in Figure 6 to define a pair
with equality. The first is, obviously, the addition of the =
operation to the type Pair; the second is the addition of a
corresponding implementation of = to the object thisPair.
The complete factory for pairs with equality is shown in
Figure 7.

9 The forall keyword was added quite late in Emerald’s development. In a
sense the forall is unnecessary, because it expresses the empty constraint
on T . However, without it there is no declaration for the identifier T , and
we felt that every identifier should be declared explicitly; the alternative of
making the programmer write suchthat T ◦> Type seemed overly pedantic.

11-21

const pair← immutable object pPair
export function of [T : Type]→ [r : PairCreator]

where
PairCreator← typeobject PC

operation create[T, T]→ [Pair]
end PC

where
Pair← typeobject P

function first→ [T]
function second→ [T]
function = [P]→ [Boolean]

end P
suchthat T ◦> typeobject eq

function = [eq]→ [Boolean]
end eq

r← immutable object aPairCreator
export operation create[x : T, y : T]→ [r : Pair]

r← object thisPair
export function first→ [r : T]

r← x
end first
export function second→ [r : T]

r← y
end second
export function = [other : Pair]→ [r : Boolean]

r← other.first = x and other.second = y
end =

end thisPair
end create

end aPairCreator
end of

end pPair

Figure 7: A Pair Factory that is polymorphic over types that support
equality

4.2.9 Publications on Types

Our initial ideas on types were published in an August 1985
technical report [19]. However, that report did not contain a
formal definition of the conformity relation, not because we
thought it unimportant, but because we were not sure how to
do it. The obvious definition of conformity was as a recur-
sive function, and we did not know how to ensure that the
recursion was well-founded. Fortunately, Larry Carter from
IBM was on sabbatical at UW in the fall of 1985, and we
were able to convince him to help us formulate the defini-
tion. Larry’s definition, which constructed the conformity re-
lation as the limit of a chain of approximations, appeared in
a revised version of the technical report [16], and was even-
tually published in Transactions on Software Engineering in
January 1987 [18].

As we deepened our understanding of the issues around
types, and in particular looked harder at polymorphism, we
revised a number of the decisions made in these early pa-

pers and developed more formal underpinnings for the type
system. We also redefined conformity using inference rules,
a technique that was then becoming popular. Andrew and
Norm were responsible for this evolution and for authoring
several documents describing it, none of which was formally
published. Our earliest document is a handwritten paper
“The Lattice of Data Types”, dated 1986.11.04. Sometime in
1987 this paper acquired a subtitle “Much Ado About NIL”;
it eventually evolved into “Types and Polymorphism in the
Emerald Programming Language”, which went through a se-
ries of versions between July 1988 and July 1989, before fi-
nally morphing into a technical report “Typechecking Poly-
morphism in Emerald”, which Andrew and Norm finished
over the Christmas holidays in 1990 [26].

4.3 Concurrency

We knew that concurrency was inherent in any distributed
system that made use of multiple autonomous computers.
Moreover, we realized that even in a non-distributed pro-
gram, Emerald’s object model implied that each object was
independent of all others and was capable of acting on its
own. This meant that every object should be given the pos-
sibility of independent execution; the consequence was that
we needed a concurrency model that allowed concurrency
on a much finer grain than that provided by operating sys-
tem processes in separate address spaces.

4.3.1 The Emerald Process Model

In designing Emerald’s process and concurrency control fa-
cilities, we were inspired by Concurrent Pascal [29], with
which Eric had worked extensively while writing his Mas-
ter’s thesis [57] at the University of Copenhagen, and Con-
current Euclid [50, 51], which we had used in Eden. Note
that, as we explained on page 4, we use the unqualified term
process to mean what it meant at the time: one of a number
of lightweight processes sharing an operating system address
space. Today this would more likely be called a thread; when
we mean an operating system process (in a protected address
space), we say so explicitly.

In Eden, each object was a full-blown UNIX process and thus
had its own address space, within which the Eden Program-
ming Language provided lightweight processes. The two
levels of scheduling and the costs of operating system in-
terprocess communication inherent in this scheme were part
of the cause of Eden’s poor performance. So, for Emerald,
we knew that we needed to find a way to develop a single
process model for all concurrency. We also knew that we
would have to implement it ourselves, rather than delegating
that task to an underlying operating system.

Our first idea was to have a separate language construct to
define a process, modeled on the process of Concurrent Pas-
cal. However, we we soon realized that this would not be
adequate. The Concurrent Pascal construct is static: all the
processes that can ever exist must be defined at compile

11-22

time. This restriction could be lifted by making the creation
of processes dynamic, for example, by allowing a new pro-
cess construct similar to new in Simula. However, we were
not happy about the idea of introducing another first class-
citizen besides objects.

Object constructors had let us avoid introducing classes as
first-class citizens: instead we nested one object construc-
tor inside another. We realized that we could also nest pro-
cesses inside objects. We added an optional process section
to object constructors so that, when an object was created, a
process could be created as one of the object’s components.
The process would start execution as soon as the object had
been initialized. If the process section were omitted, the ob-
ject would be passive and would execute only in response
to incoming invocations. This design allowed us to have ac-
tive objects that could execute on their own, as well as con-
ventional passive objects. It also had the benefit of making
it clear where a program should start executing. Some lan-
guages express this with various kinds of ad-hocery, such as
a “special” process called “main”. Emerald needed no “spe-
cial” process. Instead, we saw the Emerald world as a vast
sea in which objects floated. When a program created a new
object (by executing an object constructor), the object was
merely added to the sea. If the new object had no process,
nothing more happened (until the new object was invoked).
If it did have a process, the process started execution concur-
rently with all the other Emerald processes.

Thus, instead of needing a “main procedure”, an Emerald
program was simply a collection of object declarations.
When the program was loaded, these declarations were elab-
orated, and any objects thus created were added to the sea. A
sequential Emerald Hello, world! program looked like this.

const simpleprogram← object myMainProgram
const i← 1
process

stdout.PutString[i.asString || “: hello, world!\n”]
end process

end myMainProgram

This program uses a simple object constructor to create an
essentially empty object whose only purpose is to house the
process that prints “1: hello, world”, and then terminates.

We also considered allowing more than one process section
in an object. This would have been of limited use: as a
static construct, it would not have helped the programmer
to create a variable number of processes in the object. The
more general case of dynamically created processes was
already provided: any number of processes could be created
simply by defining internal objects that contained not much
more than a process, and then creating such objects. This is
illustrated in the example below.

const p← object multiProgram
export operation workerBody[i: Integer]

stdout.PutString[i.asString ||“: hello, world!\n”]
end workerBody
process

var i: Integer← 17
var x: Any
loop

if i <= 0 then exit end if
x← object worker

process
multiProgram.workerBody[i]

end process
end worker
i← i − 1

end loop
end process

end multiProgram

This program contains a single object that creates 17 other
worker objects each housing a process. These 17 processes
thereafter execute in parallel and will print a message in
some (indeterminate) order.

The following example shows a generalized worker process
that is parameterized by a function containing the actual
work to be done.

const WorkToDoType← typeobject wtd
operation doWork[]

end wtd

const workerCreator← object wc
export operation createWorker[work: WorkToDoType]

var x: Any
x← object worker

process
work.doWork[]

end process
end worker

end createWorker
end wc

const exampleWork← object hello
var i: Integer← 0
export operation doWork[]

i← i + 1
stdout.print[i.asString || “: hello world! \n”]

end doWork
end hello

const exampleProgram← object exampleProgram
process

workerCreator.createWorker[exampleWork]
workerCreator.createWorker[exampleWork]

end process
end exampleProgram

The workerCreator operation is used to generate a process
that executes the doWork operation of any object given to it
as argument. In this example, the hello objects merely print
messages. The object exampleProgram creates two worker

11-23

processes; the order in which the messages are printed is
undefined because the two processes execute concurrently.

4.3.2 Synchronization

In general, many processes could be executing inside an
object simultaneously. However, if they updated the same
variables, race conditions could readily occur. Traditionally,
such problems were resolved by protecting the shared vari-
ables with some form of synchronization construct. The fi-
nal example in Section 4.3.1 contains a serious race con-
dition in the object hello over the update of the variable i
in the doWork operation. Because it was easy to write pro-
grams with unwanted race conditions, we provided a way for
the programmer to state that an object’s variables would be
protected inside a monitor; the externally visible operations
on that object would then become the monitor entry opera-
tions.10 Thus the hello object in the example becomes:

const exampleWork←monitor object hello
var i: Integer← 0
export operation doWork[]

i← i + 1
stdout.PutString[i.asString || “: hello world! \n”]

end doWork
end hello

We did not spend a lot of time considering alternatives to the
monitor. Innovation in concurrency control was not a goal;
we were familiar with monitors, they were known to be ade-
quate, and they were widely taught and understood (although
some of Black’s prior work [1] indicated that they were not
as well understood as we had thought!) We adopted Hoare
semantics [49] for monitors, including the facilities for sig-
naling and waiting on so-called condition variables. How-
ever, condition variables themselves posed a bit of a prob-
lem. In Hoare’s original design, condition variables could
be declared only inside a monitor, and consequently had a
scope that was limited to the enclosing monitor. It was im-
possible to export a reference to a condition variable, and it
made no sense to wait on a condition variable in one moni-
tor and signal it in another. So conditions seemed to be much
less general than objects, which were always known by ref-
erence and which could be passed around freely.

We initially followed Hoare’s approach and defined a spe-
cial system object, Condition, that returned a unique condi-
tion variable when its create operation was invoked. How-
ever, in line with our minimality goal (Section 2), we really
wanted to avoid introducing any kind of special variable into
Emerald. We realized that condition variables were not really
variables at all in the conventional sense: they did not refer
to values. The purpose of a condition variable was merely to

10 We initially allowed any object to contain a monitored section. We later
decided to instead make a whole object monitored; this simplified both the
language and the compiler. The effect of an internal monitor could still
be obtained with a nested object. For the sake of consistency, all of the
examples in this paper use the current (whole object as monitor) syntax.

serve as a label for the logical condition for which a process
might need to wait. Consequently, we realized that any kind
of unique label would do. To avoid creating another concept,
that of labels, we decided to use an arbitrary object as a label;
after all, every object had a unique identity. Thus, in signal
and wait statements, we allowed any object to be used to
label the condition.

However, this simplification gave rise to another problem.
If condition variables were not “special”, how were we to
enforce the restriction that a particular condition could be
used within only a single monitor? Although this restriction
would naturally follow from the practice of declaring the
condition object locally within the monitor, this practice did
not amount to a guarantee. Because condition objects were
now just general-purpose objects, they could be stored in-
side other objects, passed as arguments, and so on: it would
be impossible to limit their scope statically. We therefore de-
cided to enforced the “single monitor” restriction dynami-
cally. The implementation of condition variables created the
structure that implemented the condition the first time that
either signal or wait was applied to an object, and associ-
ated the condition structure with the enclosing monitor at
that time. Subsequent applications of signal or wait checked
that their condition argument had been associated with the
same monitor. Because signal and wait were language state-
ments, not operation invocations, it was trivial to ensure that
they appeared only inside a monitor.

One additional advantage of using the identity of the object
and not its representation was that this avoided any compli-
cations concerning distribution: nonresident objects still had
resident object descriptors, so signal and wait never needed
to access nonlocal data structures.

To help programmers express their intent, we retained the
special system object Condition. A Condition object was
an empty object without operations: Conditions were never
invoked, but were merely used for their unique identity in
signal and wait statements. In this way, we introduced the
concept of a first-class label without making the language
larger: labels were simply objects.

The code in Figure 8 shows two processes keeping in step
with one another by alternating their execution. Each process
executes an operation 10 times. They synchronize through a
monitor, so that if one gets ahead of the other, it will have to
wait its turn. The Condition object c represents the condition
“it’s my turn now”; the operations Hi and Ho wait on and
signal c, but c is never invoked.

Monitors did not present any significant challenge related
to mobility. The implementation structure for each monitor,
including the monitor lock and any conditions, was packed
up and moved along with its enclosing object. Processes
that were waiting for entry into the monitor, either because
they had invoked a monitored operation or because they

11-24

const initialObject← object initialObject
const limit← 10

const newobj←monitor object innerObject
var flip : Boolean← true % true => print hi next
const c : Condition← Condition.create

export operation Hi
if ! flip then

wait c
end if
stdout.PutString[“Hi\n”]
flip← false
signal c

end hi
export operation Ho

if flip then
wait c

end if
stdout.PutString[“Ho\n”]
flip← true
signal c

end ho
initially

stdout.PutString[“Starting Hi Ho program\n”]
end initially

end innerObject

const hoer← object hoer
process

var i : Integer← 0
loop

exit when i = limit
newobj.Hi
i← i + 1

end loop
end process

end hoer

process
var i : Integer← 0
loop

exit when i = limit
newobj.Ho
i← i + 1

end loop
end process

end initialObject

Figure 8: One of the processes in the object hoer invokes the
Hi operation on newobj 10 times; the other invokes Ho. Because
these operations execute inside a monitored object, they operate in
mutual exclusion and the output is an alternating stream of Hi and
Ho messages.

were waiting on a condition, were moved just like any other
process that was executing (or waiting) within an object.

4.4 Initially

In many languages, initializing variables and data structures
was a bothersome task. In Emerald, the problem was further

compounded by concurrency: once created, a process ran in
parallel with its creator. Consequently, race conditions could
occur when creating a new object. For example, if a process
P created a new object A, and during its creation A caused
another process Q to be created, then Q might “outrun” P
and try to invoke the new object A before P had finished
initializing A. An object did not even need to create another
process for a race condition to occur: if a new object A
registered itself in a directory so that others could find it,
then an aggressive process that noticed A in the directory
might try to invoke A before A had finished its initialization.
The same problem exists today in Java.

We solved this problem by locking an object until its ini-
tially section had completed. This enabled the body of the
initially to use other objects freely, but a cycle would result
in deadlock and would thus be easy to detect.

4.5 Finalization

Some object-based languages allowed the programmer to
define so-called finalizers, also known as destructors. The
idea was that just before an object was destroyed, its finalizer
would be given a chance to “clean up”, for example, to
close open files or to release allocated data structures. In
our minds, objects lived forever, so a finalizer did not make
sense. The garbage collector could recycle objects that were
no longer of any use — which meant that they were not
accessible from a basic root or by an executing process. We
did consider introducing a finalizer that would be invoked
in this situation, but once something was executing inside
the object, it would no longer be a candidate for garbage
collection. So finalizers would have violated an important
monotonicity property: once an object became garbage, it
would stay garbage.

4.6 Compiler-Kernel Integration

The Emerald compiler and run-time kernel were very tightly
integrated (see Section 3). This was essential for accom-
plishing our performance goal. Tight integration allowed the
compiler several forms of flexibility: it could select between
the three object implementations (global, local, and direct,
described in Section 4.1.4) for every object reference; it
could use the general purpose registers to hold whatever data
it liked; and it understood the format of kernel-maintained
data structures and could inspect them directly, rather than
calling a kernel primitive to interpret them.

The compiler was responsible for informing the kernel about
its representation choices, and because the kernel could take
control at (almost) any point in the execution and might
need to marshal object data, the run-time stack, and even
the processor registers, the compiler had to provide descrip-
tions of every accessible data area at all times. These de-
scriptions, called templates, described the contents of an area
of memory. They informed the run-time system where im-
mediate data (direct objects), object pointers (local object

11-25

references), and object descriptor references (remote object
references) were stored. A particular template described ei-
ther an object’s data fields or the contents of the processor
registers and stack for a single activation record. Because
the stack contents varied during the lifetime of an activa-
tion record we considered dynamic templates that would be
a function of the program counter, but we avoided this com-
plexity by ensuring that the variable part of the stack al-
ways contained full Emerald variable references, including
AbCon pointers. The same templates provided layout infor-
mation for the garbage collector, the debugger and, not the
least, the object serializer. The object serializer was capable
of marshaling any object, including those containing pro-
cesses and active invocations, using the compiler-generated
templates. This meant that, unlike other RPC-like systems
(e.g., Birrell and Nelsons’ RPC [14]) there was no need for
the programmer to be involved in serializing objects. Com-
pletely automatic serialization was also necessary because
we did not give programmers access to low-level represen-
tations.

Fast Path and Object Faulting Allowing compiled code
to inspect kernel data structures was key to making local in-
vocations of global objects as fast as procedure calls in C.
The implementation of an invocation followed either a “fast
path” or a “slow path”. The fast-path invocation code se-
quence generated by the compiler checked a frozen bit in the
object descriptor. If the object was not frozen, then the fast
path code was free to construct the new activation record
and jump to the appropriate method code. However, if the
object was frozen, then the compiler-generated code took
the slow path by calling into the kernel to perform the in-
vocation. There were a large number of situations in which
an object was frozen: it might have been still under construc-
tion, it might not have been resident on the machine, it might
have failed, it might have been been in the process of being
moved, or it might need to be scanned by the garbage col-
lector. The compiler-generated invocation sequence needed
to identify whether or not it could use the fast path: all of
the slow paths started with a call into the kernel that then
ascertained which of the various special cases applied. We
called this mechanism object faulting because it was similar
to page faulting on writes to read-only pages. Even without
hardware support the object-faulting mechanism was quite
efficient and was crucial for the implementation of the paral-
lel, on-the-fly, faulting garbage collector (seen Section 5.3).

4.7 Mobility

Although we could not know it at the time, the major ad-
vance of Emerald over most of its successors was that Emer-
ald objects were mobile. Given our experience with Eden,
mobile objects were the obvious way of meeting our goal of
explicit support for object location.

Although operation invocation was location independent in
Emerald, it was never a goal that objects should be location

independent. Indeed, we recognized that some objects, par-
ticularly those that needed to exploit hardware, would need
to be placed on particular machines. We also thought that
automating the placement of objects in a distributed system
was in general too hard; instead we felt that it was the re-
sponsibility of the application programmer to place objects
appropriately, given his or her knowledge of the applica-
tion domain. We therefore gave Emerald a small number of
location-dependent primitives, extending what we had done
in Eden.

4.7.1 Location Primitives

Location was expressed using Node objects, each of which
was an abstraction of a physical machine. For example, if
Y were a node object, the statement fix X at Y locked the
object X at location Y . However, Y was not restricted to
be a Node; any object could be used as a location. So,
if X was a mail message and Y a mail box, fix X at Y
was still valid, and meant that X should be locked at the
current location of Y . Andrew had first thought of the idea of
using arbitrary objects to represent locations when designing
Eden’s location-dependent operations; the idea had worked
well, so we adopted it for Emerald.

Emerald had five location-dependent operations and two
special parameter passing modes that influenced location.
The location dependent operations were as follows.

• locate an object; the answer was a Node object that in-
dicated where the target resided. There was no guarantee
that the object might not move immediately afterwards.
• move an object to another location.
• fix an object at a particular node; this might have in-

volved moving it there first. An attempt to fix an object
would fail (visibly) if, for example, the target object were
already fixed somewhere else. An isfixed predicate was
also provided.
• unfix an object: make it movable again after a fix.
• refix an object, that is, atomically unfix and fix an object

at a new place.

The move . . . to primitive was intended to be used for en-
hancing performance by colocating objects, and thus reduc-
ing the number of remote invocations between them. In con-
trast, fix was intended for applications where the location
of an object was part of the application semantics. For this
reason, we gave move weak semantics: a move was treated
as a performance hint. The kernel was not obliged to per-
form the move if a problem was encountered with it; if,
for example, the destination node were unavailable, move
would do nothing silently. Moves were also queued, so that
multiple move requests following one another would usu-
ally be batched, which in many cases gave us a huge (order
of magnitude) performance improvement. Even if the move

11-26

succeeded, there was no guarantee that the object concerned
might not immediately move somewhere else.

The fix, unfix, and refix primitives were designed for use
when location was part of the application semantics, as when
trying to achieve high availability by positioning multiple
replicas on different machines, or when implementing a pro-
gram that performed load sharing (an Emerald load sharing
program was written later [68]).

We therefore gave fix much stronger semantics and imple-
mented fix transactionaly, so that after a successful fix the
programmer could be sure that the object concerned was in-
deed at the specified location. An attempt to move a fixed
object would fail, to avoid potential confusion as to whether
move or fix had priority.

4.7.2 Moving Parameter Objects

As early as the Getting to Oz memo of April 1984 [69], we
had decided that call by object reference was the only param-
eter passing semantics that made sense for mutable objects;
this was the same semantics used by CLU and Smalltalk.
However, we were also aware that call by reference could
cause a storm of remote invocations, and for this reason in-
vented two special parameter-passing modes that we called
call by move and call by visit. The memo continues: “a new
parameter passing mechanism we’ve considered is call by
move, in which the invoked operation explicitly indicates
that the parameter object should be moved to the location
of the invoked object.” We saw call by move as giving us the
efficiency of call by value with the semantic simplicity of
consistently using call by reference. However, call by move
was not always a benefit; although it co-located a parameter
with the target object, it would cause any invocations from
the call’s initiator to the parameter object to become remote,
which could drastically reduce performance. The cost of the
call would also be increased, albeit for smaller objects (less
than 1 000 bytes) the cost was about 3.5% for call by move
and 7% for call by visit [58, p. 131].

The Emerald compiler decided to move some objects on its
own authority. For example, small immutable objects were
always moved, because in this case the cost was negligible.
In general, however, application-specific knowledge was re-
quired to decide if it was a good idea to move an object,
and Emerald provided move and visit keywords that the pro-
grammer used to communicate to the compiler that a param-
eter should be moved along with the invocation. The use of
these keywords affected locatics but not semantics: the pa-
rameter was passed by reference, as was any other parame-
ter, but at the time of the call it was relocated to the destina-
tion node. The difference between move and visit was that,
after the invocation had completed, a call-by-visit parame-
ter was moved back to the source node when the invocation
returned, whereas a call-by-move parameter was left at the
destination.

Call by move was both a convenience and a performance
optimization. Without call by move, it would still have been
possible to request the move (using the move. . . to primi-
tive), but that would have required the programmer to write
more code and would not have allowed the packaging of pa-
rameter objects in the same network message as the invoca-
tion. There was also a return by move for result parameters.

4.7.3 Implementation

Whereas Eden objects had been implemented as whole ad-
dress spaces, Emerald objects were data structures inside an
address space, and so most of the implementation techniques
that we needed had to be invented from scratch. A guiding
principle was not to do anything that sped up mobility at the
expense of slowing down local operations: the costs of mo-
bility should rest on the applications that used it.

Moving the data structure representing an object was not
conceptually difficult: we just copied it into a message and
sent it to the destination machine. However, all of the ref-
erences to objects in that representation were local pointers
to object descriptors, and had to be translated to new point-
ers at the destination. To make this possible the kernel had
to be able to distinguish object references from direct ob-
jects, which was achieved by having the compiler allocate
all of the direct objects together, and putting a template in
the code object that specifies how many direct objects and
how many object references were in the object data area. A
table that translated object references to OIDs was appended
to the representation of the object, and the kernel at the des-
tination used this translation table, in combination with its
own object table, to overwrite the now-invalid object refer-
ences with valid pointers to local object descriptors.

Emerald objects contained processes as well as data; this
included their own processes and processes originating in
other objects whose thread of control passed through the ob-
ject. Whereas each object was on a single machine, Emerald
processes could span machines. This could occur either be-
cause of a remote invocation, or because an object moved
while a process was executing one of its operations. We re-
alized that if we treated the execution stack of a process as
a linked list of activation records, and each activation record
as an object referenced by a location-independent object ref-
erence, then everything would “just work”: processes return-
ing from the last operation on one machine would follow a
remote object reference back to the previous machine.

Of course, in reality things were not quite so simple. Each
activation record was not a separate object; instead, we allo-
cated stack segments large enough to accommodate many
activation records (the standard size was 600 bytes), and
linked in a new segment only when an existing one filled
up. This meant that when an object moved, we might have
to split a stack segment into three pieces and then move the
middle one. Also, stack segments were more complicated

11-27

that ordinary object data areas, for example, because they
contained saved registers, and because the data stored in the
activation record was constantly being changed by the run-
ning process.

An alternative to moving activation records with the objects
to which they referred would have been to leave them in
place until the executing process returned to them. We chose
not to do this because it would have set up residual remote
dependencies: if the machine hosting the activation record
was unavailable, the executing process would be “stuck”.
Although this might sound like an unlikely scenario, we
thought that it would actually be quite common to move all
the objects off of a machine so that it could be taken down
for maintenance. If, in spite of moving all of the objects, the
activation records were left behind, the computation would
still be dependent on the machine that was down.

Finding out which activation records to move when an ob-
ject migrates is a little bit tricky. Although each activation
record has a context pointer linking it to an object, the object
does not normally have a pointer back in the other direc-
tion. We considered adding one, linking a list of activation
records from each object, but that would have almost dou-
bled the cost of operation invocation. However, searching
through every activation record whenever an object moved
would have been prohibitively expensive. The compromise
we adopted was to link objects to their activation records
only when there was a context switch from one process to
another. After all, it was only during a context switch that an
object could move; in between two context switches many
thousands of activation records would have been created and
destroyed without any overhead.

We used a lazy technique to ascertain what data was on the
current stack when a process was moved. This technique
added no overhead to normal execution, placing it all on the
move. The code object contained a static template that de-
scribed the format of the current activation record for any
given code address. As the name implies, static templates
could be generated at compile time. We originally thought
we would need a different template for each point in the code
that changed the content of the stack, leading to a large num-
ber of templates. To avoid this we devised what we called dy-
namic templates, which described the change in the contents
of the stack. However, Norm examined the problem care-
fully and found out that most temporaries pushed onto the
stack could just as well be stored into temporary variables
preallocated on the stack; because these variables could be
reused throughout an operation, this caused no change to the
stack layout and thus no change to the template. Moreover,
there was no real storage cost: the stack needed to accom-
modate only the maximum number of temporaries simulta-
neously in use at any point in the operation.

Any other temporaries that were pushed onto the stack were
full object references that included a pointer to the AbCon,

and so were self-describing. Thus, template information was
not needed for these variables, and so dynamic templates
were unnecessary. One static template, laid down by the
compiler, was sufficient.

4.8 Failures

Emerald did not include a general-purpose exception han-
dling mechanism. This was largely because Andrew was op-
posed to such mechanisms, and also because designing a
good one would have distracted us from our goals. Because
of Andrew’s thesis research [20], we were aware of the dis-
tinction between exceptions — special return values explic-
itly constructed by the program in known situations — and
failures — which occurred when programs went wrong.

An Emerald begin . . . end block could be suffixed with a
failure handler that specified what to do if one of the state-
ments in the block failed, e.g., by asserting a false predicate,
dividing by zero, or indexing a vector outside of its bounds.
We did not regard a failure as a control structure for deliber-
ate use, but as a bug that should eventually be fixed, and in
the meantime survived. This meant that if there were some
question whether or not an index was within the bounds of
a vector, we expected the programmer to test the index be-
fore using it, rather than to have the indexing operation fail
and then “handle” the failure. For this reason, Emerald did
not include a mechanism for distinguishing between differ-
ent kinds of failure.

If a failure occurred and there was no failure handler on
any block that (lexically) contained the failing statement,
the failure was propagated back along the call chain until
a failure handler was found. Along the way, each object
on the call chain was marked failed; this meant that any
future attempt to invoke that object would fail. The language
also provided a returnandfail statement so that an operation
called with invalid parameters could cause its caller to fail
without the invoked object itself failing.

4.9 Availability

As noted in Section 2, it was an explicit goal of Emerald
to accommodate machine and network failures. At a given
time, each mutable Emerald object was located on exactly
one machine. Thus, if a machine crashed, the objects on
it would become unavailable, and it would be temporarily
impossible for another object to invoke them. We saw un-
availability as a common and expected event, and felt that
distributed programs had to deal with it, so we provided a
special language mechanism to handle unavailability.

Our view was that unavailability was quite different from
failure. The availability of an object was not like the prop-
erty of an index being within bounds: programmers could
not test for availability before making each invocation, be-
cause availability was a transient property of the environ-
ment rather than a stable property of the program state.

11-28

Emerald allowed programmers to attach an unavailable han-
dler to any block. This handler specified what to do when,
due to machine crashes or communication failures, an in-
vocation could not be completed or an object could not be
found. For example, if an object tried to invoke a name server
and that name server was unavailable, it could try a second
name server:

begin
homeDir← nameServer1.lookup[homeDirectoryName]

end
when unavailable

homeDir← nameServer2.lookup[homeDirectoryName]
end unavailable

An unhandled unavailable event was treated as a failure.
So, if nameServer2 were unavailable, the invocation of its
lookup operation would fail and the object containing the
above code would also fail.

4.10 Kernel Structure and Implementation

As mentioned in Section 1.5, our use of the term kernel fol-
lowed the tradition of Concurrent Pascal and Eden. In all
these systems the term meant the run-time support software
that was responsible for loading programs, managing stor-
age, performing I/O, creating and administering processes,
and performing remote invocations. The Concurrent Pascal
kernel actually ran on a bare machine. The Eden kernel was
a UNIX process, and implemented each Eden object as an-
other UNIX process; this led to excessive storage consump-
tion (minimum size of an object was 300 kBytes) and exe-
cution time (invocations between Eden objects on the same
machine took on the order of 100 ms). We wanted substan-
tially less overhead both in storage and execution time, so
we decided to implement the kernel in a single address space
as a single UNIX process within which all activity remained.
This saved us from expensive UNIX process boundary cross-
ings and allowed us to make object invocations almost as
fast as procedure calls in C. We handled our own storage al-
location, so we were in complete control of storage layout;
this let us implement mobility and prepared the system for
garbage collection.

The kernel was written in C, which we considered to be an
advanced assembler language: it allows detailed and efficient
access to data structures including the execution stacks and
let us build an invocation mechanism optimized for perfor-
mance. As mentioned in Section 3, we wrote stylized C code
designed to generate assembly language programs that were
as efficient as hand-coded assembler, but with the advantage
that portability was subtantially better. Portability was a con-
cern to us. One of the reasons that Eden had not seen any
use outside the University of Washington was that it was not
portable: Eden required a modified version of the 4.1 BSD
UNIX kernel and included much assembler code. We wanted
Emerald to see wider use, so we strove to minimize depen-

��

�

Object Descriptor

address tag flags

data pointer

OID

location

Object Data Area

code pointer

flagstagaddress

data

�

��	bit data

�

Object Data Area

tag flags

code pointer

data

Y�

Z�

X�

Figure �
�� Emerald Storage and Addressing Structures

�eld	 which identi�es it as a descriptor	 and a number of �ag bits	 which indicate whether

the object is local or global �the G bit� and whether or not the object is resident �the R

bit�
 If the resident bit is set	 the object descriptor contains the memory address of the

object�s data area� otherwise	 the descriptor contains the current location of the object

The object descriptor also contains the object�s object identi�er �OID�	 a network�wide

unique identi�cation of the object
 Object data areas also have a tag and �ag bits in the

�rst word
 The second word contains a reference to the code for the object
 The rest of

the data area is the data for the object

Variable Y in Figure �
� names a local object
 The value stored in Y is the address

of the object�s data area
 The �rst word of this data area	 like the �rst word of an object

descriptor	 contains �elds identifying the area as a data area for a local object
 Finally	

variable Z refers to a direct object that was allocated within the variable itself �e
g
	 an

integer�

Notice that within a single node	 all objects can be addressed directly without kernel

intervention� most invocations are performed e�ciently by compiled code
 The generated

Figure 9: Emerald object layouts from Eric’s thesis [58]. X is the
two-level structure used for global objects, Y is the one-level struc-
ture used for local objects, and Z shows a direct object.

dence on assembly code and programmed using as generic a
subset of the UNIX API as possible.

4.10.1 Object Layout and Object IDs

In the language, each object could potentially be accessed
from a remote machine. So, in principle, every object re-
quired a globally unique object identifier, known as an OID.
Because Emerald was developed on a local area network, we
initially implemented OIDs as 8-bit machine numbers (we
used the bottom 8 bits of the machine’s IP address) concate-
nated with 24-bit sequence numbers. In a subsequent wide-
area network version of Emerald, the OID was expanded to
be the full-32 bit IP address and a 32-bit sequence num-
ber [80]. To avoid wasting storage and OID space on objects
that would never be referenced remotely, we did not actually
allocate an OID until a reference to the object was exported
across the network.

We expanded the use of OIDs to other kernel data structures,
which made those structures remotely addressable using the
same mechanism as for objects. For example, the structure
containing the code for an object was given an OID by the
compiler (see Section 4.10.4). For this reason, in this section
on kernel implementation we use the term object to mean the
representation of either a real Emerald object or an object-
like kernel data structure.

Figure 9 shows the layout of kernel data. There were
two representations for non-primitive objects: a two-level
scheme (X) for global objects and a one-level scheme (Y)
for local objects. The first word of every kernel data area
had a standard format: a tag that identified the data area and a
number of tag bits, including the frozen bit and an indication
of the representation scheme. The two-level storage scheme
represented an object by the local address of an Object De-

11-29

scriptor. The Object Descriptor indicated whether or not the
object was locally resident. If it was, the local address of the
Object Data Area was stored in the Object Descriptor. If the
object was not resident, the Object Descriptor contained the
OID for the object and a hint as to the current location of the
object. In the one-level representation, the Object Descriptor
and Object Data Area were merged together; we did this to
promote efficiency in access, allocation and storage space,
but only for objects that could never be accessed remotely.

Each OID was entered into a hashed object table that
mapped OIDs to Object Descriptors. This meant that an
OID arriving over the network from another machine could
be mapped to the corresponding Object Descriptor, if one
already existed. This made it easy to ensure that a given
object had no more than one Object Descriptor on each ma-
chine. For mutable objects, only one of the Object Descrip-
tors in the whole Emerald system would normally reference
an Object Data area. Moving an object from one machine
to another therefore meant copying the Data Area from one
machine to the other, and then changing a single address
in the Object Descriptor on the source and destination ma-
chines. While the object was being moved, it would have
a data area on both machines, so the object was flagged as
frozen to prevent the object’s operations from modifying the
data. Immutable objects could be replicated; they were rep-
resented by an Object Descriptor and an Object Data Area
on each machine where there was a reference to the object.

4.10.2 Kernel Concurrency: Task Management

The Emerald kernel needed to keep track of multiple con-
current activities, for example, an ongoing search for an ob-
ject, a remote invocation, and the loading of some code over
the network. At the time, good thread-management libraries
were not available, and instead of writing our own thread
package we decided to use event-driven programming, an
idea inspired by the MiK kernel [93]. We built a single-
threaded kernel that serviced a ready queue of kernel tasks,
which we made sure were atomic. These tasks were gen-
erated from many sources, for example, the arrival of a in-
vocation request message, a remote code load, or a bootup
message from another Emerald kernel. Many events arrived
in the form of a UNIX signal. For these, the signal handlers
merely set a signal-has-occurred bit; they were not allowed
to touch any other kernel data structures. To make sure that
signals were not dropped, kernel tasks were required to be
short and not to perform any blocking operation. If a task
needed to wait, it had to do so by generating a continuation
task that would run when the appropriate event arrived, and
then terminating itself. Synchronization around the signal-
has-occurred bit was complicated and took a lot of low-level
hacking; the details can be found in a technical report [53].

Each waiting kernel task was potentially linked into a de-
pendency graph: if a task B was waiting for another task
A to complete, B would be linked from task A. When A

completed, it would put all tasks waiting for it onto the
ready queue, unless they were also waiting for another un-
completed task. For example, the arrival of a moving object
would generate an object install task, but if the code for that
object were not already resident, a code load task would be
generated to find and load the code. The object install would
be dependent on the code load. When the code load com-
pleted, the object install’s dependency on the code load task
would be removed and, if the install task had no more de-
pendencies, it would be put on the ready queue.

4.10.3 Choice of Networking Protocols

Eden was built on a message module that used datagrams
and did not provide reliability. For Emerald, in contrast,
Eric modfied the Eden Message Module to provide reliabil-
ity by using a sliding window protocol taken from Tanen-
baum’s first Computer Networks book [101]. (In the process
he found an error in the protocol.) The importance of a truly
fault-tolerant communication protocol had become apparent
to Eric during a demo of Eden, when an object on one ma-
chine had reported that another object was inaccessible. This
was despite the fact that it was obviously alive because it
was displaying output on another screen, and was observed
as alive by an object on a third machine. After this demo Eric
spent a lot of time researching fault-tolerance and recovery
and worked hard to ensure that the low-level protocols would
be quite robust.

We considered using TCP instead of UDP, but the version of
UNIX we were using allowed only a very limited number of
open connections, both because UNIX had a low limit on the
number of open file descriptors and because TCP connec-
tions used a significant amount of buffer space. This meant
that full machine connectivity would require us to open and
close TCP connections frequently, leading to excessive over-
head and high latency for remote invocation. We also wanted
to have full information about when nodes failed to respond
to messages, so that we could declare them dead according to
our own policy. In Eden, we had noticed that nodes could be
considered up even if they had died some time previously;
even worse, nodes could be considered dead even though
they were up. We realized that no failure detector could be
completely reliable, but we felt that because we knew more
about the Emerald system than did the generic implementa-
tion of TCP in the UNIX kernel, we could do a better job.

Eric’s implementation of reliability on top of UDP strove
to reduce the number of network messages to the absolute
minimum. We used just two Ethernet messages for a remote
invocation: the acknowledgment message, which was neces-
sary for reliability, was piggybacked on the next interaction.
Thus, a series 100 remote invocations to the same destina-
tion would require 201 Ethernet packets: 100 invoke-request
packets, 100 invoke-return packets, and, after about 1 sec-
ond, a single acknowledgment packet — the remaning 199
ACKs would be piggybacked onto the other packets.

11-30

4.10.4 OIDs for Compiled Entities

The compiler generated a file for each object constructor and
each type. For the purpose of loading and linking, the com-
piler assigned a unique OID to each file, and any reference
from one file to another used the OID. The compiler had its
own pseudo-machine number, so in effect it had control over
its own OID space, which was disjoint from the space of
“real” objects.

Because types were objects, they needed to have OIDs; be-
cause types were immutable, it was convenient to use the
same OID across multiple compilations of the same type.
(Recall that Emerald types contain only operation signa-
tures, and not executable code.) Two types were the same
even if the Emerald sources that defined them were different
in insignificant ways; for example, if the order of operations
was different in two versions of a type, or if they used differ-
ent names for themselves or their component types. We also
gave OID to Strings used as operation names; Strings were
also immutable objects. The purpose of this was to speed-
up the comparison of operation names when deciding if one
type conformed to another.

The initial implementation of type OIDs and and String iden-
tifiers was a file on the local network file system, which the
compiler treated as a global database, and in which it stored
a canonical form of the type definition. Of course, we were
well-aware that this implementation would not scale to a
global Emerald network, but at the time we had only five
machines, and it worked quite well. Our longer-term plans
involved using fingerprints of the type definitions, a tech-
nique that we had recently heard about from colleagues at
DEC SRC, where it had been used in the Modula-2+ sys-
tem. Fingerprinting was originally invented by Michael Ra-
bin [88]; the techniques that made it practical were devel-
oped by Andrei Broder at SRC in the mid 1980s, although
they were not published until much later [31]. Broder’s Fin-
gerprinting algorithm offered strong probabilistic guarantees
that distinct strings would not have the same fingerprint. We
never actually got around to using fingerprints; when Norm
used Emerald in distributed systems classes, he instead im-
plemented Type to OID and String to uid servers as Emerald
applications.

4.10.5 Process Implementation

Processes were implemented quite conventionally using one
stack for each process and one activation record for each
invocation. However, our stacks were segmented: a stack
could consist of multiple stack segments, each of which con-
tained some number of activation records. When returning
off the “bottom” of a stack segment, the run-time system
would check to see if the process had more stack segments,
in which case the process would continue execution using
the top activation record of the next segment.

There were two reasons for segmenting a stack. First, seg-
mentation allowed us to allocate a small stack and then ex-
pand it dynamically, thus saving space and letting us support
a substantial number of concurrent processes. Second, seg-
mentation allowed the process to make remote invocations.
The links between stack segments were object references,
and each link could thus could point to a segment on another
machine. When a process performed a remote invocation, it
simply continued execution on the remote machine using a
new stack segment containing the activation record for the
invoked operation. When the operation returned off the bot-
tom of the stack segment, the invocation results were pack-
aged up and sent back to the originating stack segment.

4.10.6 Dynamic Code Loading

Because Emerald objects shared a single address space, in-
troducing a new kind of object meant loading new code into
the address space. The loader had to perform “linking”: ref-
erences to abstract or concrete types in the loaded code had
to be replaced by references to the Object Descriptor of the
appropriate object.

We adopted the principle that all of the code files needed
for an object to execute had to be loaded before execution
was allowed within the object. This was an example of
a general philosophy of minimizing remote dependencies:
as much as possible we wanted to insulate objects from
failures of remote machines. By agressively “hoarding” all
the code files required by an object we ensured that the
object, once it started execution, would never stall waiting
for code to load, or fail because it needed code located
on a machine that had become unavailable. Loading all of
the code before execution started also meant that there was
no need for dynamic code-loaded checks that would have
introduced overhead into all programs, even those that didn’t
use distribution. This would be in violation of our no-use,
no-cost principle mentioned in Section 2.

5. Applications and Influences of Emerald
Immediately after the implementation of Emerald was com-
pleted, indeed even before it was completed, the Emerald
team dispersed. In January 1987, Norm graduated and took
up a faculty position the University of Arizona; Eric went
back to Denmark in February 1987 and taught at the Univer-
sity of Copenhagen while finishing his thesis. Andrew joined
the distributed systems group of Digital Equipment Corpo-
ration in December 1986. Only Hank grew roots at Wash-
ington, where he is now department chair. Nevertheless, in
addition to the initial batch of research papers, Emerald has
lived on in several forms. It has been used in teaching and
graduate student education and as a basis for subsequent re-
search. Emerald also influenced the design of successor sys-
tems. In this section we summarize what we have been able
to discover about the use and influences of Emerald after the
initial implementation effort.

11-31

5.1 Applications of Emerald

Emerald has been used in teaching and research at various
universities; in most cases Emerald was carried to other sites
by those who had become familiar with the language at
Washington.

Norm has used Emerald at the University of Arizona and at
the University of British Columbia (UBC) in teaching grad-
uate classes on distributed operating systems. Three M.Sc.
students at UBC did their theses on aspects of Emerald
including generational garbage collection [48], porting the
language to the embedded processor on a network inter-
face card [86], and improving reliability by grouping ob-
jects [45].

Eric has used Emerald at the University of Copenhagen
for teaching at both the graduate and undergraduate lev-
els. From 1994–1997, Emerald was the first object-based
language taught to incoming students (their first language
being ML). During these four years approximately 1000
students used Emerald for about three months, including a
three-week-long graded assignment where they were to de-
velop and write a large (1000–2000 lines of Emerald) pro-
gram, such as a ray tracer. They did not use any of the dis-
tribution or concurrency facilities, but focused on the pure
object-based part of the language. During the 1990s Emerald
was also used to teach distribution in an introductory grad-
uate distributed systems course at DIKU.11 Students were
required to write small (200–300 lines of Emerald) pro-
grams to implement a distributed algorithm such as elec-
tion or time synchronization. About fourteen Master’s stu-
dents have to varying degrees based their Master’s theses on
Emerald [5, 54, 55, 56, 63, 65, 68, 78, 80]. In addition, two
Ph.D. students conducted research based on Emerald: Niels
Juul worked on distributed garbage collection [60] and Niels
Larsen worked on transactions [66].

Andrew used Emerald in research while at Digital Equip-
ment Corporation. It was used to build one of the first
distributed object-oriented applications to run on Digital’s
internal engineering network, a distributed object-oriented
mail system implemented by a summer student in 1987.
This student (Rajendra Raj) later went on to develop a pro-
gramming environment for Emerald [89], called Jade, that
was the subject of his doctoral dissertation [91].

Other University of Washington students took Emerald with
them to other parts of the globe. Ewan Tempero used it in
research at the Victoria University of Wellington. Results
include two theses: Neal Glew’s B. Sc. Honours thesis [47]
and Simon Pohlen’s M. Sc. Thesis [87].

Emerald was also used in research at the University of Min-
ing and Metallurgy (UMM) in Kracow, Poland. The research
focused on multicast group communication, and was ini-

11 DIKU is the department of Computer Science at the University of Copen-
hagen.

tiated by Przemek Pardyak and Eric Jul during a visit by
Przemek to Copenhagen in the early 1990s. Przemek subse-
quently worked with Krzysztof Zielinski at UMM, resulting
in two papers [82, 83] and a Master’s thesis [81]. The thesis
was awarded third prize in the annual Polish competition for
best engineering thesis. Along the way, they also published
an overview of Emerald in Polish in a book on distributed
systems; this article also appeared in the main Polish CS
magazine Informatyka [84].

5.2 Influences of Emerald

Emerald has influenced succeeding languages designs in two
main areas: support for distributed objects and advanced
type systems. Because the goal of Emerald was to innovate
with distributed objects, the language’s influence on distri-
bution is unsurprising. (What is perhaps surprising is that
in the more than twenty years since we implemented Emer-
ald, no other language has adopted mobile objects with sim-
ilar thoroughness.) In contrast, Emerald’s influence on type
systems was neither intended nor expected. At the time we
saw our innovation here as minor: we were going to do only
what was required to keep the language as small as possi-
ble. The idea of conformity has been quite widely adopted.
In an interesting example of feedback, both abstract types
(here called protocols) and conformity feature heavily in the
ANSI Smalltalk standard. The 1997 final draft says

The standard uses a particular technique for specify-
ing the external behavior of objects. This technique
is based on a protocol, or type system. The protocol-
based system is a lattice (i.e. multiply inherited) based
system of collections of fully-specified methods that
follow strict conformance rules [6, p. 6].

However, Java adopted nominal rather than structural typing
(see Section 4.2.3), and only partially separated types and
implementation: a Java interface is a type, but a Java class is
both an implementation and a type.

Several operating systems have followed Eden and Emer-
ald in providing mobile objects; notable among these is
SOS [94], which in addition allows an object to be frag-
mented across several machines. However, SOS provides
only minimal language support, so its objects and proxies
must be manipulated by explicit operating system primi-
tives. (SOS does use a compiler extension to simplify the
process of obtaining a proxy for a remote object.) One of
the early derivatives of Emerald’s object model and type
system was the Advanced Networked Systems Architecture
(ANSA) distributed computational model [106]. In its turn,
ANSA was one of the influences behind the Open Soft-
ware Foundation’s Distributed Computing Environment ini-
tiative, and perhaps more significantly, a contributor to the
ISO Basic Reference Model of Open Distributed Process-
ing ISO 10746 [46]. The architecture described in part 3 of
this standard includes a type system very strongly based on

11-32

Emerald, extended with support for multiple terminations,
streams and signals — ideas taken from ANSA. In particu-
lar, Emerald’s type conformity rules are alive and well in
Section 7.2.4.3, and Annex A gives a set of subtyping judg-
ments including top and bottom types strikingly similar to
those used to formalize the Emerald type system [26].

Andrew Herbert, Chief Architect of the ANSA efforts, de-
scribes how the ANSA architecture was influenced by Emer-
ald.

Alongside the ANSA architecture we maintained
a number of software prototypes. The first version
of ANSAWare was called “Little DPL” and was pre-
processor based. . . A separate strand of development
was “Big DPL”, which borrowed very heavily from
Emerald. This was the foundation for the input to ISO
and also to OMG CORBA. It took the view that you
could do a complete language based on “distributed
objects”, where an object could have a number of
“interfaces” (which were named typed instances and
could be static or dynamic). Our invocation model
was that an interface defined a bunch of methods and
that each method had a bunch of “terminations”, one
of which generally was regarded as the “normal re-
turn” and the others as “exceptions”. All parameter
semantics were call by reference. Immutable objects
could of course be copied, and we had an object mi-
gration facility. Migratability and other “ilities” were
object properties and objects would generally have a
control interface through which the “ility” could be
exercised.

Big DPL was never well-enough developed and
not mainstream enough to compete with the C++
network object systems that came along around the
same time. . . Over time it shifted from a separate “toy
language” to DIMMA, yet another C++ distributed
object system, but which carried forward explicitly
the DPL type system. The final evolution was the
“FlexiNet” system written in Java, which had a hybrid
Emerald/Java object model and Java type system. . .

In summary Emerald had a lot of impact on us,
and through us on other bodies.12

Andrew Watson started working at ANSA in December
1989. At that time both the ANSA computational model and
the language that realized it (DPL) were well established.
There were several technical differences between Emerald
and DPL, principally that DPL allowed multiple interfaces
per object, that each operation in DPL could have multiple
named outcomes (with different types), and that DPL had
absolutely no primitive types built in. Watson writes:

However, leaving these differences aside, the in-
fluence of Emerald on DPL was obvious — especially

12 Andrew Herbert, personal communication.

the conformance-based type checking and type infer-
encing in the DPL language. It was this type system
that I chose to work on, and in particular the problem
of typing constructors for collections of homogeneous
and heterogeneous interfaces, and how to avoid hav-
ing every object carry around its type information at
run time via an Emerald-style “getInterface” opera-
tion. I did come up with a simple modification to DPL
that added a separate, opaque run-time type represen-
tation which would only be created when required by
the programmer — this would dramatically reduce the
need for the run-time system to create and transmit
run-time type tokens. . . [but the implementation of
this modification] was never finished.13

Emerald also had an impact on the design of the Guide
system and language at INRIA in Grenoble, France. Sacha
Krakowiak writes:

One important source of inspiration for the design of
the Guide language has been Emerald, a distributed
object-oriented language developed as a follow-on
project to Eden. The two main features of the design
of Emerald that directly influenced Guide were the
separation between types and implementations, and
the definition of type conformity (through covariant
and contravariant relations). This definition had been
proposed by Cardelli in 1984 [35], but we did not
know that work.14

Emerald’s closest descendant in the family of distributed ob-
ject systems is probably the Network Objects system de-
scribed and implemented by Birrell, Nelson, Owicki and
Wobber [12, 13]. The authors write: “We have built closely
on the ideas of Emerald [59] and SOS [94], and perhaps our
main contribution has been to select and simplify the most
essential features of these systems. An important simplifica-
tion is that our network objects are not mobile” [12, Section
2]. Instead, the Network Objects system provided what the
authors called “powerful marshaling”: the ability to send a
copy of an arbitrarily complex data structure across the net-
work. They write [13, p. 10]:

We believe it is better to provide powerful marshaling
than object mobility. The two facilities are similar, be-
cause both of them allow the programmer the option
of communicating objects by reference or by copying.
Either facility can be used to distribute data and com-
putation as needed by applications. Object mobility
offers slightly more flexibility, because the same ob-
ject can be either sent by reference or moved; while
with our system, network objects are always sent by
reference and other objects are always sent by copy-
ing. However, this extra flexibility doesn’t seem to

13 Andrew Watson, personal communication.
14 Sacha Krakowiak, personal communication.

11-33

us to be worth the substantial increase in complexity
of mobile objects. For example, a system like Her-
mes [25], though designed for mobile objects, could
be implemented straightforwardly with our mecha-
nisms.

(As might be expected, we do not entirely agree with these
conclusions; see the discussion in Section 6.)

Emerald was also influential in the development of the dis-
tributed systems support provided by Java and Jini, although
here the influence was more indirect. Indeed, at first blush
the Java RMI mechanism seems to be the antithesis of Emer-
ald’s remote object invocation, because RMI distinguishes
between remote and local invocations. This is not acciden-
tal: Jim Waldo and colleagues at Sun Laboratories authored a
widely referenced technical report that argues that the “uni-
fied object” view espoused by Emerald is fundamentally
flawed [104]. The account here is largely based on material
supplied by Doug Lea.

Java RMI was most directly influenced by CORBA and
Modula-3’s Network Objects. In the summer of 1994, James
Gosling’s Oak language for programming smart appliances
was retargeted to the World-Wide Web and soon thereafter
renamed Java. Jim Waldo’s group were asked to look into
adding an object-oriented distributed RPC of some form. At
the same time, some people who had been in the Sun Spring
group (who were also contributors to CORBA) were look-
ing into the alternative approach of just providing Java with
a CORBA binding. Both of these approaches had their advo-
cates. Some people were excited by the “Emerald-ish” things
one could do with extensions of Waldo’s approach. Also,
Cardelli’s paper on Obliq had just appeared [37]. Obliq ob-
jects are implemented as Modula-3 network objects, and so
are remotely accessible. While Obliq objects are fixed at the
site at which they are created, distributed lexical scope al-
lows computations to roam over the network. Although the
people at Sun regarded Obliq as a thought experiment, it
clearly demonstrated the limitations of CORBA, which was
unable to express the idea of a computation moving around
the network; thus Obliq provided fuel for the argument that
Java needed a more powerful remote communication sys-
tem. Doug Lea writes: “I wanted a system that was not only
usable for classic RPC, but also for extensions of the things
that I knew to be possible in Emerald. My bottom line was
that I insisted it be possible to send a Runnable object to a re-
mote host so that it could be run in a thread.” After much de-
liberation, a committee at Sun chose Waldo’s approach, and
many of the researchers in Waldo’s group transitioned from
Sun Labs to the Java production group, and built what is now
known as Java RMI. After RMI was released, they moved on
to develop further what they had earlier been working on in
Sun Labs, which turned into Jini [7].

As it exists today, RMI supports neither Emerald-style mo-
bile objects nor Obliq-style mobile processes, and remote

invocations are not location transparent, because different
parameter-passing mechanisms can be used for local and re-
mote invocations of the same object. But many of these re-
strictions are the result not of limited vision, but of compro-
mises that had to be made to fit RMI over the Java language,
whose specification was at that time largely fixed. Emerald
was a force for a more adventurous design, and the ultimate
decision to go with RMI rather than a CORBA binding was
influenced by reading or hearing about Emerald’s capabil-
ities — these were continually brought up as the kinds of
things that a forward-looking language ought to support. Jim
Waldo writes:

The RMI system (and later the Jini system) took many
of the ideas pioneered in Emerald having to do with
moving objects around the network. We introduced
these ideas to allow us to deal with the problems
found in systems like CORBA with type truncation
(and which were dealt with in Network Objects by
doing the closest-match); the result was that passing
an object to a remote site resulted in passing [a copy
of] exactly that object, including when necessary a
copy of the code (made possible by Java bytecodes
and the security mechanisms). This was exploited to
some extent in the RMI world, and far more fully in
the Jini world, making both of those systems more
Emerald-like than we realized at the time.15

After the turn of the century, increasing use of mobile
devices lead to an interest in languages that supported
loosely connected devices. The ideas behind Emerald in-
spired Walsh’s thesis work on the Taxy Mobility system [105].
Walsh introduces Emerald-like objects into Java and dis-
cusses the idea of combining weak and strong mobility.
Similarily, the work of De Meuter takes a critical look at
strong mobility as present in Emerald and proposes alterna-
tive, weaker, mobility mechanisms [42].

5.3 Later Developments

Various research projects have built on Emerald: to complete
the implementation, to enhance the language, and to take
Emerald in new directions.

Garbage collection. We realized early on (see the minutes
from 18 March 1985) that Emerald would require a garbage
collector, but we also realized that the implementation of the
collector could be deferred until after Norm and Eric had
completed their theses. In practise, Emerald did quite well
without a collector. A prime reason was that the implemen-
tation was stack based and so only rarely would the imple-
mentation generate a temporary object and not be able to
deallocate it.

Eric’s Ph.D. dissertation [58] contains a chapter on the de-
sign of a distributed, on-the-fly, robust, and comprehensive

15 Jim Waldo, personal communication.

11-34

garbage collector for Emerald, but there was no attempt to
implement it at that time. However, Eric did prepare the
Emerald prototype for the implementation of a distributed
collector at some time in the future, concluding that the im-
plementation effort would be worth a separate Ph.D. This is
actually what happened: Niels Christian Juul implemented
the collector for his doctorate [61, 60]. A strong point of this
on-the-fly collector was that it was possible to start the col-
lector and have it run to completion without requiring that
all machines be up at the same time. In the contemporary
demonstration of the collector, no more than 75% of the ma-
chines were up at any given time — we felt that this was a
very robust collector.

In 2001-2002, two Master’s students developed a non-
comprehensive collector that could collect smaller areas of
the distributed object graph and thus could reclaim garbage
while parts of the system was down [55].

Emerald as a general-purpose programming language.
Those of us involved in the development of Emerald nat-
urally saw it primarily as a language for distributed pro-
gramming. It took an “outsider” (Ewan Tempero) to make
us realize that Emerald was an interesting language in its
own right, even without its distribution features. This re-
alization led to a paper that described the language in this
light, emphasizing Emerald’s novel object constructors and
types [90].

The Hermes project at Digital Equipment Corporation.
Andrew started the Hermes project shortly after he moved
to Digital in December 1986. (This project is unrelated to
Rob Strom’s Nil project at IBM, which also used the name
Hermes in its later years [99].) The idea was to implement
as many of Emerald’s distributed object ideas as possible
in a conventional programming language (Modula-2+), but
also to find a way to make the implementation scale to
systems of around fifty thousand nodes, the size of Digital’s
internal DECnet-based Engineering Network at that time.
The project was a technical success [24, 25] but did not
have much influence on future products because, in spite of
the company’s early lead in networking, Digital was never
able to make the transition to shipping distributed systems
products.

Types. Norm and Andrew continued to work on types dur-
ing the period from 1986 to 1989, after both of them had
left Washington. Much of this work was unpublished, al-
though not for want of trying. The target of our publication
efforts was PoPL; at that time the PoPL community, based as
it was in traditional single-machine programming language
design, was developing ideas about the purpose of types and
how they should be discussed that were much more conser-
vative that those we had arrived at though our work in dis-
tributed systems. (To this day there is an enormous resistance
from some members of this community to even admitting
that something that might need to be checked at run time

could even be called a “type”.) The essence of our work was
captured in a widely-cited January 1991 joint Arizona/CRL
technical report [26], which had a major influence on the
ANSA architecture (see Section 5.2).

Gaggles. One of the deficiencies of Emerald’s pure object-
based approach is that not everything is most conveniently
represented as an object. In particular, in a distributed system
striving for high availability, resources must be replicated:
the collection of replicas is not itself an object. Of course,
it is possible to put the replicas inside an object, such as
a Set, but this recreates a single point of failure. Gaggles
resolve this problem: a Gaggle is a monotonically-increasing
set of replicas that can be treated as a single object with
“anycast” semantics [27]. An undergraduate student from
Harvard, Mark Immel, undertook the implementation.

Multicast invocations. As mentioned in Section 5.1, Prze-
mek Pardyak [82, 83] extended Emerald with facilities for
multicast invocation. In his system, one could make an invo-
cation of a group of objects, and either take the first answer,
or require all answers.

Wide-area Emerald. In 1992-3, two Master’s students at
DIKU implemented a Wide Area Emerald [80]. The imple-
mentation was modified to support machines on the internet
in general rather than on a LAN. They increased the size of
OIDs and had to spend a lot of time tuning the transport-
layer protocols: their initial move of an object around the
globe via seven machines took about 15–20 minutes, be-
cause the transport layer was optimized for LAN service.
Eventually, moving an object around the world took only a
few seconds.

Ports to various architectures. Between 1987 and 1994,
Emerald was ported from the original VAX architecture to
SUN 3 (Motorola 68000), SUN 4 (SPARC) [75], and Digi-
tal’s Alpha [66]. Tired of retargeting the compiler, Norm also
developed a byte-code compiler and a virtual machine, thus
allowing objects to move from one platform to another.

Eclipse plugin. In 2004, IBM funded a small project at the
University of Copenhagen to implement an Eclipse plugin
for Emerald. A student did the implementation during 2004–
2006; the source code for the plugin — and for Emerald in
general — is available at http://sourceforge.net/projects/
emeraldlanguage.

Heterogeneous Emerald. Emerald’s clear separation of
language concepts from implementation means that the se-
mantics of Emerald objects have a rigorous (if informal)
high-level description. Any implementation of an Emerald
object thus must define a translation of the language’s high-
level semantic concepts into a low level representation. This
means that given two different implementations of an Emer-
ald object for two different low level architectures, it should,
in principle, be easy to remap the representation of an Emer-
ald object on one architecture to the representation of that
same object on another architecture.

11-35

http://sourceforge.net/projects/emeraldlanguage
http://sourceforge.net/projects/emeraldlanguage

Would this principle work out in practice? To answer that
question, between 1990 and 1991, two graduate students
(Povl Koch and Bjarne Steensgaard Madsen) worked with
Eric to develop a version of Emerald that ran on a set of
heterogeneous machines: VAX, SUN 3, and SUN SPARC.
This mainly involved remapping inter-machine communica-
tion. However, object mobility also posed significant prob-
lems because an object could contain an active Emerald pro-
cess. We introduced the concept of a bus stop, a place in
the Emerald program where mobility could occur and where
every implementation had to provide a consistent view. Bus
stops are frequent; they are present after essentially every
source-language statement. We then added so-called bridg-
ing code at each bus stop that could translate the state of
an Emerald process or object from one architecture to an-
other. The implementation was simplified because Emerald
already had the concept of stopping points where mobility
could take place.

To our knowledge, no one has since built a heterogenous
object system allowing not only objects but also executing
threads to move between architectures at almost any point
in the program with no decrease in performance after arrival
on the new architecture. That is, an Emerald process that
moves, e.g., from a VAX to a SUN 4 SPARC and back
will, when running on the SPARC, execute at the same
speed as if it had originated there, and it will also execute
at the original VAX speed after returning to a VAX. Cross-
architecture performance measurements showed that remote
invocations and object (and process) mobility took about
twice as long as in the homogeneous case, mainly due to
the large amount of work caused by checking for big-endian
to little-endian translations, and byte-swapping if necessary.
Note, however, that the programs locally always ran at full
speed unimpeeded by the facilities for heterogeneity.

Eric presented the heterogeneous Emerald work at a work-
in-progress session at SOSP in 1993, and generated signif-
icant attention. This caused Eric to contact one of the stu-
dents, who in the meantime had joined Microsoft Research.
The result was a paper presented at SOSP in 1995 [97]. At
the time, Marc Weiser was advocating the then-controversial
idea that researchers should make their code publicly avail-
able, so that anyone so motivated could verify the claimed
results. As a consequence, the Heteogeneous Emerald im-
plementation can be found on the 1995 SOSP CD.

Databases, Queries, and Transactions A bright grad-
uate student, Niels Elgaard Larsen, integrated databases
into Emerald as his Master’s thesis project [65]. He later
integrated transactions into Emerald as part of his Ph.D.
project [66].

6. Retrospective
The Emerald project never came to a formal conclusion;
it simply faded away as the members of the original team

became interested in other research. Nevertheless, time has
given us a certain perspective on the project; here we reflect
on what we did and what we might have done differently.

We are all proud of Emerald, and feel that it is one of the
most significant pieces of research we have ever undertaken.
People who have never heard of Emerald are surprised that
a language that is so old, and was implemented by so small
a team, does so much that is “modern”. If asked to describe
Emerald briefly, we sometimes say that it’s like Java, except
that it has always had generics, and that its objects are mo-
bile.

In hindsight, if we had had more experience program-
ming in Smalltalk, Emerald might have ended up more like
Smalltalk. For example, we might have had a better appre-
ciation of the power of closures, and have given Emerald a
closure syntax. Instead, we reasoned that anything one could
do with a closure one could also do with an object, not really
appreciating that the convenience of a closure syntax is es-
sential if one wants to encourage programmers to build their
own control structures.

6.1 The Problem with Location Independence

Emerald’s hallmark is that it makes distribution transpar-
ent by providing location-independent invocation. However,
there is definitely a downside to this transparency: it be-
comes easy to forget about the importance of placing one’s
objects correctly. Shortly after Eric started using Emerald in
his graduate course on distributed systems, a student showed
up at his office with an Emerald program that appeared to
hang; the student could not find any bug in the program.
Eric suggested turning on debugging and started with traces
of external activities. Streams of trace output immediately
showed up: the program was not hung but was executing
thousands of remote invocations. What had happened was
that the student had omitted an attached annotation on a
variable declaration, which meant that he was remotely ac-
cessing an array that should have been local. Thus the pro-
gram was running three to four orders of magnitude slower
than anticipated. The good news was that Emerald’s loca-
tion independent invocation semantics means that the pro-
gram was still correct; the bad news was that it ran more
than a thousand times too slowly. After adding the omitted
attached keyword the program ran perfectly!

6.2 Mobile Objects

Since we started working on Emerald, objects have become
the dominant technology for programming and for build-
ing distributed systems. However, mobile objects have not
enjoyed a similar success. Why is this so? The argument
against mobile objects goes something like this.

The simplicity of object orientation arises because objects
are good for modeling the real world. In particular, objects
enable the sharing of information and resources inside the

11-36

computer, just as in the real world. Understanding object
identity is an important part of these sharing relationships.

Mobile objects promise to make that same simplicity avail-
able in a distributed setting: the same semantics, the same
parameter mechanisms, and so on. But this promise must
be illusory. In a distributed setting the programmer must
deal with issues of availability and reliability. So program-
mers have to replicate their objects, manage the replicas, and
worry about “one copy semantics”. Things are not so simple
any more, because the notion of object identity supported
by the programming language is no longer the same as the
application’s notion of identity. We can make things simple
only by giving up on reliability, fault tolerance, and avail-
ability — but these are the reasons that we build distributed
systems.

Once we have to manage replicas manually, mobile objects
don’t buy us very much over Birrell’s “powerful marshal-
ing” [13]: making a copy of an object at a new location. They
do buy us something, but the perception is that it is not worth
the implementation cost.

We feel that this argument misses the point, and for two rea-
sons. First, the implementation cost is not high. Eric and
Norm may be smart, but they are not that smart; if they
could figure out how to make objects mobile and efficient
in the mid-1980s, it should not be hard to reproduce their
work in the twenty-first century. Indeed, we believe that im-
plementing mobility right once is simpler than implementing
the various ad hoc mechanisms for pickling, process migra-
tion, remote code loading, and so on.

Second, we now know enough about replication for avail-
ability to design a robust mechanism like Gaggles [27] to
support replicated objects in the language. In the presence
of such a mechanism, object identity once again becomes a
simple concept: in essence, the complexity of the replication
algorithm has been moved inside the abstraction boundary
of an object. This does not make it any simpler to imple-
ment, but does permit the client of the complex replicated
abstraction to treat it like any other object.

There has also been a long-running debate [62, 74] that ques-
tions whether object identity should be a language-defined
operation at all, because it breaches encapsulation. Concep-
tually, we have a lot of sympathy for this position, but prag-
matically we know that it is important to support the op-
erations of identity comparison and hash on all objects if
we want to do efficient caching — and caching is a very im-
portant technique for building efficient distributed systems.
A compromise would seem to be in order. Andrew advo-
cated just this in 1993: equality and hashing of object iden-
tity should be fast, primitive operations that do not requiring
fetching an object’s state, but the programmer should able to
allow or disallow these operations on an object-by-object (or
perhaps class-by-class) basis [23].

6.3 Static Typing

With the benefit of hindsight, static typing may have been a
mistake: static types bought us very little in the way of effi-
ciency, and cost us a great deal of time and effort in devel-
oping the theory of bounded parameterized types. The one
place where static types do buy efficiency is with primitive
types such as integers, but this is not because of the types
themselves. The efficiency gain arises because we break our
own rule and confound implementation (of an integer as a
machine word) with interface. In other words, integers are
efficient only because we forbid the programmer to write an
alternative implementation of the integer type.

In the normal case of an object of user-defined type that is the
target of an invocation, we know that the dynamic type of the
object conforms to the static type of the identifier to which
it is bound. This guarantees that the invocation message will
be understood at run time, but it does not help us to find the
right code to execute. Finding the code must still be done
dynamically, because the implementation of the object is
generally not known until run time. Of course, in many cases
the implementation will be fixed at compile time, in which
case method lookup can be eliminated altogether. But the
presence of type information did not help us to implement
this optimization: it relies on dataflow analysis.

Emerald’s dynamic type checks rely on the compiler telling
the truth: the type of an object is encoded in it as a type when
the object is constructed, based on the information in its ob-
ject constructor. If the compiler lied, type checking might
succeed, but operation invocation still fails. We considered
certifying compilers and having them sign their objects, but
Because no one ever wrote a hostile Emerald compiler, sig-
natures were never implemented. This is one place where
Java does something simpler and more effective than Emer-
ald: Java byte codes are typed, and code arriving from an-
other compiler can be type-checked when it is loaded. This
is an idea that we might well have used in Emerald if we had
been aware of it.

6.4 Method Lookup and AbCon Vectors

AbCon vectors may be a more efficient mechanism for per-
forming dynamic lookup than method dictionaries, although,
to the best of our knowledge, the mechanisms have never
been benchmarked side by side. To compare them fairly one
must include the time taken to construct the AbCon on as-
signment. However, for many assignments the compiler is
able to determine the concrete type of the object and thus
does not need to generate an AbCon, or indeed perform
method lookup: the appropriate method can be chosen stat-
ically. For many of the remaining assignments, e.g., those
where the abstract types of the right- and left-hand sides are
the same, the extra cost involved in the assignment is merely
the copying of a reference to the AbCon. For some of the
remaining assignments, the compiler can determine the Ab-

11-37

Con to be built; in these cases the AbCon is built at load time
and a reference to it is inserted into the code, so the overhead
is reduced to the store of a single constant. For the remaining
assignments, the asymptotic cost is reduced by caching Ab-
Cons; after a program has run for a while, all of the AbCons
that it needs will have been cached,16 but some time is still
expended in accessing the cache. In a similar way, the cost of
method lookup is normally reduced by caching recent hits.
Indeed, polymorphic inline caches [52] have proven so suc-
cessful in eliminating message lookup that its cost is widely
perceived as a non-problem.

6.5 What Made Emerald Fast?

As we discussed in the Introduction, Emerald grew out of
our experience with Eden, which had lots of good ideas but
rather disappointing performance. One of our major goals
was not just to improve on Eden’s performance, but to ac-
tually have good performance in an absolute sense (see Sec-
tion 2). Because performance is hard to retrofit, we practiced
performance-oriented design from the beginning. There was
no silver bullet: we had to get the details right all along the
line.

6.5.1 Single Address Space

A major design decision behind Emerald’s excellent perfor-
mance was placing all node-local objects and their processes
in a single address space (a UNIX process, as described in
Section 4.10), which was also shared with the Emerald ker-
nel. This meant that kernel calls were simply procedure calls
and any data structures in the object could be accessed by
the kernel simply by dereferencing a pointer.

6.5.2 Distributed Operations and Networking

The first Eden remote invocation took approximately 1 sec-
ond, during which time about 27 messages were sent (count-
ing both IPC messages and Ethernet messages). There was
considerable room for improvement: the Eden invocation
module was rewritten several times, resulting in substan-
tially fewer messages and a corresponding drop in invocation
times, which ended up at approximately 300 ms for a remote
invocation and 140 ms for a local invocation. A major les-
son from these rewrites was that performance was more or
less proportional to the number of messages sent. The best
case for node-local invocations in Eden was four IPC mes-
sages: one from the source object to the Eden kernel, one
from the Eden kernel to the target object, and two more to
obtain the result. In Emerald, putting all node-local objects
and the kernel into the same address space eliminated IPC
messages entirely. The result was that Emerald node-local
invocations were more than three orders of magnitude faster
than Eden’s, see Section 6.6.

16 We were surprised at how few AbCons even large programs needed.

6.5.3 Choosing Between Eager and Lazy Evaluation

In theory, lazy evaluation is wonderful: nothing is ever eval-
uated until it is needed, but once evaluated, it is never eval-
uated again. However, in practice there is a cost to laziness:
before a value is used, one must check to see if it is a thunk
that first needs to be evaluated. In consequence, eager eval-
uation is a win in many situations: if it is very likely that
a value will be needed, it makes sense to evaluate it early.
Moreover, if “early” can be made to mean “at compile time”,
then the cost of run-time evaluation can be eliminated en-
tirely.

Eager Evaluation. We applied the idea of aggressive eager
evaluation in several places. Using direct references rather
than OIDs was one of these. In Eden, objects were referred
to by a globally unique identifier, which meant that any oper-
ation on an object had to translate that global identifier into a
reference to some local data structure. In contrast, in Emer-
ald we translated OIDs to pointers as soon as possible, so
that, for example, a local object was represented by a direct
pointer to its data area. Code, AbCons, Types — indeed, any-
thing referenced by OID — was represented as a pointer to
either the relevant data structure or, in the case of a remote
object, to a descriptor that contained information on how to
find the data structure (see Section 4.10.1). This made lo-
cal operations faster, although it also made remote opera-
tions slower, because all direct pointers had to be translated
when they crossed from one machine to another. However,
the slowdown caused by translation was small compared to
the cost of a network operation. The principle was that users
should pay for a facility only when they used it: we did not
want to slow down local operations just to make remote op-
erations faster.

We also avoided lazy evaluation by changing the code to
make sure that expensive computations were performed only
once. Our experience with Eden had showed that many com-
putations were done repeatedly because several different
modules in the implementation needed the result of a single
computation. For example, in the early days of Eden invoca-
tion, the unique identifier of the invoked object was looked
up more than ten times! A quick performance fix was to
equip the object table lookup function with a one-item cache,
which eliminated the work of the lookup but added the over-
head of the cache check. In implementing Emerald we used
profiling techniques to discover such inefficiencies and fix
them, usually by passing on pointers to resolved data rather
than the original OID or pointer; this eliminated not only the
work of the lookup, but also the overhead of the function call
and the cache check.

The ultimate application of eagerness was to move as much
computation as possible into the compiler. For example, the
compiler did an excellent job of figuring out when it could
make an object local rather than global, thus eliminating all
the overhead associated with distribution. It also removed as

11-38

much of the type information as it could, so if you wrote
and compiled a program that did not use distribution at all,
then all distribution overhead would be removed from the
compiled code. Consequently the program would run at a
speed comparable to that of compiled C. We found that on
the SPARC architecture, the Emerald version of a highly re-
cursive computation such as the Ackermann function actu-
ally ran faster than C, because our calling sequences were
more efficient.

Lazy Evaluation. Lazy evaluation was more efficient than
aggressive evaluation when the work that was delayed might
never need doing at all. A prime example is representing
global objects. Global objects were allocated directly by
compiled code, but most of the work of making them us-
able in a distributed environment was delayed until the first
time the object had any interaction with another node, for
example, by a reference to it being passed to another node.
At that time the object would be “baptized” by being given
an OID and entered into the local object table. Many ob-
jects had the potential to become known outside the node on
which they were created, but most would never actually do
so. Thus, postponing baptism was an excellent idea because
it was often unnecessary.

Another place where Emerald takes a lazy approach is in
moving the code for a migrating object. When an object
moves from one node to another, its code is not moved
along with its data. The reasoning behind this is that the
receiving node may well already have a copy of the code,
in which case the work would be unnecessary. Of course, if
the receiving node does not have the code, it has to obtain
it; this is actually more work than if the code had been sent
eagerly. However, it turns out that most applications have a
small working set of code objects, and so most of the time
the destination node will already have the code for an in-
migrating object. In the case where the code does have to
be requested, multiple code objects can be requested at the
same time, so we win again from a batching effect.

Another technique that used the idea of laziness is replacing
computation by compiler-generated tables. One simple ex-
ample is making the current source-code line number avail-
able when debugging. The Simula 67 compiler generated a
load instruction that put the current line number into a reg-
ister. This seemed to us to be optimizing for the uncommon
case: the Emerald implementation instead generated a table
in each code object that could translate the relative address
of any instruction into the line number in the Emerald source
code. This had a storage cost but no cost in execution time.
Of course, if the debugger was actually activated, it look
more time to find the line number, but that was a rare event,
and not a time-critical one.

Compiler-generated tables were also used for unavailable
and failure handlers. When a failure occurred, such as in-
voking nil or dividing by zero, the appropriate handler was

found by using the address of the failure to search a table
of handlers. The implementation of Mesa used the same
idea [64]. This was in contrast with other language imple-
mentations (for example, Sherman’s Ada compiler for the
VAX [95]) where the appropriate failure handler was pushed
onto the stack; this made finding the handler faster, but
slowed down every call that did not fail.

Lazy evaluation was also the technique of choice for most of
the work associated with mobility, because most objects did
not move; several examples are described in Section 4.7.3.

6.6 Some Historical Performance Data

From the start, performance was important to the Emerald
project; good performance was high on our list of goals,
and we hoped that good performance would distinguish our
work from contemporary efforts. Of course, by modern stan-
dards the performance of any 1980s computer system will
be unimpressive, so we summarize here not only Emerald’s
performance but also that of some comparable systems avail-
able to us at the time.

Most of the performance figures given below were measured
in February 1987 on a set of five MicroVAX II machines
running Ultrix. The figures in Section 6.6.6 were measured
on VAXStation 2000 machines, which had the same CPU
as the MicroVAX II but had a different architecture that
resulted in slightly longer execution times (usually about 6–
8%).

6.6.1 Remote Invocations

As shown in Table 1, remote invocation of a parameterless
remote operation took 27.9 ms. This included sending a re-
quest message of 160 bytes (i.e., one Ethernet payload) of
which 72 bytes were transport-layer protocol headers, 64
bytes were the invocation request and 24 bytes were the re-
turn address information. The return message consisted of
82 bytes of which 72 bytes were again transport-layer head-
ers and 12 bytes were the invocation reply.

We measured the low-level transport protocol by sending a
160-byte message and returning a 72-byte message. Such an
exchange took 24.5 ms. This means that the actual handling
of the remote invocation used only 3.4 ms (12%) of the
27.9 ms.

For comparison, a remote invocation in the Eden system
took 54 ms on a SUN 2 (and 140 ms on a VAX 11/ 750).
The major difference between the Eden implementation and
Emerald is that Emerald used only two network messages to
perform a remote invocation while Eden used four. Bennett’s
Distributed Smalltalk implementation used 136 ms for an
“empty” remote invocation [11].

11-39

Table 1: Remote Operation Timing (MicroVAX II)

Operation Time/ms
local invocation 0.019
elapsed time, remote invocation 27.9
underlying message exchange 24.5
invocation handling time 3.4

Table 2: Object Creation Timing

Creation of Global/ms ∆/ms Local/ms ∆/ms
empty object 1.06 — 0.76 —
with an initially 1.34 +0.28 0.92 +0.16
with a monitor 1.34 +0.28 0.96 +0.20
with one Integer variable 1.36 +0.30 0.96 +0.20
with one Any variable 1.37 +0.31 0.96 +0.20
with 100 Integer variables 2.41 +1.26 2.01 +1.25
with 100 Any variables 3.49 +2.43 3.07 +2.31
with one process 2.17 +1.11 1.85 +1.09

Table 3: Remote Parameter Timing

Operation Type Time/ms ∆/ms
remote invocation, no parameter 30.3 —
remote invocation, one integer parameter 31.5 + 1.2
remote invocation, local reference parameter 32.5 + 2.2
remote invocation, two local reference parameters 34.7 + 4.4
remote invocation, call-by-move parameter 35.9 + 5.6
remote invocation, call-by-visit parameter 40.3 +10.0
remote invocation, with one call-back parameter 63.5 +30.2

6.6.2 Object Mobility

Moving a simple data object took about 12 ms. This time
is less than the round-trip message time because reply mes-
sages are piggybacked on other messages.

6.6.3 Process Mobility

We measured the time taken to move an object contain-
ing a small process with six variables. This took 40 ms or
about 43% more than the simplest remote invocation. This
included sending a message consisting of about 600 bytes
of information, including object references, immediate data
for replicated objects, a stack segment, and process-control
information. The process control information and stack seg-
ment together consumed about 180 bytes.

6.6.4 Object Creation

Table 2 shows creation times for various global and lo-
cal Emerald objects. The numbers were obtained by re-
peated timings and are median values — averages do not
make sense because the timings varied considerably (up to

+50%) when storage allocation caused paging activity. The
numbers are correct to about two digits (an error of 1–2%).

In general, it took about 0.3–0.4 ms longer to create an empty
global object than an empty local object because of the
additional allocation of an object descriptor. An initially
construct added another 0.2 ms as did the presence of a
monitor (because the monitor caused an implicit initially
to be added to initialize the monitor). Creating an object
containing 100 integer variables cost an extra 1.2 ms.

Creating an object containing 100 Any variables took about
2.4 ms longer than an empty object because Any variables
were 8 bytes long while integers were 4 bytes, so twice as
much storage had to be allocated and initialized.

6.6.5 Process Creation

Creating a process took an additional 1.1 ms beyond the time
required to create its containing object. We measured two
processes that took turns calling a monitor. It took 710 µs
for one process switch, one blocking monitor entry, one

11-40

unblocking monitor exit, and two kernel calls. By executing
two CPU-bound processes and varying the size of the time
slice, we estimated the process switching time to be about
300 µs (± 5%), including the necessary Ultrixcalls to set a
timer.

6.6.6 Additional Costs for Parameters

The additional costs of adding parameters to remote invo-
cations were measured in the fall of 1988 on VAXStation
2000s, which ran slightly slower than MicroVAX IIs.

We compared the incremental cost of call by move and call
by visit with the incremental cost of call by object reference.
We performed an experiment in which an object on a source
node S invoked a remote object R and passed as an argument
a reference to an object on S. R then invoked the argument
object once. Without call by move, this caused a second
remote invocation back to S. When using call by move or
call by visit, the remote invocation was avoided because the
argument object was moved to R. The timings are shown in
Table 3.

Table 4 shows the benefit of call by move for a simple ar-
gument object containing only a few variables with a total
size of less than 100 bytes. The additional cost of call by
move over call by reference is 3.4 ms, while call by visit
adds 7.8 ms. The call-by-visit time includes sending the in-
vocation message and the argument object, performing the
remote invocation (which invokes its argument), and return-
ing the argument object with the reply. One would expect
the call-by-visit time to be approximately twice the call-by-
move time. It is actually slightly higher due to the dynamic
allocation of data structures to hold the call-by-visit control
information. Had the argument not been moved, the incre-
mental cost (of the consequent remote invocation) would
have been 31.0 ms. These measurements are a lower bound
because the cost of moving an object depends on the com-
plexity of the object and the types of the objects it references.
The lesson to take away is that call by visit is worthwhile for
small parameters, even if they are called only once.

6.6.7 Performance of Local Operations

Table 5 shows the performance of several local operations.
Integers and reals were implemented as direct objects. The
timings for primitive integer and real operations were ex-
actly the same as for comparable operations in C — which is
not surprising given that the instructions generated were the
same.

For comparison with procedural languages, a C procedure
call17 took 13.4 µs, a Concurrent Euclid procedure call took
16.4 µs, and an Emerald local invocation took 16.6 µs (i.e.,
23% longer than a C procedure call). Concurrent Euclid and
Emerald were slower because they had to make an explicit
stack overflow check on each call. C avoided this overhead
17 On a MicroVAX II using the Berkeley portable C compiler.

because UNIX used virtual memory hardware to perform
stack overflow checks at no additional per-call cost.

The “resident global invocation” time in Table 5 is for a
global object (i.e., one that potentially can move around the
network) when invoked by another object resident on the
same node. The additional 2.8 µs (above the time for a local
invocation) represents cost of the potential for distribution:
the time was spent checking whether or not the invoked
object was resident.

6.7 A Local Procedure Call Benchmark

We used Ackermann’s function as a benchmark program
because most of its execution time is due to procedure calls;
the only other operations performed are tests against zero
and integer decrement. We wrote Ackermann’s function in
Emerald and in C. The Emerald version appears below:

function Ackermann[n: Integer, m: Integer]→ [result: Integer]
if (m = 0) then

result← n+1
elseif (n = 0) then

result← self.Ackermann[1,m−1]
else

result← self.Ackermann[
self.Ackermann[n−1, m], m−1]

end if
end Ackermann

The C version was written twice: a straightforward version
and a hand-optimized version. The straightforward version
was timed when compiled both with and without the C
optimizer. We compared execution times for two pairs of
parameter values, namely (6,3) and (7,3). Table 6 shows
the timings along with the relative difference in execution
times normalized to the optimized C version. The Emerald
version ran about 50% slower than the C version. When the
C optimizer was used, the C timings improved by 12–13%.
Careful hand optimization improved the timings for C by an
additional 10%.

An analysis of the code generated by the C and Emerald
compilers revealed that the Emerald version was slower than
the C version for three reasons. First, as mentioned ear-
lier, Emerald invocations were 23% slower than C procedure
calls. Second, Emerald’s parameter-passing mechanism was
more expensive than C’s because Emerald also transfered
type information. Third, in Emerald all variables were ini-
tialized.

In 1992, Emerald was ported to the SUN SPARC architec-
ture [75]. The SUN C compiler used the SPARC register
window, while the Emerald implementation did not. As a
consequence, Emerald invocations on the SPARC were al-
most 15% faster than C procedure calls.

11-41

Table 4: Incremental Cost of Remote Invocation Parameters: elapsed time in addition to a call-by-reference invocation

Parameter Passing Mode Time/ms
empty remote invocation 30.3
call-by-move + 3.4
call-by-visit + 7.8
call-by-reference, one call-back +31.0

Table 5: Local Emerald Invocation Timing — MicroVAX II

Emerald Operation Example Time/µs
primitive integer invocation i← i + 23 0.4
primitive real invocation x← x + 23.0 3.4
local invocation localobject.no-op 16.6
resident global invocation globalobject.no-op 19.4

Table 6: Ackermann’s Function Benchmark (Time in Seconds)

Version (6,3) ∆% (7,3) ∆%
C hand optimized 3.7 −10% 14.9 −10%
C with optimizer 4.1 0% 16.6 0%
C version 4.6 +12% 18.7 +13%
Emerald version 6.6 +61% 27.7 +67%

7. Summary
Emerald is a research programming language that was de-
veloped at the University of Washington from 1983 to 1987,
and has subsequently been used extensively in teaching
and research at the Universities of Copenhagen, British
Columbia, and Arizona, at Digital Equipment Corporation,
and at Victoria University of Wellington. It was originally
implemented on DEC VAX hardware, later on the Motorola
68000-series, then on a portable virtual machine, then on
Sun SPARC and Digital Alpha, and most recently in a het-
erogeneous setting in which objects run native code but can
move between architectures. Emerald is object-based in the
sense that it supports objects but not classes or inheritance;
its distinguishing feature is support for distribution, which
is arguably more complete than that of any other language
available even now, more than 20 years later. Along the way,
Emerald also made significant strides in type theory, includ-
ing implementations of what have since become known as
F-bounded polymorphism and generic data structures.

The primary problems that Emerald sought to address were
the costs of object invocation and the coupling between the
way that an object was represented in the programming lan-
guage and the way that the object was implemented. Con-
temporary object-based distributed languages, notably Ar-
gus and the Eden Programming Language, had two notions
of object: “small objects”, which were efficiently supported

within a single address space but could not be accessed re-
motely, and “large objects”, which were accessible from
remote address spaces but were thousands of times more
costly. Emerald’s contribution was the realization, obvious
in hindsight, that these different implementations need not
show through to the source language. Instead, the Emerald
language has a single notion of object and several different
implementation styles: the most appropriate implementation
is selected by the compiler depending on how the object is
used.

The idea that the users of an object should not know (or care)
about the details of its implementation is of course no more
than information hiding, a principle that was well known
at the time that we were designing Emerald. In addition to
using the principle of information hiding in the compiler
(the user didn’t have to know how the compiler implemented
a object), we also made it available to the programmer.
We did this by thoroughly separating the notions of class
(how an object is implemented) from those of type (what
interface it presents to other objects). Emerald’s type system
is based on the notion of structural type conformity, which
rigorously specifies when an implementation of an object
satisfies the demands of a type, and also when one type
subsumes another.

Letting the compiler choose an implementation was only
possible if this did not change the semantics, so we were

11-42

forced to define the semantics abstractly. Thus, the semantics
of parameter passing cannot depend on the relative locations
of the invoker and the invoked. Emerald does include fea-
tures to control the location of objects: to move an object to a
new location, to fix and unfix an object at a specific location,
to move an object to a remote location with an invocation,
and to cause an object to visit a remote location for the dura-
tion of an invocation. Using these features does not change
the semantics of a program, but may dramatically change its
performance. Emerald also distinguishes functions (which
have no effect on the state) from more general operation in-
vocations, and immutable objects (which the implementa-
tion can replicate) from mutable objects.

Emerald’s main deficiency, viewed from the vantage-point
of today, is its lack of inheritance. Given the absence of
classes from the language itself and the decentralized imple-
mentation strategy, it was not clear how inheritance could be
incorporated. After gaining some experience with the lan-
guage, and in particular with the tedium of writing two-level
object constructors all the time, we did add classes, includ-
ing single inheritance, as “syntactic sugar” for the obvious
two-level object constructor. The resolution of inherited at-
tributes was done entirely at compile time, implying that the
text of the superclass had to be available to the compiler
when the subclass was compiled. In addition, this simple
scheme offered no support for “super” or otherwise invoking
inherited methods in the body of subclass methods: a method
or instance variable in the subclass completely redefined,
rather than just overrode, any identically named method or
variable inherited from the superclass. Rather than pursu-
ing more traditional inheritance in the language, subsequent
work looked at compile-time code reuse [89].

One issue that the Emerald implementation never addressed
was ensuring that a remote object that claimed to be of a cer-
tain type did in fact conform to that type. Type information
was present in the run-time object structures in two forms:
an object structure representing the type, which was used for
conformity checking, and the executable code, which actu-
ally implemented the operations required by the type. While
a correct Emerald compiler always guaranteed that the object
structure and the code corresponded, a malicious user on a
remote node could in principle hack a version of the com-
piler to void this guarantee, thus breaching the type security
of the whole system. We imagined overcoming this problem
by certifying the compiler and having each compiler sign its
own code, but this was never implemented.

Although Emerald’s support for remote invocation has been
widely reproduced, remote invocation has rarely been imple-
mented with such semantic transparency. Implementations
of mobile objects are still rare and languages that incorpo-
rate mobility into their semantic model rarer still, although
recently proposals have been made for incorporating mobil-
ity into Java.

Acknowledgements
This paper has taken shape over a long period, and has been
much improved by the contributions of many colleagues.
Our HOPL referees, Brent Hailpern, Doug Lee, and Barbara
Ryder, all provided useful advice. Our external referee, An-
drew Watson, along with Andrew Herbert, helped to recon-
struct the influence of the Emerald type system. Kim Bruce,
Sacha Krakowiak, Roy Levin, and Jim Waldo helped fill
in numerous details, and Michael Mahoney helped us learn
how to write history.

We thank the Danish Center for Grid Computing, Microsoft
Research Cambridge, the University of Copenhagen, and
Portland State University for their generous support while
this paper was being written.

References
[1] J. Mack Adams and Andrew P. Black. On proof rules for

monitors. Operating Systems Review, 16(2):18–27, April
1982.

[2] J. E. Allchin and M. S. McKendry. Synchronization and
recovery of actions. In Proceedings of the 2nd Symposium
on Principles of Distributed Computing, pages 31–44, New
York, NY, USA, August 1983. SIGOPS/SIGACT, ACM
Press.

[3] G. T. Almes, A. P. Black, E. D. Lazowska, and J. D. Noe.
The Eden system: A technical review. IEEE Transactions
on Software Engineering, SE11(1):43–59, January 1985.

[4] Guy T. Almes. Garbage Collection in an Object-Oriented
System. PhD thesis, Carnegie Mellon University, June 1980.

[5] Allan Thrane Andersen and Ole Høegh Hansen. Teoretiske
og praktiske forhold ved brugen af mønstre i forbindelse
med udvikling af objectorienteret software-med særlig
fokus på sammenhængen mellem mønstre og programmer-
ingssprog. M.Sc. thesis, DIKU, University of Copenhagen,
1999.

[6] ANSI. Draft American National Standard for Information
Systems — Programming Languages — Smalltalk. ANSI,
December 1997. Revision 1.9.

[7] Ken Arnold, Bryan O’Sullivan, Robert W. Scheifler, Jim
Waldo, and Ann Wollrath. The Jini Specification. Addison
Wesley, 1999.

[8] J. W. Backus, F. L. Bauer, J. Green, C. Katz, J. McCarthy,
A. J. Perlis, H. Rutishauser, K. Samelson, B. Vauquois, J. H.
Wegstein, A. van Wijngaarden, and M. Woodger. Report on
the algorithmic language Algol 60. Communications of the
ACM, 3(5):299–314, 1960.

[9] L. Frank Baum. The Wonderful Wizard of Oz. George M.
Hill, Chicago, 1900.

[10] Kent Beck. Extreme Programming Explained: Embrace
Change. Addison Wesley, 2000.

[11] John K. Bennett. The design and implementation of
distributed Smalltalk. In Norman K. Meyrowitz, editor,
Proceedings of the Second ACM Conf. on Object-Oriented

11-43

Programming Systems, Languages and Applications, pages
318–330, New York, NY, USA, October 1987. ACM Press.
Published as SIGPLAN Notices22(12), December 1987.

[12] Andrew Birrell, Greg Nelson, Susan Owicki, and Edward
Wobber. Network objects. In Proceedings of the 14th ACM
Symposium on Operating Systems Principles, pages 217–
230, Asheville, NC (USA), December 1993. ACM Press.

[13] Andrew Birrell, Greg Nelson, Susan Owicki, and Edward
Wobber. Network Objects. Technical Report 115, Digital
Systems Research Center, Palo Alto, CA, December 1994.

[14] Andrew D. Birrell and Bruce Jay Nelson. Implementing
remote procedure calls. ACM Transactions on Computer
Systems, 2(1):39–59, February 1984.

[15] Graham M. Birtwistle, Ole-Johan Dahl, Bjorn Myhrtag,
and Kristen Nygaard. Simula BEGIN. Auerbach Press,
Philadelphia, 1973.

[16] Andrew Black, Larry Carter, Norman Hutchinson, Eric
Jul, and Henry M. Levy. Distribution and abstract types
in Emerald. Technical Report 86–02–04, Department
of Computer Science, University of Washington, Seattle,
February 1986.

[17] Andrew Black, Norman Hutchinson, Eric Jul, and Henry
Levy. Object structure in the Emerald system. In
Norman K. Meyrowitz, editor, Proceedings of the First ACM
Conference on Object-Oriented Programming Systems,
Languages and Applications, pages 78–86. ACM, October
1986. Published in SIGPLAN Notices, 21(11), November
1986.

[18] Andrew Black, Norman Hutchinson, Eric Jul, Henry Levy,
and Larry Carter. Distribution and abstract data types in
Emerald. IEEE Transactions on Software Engineering,
SE-13(1):65–76, January 1987.

[19] Andrew Black, Norman Hutchinson, Eric Jul, and Henry M.
Levy. Distribution and abstract types in Emerald. Technical
Report 85–08–05, Department of Computer Science,
University of Washington, Seattle, August 1985.

[20] Andrew P. Black. Exception Handling: the Case Against.
D.Phil thesis, University of Oxford, January 1982. http:
//web.cecs.pdx.edu/∼black/publications/Black%20D.
%20Phil%20Thesis.pdf.

[21] Andrew P. Black. The Eden programming language.
Technical Report TR 85-09–01, Department of Computer
Science, University of Washington, September 1985.

[22] Andrew P. Black. Supporting distributed applications:
experience with Eden. In SOSP ’85: Proceedings of the
tenth ACM symposium on Operating systems principles,
pages 181–193, New York, NY, USA, 1985. ACM Press.

[23] Andrew P. Black. Object identity. In Proc. of the Third
Int’l Workshop on Object Orientation in Operating Systems
(IWOOOS’93), Asheville, NC, December 1993. IEEE
Computer Society Press.

[24] Andrew P. Black and Yeshauahu Artsy. Implementing
location independent invocation. In Proc. 9th International
Conference on Distributed Computing Systems, pages 550–
559. IEEE Computer Society Press, June 1989.

[25] Andrew P. Black and Yeshauahu Artsy. Implementing
location independent invocation. IEEE Transactions on
Parallel and Distributed Syst., 1(1):107–119, 1990.

[26] Andrew P. Black and Norman Hutchinson. Typechecking
polymorphism in Emerald. Technical Report CRL 91/1,
Digital Cambridge Research Laboratory, One Kendall
Square, Building 700, Cambridge, MA 02139, December
1990.

[27] Andrew P. Black and Mark P. Immel. Encapsulating
plurality. In Oscar Nierstrasz, editor, Proceedings ECOOP
’93, volume 707 of Lecture Notes in Computer Science,
pages 57–79, Kaiserslautern, Germany, July 1993. Springer-
Verlag.

[28] Toby Bloom. Immutable groupings. CLU Design Note 61,
MIT—Project MAC, August 1976.

[29] Per Brinch Hansen. The programming language Concurrent
Pascal. IEEE Transactions on Software Engineering,
1(2):199–207, June 1975.

[30] Per Brinch Hansen. The Architecture of Concurrent Pro-
gramming. Prentice Hall Series in Automatic Computation.
Prentice Hall Inc., Englewood Cliffs, New Jersey, 1977.

[31] Andrei Z. Broder. Some applications of Rabin’s fingerprint-
ing method. In Renato Capocelli, Alfredo De Santis, and
Ugo Vaccaro, editors, Sequences II: Methods in Communi-
cations, Security, and Computer Science, pages 143–152.
Springer-Verlag, 1993.

[32] Kim B. Bruce. Safe type checking in a statically-typed
object-oriented programming language. In Proceedings of
the 20th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, pages 285–298, Charleston,
South Carolina, United States, 1993. ACM Press.

[33] Kim B. Bruce, Adrian Fiech, and Leaf Petersen. Subtyping
is not a good “match” for object oriented languages. In
Mehmet Aksit and Satoshi Matsuoka, editors, Proceedings
ECOOP ’97, volume 1241 of Lecture Notes in Computer
Science, pages 104–127, Jyväskylä, Finland, June 1997.
Springer-Verlag.

[34] Peter S. Canning, William Cook, Walter L. Hill, John C.
Mitchell, and Walter G. Olthoff. F-bounded polymorphism
for object-oriented programming. In Proceedings of
the ACM Conference on Functional Programming and
Computer Architecture, pages 273–280, September 1989.

[35] Luca Cardelli. A semantics of multiple inheritance. In
Gilles Kahn, David B. MacQueen, and Gordon D. Plotkin,
editors, Semantics of Data Types, volume 173 of Lecture
Notes in Computer Science, pages 51–67. Springer, 1984.

[36] Luca Cardelli. Structural subtyping and the notion of
power type. In Proceedings of the Fifteenth Symposium
on Principles of Programming Languages, pages 70–79,
San Diego, CA, January 1988. ACM.

[37] Luca Cardelli. A language with distributed scope. Comput-
ing Systems, 8(1):27–59, 1995.

[38] Luca Cardelli, Jim Donahue, Lucille Glassman, Mick
Jordan, Bill Kalsow, and Greg Nelson. Modula-3 language

11-44

http://web.cecs.pdx.edu/~black/publications/Black%20D.%20Phil%20Thesis.pdf
http://web.cecs.pdx.edu/~black/publications/Black%20D.%20Phil%20Thesis.pdf
http://web.cecs.pdx.edu/~black/publications/Black%20D.%20Phil%20Thesis.pdf

definition. ACM SIGPLAN Notices, 27(8):15–42, August
1992.

[39] Luca Cardelli, Jim Donahue, Mick Jordan, Bill Kalsow, and
Greg Nelson. The Modula-3 type system. In Proceedings
of the Sixteenth Symposium on Principles of Programming
Languages, pages 202–212, Austin, Texas, United States,
January 1989. ACM Press.

[40] Luca Cardelli and Peter Wegner. On understanding types,
data abstraction, and polymorphism. Computing Surveys,
17(4):471–522, December 1985.

[41] Ole-Johan Dahl, Bjørn Myhrhaug, and Kristen Nygaard.
Common base language. Technical Report S-22, Norwegian
Computing Center, October 1970.

[42] Wolfgang De Meuter. Move Considered Harmful: A
Language Design Approach to Mobility and Distribution
for Open Networks. PhD thesis, Vrije Universiteit Brussel,
September 2004.

[43] A. Demers and J. Donahue. Revised report on Russell.
Technical Report TR 79-389, Computer Science Depart-
ment, Cornell University, 1979.

[44] James Donahue and Alan Demers. Data types are val-
ues. ACM Transactions on Programming Languages and
Systems, 7(3):426–445, July 1985.

[45] Bradley M. Duska. Enforcing crash failure semantics in
distributed systems with fine-grained object mobility. M.Sc.
thesis, Computer Science Department, University of British
Columbia, August 1998.

[46] International Organization for Standardization. Information
technology — open distributed processing — reference
model. International Standard 10746, ISO/IEC, 1998.

[47] Arthur Neal Glew. Type systems in object oriented
programming languages. B.sc. (hons) thesis, Victoria
University of Wellington, 1993.

[48] Xiaomei Han. Memory reclamation in Emerald — an
object-oriented programming language. M.Sc. thesis,
Computer Science Department, University of British
Columbia, June 1994.

[49] C.A.R. Hoare. Monitors: An operating system structuring
concept. Communications of the ACM, 17(10):549–557,
October 1974.

[50] R. C. Holt. A short introduction to Concurrent Euclid.
SIGPLAN Notices, 17(5):60–79, May 1982.

[51] R. C. Holt. Concurrent Euclid, the UNIX System, and
TUNIS. Addison-Wesley Publishing Company, 1983.

[52] Urs Hölzle, Craig Chambers, and David Ungar. Optimizing
dynamically-typed object-oriented languages with poly-
morphic inline caches. In P. America, editor, Proceedings
ECOOP ’91, volume 512 of Lecture Notes in Computer
Science, pages 21–38, Geneva, Switzerland, July 1991.
Springer-Verlag.

[53] Norm Hutchinson and Eric Jul. The handling of unix
signals in the concurrent euclid kernel. Eden memo, Dept.
of Computer Science, University of Washington, 1984.

[54] Christian Damsgaard Jensen. Fine-grained object based

load distribution — an experiment with load distribution in
guide-2. M.Sc. thesis, DIKU, University of Copenhagen,
1995.

[55] Lars Rye Jeppesen and Søren Frøkjær Thomsen. Gener-
ational, distributed garbage collection for emerald. M.Sc.
thesis, DIKU, University of Copenhagen, 2002.

[56] Nick Jørding and Flemming Stig Andreasen. A distributed
wide area name service for an object oriented programming
system. M.Sc. thesis, DIKU, University of Copenhagen,
1994.

[57] Eric Jul. Structuring of dedicated concurrent programs
using adaptable I/O interfaces. Master’s thesis, DIKU, De-
partment of Computer Science, University of Copenhagen,
Copenhagen, Denmark, December 1980. Technical Report
no. 82/3.

[58] Eric Jul. Object Mobility in a Distributed Object-Oriented
System. Ph.D. thesis, Department of Computer Science,
University of Washington, Seattle, December 1988.

[59] Eric Jul, Henry Levy, Norman Hutchinson, and Andrew
Black. Fine-grained mobility in the Emerald system. ACM
Transactions on Computer Systems, 6(1):109–133, February
1988.

[60] Niels Christian Juul. Comprehensive, Concurrent and
Robust Garbage Collection in the Distributed, Object-
Based System Emerald. PhD thesis, DIKU, Department
of Computer Science, University of Copenhagen, February
1993. DIKU Report 93/1.

[61] Niels Christian Juul and Eric Jul. Comprehensive and robust
garbage collection in a distributed system. In International
Workshop on Memory Management (IWMM), volume 637
of Lecture Notes in Computer Science, pages 103–115,
1992.

[62] Setrag N. Khoshafian and George P. Copeland. Object
identity. In Norman K. Meyrowitz, editor, Proceedings of
the First ACM Conf. on Object-Oriented Programming
Systems, Languages and Applications, pages 406–416,
Portland, Oregon, October 1986. Published as SIGPLAN
Notices 21(11), November 1986.

[63] Jan Kølander. Implementation af osi-protokoller i det
distribuerede system emerald vha. isode. M.Sc. thesis,
DIKU, University of Copenhagen, 1994.

[64] B. W. Lampson, J. G. Mitchell, and E. H. Satterthwaite. On
the transfer of control between contexts. In Lecture Notes in
Computer Science: Programming Symposium, volume 19,
pages 181–203. Springer-Verlag, 1974.

[65] Niels Elgaard Larsen. An object-oriented database in
emerald. M.Sc. thesis, DIKU, University of Copenhagen,
1992.

[66] Niels Elgaard Larsen. Emerald Database — Integrating
Transaction, Queries, and Method Indexing into a system
based on Mobile Objects. PhD thesis, DIKU, Department
of Computer Science, University of Copenhagen, February
2006.

[67] Edward D. Lazowska, Henry M. Levy, Guy T. Almes,

11-45

Michael J. Fischer, Robert J. Fowler, and Stephen C. Vestal.
The architecture of the Eden system. In Proceedings of the
Eighth ACM Symposium on Operating Systems Principles,
pages 148–159, Pacific Grove, California, 1981. ACM
Press.

[68] Morten Jes Lehrmann. Load distribution in Emerald — an
experiment. M.Sc. thesis, DIKU, University of Copenhagen,
1994.

[69] Hank Levy, Norm Hutchinson, and Eric Jul. Getting to Oz,
April 1984. Included as an appendix to this article.

[70] Henry M. Levy. Capability-Based Computer Systems.
Digital Press, 1984.

[71] Barbara Liskov. Distributed programming in Argus.
Communications of the ACM, 31(3):300–312, March 1988.

[72] Barbara Liskov. A history of CLU. In Thomas A. Bergin
and Richard G. Gibson, editors, History of Programming
Languages, chapter 10, pages 471–510. ACM Press, New
York, NY, USA, 1996.

[73] Barbara Liskov, Alan Snyder, Robert Atkinson, and Craig
Schaffert. Abstraction mechanisms in CLU. Communica-
tions of the ACM, 20(8):564–576, August 1977.

[74] Gus Lopez, Bjorn Freeman-Benson, and Alan Born-
ing. Constraints and object identity. In M. Tokoro and
R. Pareschi, editors, Proceedings ECOOP ’94, volume 821
of Lecture Notes in Computer Science, pages 260–279,
Bologna, Italy, July 1994. Springer-Verlag.

[75] Jacob Marquard. Porting emerald to a sparc. M.Sc. thesis,
DIKU, University of Copenhagen, 1992.

[76] Robert M. Metcalfe and David R. Boggs. Ethernet:
distributed packet switching for local computer networks.
Communications of the ACM, 19(7):395–404, July 1976.

[77] Albert R. Meyer and Mark B. Reinhold. ‘Type’ is not a
type: Preliminary report. In Proceedings of the Thirteenth
Symposium on Principles of Programming Languages,
pages 287–295, St. Petersburg, January 1986. ACM.

[78] Jeppe Damkjær Nielsen. Paradigms for the design of
distributed operating systems. M.Sc. thesis, DIKU,
University of Copenhagen, 1995.

[79] E. Organick. A Programmer’s View of the Intel 432 System.
McGraw-Hill, 1983.

[80] Dimokritos Michael Papadopoulos and Kenneth Folmer-
Petersen. Porting the LAN-based distributed system
Emerald to a WAN. Master’s thesis, DIKU, Department of
Computer Science, University of Copenhagen, Copenhagen,
Denmark, 1993.

[81] P. Pardyak. Group communication in a distributed object-
based system. Master’s thesis, University of Mining and
Metallurgy, Krakow, Poland, September 1992. Technical
Report TR-92-1.

[82] P. Pardyak. Group communication in an object-based
environment. In 1992 Int. Workshop on Object Orientation
in Operating Systems, pages 106–116, Dourdan, France,
1992. IEEE Computer Society Press.

[83] P. Pardyak and B. Bershad. A group structuring mechanism

for a distributed object-oriented language. In Proc. of the
14th International Conf. on Distributed Computing Systems,
pages 312–319. IEEE Computer Society Press, July 1994.

[84] Przemyslaw Pardyak and Krzysztof Zielinski. Emerald —
jezyk i system rozproszonego programowania obiektowego
(Emerald — a language and system for distributed object-
oriented programming). In Srodowiska Programowania
Rozproszonego w Sieciach Komputerowych, (Distributed
Programming Environments in Computer Networks). Ksie-
garnia Akademicka, Krakow, 1994.

[85] David L. Parnas. On the criteria to be used in decomposing
systems into modules. Communications of the ACM,
15(12):1053–1058, December 1972.

[86] Margaret A. S. Petrus. Service migration in a gigabit
network. M.Sc. thesis, Computer Science Department,
University of British Columbia, August 1998.

[87] Simon Pohlen. Maintainable concurrent software. M.Sc.
thesis, Victoria University of Wellington, April 1997.

[88] Michael O. Rabin. Fingerprinting by random polynomi-
als. Technical Report TR-15-81, Center for Research in
Computing Technology, Harvard University, 1981.

[89] Rajendra K. Raj and Henry M. Levy. A compositional
model for software reuse. In S. Cook, editor, Proceedings
ECOOP ’89, pages 3–24, Nottingham, July 1989. Cam-
bridge University Press.

[90] Rajendra K. Raj, Ewan Tempero, Henry M. Levy, Andrew P.
Black, Norman C. Hutchinson, and Eric Jul. Emerald:
a general-purpose programming language. Software —
Practice and Experience, 21(1):91–118, 1991.

[91] Rajendra Krishna Raj. Composition and reuse in object-
oriented languages. PhD thesis, Department of Computer
Science, University of Washington, Seattle, WA, USA,
1991.

[92] Craig Schaffert. Immutable groupings. CLU Design
Note 47, MIT—Project MAC, April 1975.

[93] Bodil Schrøder. Mik — et korutineorienteret styresystem til
en mikrodatamat. DIKU Blue Report 76/1, DIKU, Dept. of
Computer Science, 1976.

[94] Marc Shapiro, Yvon Gourhant, Sabine Habert, Laurence
Mosseri, Michel Ruffin, and Céline Valot. SOS: An object-
oriented operating system — assessment and perspectives.
Computing Systems, 2(4):287–338, December 1989.

[95] Mark Sherman, Andy Hisgen, David Alex Lamb, and
Jonathan Rosenberg. An Ada code generator for VAX
11/780 with Unix. In Proceeding of the ACM-SIGPLAN
symposium on Ada programming language, pages 91–100,
Boston, Massachusetts, 1980. ACM Press.

[96] Sys Sidenius and Eric Jul. K8080 — Flytning af Concurrent
Pascal til Intel 8080. Technical Report 79/9, DIKU, Dept.
of Computer Science, University of Copenhagen, 1979.

[97] Bjarne Steensgaard and Eric Jul. Object and native code
thread mobility among heterogeneous computers. In SOSP,
pages 68–78, 1995.

[98] Joseph E. Stoy. Denotational Semantics: The Scott-Strachey

11-46

Approach to Programming Language Theory. MIT Press,
1977.

[99] Robert E. Strom, David F. Bacon, Arthur P. Goldberg, Andy
Lowry, Daniel M. Yellin, and Shaula Alexander Yemini.
Hermes: A Language for Distributed Computing. Prentice
Hall, 1991.

[100] Bjarne Stroustrup. The history of C++: 1979–1991. In
Proc. ACM History of Programming Languages Conference
(HOPL-2). ACM Press, March 1993.

[101] Andrew Tanenbaum. Computer Networks. Prentice-Hall,
first edition, 1980.

[102] David M. Ungar. The Design And Evaluation Of A High
Performance SMALLTALK System. PhD thesis, University
of California at Berkeley, Berkeley, CA, USA, 1986.

[103] Adriaan van Wijngaarden, B.J. Mailloux, J.E.L. Peck,
C.H.A. Koster, M. Sintoff, C.H. Linsey, L.G.L.T. Meertens,
and R.G. Fisker. Revised Report on the Algorithmic
Language Algol 68. Springer Verlag, 1976.

[104] Jim Waldo, Geoff Wyant, Ann Wollrath, and Sam Kendall.

A note on distributed computing. Technical Report SMLI
TR-94-29, Sun Microsystems Labs, November 1994.

[105] Timothy Walsh. The Taxy Mobility System. PhD thesis,
Trinity College Dublin, June 2006.

[106] Andrew J. Watson. Advanced networked systems architec-
ture — an application programmer’s introduction to the ar-
chitecture. Technical Report TR.017.00, APM Ltd., Novem-
ber 1991.

[107] Wikipedia. Duck typing, September 2006. http://en.
wikipedia.org/wiki/Duck typing.

[108] W. Wulf, E. Cohen, W. Corwin, A. Jones, R. Levin,
C. Pierson, and F. Pollack. Hydra: the kernel of a
multiprocessor operating system. Communications of the
ACM, 17(6):337–345, June 1974.

A. Appendix: Historical Documents
The Getting to Oz document is reproduced on the following
pages. This and other historical documents are available at
http://www.emeraldprogramminglanguage.org.

11-47

http://en.wikipedia.org/wiki/Duck_typing
http://en.wikipedia.org/wiki/Duck_typing
http://www.emeraldprogramminglanguage.org

Getting to Oz

Hank Levy, Norm Hutchinson, Eric Jul
April 27, 1984

For the past several months, the three of us have been discussing the possibility of building
a new object-based system. Carl Binding frequently attended our meetings, and occasionally
Guy Almes, Andrew Black, or Alan Borning sat in also. This system, called Oz, is an
outgrowth of our experience with the Eden system. In this memo we try to capture the
background that led to our current thinking on Oz. This memo is not a specification but a
brief summary of the issues discussed in our meetings.

Starting in winter term, 1984, we began to examine some of the strengths and weaknesses
of Eden. Several of the senior Eden graduate students had been experimenting with
improving Eden's performance. Although they were able to significantly decrease Eden
invocation costs, performance was still far from acceptable. Certainly some of the
performance problem was due to Eden's current invocation semantics, some was due to
implementation of invocation, and some was due to the fact that Eden is built on top of the
Unix system.

In addition to performance problems, Eden suffered from the lack of a clean interface.
That is, the Eden programmer needs to know about Eden, about EPL (Eden Programming
Language -- an preprocessor-implemented extension to Concurrent Euclid), and about Unix
to build Eden applications. Also, there was at that time no Eden user interface. Users built
Eden applications with the standard Unix command system.

This combination of issues led us to consider building a better integrated system from
scratch. Performance was at the top of our priorities. To date, object systems have a
reputation of being slow and we don't think this is inherently due to their support for objects.
We want to build a distributed object-based system with performance comparable to good
message passing systems. To do this, we would have to build a low-level, bare-machine
kernel and compiler support. In addition, we would like our system to have an object-based
user interface as well as an object-based programming interface. Thus, users should be able
to create and manipulate objects from a display.

Our first discussions concentrated on low-level kernel issues. In the Eden system, there are
two types of processes and two levels of scheduling. Applications written in EPL contain
multiple lightweight processes that coexist within a single Unix address space. These
processes are scheduled by a kernel running within that address space. This kernel gains
control through special checks compiled into the application. At the next level, multiple
address spaces (Unix processes) are scheduled by the Unix system.

Our first decision was that our system would provide both lightweight processes that share

11-48

11-49

11-50

11-51

