Maintaining the Time in a Distributed System

Keith Marzullo
Stanford University Computer Systems Laboratory
Xerox Systems Development Department

Susan OQwick:
Stanford University Computer Systems Laboratory

1 Introduction

To a client of a loosely-coupled distributed system,
one of the simplest services is a time service. Usually
the client simply requests the time from any subset of
the time servers making up the service, and uses the
first reply. Issues that need to be considered in other
services, such as connection establishment or client
authentication, need not be considered in a time
service. The simplicity of th..~ int¢1action, however,
misrepresents the complexity of iinplementing such a
service.

1.1 Time Services and Clock Synchronization

A time service algorithm is essentially an algorithm
that keeps a collection of clocks locally monotonic,
svnchronized, and adequately accurate with respect
to some time standard (such as Greenwich Mean
Time). The relative importance of these properties
depends on for what purpose the service is used. For
example, if the service is used for measurement of
time in distributed experiments, absolute accuracy
and synchronization are not important 1ssues < iong
as the relative accuracies and otfsets of the ciocks are
known [Mills 81]. Accuracy is not important if the
service is only used to order events occuring within
the distributed system. In a system wherc events
both internal and external to the distributed svstem
are ordered, requirements for synchronization and
accuracy depend on the behavior of the »ystem. such
as the rate at which objects can migrate rom oune
clock's domain to another.

Reprinted with permission from the Proceedings
of the Second ACM Symposium on Principles
of Distributed Computing.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1983 ACM 0-89791-110-5/83/008/0295 $00.75

44

The tvpe of distributed system in which we are
interested can be represented by the system in which
we have performed our experimentation, the Xerox
Research Internet [Boggs 80]. This distributed
system contains thousands of personal workstations
spread across the United States, Canada and Europe.
Located throughout the system are hundreds of
"public” processors running various system services
such as routing, filing, authentication, printing,
naming and electronic mail. Since a time server does
not require much in the way of special hardware,
most of these servers also act as time servers. Of
course, there is no reason to limit time servers to
these public machines Any user who requires it
should be able to convert her workstation into a time
server. Objects do not move rapidly in this system, so
an adequate precision is in the order of tens of
seconds.

This type of system imposes certain prerequisites on
the time service. The set of servers making up the
service is not stable, in that time servers can
frequently join or leave the service. The clocks of the
servers need not be uniformly accurate. A clock may
fail in many ways, such as by stopping, racing ahead,
or refusing to change its value when reset. In this
paper, we will assume that clocks may have varying
accuracies, but are usually stable Failing clocks will
not be dealt with The work in this paper is extended
to deal with failing clocksin i Mat sullo 83].

We will consider the problem ot keeping a set of
clocks synchronized and correct We will not require
clocks to be locally monaton o that clocks may be
freely set backward a~ well as forward. A client.
however, may require that the local clock is
monotonic. Such a clock may be implemented based
on a nonmonotonic clock by temporarily running the
monotonic clock more slowlv when the nonmonotonic
clock is set backwards

1.2 Synchronization Functions
There has been much interest in synchronization in
distributed systems, but not much research into time
services Leslie Lamport has developed algorithms
which keep clocks svnchronized [L.amport 78, 82]. but
maintain precision by assuming accurate clocks
Other svstems which keep accurate clocks
synchronized to an external ~tandard under extreme
conditions have been deviloped [Ellingston 73], but
these assume a different svstem configuration and
error model then we do

The problem ot a set of processe- keeping their clocks
svnchronized can be simply characterized as each

process i independently performing a calculation
across a distributed set of data:

C«F(IC B, C ,..C »
{ I.1 {2 lk

This breaks the problem into two problems:
specifying an appropriate way to collect the
distributed data, and specifying a4 synchronization
function £. In this paper, we will assume that the
distributed data is collected by some simple method
such as directed broadcasting [Boggs 82]. and will
concentrate on the specification of a synchronization

function.

In the terms of this characterization, several
synchronization functions have been specified by
others. A simple function that preserves
monotonicity is the maximum value of the clocks
[Lamport 78]. The median clock value and the mean
value of the clocks have also been used to specify very
fault-tolerant clock synchronization algorithms
[Lamport 82]. Our work differs from these in our
assumptions on the properties of the clocks and the
use of the time service. We will be concerned with the
amount of synchronization a clock achieves with a
time standard as well as the other clocks in the time
service.

2 Clocks and Maximum Error
2.1 Properties of Clocks

A clock C(¢) may be characterized as a function that
maps real time to clock time. [t is continuous between
the times it is reset. A perfect clock (or a standard) is
one in whigh C(¢) = ¢ for an appropriate definition of
i. A clock is correct at time ¢ if its value C (£g) is to. A
clock is accurate at time {g if its first derivative is one
second per second. A clock is stable at time ¢y if its
second derivative is zero. These. properties are all
defined in terms of a perfect clock, in that a perfect
clock is correct, accurate and stable.

[t is physically impossible to construct a time service
that can keep a collection of clocks correct with some
standard unless there is communication between the
system and the standard. A metric for comparing
time service algorithms is the rate at which the error
grows in the service. In a system where the relative
accuracies of the clocks ‘are known, an algorithm
should be able to keep the service as accurate as its
most accurate clock. The only guarantee any
algorithm can make is that the servers will maintain
a mutually consistent time.

2.2 Maximum Error

In an environment where some clocks are
significantly more accurate than others, it is
convenient in the construction and analysis of a
synchronization function to augment the clock values
with some indication of their accuracy. Since a
primary concern is maintaining the correctness of the
clocks in the service, a convenient error measure is
an upper bound on the error in the clock. A server
that responds with a time 3:01 and a maximum error
of 0:02 asserts that if all of the information it
possesses is correct, the correct time must lie in the
interval [2:59 .. 3:03]. Conversely, if a server responds
at time ¢ to a time request with the pair <C;(?),
E(8)>, the server’s clock is correct if the correct time
lies in the interval [C;(¢8) -~ E(8) .. C{Y+ E(D).

This formulation can be viewed as having servers
respond with intervals of time rather than points.
Figure 1 shows these intervals for three time servers
{S1, So, S3} at three different times. The horizontal

|~ > C1tEy
|
le—t>|C2 1B,
1
l: J: :{CaiEg
< > Ca 16,

%]
~
i+
&
)

|
--3-

time m—

Figure 1
Growth of Maximum Errors

direction is the real time axis with the correct time
indicated by a dashed line. The leading edge of an
interval 1s the edge C,+ E;, and the trailing edge is
the edge C; = E;. The clocks of the three servers are all

45

correct. As the system runs (the vertical axis), the
individual intervals both grow and shift with respect
to the correct time.

A time server must be able to calculate a bound on its
maximum error. In the case of continuous clocks,
there are three sources of error:

> The error the clock inherits when it is reset

> The delay between when a clock is read and
when another clock is set to this value.

> The deterioration in the time maintained by a
clock between resets.

Since the time server is only calculating an upper
bound on the error, the unknown component in the
delay may be safely estimated by measuring the time
between sending a time request and receiving the
reply. In this paper, this delay is assumed to be
nondeterministic and bounded by & The symbol o;
will be used to denote the amount of time from when
server S; sends a time request to server S; and when
Sj receives the request, and p; to denote the amount of
time from when server S; sends the reply to server S;
and when S; receives this reply. The minimum
message delay will be assumed to be zero. The two
algorithms presented here can easily be extended to
take into account nonzero minimum message delay
times.

To estimate the deterioration, the server must have
an upper bound on the inaccuracy of the clock. will be
acclompished by assuming that the clock has a
known maximum drift rate §, such that

dC () |
— <5
dt | t

If C;(¢) is continuous over the range {Hs¢=sfy+ 4, the
above relation may be rearranged and integrated:

Ciltg) +A =8, A<Ctg+A)<C (L) +A+8;A

The deterioration of a server’s clock can be estimated
by augmenting its error by $8; if its clock has not been
reset for s seconds. In this paper, §, will be assumed to
be small enough to ignore terms of order 8,2

2.3 Consistency of a Time Service

Having a clock report its maximum error also allows
a precise definition of the consistency ot a time
service. If one server responds with a time of 3:01 and
an error of 0:02, and another server responds with a
time of 3:06 and an error of 0:02, at least one of them

46

must be wrong, since the correct time cannot lie in
both of these intervals. Correspondingly, a time
service is consistent if the intersection of the intervals
defined by all of the servers is non-empty. In terms of
the values maintained by a time server, two servers
are consistant at time £g if

|C o) — Cj(to)! =E(ty)+ Ej(t())

Consistency is a weaker condition than correctness.
As will be proven later, the algorithms in this paper
maintain correctness under the assumption that each
clock has a known valid upper bound on its drift rate.
In an actual service, these valid bounds may not be
known for all of the clocks, which can lead to an
incorrect service. Since there is no perfect clock in the
system, an algorithm implementing the service can
not check to see if the clocks are remaining correct:
however, it can check to see if the clocks are
remaining consistent.

Minimization of the Maximum Erroras a
Synchronization Function

3

Given that a time server reports its maximum error,
a client of the time service could collect a set of times
and use the response with the smallest error rather
than the first reply it receives. This suggests a
synchronization function that chooses the time with
the smallest maximum error. Define a graph in
which time servers are nodes and communication
paths are edges. We assume this graph is connected
and define an algorithm in which each server
periodically synchronizes with the neighbor that has
the smallest maximum error. This can be expressed
in two rules:

MM-1: A time server S; maintains a clock C;,
the time when last reset r;, and an
inherited error g;. If S, receives a time
request at time ¢, it responds with the
pair [C (), E,(8)] where

Ef(y=¢g;+(Ci(t) - r)j;

and C;(2) is the value of the clock C, at
time ¢

Each time server sends a time request
to its neighbors at least once every ¢
seconds. Let ¢ be the time at which §;
sends a request to S; and &'; be the
time as measured by C; between S;
sending the request and receiving the
response. Any reply that s
inconsistent with S, is ignored. When
a consistent reply is received from §;,
the following predicate is evaluated:

MM-2:

E +(1+8)E<E
J 7] [

If this predicate is true, S; sets
g;E;j+(1+8)8), C;~C;and r,«C,

The first rule describes how a time server behaves
when asked the time, and the second rule how it
synchronizes with its neighbors. We require this
algorithm to preserve correctness (and therefore,
consistency). That it does so is proven by the
following theorem:

Theorem 1 If all of the §; are valid upper bounds
on the drift rates of the clocks C;, then an initially
correct time service running algorithm MM will
remaincorrect.

Proof. This proof will require the following
property of the error of a server that has not been
reset:

Lemma 1 If time server S; is not reset over the
interval tg<t<ty+ A, then E;(¢g+ d) = E(¢9) +5;4

Proof. Since S, has not been reset, the values of ¢;
and r; are the same at ¢y and to + &. From rule MM-1,

E(to+ A) — E(tg) =8(Ci(tg + A) — Ci(t))

The lemma follows from the definition of § and
dropping the term 6,~2A. B

Theorem 1 will be proven by showing that no
individual server can become incorrect. First, rule
MM-1 will be shown to preserve correctness. Assume
that the service is correct at time ¢, and that server
S, does not reset over the interval fg <t =<ty +A:

Ciltg+ M) —E (tg+8)=C{tg) — Elt) + A
[definition of and lemma I]
Cltg)~Efltn) +A=l+A
[hypothesis and definition of correct|
Cltg+ ANV +E (tg+2) =C (to) + Efltg) + 2
[definition of § and lemma 1|

47

Cilig)+ E{tp)+A=fh+A
[Rypothesis and definition of correct)]

Combining the above inequalities gives
Cilto+ M) —Elto+D)<tp+A<Ciltg+ D)+ E g+ D)

We also need to show that rule MM-2 also preserves
correctness. Assume that S, sends a time request to S,
at time ¢y, and at time ¢y +g; time server S; responds
with the correct interval <C(¢y+0)), Ej{{p+0;)>. Let
the delay in receiving the reply be §; as measured by a
perfect clock and & as measured by C,. If §; is reset
using this value, then':

Efto+&+0=E(to+0a)+(1+8)8; [rule MM-2]
(1=8),;<E,;=(1+8)¢; [definition of 8} (1)
gives (after

Combining these two inequalities

dropping a £j852 term)

Efto+o)+§=
Eito+§+0=Ej(tp+0))+(1+25,)§, (2)
Ci(t()+f,j+0)=Cj(t()+0J‘) [rule MM-2] (3)
Ci(t0+€j+0)—Ei(to+5,j+0)]
=Cjltg+0)—Ejlitg+0)) - & [equations 2 and 3|
Cito+0)—Efto+o)=to+a
(ﬁzypothesis and,deﬁnition of correct]

Since §; is positive and 0=g;<{, the last two
equations give the condition that the lower bound of
the resulting interval of S, is correct:

Ciltg+&+0)~E((p+§+ 0=t +§;

Ci(t0+§J+0)+E,'(t0+£,j+0) '
=Cty+0) +Ejltg+0)+§; lequations 2 and 3]
Cj(t0+0j) +Ej(t0+0j)+€j2t()+0j+£j
[Avpothesis and definition of correct]

Since o; is positive, the last two equations give the
condition that the upper bound of the resulting
interval of S, is correct:

Cit +§j+0)+Ei(t0+§]+0).>_t0+€j

O

The maximum error of any clock in a fully-connected
service running algorithm MM will be equal to the
smallest error in the system plus any -error
accumulated during or after the last reset. A more
surprising ~ property - is that the resulting
synchronization of the clocks is not very good. This is

“In this paper, lim Flx+a) is written as F(x = 0)
a—-»1t0 '

because the algorithm cannot guarantee that
different servers will pick the same server as having
the smallest error. They remain relatively well
synchronized only because the clocks which possess
the smallest errors are consistent. These claims are
proven as theorems 2 and 3 below:

Theorem 2 If all of the &, are accurate upper
bounds on the absolute value of the drift rates of the
clocks C;, then in a fully-connected time service S
running algorithm MM in which (VS;€S)[0=<8§,;< 1],
the error in any server will be bounded by

Ei(t)<EM(t)+£+8i(C+2£)

where Ep(f) is the smallest error in the service at
time ¢.

Proof: For this proof we will assume that a time
server answers its own request with zero delay. Since
this self-reply satisfies the predicate in rule MM 2,
there will always be at least one reply that satisfies
MM-2. This reply will not change the value of C, or
E;, so the behavior of a service under this assumption
should not be different than one in which there are no
self-replies.
Lemma 2 E(tg+ D) E (L)) + 6,4

Proof: This will be proven using induction on the
number of times C; has reset during the interval
tos=t=ty+ A. If the clock has not reset, then lemma 2
reduces to lemma 1. Let 3% be the k™ time S, reset C;
since ty. By hypothesis, E;(¢y+ Ap) S E(ty)+6;4, for
the interval 0<Ap <tfok+1—¢g.

E(tgk+1 - 0) s E(tg) + 8,(bpk +*1 —ty) [hypothesis]
Ei(t0k+1+0)SEl‘(l0k+l—0) [Rule MM-2]
Eflto+4r+1)
SE(tok+1+0)+8,((Ag+1 +tg) —tok*1)
[lemma []

Combining these intervals gives:
E(to+Ar+ V=E (o) +6idr+1
for the interval <A, <ty +2—¢o. [

Lemma3 The minimum error Ey(¢) in a time
service § in which (V§,€9][0<8§,<1] will never

decrease.

Proof: By lemma 1, as long as no time server is
reset, no error in the service will decrease, s0 £y can
not decrease. Let S; be the first server to reset.
Assume that at the end of its reset it has the smallest

error, and

48

Eyltp +§j+0): E!(t()-i-ﬁj +0)<Eaqley +§J—O)

Efto+&+0)=E(to+0)+(1+8)8; [Rule MM-2|
= Ej(l() + £j— 0) ~ Sjpj+ 1+ 8,’)&‘1‘
[Lemma I and definition of p]
ZEM(to+§j~0)-6jpj+§j
lequation 1 and definition of E)

Thus, for Epmlto+§+0)<Eplto+§;—0), §~8,p;<0.
Since §;=0;+ p; and both g, and p, are positive, this
inequality is true only if §,>1. We have our
contradiction. []

Lemma 4 If a time service is consistent, then
(VS,, S;€S)IC(t) ~ C,(D[<E () + E(1)].

Proof: This follows directly from the definition of
consistent. []

Assume that at time ¢, time server S, broadcasts a
time request to the n time servers making up the
time service. Define ¢, to be the time S, receives the
nth response. Let the set of indices & order the replies:

Epy=Epp .. 58, <&,

S; will examine the replies until it finds one which
satisfies MM-2. By assumption, there will be at least
one such reply. Call this server from which this first

accepted reply originated S .

(0<j<x)Epjt+op) +(1 +8)8ik, > Elt+8)]
{rule MM-2|
Ep(t+op)+(1+28)8p >Ep (t+0p)+(1+8)E,.
4 J d] J J VR
lequation 2]
(0<j<NEt+8&) =E(t+8&)~ (& —&)8))

demma I]
Combining the above three equations gives
(0<j<x)Eg(t+0y) +(1+28)8
>Et+ &) — (&, —E)8i] (4)
Ep (t+0p)+ (1+8)8 SE(t+&)
[Rule MM-2)

Ep (t+op)+ &, SEp (t+0r) +(1+8)E
{equation 1]

Combining the above two equations gives
Ekx(t+0kx)+§kISEi(t+€kx) (5)
Combining equations 4 and 5 gives

(0<y<x)NEg(t+og)
<Ek/-(t+0kj-)—ll +8i)(£k_(—£kj)| (6)

S, will continue to examine the replies. Either at
least one more reply will be found that satisfies rule
MM-2, or no such reply will be found. Assume there is
a reply from Sky which satisfies MM-2, with k,>k,.
Using the same argument that led to equation 6, we
get

(= <j<y)[Eky(t+oky)
<Ekj(t+0k J—(1 +5i)(€ky-—§k~)l (N
Ep(t+ oky)sé,-(t+£ky_)—(I +8i)£iky
i [rule MM-2}
=E(t+ Ep, +0)+ (E,ky— €)0 — (1 + Si)ﬁiky
[lemma 1}
=E'kx(t+0kx) +
(L4880, + (Ep, — &)8, — (1 +8)8
[rule MM -2}

SEkx(t+ ka) +(1+ Zﬁi)ﬁkx + (ﬁky - f,kx')ﬁt - f,ky.
[equation 1 twice]

By algebraically rearranging the last relation, we get
Ep (t+op) <Ep (£+0p,) —~(1+8)(Ep, — &) +28:k,

Since §; and £, are positive, this relation along with
equations 6 and 7 gives

o<y <y)[Eky\t+ Oky)
<Ekj(t+0kj)——(l +8i)(£ky"£kj)] (8)

Equation 8 is equation 6 with y substituted for x.
Therefore, for each server from which S, resets its
clock, there will be a corresponding equation of the
form of equation 8. In particular, there will be such
an equation for the last time server from which S,
resets. Call this server S; . The relationship is

o<y< m)(Ekm(t +0p,,)
<Epft+op)—(1+8)(&,, — &)] 9

By definition, all of the replies after the one from Sp
do not cause a reset:

(m<js n)[EkJ.(t+ Ukj) >E(t+ Ekj) ~(1+8)&%.1
lrule I(/IM-2I

=Bt +8&,, +0)+ (&~)8 — (1+5)8,
{lemmma 1]

>E(¢+ &, +0) +(£kj— €k,)0 — f.kj (equation]

By algebraically rearranging the last relation, we get

(m<j=n)[E{t+&, +0)
SEp{t+0p)+Ep,—(Ep;— Sk, Ol

(m<an)[Ei(t+ékm+0)<Ekj(l+0k,}4'5'
(Rule MM -2 and definition of £] (101

Eft+&,, +0V—(1+6)8,, =E; (t+0p,)
[Rule MM -2]

Ei(t+ &, +0)—(1+26))6,, <Ep, (t+0p,)
[equation 1]

By combining equation 9 and the last equation, we
get

(0<j<miEt+ Ekm +0)
< Ekj(t +0p,) +(1 +8)8,;+ 68,1
<Ej (t+05) +(1+28)¢ [definition of €]
By combining equation 10 and the last equation, we
get

(UNE(t+&, +0) <Ej(t+0)+(1+25)¢]
(VDE() <Eft+0)+(1+28)§~ (¢, —t— Ek,,)8:]

[lemma 1}(11)
Ep(t+oy)<Epm(t) {lemma 3 and definition of t,]
E{t;) <Ep(t) + (1 +28)8 — (¢ — t— &)5;

[above and equation 11 with j= M)
E(t))<Ep(t)+(1+26,)§ [8;>0]
E{t=t)<Epm®+(1+28)5+8;z

[lemma 1 and definition of t)

O

Theorem 3 If all of the §, are accurate upper
bounds on the absolute value of the drift rates of the
clocks C;, then in a fully-connected time service
running algorithm MM, the asynchronism will be
bounded by

|Ci(t)— Cj(t)l <2E, (0+2E+, +81.)(t+ 29

Proof The theorem follows from theorem 2 and
lemma 4.]

Theorems 2 and 3 are expressed in terms of the most
precise clock; that is, the clock with the smallest error
in the service at some time ¢. There is no a priori
reason that the most accurate clock will also be the
most precise. A time service in any initial state with
bounded errors, however, will eventually reach ‘the
state where the most accurate clock is also the most
precise. This means that eventually the time service
will derive its behavior from the most accurate clocks

in the service.

Theorem 4 Let 8,,;, = minimum (VS;€S)(5;] and
S,..» be the subset of a finite time service S with
§=8,,n Let S,,;, be the set of servers-in § with the
smallest error. If no time server resets to a clock with
an errur worse than its own, then there exists 4 time
¢, for which ift=t,, Syt)€S,,,,.

49

Proof: Consider a time service at time fg. First
assume that no clock in the system is to reset after .
Then, the error of each time server increases linearly
according to lemma 1. If $;€8,,,, and S;€S,,;,,, then

Eito+A)=E({p) +8,Aand E(to+ D)= Ej(to) +6J'A
[lemma 1]

Ejty+ D) -E{tg+A)= E(¢) —E (ty) + (8,-8)A
[subtracting the above two equations]

Rearranging the above relations, we see that £, is
less than E; for all times

t=to+ (E(tg) — E/(tg)/(5,—5y).
If both S;,S;€8,,,,, then under the same conditions,

the server with the smaller E(¢y) continues to have
the smallest error. Therefore, for all ¢=t0,, with

El.(to) ~Ek(t0)]
Sk-—ﬁi

P=¢ +max
x 0

where 8;€S,,,, and $,€S—~S8,,,,, the element of Sy,;,
with the smallest initial error would be Syy.

Now consider what happens at time fy+ A when the
first time server resets. Let S, be this server (if more
than one server simultaneously resets, arbitrarily
choose one of them to be S,). If we again assume that
no servers reset after Ay, then by the time

El(to+ Al)—Ek(tO+Al)
‘3; -8,
L

=t + max
x Q

the element of S,,,, with the smallest initial error
would be Sy

If it were possible for ¢1,> 0, there would be a series
of resets such that tm+I1,>¢m, and the theorem
would be false. The largest values of ¢!, would be
obtained for the largest E,({p+A) and the smallest
En(to+Ay). Since S;€S,,;,, Eilto+ A1) =Epltg+ Ayq), s0
¢!, is maximized for the smallest Ep(fg + Ay).

Eyltg+ADsEto+41+0) [lemma 3]
Thus, the largest value of ¢l is obtained for E;=E;
andEj(t0+A1 +0):EM(t0+A1).

Etg+ A =E(ty) + 8,4 -, with §,=20 [lemma 2|
Eymlto+ A =Epltg) + 5y
[hypothesis and lemma I

50

Substituting the last three equations into the

definition of t1,, we get, after some algebra:

8
Ei(t0)~ EM(tO) (L
+

ti<t +max P— S

k &
Since S;€Smn, S =8; and B, =0, the coefficient of Ay
in this equation is less than or equal to zero. If we call
this coefficient —a, then we get from the above
equation the following relationship:

t'<P—aA, fora=0
x x 1

This was the largest ¢!, we could construct, so this is
true for any one server resetting. The same argument
can be made for any ¢tm+1_given tm, so

e TAET 4R

x X x

The latest time in which the service will have
SME€Smin is 10, Since the diference in the errors is
bounded, this is a finite value. []

From theorems 3 and 4, it is easy to prove that
eventually the error of all of the clocks in the time
service will be bounded by some linear function
E()<a+b8,,;,, This means that the “long term”
growth of the error in the system (or the average
growth of the error over a base that is large in in
terms of 1) is equal to the accuracy of the most
accurate clock in the system.

Experimentation with this algorithm has shown that
it behaves as expected when servers have good
bounds on their maximum drift rates. This
algorithm, however, has some flaws; in particular, it
is not resiliant to some clock possessing an invalid
upper bound on its drift rate. It is not clear what a
server should do when it finds itself inconsistent with
another server. Even though it knows that at least
one of them must be incorrect, it cannot easily tell
which. A majority voting scheme may not work since
the consistency property is not transitive.

A simple solution is to assume that the probability of
any time server being incorrect is small. When a
server finds itself inconsistent with another server, it
assumes that the probability of a third time server
also being incorrect is very small, so the original
server resets to the value of any third server. This
recovery algorithm can work very well. For example,
in one experiment there was a network of two servers

in which one server assumed its maximum drift rate
was bounded by one second a day and whose actual
drift rate was closer to one hour a day (about four
percent fast). Each time either of the two clocks
decided to reset, it found itself inconsistent with its
neighbor and obtained the time from a servér on some
other network. The main problem was that the
servers did not check their neighbor very often, so the
time of the inaccurate clock would be very far off by
the time it reset.

This recovery algorithm can break down as soon as
there is more than one incorrect server directly
connected to a server. In this case, the service can
partition into different consistency groups (Figure 4).
This is discussed further in Section 5.

4 Intersection as a Synchronization Function

A time service using algorithm MM can not be any
more accurate than the most accurate clock in the
system. This is an obvious property of all algorithms
that select a time from one clock in the system. In
addition, algorithm MM does not guarantee that each
server will select the same clock with which to
synchronize, so the asynchronism is limited only by
the consistency of the system.

The consistency of the clocks, however, suggests
another synchronization function. Since the time
intervals must intersect in order to mutually define a
correct time, the correct time must lie in the interval
defined to be the intersection of all of the individual
intervals. For example, Figure 2 shows two different
intersections of intervals In both cases, if the
individual intervals are correct, the correct time
must lie within the shaded region

Figure?2
Intersections of Maximum Errors

The intersection of the intervals is determined by the
servers with the latest trailing edge and earliest
leading edge. There are two ways in which this
intersection can occur: either both edges are defined
by the same interval (as is the case with the left side

of Figure 2), or the edges are defined by different
servers (as with the right side of Figure 2). The first
case reduces to algorithm MM, while the second case
produces an interval that is smaller than the smallest
pre-existing interval. One would expect that in some
cases an algorithm using intersection will perform
better than algorithm MM.

More formally, the intersection of the time intervals
of two time servers S, and S, is defined to be

[max[C,~E, C,—E,] . min(C;+E, C;+E;]] (12)

If one interval is not a subset of the other, and
Ci—E;<(C;—Ej, then it can be shown from equation
12that C;+E;<C;+E,. The following relationships
can be derived from these two inequalities:

(13)

C,SCJ‘
(14)

IC;-Cj=<|E;-E|

An algorithm using intersection as a synchronization
function can be defined by the following two rules:
IM-1 The same as MM-1.

Transform each reply <C,, E;> into
the interval (T, .. L,] where

IM-2

Tj'('-C]—-Ej—C,‘
Ly~C;+Ej+(1+8)8;-C,

The interval [a .. b] is constructed as
ae-max T, and b<-min L; over all of
the replies. If 6>a, then the time
service is consistent, and S, sets
gj—(b~-a)2, C,e(a+56)2 and
rie-(a+b)/2.

As with algorithm MM, this algorithm will be useful
only if it preserves the correctness of the clocks
running the service

Theorem 5 A correct time service which follows
algorithm IM and in which all the servers have valid
bounds on their maximum drift rates will remain.
correct.

Proof: From rule IM-1 and theorem 1, a correct
time server that is not reset will remain correct.
Since a time server only changes its clock to the
intersection of the intervals [C;,—E; .. C,+E,] and
C,-E, .. C, +Ej+(l+é'i)f,i,~] (rule IM-2), all we need
10 shuw is that both of these intervals are correct at
time ¢+§, The first interval is just the value of the
unchanged clock C;, so from theorem 1 it is correct
We need to show that if C, is correct at ¢ +0j,

51

Clt+o)—Ejt+o)<t+§
sC(t+o) +E[t+0)+(1+8)g;

Ci{t+o))—Eft+oj)<t+o; [definitionof correct]

St+§, [definition of ¢]
Cit+o)+Ef(t+0)+(1+8)8=t+0;+(1+8)E;

[definition of correct]

2t+0j+§; fequation 1]

2t+§j [OJ'EO]

g

One way to compare algorithm IM with MM is to
compare the final intervals that are calculated by
these algorithms given the same input. This is
equivalent to comparing the minimum of a set of
intervals to the intersection of these intervals. The
intuitive comparison given in the beginning of this
section is proven in theorem 6.

Theorem 6 The intersection of the intervals of a
time service is at least as small as the smallest
interval.

Proof: The intersection of the intervals is defined
by equation 12. Either the server with the maximum
trailing edge will also have the minimum leading
edge or it will not. If server S, does, then

fequation 12]

C,‘-—Ei?.Cj—Ej
{equation 12]

Ci+E,‘SCj+EJ'

Rearranging and combining these two inequalities
gives E;<E; Since this is true for all Ej;, the
intersection is the smallest interval.

Assume that S; has the minimum leading edge and S;
has the maximum trailing edge with §,=S;.

[equation 12]

CJ‘—EJECk—Ek
fequation 12]

Ci+E,<C,+E;

Rearranging and combining these two inequalities
gives E;+E;+C;-C;<2E;. From equation 12, the
length of the intersection is F +E;+C;—C,. Since
this is true for all k, the intersection is at least as
small as the smallest interval]

Since the interval to which a server sets its clock is
derived rather than selected, algorithm /M will in
general keep clocks much better svachronized than
algorithm MM. This is prover n the following
theorem:

Theorem7 In a time service running algorithm
IM, the asynchronism is bounded by

(Ci(t) — Cj(t)‘ =£+ (5, +8})[

Proof. At some time ¢ in the time service, a clock

- has-a value Ci(¢)=¢t+¢; and an error E;(t)=e,. If clock

C(t)is correct, e <e;. [f a server sends a time request
to S, at time ¢, then the reply from S, will produce the
interval

[t+e,+0,—e; . t+e;+20;+p;+e]

This reply is received by the requestor at time
f=t+o0;+p, The transformed interval [T; .. L;} is
[ej—e;—p; . e;+0;+e;]l. The intersection of all of the
repliesis

{maxeg;—e;—p,.. ming;+0;+¢;]
=[—(min ¢;+0;) .. min }; + 0]

where t;=e,~¢; and \;=¢;+¢;. Let A,;;, and ,,,,, be
the minimum values of A; and t,, respectively The
largest possible asynchronism between two servers
resetting at the same time would be for one to have
its intersection interval edges as early as possible and
the other’s edges as late as possible. The largest
possible value of min 1;+0; is win+& and the
smallest possible value is tyin. Similarly, the largest
possible value of min) +a, is \yjn+& and the
smallest possible value is Ayin. Thus, the intervals
[—tmin—E .. Aminl and { — tpip .. Ain + &l result in the
largest asynchronism The midpoints of these
intervals differ by

|"tmin"‘i+ Amin=(=Tmint Amin + /2 = &
The theorem follows from the definition of § and v. [|

As was mentioned before, the error in a time service
running algorithm IM should in the best case grow
more slowly than a time service running algorithm
MM. The next theorem states that the expected
growth of the error in the system may also be slower.

Theorem 8 Let the actual drift rate a clock C,
exhibits between two successive readings of its value
relative to a standard be the random variable a. Let
this random variable be distributed by some
probability density function that is nonzero only over
the range —s06<a=<s;06 where §=3§;/s;. Assume that
at time £y the clocks are synchronized and have the
same error ¢, and the intersection of the intervals of
the n servers at time t=¢g is e. If the a are identically
distributed and independent and the clocks are not
reset in this interval,

itm E(e)ze0

=

52

Proof The following lemma, given without proof,
will be used in the proof of theorem 7. A proof of
lemma 5 can be found in [Marzullo 83].

Lemmab Define n independent random
variables 0, identically distributed according to a
probability density function that is nonzero only over
the range 0<6<0. If 0,,,, is the maximum value of
the random variables and 6,,,, the minimum value,
and £(0) is the expected value of 8, then

IImE®B)=0OandlimEO®)=0
max nn

n—w n—sw

Define the random variable 8 to be a +§, so 0 <0<28.
Attime ¢,

Cty=to+(t—to)(1 + 5.0 —8)) [definition of 8,0, al
Ef{t)=eq+si{t—ty)8 {lemma 1]

Let T(¢) be the trailing edge of the interval <C,(f),
Ei6)> and Li(t) the leading edge. The above two
equations give expressions for T(¢) and L;(¢):

Tty =t—eqg+si{t—to)(0—25)
Li{ty=t+eq+s,(t—t3)0

From lemma 5, in the limit of n —%, E(8,,,,) =28 and
E(8min|Omax) = 0. Substituting into the two equations
above,

E(e)=(t+eg+si(t—t))E(B,,;0maz)
~(t—eqg+ st —tglE0,,5,) ~280)V/2 = ¢.

O

This algorithm uses the information about how far
the servers have drifted apart as compared to their
possible drift in order to construct the more accurate
interval. For example, consider a system consisting of
a clock accurate to at least one second a day and a
server accurate to at least two seconds a day. If these
clocks were initially synchronized and were after one
day three seconds apart, then the clocks could be
correctly resynchronized The argument of theorem 8
is that given enough servers, the probability of
having one server drift at +8§, and another drift at
- 3§, is large given that the maximum drift rates are
valid. If the maximum drift rates are overspecified,
then the expected growth in the error is the amount
they are overspecified. This is equivalent to a service
in which all of the clocks have a bias with respect to
some time standard with a rate different from one
second per second.

53

Experimental observations of this algorithm have
shown that in correct systems the error does grow
much slower than in algorithm MM. In one test of a
small system where the §; were chosen casually, the
error grew ten times slower than it would have under
algorithm MM. This algorithm, however, has proven
to be even less fault-tolerant than algorithm MM.
There are consistent states in which algorithm MM
will recover correctness while algorithm IM will not.
The converse is not true. Figure 3 is an example of
one of these states. The dashed line indicates the

s
|

'

Sy

Y

S3

Figure3

correct time, so that even though the servers are
consistent, only S; and S3 are correct. Under MM, a
server would choose S3, while under IM, a server
would choose the incorrect interval S$,NS;
Algorithm IM is particularly susceptible to servers
drifting slightly slower or faster than their assumed
maximum drift rates

5 Inconsistency

The two algorithms presented here have been
analyzed mathematically and experimentally in
order to understand their behavior. Their greatest
weakness is the need for each server to have a correct
upper bound on the magnitude of its drift rate. If
servers do not have valid bounds, the system can
become inconsistent, leaving little information on
which servers are incorrect. For example, Figure 4
shows an inconsistent six-server time service. There
are three sets of consistent servers whose
intersections are shown by the shaded areas. [t is not
apparent which set of servers (if any) is the correct

one.

There is not enough information in the static
arrangement of the time server intervals to
determine why the system is inconsistent. Instead,
the rates of the servers must be examined in order to
determine how to recover. An interesting approach to
this is to apply the algorithms in this paper to the
rates of the clocks as well as to their values Two

Figure4
An Inconsistent Time Service

clocks have consistent rates (are consonant) at some
time ¢y if their rate of separation is less than the sum
of their maximum drift rates:

Ii(C) C()b’<6 8
G\ CO-C0)| =545,

A rate interval that is equivalent to the time interval
used in the previous algorithms can be defined based
on this definition of consonance. Algorithms MM and
[M can then be applied to maintain a consonant set of
§;, just as they were previously used to maintain a
consistent set of ¢; The details are presented in
[Marzullo 83] along with a more full development of
the two algorithms described here

54

References

David R. Boggs, John F. Shoch,
Edward A. Taft and Richard M.
Metcalfe. Pup: an internetwork
architecture. [EEE Trans. on Comm.
COM-22,5 (April 1980), 612-624

{Boggs 80]

[Ellingston 73] C. Ellingston and R. .J. Kulpinski.
Dissemination of system-time. [EEE
Trans. Comm. Com- 23,5 (May 1973),
605-624.0f the ACM 27,7 (July 1978),
558-565.

Leslie Lamport. Time, clocks and the
ordering of events in a distributed
system. Comm. of the ACM 27,7 (July
1978), 558-565.

[Lamport 78]

Leslie Lamport and P.M. Melliar-
Smith. Synchronizing clocks in the
presence of faults. SRI International
CSL (Lamport Opus 60), March 1982.

[Lamport 82}

Keith Marzullo Looselv-Coupled
Distributed Services: A Distributed
Time Service. Ph.D. dissertation
Stanford University Computer
Systems Laboratory, 1983 (draft)

[Marzullo 83]

David L. Mills Time synchronization
in DCNET hosts. COMSAT
Laboratories (IEN 173), February 25,
1981.

(Miils 81]

