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1 I n t r o d u c t i o n  

To a client of a loosely-coupled distr ibuted system, 
one of the simplest services is a time service. Usually 
the client simply requests the t ime from an) subset of 
the time servers making up the service, and uses the 
first reply. Issues that  need to be considered in other 
services, such as connection establ ishment  or client 
authenticat ion,  need not be c,ms:dered in a time 
service. The simplicity of t~.,, int, ,action. however. 
misrepresents  the complexity of ~mplementing such a 
service. 

1.1 Time Services and Clock,~;ynchronization 

A time service algori thm is essential ly an algori thm 
that  keeps a collection of clocks locally monotonic, 
synchronized, and adequately accurate  with respect 
to some time s tandard {such as Greenwich Mean 
Time). The relative importance of these propert ies 
depends on for what purpose the servwe is used. For 
example, if the service is used for measurement  of 
time in distr ibuted experiments ,  absolute accuracy 
and synchronization are not importurtt ~ssu(,.~ ,¢ !,rag 
as the relative accuracies and ,,(fsers of th( clocks are 
known [Mills 811. Accuracy is not imp01'lant if the 
service is only used to order events occuring within 
the distributed system. In a system whe~c events 
both internal and external  to the distributed system 
are ordered, requi rements  for synchr,mization and 
accuracy depend on the behavior  ot ~ he .~.~ stem. such 
as the rate at which objects can midraw Crom one 
clock's domain to another.  
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The t~pe of dis t r ibuted system in which we are  
interested can be represented by the system in which 
we have performed our exper imentat ion,  the Xerox 
Research ln ternet  [Boggs 801. This dis t r ibuted 
system contains thousands of personal workstat ions 
spread across the United States,  Canada and Europe. 
Located throughout  the system are hundreds of 
"public" processors running various system services 
such as routing, filing, authent icat ion,  printing, 
naming and electronic mail. Since a time server  does 
not require much in the way of special hardware,  
most of these servers  aLso act as t ime servers.  ()f  
course, there is no reason to limit time servers  to 
these public machinos Any user  who requires  it 
should be able to convert  her workstat ion into a t ime 
server. Objects do not move rapidly in this system, so 
an adequate precision is in the order  of tens of 
seconds. 

This type of system imposes cer ta in  prerequis i tes  on 
the time service. The set of servers  making up the 
service is not stable, in tha t  t ime servers  can 
frequently join or leave the service. The clocks of the 
servers need not be unifi)rml~ accurate.  A clock may 
fail in many ways, such as by stopping, racing ahead, 
or refusing to change its x alue when reset. In this 
paper, we will assume ~hul clocks may have varying 
accuracies, but are  usually stable Fail ing clocks will 
not be dealt  with The work in this paper is extended 
to deal with failing clocks in I M~ zullo 831. 

We will consider the p~,d)lem of keeping a set of 
clocks synchronized and c,,rr,.,.~ We will not require 
clocks to be locally m,m,,t,m,, so that clocks may be 
freely set backward .~. ,~.ti as tb rward  A client. 
however, may t't.quire that the local clock is 
monotonic. Such a clock may be implemented based 
on a nonmonotonic clock by temporar i ly  running the 
monotonic clock more slo~!~ x, hen the nonmonotonic 
clock is set backward:  

1.2 Synchronization Funt t.m~ 

There has been much interest  in synchronizat ion in 
distributed systems, but not much research into t ime 
services Leslie l .amport  has developed algor i thms 
which keep clocks ,-.'~ nchronized [I ,amport 78, 821, but 
maintain precision ~ assuming accurate clocks 
Other system.,, which keep accurate clocks 
synchronized to an ox,,ernal ,r~,ndard under ex t reme 
conditions have been de~t:l,,ped IEllingston 731, but 
these assume a different system configurat ion and 
error  model then we do 

The problem ,,fa set of processe, keeping their  clocks 
synchronized can he s,mply character ized as each 
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process i independen t ly  pe r fo rming  a ca lcu la t ion  
across a d i s t r ibu ted  set  of data:  

Ci{t)~-F(Cil(t), Ci2(t), ...CLk (tI) 

This  b reaks  the  problem into two problems: 
specifying an appropr ia te  way to col lect  the 
d i s t r ibu ted  data ,  and specifying a ~ynchronizat ion 
funct ion F. In this  paper,  we will a s sume  tha t  the 
d i s t r ibu ted  da t a  is collected by some simple method 
such as d i rec ted  b roadcas t ing  [Boggs 821. and will 
concen t ra t e  on the  specif icat ion of a synchron iza t ion  
function.  

In the t e rms  of this cha rac te r i za t ion ,  severa l  
synchron iza t ion  functions have  been specified by 
others .  A s imple funct ion tha t  p reserves  
monotonic i ty  is the m a x i m u m  value  of the clocks 
[Lampor t  78]. The  median  clock value and the  mean  
value of the clocks have also been used to specify very  
fau l t - to le ran t  clock synchron iza t ion  a lgo r i thms  
[Lampor t  82l. Our  work differs  f rom these  in our  
a s sumpt ions  on the proper t ies  of the clocks and the 
use of the t ime service.  We will be concerned with the 
a m o u n t  of synchron iza t ion  a clock ach ieves  with a 
t ime s t anda rd  as  well as the o ther  clocks in the t ime 
service. 

2 C l o c k s  a n d  M a x i m u m  E r r o r  

2.1 Properties ofClocks 

A clock Ci(t) m a y  be cha rac te r i zed  as a funct ion thai  
maps real  t ime to clock time. It 'is cont inuous  between 
the t imes  it is reset .  A perfect clock (or a standard) is 
one in whicJa C(t) = t for an appropr ia te  def in i t ion  of 
t. A clock is correct at  t ime to if its value  C,(to) is to. A 
clock is accurate at t ime to if its first de r iva t ive  is one 
second per second_ A clock is stable at  t ime to if its 
second de r iva t ive  is zero. These. proper t ies  are all 
def ined in t e r m s  of a perfect  clock, in tha t  a perfect  
clock is correc t ,  accura te  and stable.  

i t  is phys ica l ly  impossible to cons t ruc t  a t ime service 
tha t  can keep a collection of clocks cor rec t  with some 
s t anda rd  unless  there  is communica t ion  be tween  the 
sys tem and the  s tandard.  A metr ic  for compar ing  
t ime service  a lgo r i t hms  is the ra te  a t  which the e r ro r  
grows in the service.  In a sys tem where the re la t ive  
accurac ies  of the clocks a re  known, an a lgor i thm 
should be able to keep the service as accura te  as its 
most accu ra t e  clock. The  only gua ran t ee  any 
a lgo r i thm can make  is tha t  the servers  will ma in ta in  
a mutua l ly  cons is ten t  time. 

2.2 Maximum Error 

In an e n v i r o n m e n t  where  some clocks are  
s ignif icant ly  more  accu ra t e  t h a n  o thers ,  it is 
conven ien t  in the cons t ruc t ion  and  ana lys i s  of  a 
synchroniza t ion  funct ion to a u g m e n t  the clock va lues  
with some indicat ion of  t h e i r  accuracy.  Since a 
p r i m a r y  concern  is m a i n t a i n i n g  the cor rec tness  of  the 
clocks in the service,  a conven ien t  e r ro r  meas u re  is 
an  upper  bound on the  e r r o r  in the clock. A se rve r  
t h a t  responds with a t im e  3:01 and a m a x i m u m  e r r o r  
of  0:02 asser t s  tha t  if all of  the in format ion  it  
possesses is correct ,  the  co r rec t  t ime must  lie in the  
in te rva l  [2:59 .. 3:03]. Conve r se ly ,  i f a  se rver  responds  
a t  t ime t to a t ime r eq u es t  with the  pai r  <Ci(t), 
Ei(t) > ,  the server ' s  clock is correct i f  the co r rec t  t ime  
lies in the in terva l  [C i ( t ) -  Ei(t) .. Ci(t)+ Ei(t)]. 

This  fo rmula t ion  can be v iewed as  having  se rve r s  
respond with in te rva l s  of t ime  r a t h e r  t han  points.  
F igure  I shows these i n t e rv a l s  for t h ree  t ime se rve r s  
{Sb $2, $3} at  three  d i f f e ren t  t imes.  The  hor izonta l  
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Figure l 
Growth of Maximum Errors 

direc t ion  is the real t ime axis  v~ith the cor rec t  t ime  
indicated by a dashed line. The  leading edge of an 
in terva l  is the edge C, + Ei, and the trailing edge is 
the edge C i -  El. The clocks o f  the th ree  se rve r s  are  all 
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correct .  As the s y s t e m  runs  (the ver t ica l  axis),  the 
indiv idual  i n t e rva l s  both  grow and shif t  wi th  respec t  
to the cor rec t  t ime.  

A t ime  s e r v e r  m u s t  be able  to ca lcu la te  a bound on its 
m a x i m u m  er ror .  In the case of con t inuous  clocks,  
there  a re  t h r ee  sources  of  error :  

The  e r ro r  the clock inher i t s  when  it is reset  

T h e  de lay  be tween  when  a clock is read  and  
when  a n o t h e r  clock is se t  to th is  value.  

T h e  de t e r i o r a t i on  in the  t ime  m a i n t a i n e d  by a 
clock be twee n  resets .  

Since the  t ime  s e rve r  is only  ca l cu l a t i ng  an  uppe r  
bound on the e r ro r ,  the unknown  c o m p o n e n t  in the 
de lay  m a y  be safe ly  e s t i m a t e d  by m e a s u r i n g  the t ime  
be tween  s end ing  a t ime  r eques t  and  rece iv ing  the  
reply.  In th is  paper ,  this  de lay  is a s s u m e d  to be 
n o n d e t e r m i n i s t i c  and  bounded  by ~. The  symbo l  oj 
will be used to denote  the  a m o u n t  of  t ime  f rom when  
s e rve r  Si sends  a t ime  r eques t  to s e r v e r  Sj and  when  
Sj rece ives  the reques t ,  and  p) to denote  the a m o u n t  of  
t ime  f rom w h e n  s e r v e r  Sj sends  the rep ly  to s e r v e r  Sj 
and  w h e n  Si rece ives  this reply.  The  m i n i m u m  
m e s s a g e  de lay  will be a s s u m e d  to be zero. The  two 
a l g o r i t h m s  p r e s e n t e d  here  can  eas i ly  be ex tended  to 
t a k e  into accoun t  nonzero  m i n i m u m  m e s s a g e  de lay  
t imes .  

To e s t i m a t e  the  de t e r io ra t i on ,  the s e r v e r  m u s t  have  
an  uppe r  bound on the i naccu racy  of the  clock, will be 
acc lompished  by a s s u m i n g  tha t  the  clock has  a 
known maxl m u m  drift  rate 8, such  t h a t  

dCi(t) l ~8 
1 -  dt ~ t 

If  Ci(t) is con t inuous  ove r  the r ange  to -< t <- t o + A, the  
above r e l a t i on  m a y  be r e a r r a n g e d  and  in tegra ted"  

m u s t  be wrong,  since the co r r ec t  t i m e  c a n n o t  lie in 
both of these in te rva l s .  C o r r e s p o n d i n g l y ,  a t ime  
service  is consistent if  the  i n t e r s e c t i o n  of the  i n t e r v a l s  
def ined by all of  the s e r v e r s  is n o n - e m p t y .  [n t e r m s  of  
the  va lues  m a i n t a i n e d  by a t i m e  se rve r ,  two s e r v e r s  
a re  cons i s t an t  a t  t ime to if 

IC~(to)- cj(to)l - &(to) ÷ Ej(to) 

Cons i s tency  is a w e a k e r  condi t ion  t h a n  co r rec tnes s .  
As will be proven  la ter ,  the  a l g o r i t h m s  in this  p a p e r  
m a i n t a i n  cor rec tness  unde r  the  a s s u m p t i o n  t h a t  each  
clock has  a known valid u p p e r  bound on its d r i f t  ra te ,  
In an  ac tua l  service ,  t hese  val id  bounds  m a y  not be 
known for all  of the clocks,  which can  lead to an  
incor rec t  service.  Since t he r e  is no pe r fec t  c lock in the  
sys t em,  an a l g o r i t h m  i m p l e m e n t i n g  the  se rv ice  can  
not  check  to see if  the clocks a re  r e m a i n i n g  correct :  
however ,  it can  check to see  if the  clocks a re  
r e m a i n i n g  consis tent .  

M i n i m i z a t i o n  o f  t h e  M a x i m u m  E r r o r  a s  a 
S y n c h r o n i z a t i o n  F u n c t i o n  

Given  t h a t  a t ime  s e r v e r  r epo r t s  i ts  m a x i m u m  e r ro r ,  
a c l ient  of  the t ime  se rv ice  could  col lect  a se t  of t imes  
and  use the response  wi th  the  s m a l l e s t  e r r o r  r a t h e r  
t h a n  the  f i rs t  reply  it rece ives .  Th i s  su g g es t s  a 
synch ron iza t ion  funct ion t h a t  chooses  the t ime  with  
the  s m a l l e s t  m a x i m u m  e r ro r .  Def ine  a g r a p h  in 
which t ime  s e rve r s  a r e  n o d e s  a n d  c o m m u n i c a t i o n  
pa ths  a r e  edges. We a s s u m e  th i s  g r a p h  is connec ted  
and  define an  a l g o r i t h m  in which  each  s e r v e r  
per iodica l ly  synchron izes  w i th  the n e i g h b o r  tha t  has  
the  s m a l l e s t  m a x i m u m  er ror .  Th i s  can  be e x p r e s s e d  
in two rules:  

MM-I: A t ime  s e r v e r  Si m a i n t a i n s  a clock Ci, 
the t ime  when  las t  r e se t  ri, and an  
inhe r i t ed  e r r o r  ei. I f  St r ece ives  a t ime  
reques t  a t  t i m e  t, i t  r e s p o n d s  with  the  
pa i r  [Ci(t), Ei(t)] where  

Ci(to) + A - 5iA <- Ci(to + 5)  -< C~(to} + a + 5iA El(t) = ei + (Ci(t) - ri)Si 

The  d e t e r i o r a t i o n  of a s e rve r ' s  clock can  be e s t i m a t e d  
by a u g m e n t i n g  its e r ro r  by sSi if its clock has  not been  
rese t  for s seconds.  In th is  paper ,  8t will be a s s u m e d  to 
be smal l  enough  to ignore  t e r m s  of o rder  5i 2 

and  CiCt) is the  va lue  of the  clock Ct a t  
t ime t 

2.3 Consistency of a Time Service 

H a v i n g  a clock repor t  its m a x i m u m  e r ro r  a lso  a l lows  
a prec ise  def in i t ion of the consistency of  a t ime  
service .  If  one s e r v e r  r e sponds  with  a t ime  of  3:01 and  
an  e r r o r  of 0:02, and  a n o t h e r  s e rve r  r e sponds  wi th  a 
t ime  of 3:06 and  an  e r ro r  of 0:02, a t  l ea s t  one of t h e m  
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MM-2: Each  t ime se rver  sends a t ime reques t  
to i ts ne ighbors  a t  least  once every  
seconds. Le t  t be the t ime at  which Si 
sends  a r eques t  to Sj and ~. be the 
t ime as m e a s u r e d  .by Ci between  Si 
sending  the  reques t  and receiving the 
response.  Any reply tha t  is 
incons i s t en t  with St is ignored. When  
a cons i s t en t  reply is received f rom Sj, 
the  fol lowing predicate  is evaluated:  

E + ( 1  +Si)~tj<-g i 
J 

If this  p red ica te  is t rue,  Si sets 
ei~--Ej + (1 + 5i)~), Ci~-Cj and r,.*--C). 

The f irs t  ru le  descr ibes  how a t ime se rve r  behaves  
when asked  the t ime,  and  the second rule how it 
synchronizes  with its neighbors .  We requi re  this 
a lgor i thm to p rese rve  cor rec tness  (and therefore ,  
consistency)• T h a t  it does so is proven by the 
following theorem:  

T h e o r e m  1 If all of  the 5i a re  valid upper  bounds 
on the dr i f t  ra tes  of  the clocks Ci, then  an ini t ia l ly  
correc t  t ime service r u n n i n g  a lgo r i t hm M M  will 
r emain  correct .  

Proof'. This  proof  will requi re  the following 
proper ty  of the e r ro r  of a se rver  tha t  has not been 
reset: 

L e m m a  1 If t ime se rve r  Si is not rese t  over  the 
in terva l  to -< t-< to + A, then  Ei(to + A) = Ei(to) + 8iA 

Proof'. Since Si has not .been reset ,  the  values  of ~i 
and r i are  the same at  to and  to + A. From rule MM-I ,  

E~(to + A) - Ei(to) = 8~(Ci(to + A) - C,(to)) 

The l emma follows f rom the def in i t ion  of 8 and 
dropping the  t e rm 8i2A. [ ]  

T h e o r e m  1 will be proven by showing tha t  no 
individual  se rver  can become incorrect .  Firs t ,  rule 
MM-1 will be shown to preserve  correc tness .  Assume 
tha t  the service is cor rec t  a t  t ime to, and tha t  se rver  
Sz does not rese t  over  the in terva l  to <- t <- to + A: 

Ci(t 0 + A) - Ei( t 0 + A) <- C~(to) - El(to) + A 
[definition of  5 and  l e m m a  1 { 

C~(to) - Ei(t O) + A < to + A 
[hypothesis and  definition of  c o r r e c t ]  

C~(to + A) + El(to + A) ---> C,(to) + Ei(to) + A 
[definition o['5 and  l emma I ] 
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CJ to) + Ei(to) + h >_ to + A 
[hypothesis and  def ini t ion of  c o r r e c t ]  

Combining the above inequal i t ies  gives 

Ci(to + A) - Ei(to + A) -< to + A <_ C~(to + A) + E~(to + A) 

We also need to show tha t  rule  MM-2 also p rese rves  
correctness .  Assume that  S~ sends a t ime reques t  to Sj 
at t ime to, and at  t ime to + oj t ime se rve r  Sj responds  
with the cor rec t  in te rva l  < Cj(t0 + oj), Ej(to + oj) > .  Let  
the delay in receiving the reply  be ~j as m e a s u r e d  by a 
perfect  clock and ~/j as m easu red  by C~. If Si is rese t  

• • ÷ 

usmg this value,  then  : 

Ei ( to+~j+O)=Ej ( to+oj )+( l+S i )~ i j  [ru leMM-2]  
( 1 - 8i)~j-< ~/j -< ( 1 + 8i)[j [definition ofS] ( 1 ) 

Combining these two inequal i t ies  gives (af ter  
dropping a ~,jSi 2 t e rm)  

Ej(to +oj) + [j<- 
Ei(to + (j + O) <- Ej(to + oj) + ( 1 + 28i)~j (2) 

Ci(to + [j + O) = Cj(to + oj) [rule MM-2I (3) 
Ci(to + ~j + O) - -  Ei~to + [j+ O) 

<_ Cj(to + oj) - Ej(to + oj) - ~j [equations 2 and  3i 
Cj(to + oj) - E i(to + ?j) <- to +oi 

['hypotliesis a n d d e f i n i t i o n  of  c o r r e c t ]  

Since ~j is positive and  O<_oj<_~,j, the last two 
equat ions  give the condi t ion tha t  the lower bound of  
the resul t inff  in terva l  of S~ is correct :  

Ci(to + ~j + O) - Ei(to + [j + O) <- to + [j 

Ci(to + ~j + O) + Ei(to + ~j + O) 
>- C)(t 0 + off + Ej(to + off + ~i [equations 2 and  31 

Cj(to +off + Ej(to + oj) + ~j -> to + o j+ [ j  
[hypothesis and  defini t ion of  c o r r e c t ]  

Since oj is posit ive,  the las t  two equa t ions  give the 
condit ion tha t  the upper  bound of the resu l t ing  
in terval  of S, is correct:  

Ci(tO + ~j+ O) + Ei(to + [l + O)>-to + ~j 

[] 

The m a x i m u m  er ro r  of an y  clock in a fu l ly-connected  
service ru n n in g  a lgor i thm M M  will be equal  to  the 
smal les t  e r ro r  in the sys tem plus any e r ro r  
accumula ted  dur ing  or a f t e r  the last  reset .  A more 
surpr i s ing  proper ty  is tha t  the resu l t ing  
synchroniza t ion  of the clocks.is not  very  good. This  is 

"In this paper ,  l i m  F(x + a) is wr i t t en  as  F(x'-_ O) 
:1-* -+0 



because  the a lgo r i thm canno t  g u a r a n t e e  tha t  
d i f fe ren t  se rvers  will pick the same se rver  as hav ing  
the smal les t  er ror .  They  r ema in  re la t ive ly  well 
synchron ized  only  because  the  clocks which possess 
the smal les t  e r ro r s  a re  cons is tent .  These  c la ims a re  
proven as  t heo rems  2 and  3 below: 

T h e o r e m 2  If all of  the 8t are  accura te  upper  
bounds on the absolu te  value  of the dr i f t  r a tes  of the 
clocks Ci, then  in a fu l ly-connected  t ime service S 
r u n n i n g  a lgo r i t hm M M  in which (~Si(:S)[O<-Si<l], 
the  e r r o r  in any  se rve r  will be bounded by 

Ei(t) <EM(t) + ~ + 8t(r + 2~) 

where  EM(t) is the smal les t  e r ro r  in the service at  
t ime  t. 

Proof'. For this  proof  we will a s sume  tha t  a t ime 
se rve r  answer s  its own reques t  with zero delay.  Since 
this  self-reply sat isf ies  the p red ica te  in ru le  M M 2 .  
t he re  will a lways  be a t  least  one  reply  tha t  sat isf ies  
MM-2. This  rep ly  will not change  the value  of Ct or 
Ei, so the  behav io r  of a service  under  this  a ssumpt ion  
should not  be d i f fe ren t  t han  one  in which the re  are  no 
self-replies.  

L e m m a 2  Ei(to+A)<_Et(to)+SiA 

Proof'. This  will be proven  us ing induct ion on the 
n u m b e r  of  t imes  Ci has r e se t  du r ing  the in te rva l  
to <- t_< t O + A. If  the clock has  not  reset ,  then  l emma 2 
reduces  to l e m m a  1. Let  tok be the k th t ime Si rese t  Ci 
since t 0. By hypothes is ,  Ei(to+Ak)<_Ei(to)+SiAk for 
the  in te rva l  0 <- Ak < toh + l _ to . 

E i ( t o k + l - O ) g E i ( t o ) + S i ( t o k + l - t o )  [hypothesis] 
El(tO k + 1 + O) <- Ei(to k + 1 _ O) [Rule MM-21 
Ei(to + Ah+ l) 

< Ei(to h + 1 + O) + 8i((Ah + l + to) -- to h + 1) 
[]emma l ] 

Combin ing  these  in te rva l s  gives:  

E,(to +A~+ t)<_Ei(to) + 6iAk + t 

for the in te rva l  to <_Ak <to k+ 2 -  to. []  

L e m m a 3  The  m i n i m u m  e r ro r  E~t(t) in a t ime 
service  S in which (VStES)IO<-St<II will never  
decrease.  

Proof: By l e m m a  1, as long as no t ime se rve r  is 
reset ,  no e r ro r  in the service  will decrease ,  so E M can 
not  decrease .  Let  Si be the first  se rver  to reset .  
A s s u m e  tha t  at  the end of its r e se t  it has the smal les t  
e r ro r ,  and 
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E.~4(tO + ~j + O) = E:(to + ~j + Ot < EM(to + ~j-O) 

Ei(to+~i+O) =E)( to+oj )+( l  +St)~/j [Rule MM-21 
= Ej.(to + ~ j - 0 ) -  5ypj + (1 + 8,)(~. 

[Lemma l and definition of  p] 
EM(t0 + ~j - 0) - 5jpj + ~) 

[equation 1 and  definition of  EM] 

Thus ,  for EM(tO+~j+O)<EM(tO+~j--O), ~ j - f j p j < O .  
Since ~ ) = o ) + p j  and both oj and  pj a re  posit ive,  this  
inequa l i ty  is t rue  only if  8 t > l .  We have our  
contradic t ion.  [ ]  

L e m m a  4 If a t ime service  is cons is tent ,  then  
( V S ,  SjE S)[ICt(t) - Cj(t)l-< Ei(t) + Ej(t)]. 

Proof. This  follows d i rec t ly  f rom the def in i t ion  of 
c o n s i s t e n t .  [ ]  

Assume tha t  a t  t ime t, t ime  se rve r  St broadcas t ,  a 
t ime reques t  to the n t ime se rve r s  mak ing  up the 
t ime service.  Define tr to be the t ime St rece ives  the 
nth response.  Let  the set  of indices k o rder  the replies: 

~kl --<~2 -< --.--- ¢*~-t -<¢k. 

St will ex am in e  the repl ies  unt i l  it f inds one  which 
sat isf ies  MM-2. By assumpt ion ,  the re  will be at  least  
one such reply.  Call this  s e rv e r  f rom which this  f irst  
accepted reply  or ig ina ted  Sk x. 

(O<j<x)[Ek)(t+okj) ~-(1 + 8t)~ikj >Ei( t+ ~hi)J 
[rulk MM-2I 

Ekj(t + okj) + ( 1 + 28t)~k J > Ekj(t + ok)) + ( 1 + 8i)~'h= 
[equatio~t 2] 

(0 < j  < x)[Ei(t + [k)) = Et(t + ~kx) - (~kx - ~k,)Si] 
[~emma 1] 

Combin ing  the above th ree  equa t ions  gives 

(0 < j  < x)[Eki(t + ok i) + ( 1 + 28i)~ki 
> Ei(t + (( ,)_iU~x_~kj)Si  I (4) 

E~x(t + ok. t ) + ( 1 + 8i)[,kx <- Ei(t + (k x) 
[Rule MM-2I 

Ekx(t + Okx) + ~k x <- Ekx(t + ok x) + ( 1 + 8i)~ikx 
[equation 11 

Combin ing  the above two equa t ions  gives 

E~x(t + okx) + (k~ <- Ei(t + (k.) (5) 

Combin ing  equat ions  4 and 5 gives 

! 0 < j  < x)[Ekx(t + ok x) 
<Ekj ( t+o~)) - !  1 + 5i)([kx -- ~k:)l (6) 



St will cont inue  to examine  the replies.  E i the r  a t  
least  one more  reply  will be found tha t  sat isf ies rule 
MM-2, or no such reply will be found. Assume  there  is 
a rep ly  f rom S~y which sat isf ies MM-2, with ky > kx. 
Using the same a r g u m e n t  tha t  led to equa t ion  6, we 
get 

Ei(t + ~km + O) - (1 + 8i)~i~m = E~m(t + O~m) 
[Rule MM-2I  

Ei(t + ~ m  + O) - (1 + 26"i)d[k, n <- E~.~(t + o~, n) 
[equation 1 ] 

By combin ing  equat ion  9 and the  las t  equa t ion ,  we 
get 

(x < j  < y)[Eky(t + Oky) 
< Ekj(t+ oh .) - (1 + 5i)(~ky - ~k:)] (7) 

Eky(t + °ky) < ~i( t + ~ k y )  - -  (1 + 8i)~iky 
[rule MM-2] 

= Ei(t + ~ x  + O) + ( ~ y -  ~kx)Si - (1 + 8i)~iky 
[ lemma l 1 

= Ekx (t + Okx) + 
(1 + ~i)~ ikx + ([ky -- ~kx)~i-- ( 1 + ~Ji)~ ik. 

[r~zle MM-2I 
<- E~x(t + o~ x) + ( 1 + 26~)~k x + ( ~ -  [~ ~)5i - ~hy 

[~equaiion I twice] 

By a lgebra ica l ly  r e a r r a n g i n g  the last  re la t ion,  we get 

E ky ( t + Oky) "< E hx( t + ok x ) - ( 1 + 6i)( ~ky -- ~k x) + 25i~hy 

Since 5 i and ~k, are  posit ive,  this re la t ion  a long with 
equat ions  6 an~ 7 gives 

(0 < j <  m)[Ei(t + [km + O) 
< Ehj(t + o~j) + ( 1 + 5i)~h, + 6i~h m ] 
< Ekj(t + ok j) + (1 + 28i)( [defini t ion of~] 

By combin ing  equat ion 10 and the  las t  equa t ion ,  we 
get 

(Yj)[Ei(t + [krn + O) < Ej(t + oj) + (1 + 25i)~l 
(Vj)[Ei(t r) < Ej(t + oj) + (1 + 28i)~ - (t~ - t - ~km)8/] 

[ lemma 1 ] (11 ) 
EM(t + OM) <- EM(tr) [ l e m m a  3 and  def in i t ion o f  t~l 
E i( tr) < E M{ tr) + (1 + 28i)~ - ( tr-- t-- ~krn)6i 

[above and  equation I I with j =  M] 
Ei(tr) < EM(tr) + (1 + 28i)~ [6 i > 0 ] 
Ei(t '>- tr) < EM(t) + (I + 28i)~ + 8it 

[ lemma I and  def in i t ion  o f  O 

[] 

(0 < j  < y)[EkyLt + Oky) 
< Ehj(t + ohj) -- (1 + 8 i ) ( [ky-  [kj)} (8) 

Equat ion  8 is equat ion  6 with y subs t i tu ted  for x. 
Therefore ,  for  each se rve r  from which St rese ts  its 
clock, the re  will be a cor responding  equa t ion  of  the 
form of equa t ion  8. In pa r t i cu la r ,  t he re  will be such 
an equa t ion  for the last t ime se rve r  f rom which St 
resets.  Call th is  se rver  Skin. The re l a t ionsh ip  is 

(0 < j  < m)[Ekrn(t + Okra) 
< Ekj(t + Okj) -- (l 4- 5i)([k,~ -- ~kj)] (9) 

By def ini t ion,  all of  the repl ies  a f te r  the one from Sam 
do not cause  a reset:  

(m < j - -  n)[Ehj(t + ok j) > Ei(t + [kj) - ( 1 + 5i)~tk,] 
[rule [t4M-21 

= Ei(t + ~h m + O) + (~kj -  ~km.)~Jr - -  ( |  + ~ i ) ~ t k  - 
[ l e~ma  l ] 

> Ei( t+ ~k m + O) + (~kj -  [k.~)8,-  [hi 
[equation I I 

By a lgebra ica l ly  r e a r r a n g i n g  the last  re la t ion ,  we get 

(m <j  <_ n)[Ei(t + ~hm + O) 

(m<j<--n)[Ei(t + ~km+O)<Ekj t t  + okj.) ~-~l 
[Rule MM-2  and  de f in t tmn of ~ l ( l u~ 

T h e o r e m 3  If all of the  8, a re  accu ra t e  upper  
bounds on the absolute value  of  the  dr i f t  r a t e s  of  the  
clocks Ci, then in a fu l ly-connected  t ime service  
runn ing  a lgor i thm MM, the a s y n c h r o n i s m  will be 
bounded by 

ICi(t)- C(t)l <2EM(t)+ 2 [ +  (8i + 8 .)(~ + 2 0  
J 

Proo f  The  theorem follows f rom t h e o r e m  2 and  
l em m a  4. [ ]  

T h e o r e m s  2 and 3 are  expressed in t e rm s  of the most  
precise  clock; tha t  is. the clock wi th  the smal les t  e r ro r  
in the service  at  some t ime  t. T h e r e  is no a priori 
reason  tha t  the most accura te  clock will also be the  
most  precise.  A t ime service in an y  ini t ial  s ta te  with 
bounded er rors ,  however,  will e v e n t u a l l y  reach  the  
s ta te  where  the most accura te  clock is also the most  
precise.  Th is  means  that  e v e n t u a l l y  the t ime service  
will der ive  its behavior  from the most  accu ra t e  clocks 
in the service.  

T h e o r e m  4 Let 8 , m n = - m i n i m u m  (VSt(S)[Si] and 
S , , n  be the subset  of a f ini te  t ime  service  S with 
8=8,,~t,, Let S,~z,~ be the set  of se rve r s  in S with the 
smal les t  er ror .  If no t ime se rve r  rese t s  to a clock with 
an e r ro r  worse than its own, then the re  exis ts  a t ime 
~, lbr which ift>-t x, SM(tx)(S,nt~. 
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Proof'. Consider a time service at time t 0. First 
assume that  no clock in the system is to reset after to. 
Then, the error of each time server increases linearly 
according to lemma 1. I fS i (  Stain and Sj~Smin, then 

E i( t 0 + A) = E ~( to) + 8iA and Ej( t 0 + A) = Ej( to) + 8jA 
[lemma i ] 

Ej(to + A) - Ei(to + A) = Ej(to) - Et(to) + (Sj - 8i)A 
[subtracting the above two equations l 

Rearranging the above relations, we see that  E i is 
less than Ej for all times 

t >-- t O + (Ei(t O) - Ej( to))/(Sj - ~)t). 

If both Si ,Sj (Smin,  then under the same conditions, 
the server with the smaller E(to) continues to have 
the smallest error. Therefore, for all t >- tOx, with 

Ei(t O) - Eh(t O) 
txO---to+ max  [ V _ ~ /  j 

where Si(  Stain and SkE S -  Smm, the element of Smi n 
with the smallest initial error would be SM. 

Now consider what happens at time to+ AI when the 
first time server resets. Let S~ be this server (if more 
than one server simultaneously resets, arbi t rar i ly  
choose one of them to be Sr). If we again assume that 
no servers reset after A1, then by the time 

[ E,(to+ A l ) -Eh( to  +Al)  ! 
tl--to + m a x x  6~ 

the element of Smm with the smallest  initial error 
would be SM. 

[fit  were possible for 6x:>tOx, there would be a series 
of resets such that  tm+lx>tmx,  and the theorem 
would be false. The largest values of tlx would be 
obtained for the largest Ei( to+Ai)  and the smallest  
Ek(t0 + AI). Since Si~Smin, Ei( to+AI)=EM(tO+A1) ,  so 
ttx is maximized for the smallest  Eh(t 0 + At). 

EM(tO+ Al)<-E~(to + Al +0) [ lemma 3] 

Thus, the largest value of tlx is obtained for Ek =Ej  
and Ej(to + A1 + 0) = EM(t 0 ÷ At t. 

gi(to+ A t ) = E t ( t o ) * 8 , A - ~ z  with [~,->0 [lemma21 
EM(t O + A 1 ) = EM(tO) e ,i tlA 

[hypothesis and  l e m m a  l I 
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Substituting the last three equations into the 
definition of tlx, we get, after some algebra: 

Ei(t o) - EM(t o) + ( 
tit ~to + m a x  5k_ 5 '. 

Since Si(  S,nm, 8M>--~Ji and ~t->0, the coefficient of ~1 
in this equation is less than or equal to zero. If we call 
this coefficient - a ,  then we get from the above 
equation the following relationship: 

tl x <--t~-- aA 1 for a ->- 0 

This was the largest tl~ we could construct, so this is 
true for any one server resetting. The same a rgument  
can be made for any t m + l x given tm~, so 

tO:>tl ==.... ~ tm>  tm+ l >. . .  
X X X X 

The latest time in which the service will have 
SM(Smin  is t0x. Since the diference in the errors is 
bounded, this is a finite value. [ ]  

From theorems 3 and 4, it is easy to prove that  
eventually the error of all of the clocks in the time 
service will be bounded by some linear function 
E~(t)<_a+b~)min. This means that  the "long term" 
grow, th of the error in the system (or the average 
growth of the error over a base that  is large in in 
terms of r) is equal to the accuracy of the most 
accurate clock in the system. 

Experimentation with this algori thm has shown that  
it behaves as expected when servers have good 
bounds on their maximum drift rates. This 
algorithm, however, has some flaws; in particular,  it 
is not resiliant to some clock possessing an invalid 
upper bound on its drift rate. It is not clear what a 
server should do when it finds itself inconsistent with 
another server. Even though it knows tha t  at  least 
one of them must be incorrect, it cannot easily tell 
which. A majority voting scheme may not work since 
the consistency property is not transitive. 

A simple solution is to assume tha t  the probability of 
any time server being incorrect is small. When a 
server finds itself inconsistent with another  server, it 
assumes that  the probability of a third time server 
also being incorrect is very small, so the original 
server resets to the value of any third server. This 
recovery algori thm can work very well. For example, 
in one experiment there was a network of two servers 



in which one server  assumed its maximum drift rate 
was bounded by one second a day and whose actual 
drift rate was closer to one hour a day (about four 
percent fast). Each time ei ther  of the two clocks 
decided to reset, it found itself inconsistent with its 
neighbor and obtained the time from a serv{~r on some 
other network. The main problem was that the 
servers  did not check their neighbor very often, so the 
time of the inaccurate clock would be ver) far off by 
the time it reset. 

This recovery algori thm can break down as soon as 
there is more than one incorrect server  directly 
connected to a server. In this case, the service can 
parti t ion into different consistency groups (Figure 4). 
This is discussed fur ther  in Section 5. 

4 I n t e r s e c t i o n  as a S y n c h r o n i z a t i o n  F u n c t i o n  

A time service using a l g o r i t h m M M  can not be any 
more accurate  than the most accurate clock in the 
system. This is an obvious property of all a lgori thms 
that  select a time from one clock in the system. In 
addition, a lgori thm MM does not guarantee  that  each 
server  will select the same clock with which to 
synchronize, so the asynchronism is limited only by 
the consistency of the s y s t e m  

The consistency of the clocks, however, suggests 
another  synchronization function. Since the time 
intervals must  intersect  in order to rout ually define a 
correct time, the correct t ime must lie in the interval 
defined to be the intersection of all of the individual 
intervals. For example, Figure 2 shows two different 
intersections of intervals  In both cases, if the 
individual intervals are correct, the correct  time 
must lie within the shaded region 

Figure 2 
Intersections of Maximum Errors 

r I 

The intersection of the intervals is determined by the 
servers with the latest t rai l ing edge and earlie.~L 
leading edge. There are two ways in which *h,, 
intersection can occur: e i ther  both edges are defined 
by the same interval (as is the case with the left side 

of Figure 2}, or the edges are defined by different 
servers (as with the right side of Figure 2). The first 
case reduces to algori thm MM, while the second case 
produces an interval that  is smaller  than the smallest  
pre-existing interval. One would expect tha t  in some 
cases an algori thm using intersection will perform 
better than algori thm MM. 

More formally, the intersection of the t ime intervals 
of two time servers S~ and S: is defined to 6e 

[max[C, - E,, C j -  Eft.. min[Ct + Et, C i + Ejl I (12) 

If one interval is not a subset of the other,  and 
Cz-Ei<-Ci - Ej, then .it can be shown from equation 
12 that  Ct+Ei<-Cj+Ej. The following relat ionships 
can be derived from these two inequalities: 

Ct<-C.i 113) 
[Ci- C~[ <-[Ei- Ej[ (14) 

An algori thm using intersection as a synchronization 
function can be defined by the following two rules: 

IM-I The same as MM-I. 

IM -2 Transform each reply <Cj,  E j>  into 
the interval  [T / .. Lfl where 

r:-Cj-Ej-C, 
L:-Cj+ Ej+(I +6,)0j- C, 

The interval  [a .. bl is constructed as 
a ~ m a x  T~ and b ~ m i n  L i over all of 
the replies. If b>a, then the time 
service is consistent, and S~ sets 
ei÷.-(b-a)/2, Ct~,.-(a + b)/2 and 
r:--(a + b)/2. 

As with algorithm MM, this algorithm will be useful 
only if it preserves the correctnes.,, of the clocks 
running the service 

T h e o r e m  5 A correct t ime service which follows 
algori thm IM and in which all the servers  have valid 
bounds on their maximum drift rates will remain 
correct. 

Proof. From rule IM-I and theorem 1, a correct 
time server that  is not reset  will remain  correct. 
Since a time server  only changes its clock to the 
inter.~ection of the intervals [Ci -Ei  .. Ct+E,I and 
IC --E: . C + E j + t l  ~-5"t)~ii] (rule IM-2), all we need 
~o show is that  both of these intervals are correct  at 
t~me : +~j. The first interval is just  the value of the 
unchanged clock Ct, so from theorem I it is correct 
We need to show that  ifCj is correct a t  t+  %, 
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(){t + o j ) - E j ( t  +oj)<-t +~j 
<- Cj(t + oj) + Ej(t + oj) + ( 1 + 5i)~9 

Cj(t + o j ) - E j ( t  +oj)<-t +oj [def ini t ionof  eorrect]  
<- t + [j [definition of ~fl 

Cj( t + oj) + Ej( t + oj) + ( l + Si)~ ij>-t + oj + ( l + Si)~ij 
[definition of correc t ]  

>- t + oj + [j [equation I l 
>--t4-~j [oj:> O] 

, < IC i(t) - Cj(t)[ - ~ + (8, + 8:)~ 

Proof'. At some time t in the time service, a clock 
, has a value Ci( t )=t+ei  and an error Ei(t)=e;. If clock 

Cz(t) is correct, ]eil <-ei. I fa  server sends a time request 
to S, at time t, then the reply from St wilt produce the 
interval 

[t + ~:~ +oi--e  i . t +ei+ 2oi+Pi+ei]  

[] 

One way to compare algorithm 1M with M M  is to 
compare the final intervals that  a r e  calculated by 
these algorithms given the same input. This is 
equivalent to comparing the minimum of a set of 
intervals to the intersection of these intervals. The 
intuitive comparison given in the beginning of this 
section is proven in theorem 6. 

T h e o r e m  6 The intersection of the intervals of a 
time service is at  least as small as the smallest  
interval. 

Proof'. The intersection of the intervals is defined 
by equation 12. Either the server with the maximum 
trail ing edge will also have the minimum leading 
edge or it will not. If server S, does, then 

C -E,>-Cj-E i 
C ~ + E ~ < - C j + E j  

[equation 121 
[equation 121 

This reply is received by the requestor at  time 
t '= t+oi+pz .  The transformed interval [T i .. Lt] is 
[ a i - e i - P t  • ei+ ot + eli. The intersection of all of the 
replies is 

[max a t -  ei  - -  Pt .. min ai + o i  + e l ]  

=[--(min :i+ot).. rain hi+or] 

where e i d e r - S t  and ~ti=-ei+~:i . Let kmi,t and Lmt,t be 
the minimum values of hi and t~, respectively The 
largest possible asynchronism between two servers 
resetting at  the same time would be for one to have 
its intersection interval edges as early as possible and 
the other's edges as late as possible. The largest 
possible value of min ~i+oi is ¢min+~ and the 
smallest  possible value is ~,,i~. Similarly, the largest 
possible value of rain .kt+ o, is .\min+~ and the 
smallest  possible value is z\min. Thus, the intervals 
[ - : , , n -  ~.. :kmtnl and [ - ~,nt,~ ...~'mtn -k ~] result  in the 
largest asynchronism The midpoints of these 
intervals differ by 

Rearranging and combining these two inequalities 
gives Ei<-Ej. Since this is true for all Ej, the 
intersection is the smallest in te rva l  

] - -  ~min -- ~ + "~rnin -- ( -- rmtn + '~rain + ~)[/2 = f 

The theorem follows from the definition of 8 and ~ [_J 

Assume that  Si has the min imum leading edge and Sj  
has the maximum trailing edge with St ~e Sj. 

Cj-Ej>-Ck-Ek 
Ct + Ei < C~ + Eh 

[equation 12] 
[equation 12l 

As was mentioned before, the error in a time service 
running algori thm IM should in the best case grow 
more slowly than a time service r.mning algori thm 
MM. The next theorem states that the expected 
growth of the error' in the system may also be slower. 

Rearranging and combining these two inequalities 
gives E i + E j + C i - C j < - 2 E k .  From equation 12, the 
length of the intersection is E + E j + C i - C j .  Since 
this is true for all k, the interst,ction is at  least as 
small as the smallest interval Z-] 

Since the interval to which a .server ~ets its clock is 
derived rather  than selected, algorithm [M will in 
general keep clocks much better svachr,,aized than 
algorithm MM. This is ;~ro~c~, m the following 
theorem: 

T h e o r e m  8 Let the actual drift rate a clock C~ 
exhibits between two successive readings of its value 
relative to a standard be the random variable a. Let 
this random variable be distributed by some 
probability density function that  is nonzero only over 
the range -s~8<-a<-si8 where 8=Si/st. Assume that  
at time to the clocks are synchronized and have the 
same error e0, and the intersection of the intervals of 
the n servers at t ime t>-to is e. If the ~ are identically 
distributed and independent and the clocks are not 
reset in this interval, 

T h e o r e m 7  In a time service running algorithm 
IM, the asynchronism is bounded by 
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Proof  The  following lemma,  given wi thout  proof, 
will be used in the proof of t heo rem 7. A proof  of 
l emma 5 can  be found in [Marzul lo  83l. 

L e m m a  5 Define n independen t  r andom 
var iables  0, ident ica l ly  d i s t r ibu ted  accord ing  to a 
probabi l i ty  dens i ty  funct ion tha t  is nonzero  only  over  
the range  O<_0<_O. If 0raax is the m a x i m u m  value  of 
the r andom var iab les  and  Oma x the m i n i m u m  value,  
and E(0) is the expected value  of 0, then  

l im E(0 )=Oand lira E(0 )=0 
m a x  m t  n 

Define the r a ndom var iable  0 to be u + 5, so 0 -< 0 <- 28. 
At t ime t, 

Ci(t) = to + (t - to)( 1 + si(0 - 8 ) )  [definition of 8, O, al 
El(t) = eo + s i ( t -  @8 [ lemma I I 

Let Ti(t) be the t ra i l ing  edge of  the in te rva l  <C~(t), 
El(t)> and Li(t) the  leading  edge. The  above two 
equat ions  give express ions  for Ti(t) and Li(t): 

Ex p e r im en ta l  observa t ions  of this  a lgo r i t hm have  
shown tha t  in correc t  sys tems  the e r ro r  does grow 
much s lower than  in a lgo r i thm MM. In one tes t  of  a 
small  sy s t em where the 8i were chosen casual ly ,  the  
e r ro r  grew ten t imes  s lower than  it would have unde r  
a lgo r i thm MM. This  a lgor i thm,  however ,  has p roven  
to be even less fau l t - to le ran t  t h an  a lgo r i thm MM. 
There  are  cons i s ten t  s ta tes  in which a lgo r i t hm M M  
will recover  cor rec tness  while a l g o r i t h m  IM will not. 
The  converse  is not true.  F igure  3 is an  example  of  
one of these  states.  The  dashed line indicates  the 

I~ ~1 Sa 

Figure 3 

Ti(t) = t -  eo + s i ( t -  to)(O- 28) 
Li(t) = t + eo + s i ( t -  to)O 

From l e m m a  5, in the l imi t  of n -.,0% E(Omax) = 28 and 
E(Omin[Omax) = 0. Subs t i tu t ing  into the two equa t ions  
above, 

E(e) = i t +  e0 + s i ( t -  to)E(O~nin[Omax) 
- (t - e 0 + s i ( t -  to)(E(Omax) - 28))]/2 = e0- 

[] 

This  a l go r i t hm uses the in format ion  abou t  how far  
the se rvers  have  dr i f ted  apa r t  as compared  to the i r  
possible d r i f t  in o rder  to cons t ruc t  the more  accura t e  
interval .  F o r  example ,  consider  a sys tem cons is t ing  of 
a clock accura t e  to at  leas t  one second a day and a 
se rver  accu ra t e  to a t  least  two seconds a day. If these 
clocks were in i t ia l ly  synchronized  and were  a f t e r  one 
day th ree  seconds apar t ,  then the clocks could be 
cor rec t ly  r e synchron ized  The  a r g u m e n t  of  t heo rem 8 
is t ha t  g iven  enough servers ,  the p robabi l i ty  of 
hav ing  one se rve r  drif t  at  +St and a n o t h e r  dr i f t  at  
-81 is large given tha t  the m a x i m u m  dr i f t  r a t e s  are  
valid. If the m a x i m u m  dr i f t  ra tes  are  overspecif ied,  
then the expec ted  growth  in the e r ro r  is the a m o u n t  
they are  overspecif led.  Th is  is equ iva l en t  to a service  
in which all of the clocks have a bias wi th  respect  to 
some t ime s t anda rd  with a ra te  d i f fe ren t  f rom one 
second per second. 

cor rec t  t ime,  so tha t  even  though the  se rvers  a re  
consis tent ,  only  St  and $3 are  correct .  Under  MM, a 
se rve r  would choose Sa, while under  IM. a s e rve r  
would choose the incorrec t  in terva l  S2,QSa 
Algor i thm [M is pa r t i cu la r ly  suscept ib le  to s e rve r s  
dr i f t ing  s l ight ly  s lower or fas ter  than  the i r  a s sumed  
ma ×imum dr i f t  ra tes  

5 Inconsistency 

The two a lgor i thms  p resen ted  here  have been 
ana lyzed  m a th em a t i ca l l y  and expe r imen ta l ly  in 
o rder  to u n d e r s t an d  the i r  behavior .  The i r  g r ea t e s t  
weakness  is the need for each se rver  to have a cor rec t  
upper  bound on the magn i tude  of its drif t  ra te .  if  
se rve rs  do not  have valid bounds,  the sys tem can 
become inconsis tent ,  leaving l i t t le  in fo rmat ion  on 
which se rve r s  are  incorrect .  For  example ,  F igure  4 
shows an incons is tent  s ix-server  t ime service.  T h e r e  
are  t h ree  sets of cons is ten t  se rvers  whose 
in te rsec t ions  are shown by the shaded areas.  [t is not 
a p p a r e n t  which set  of servers  (if  any)  is the cor rec t  
one. 

Th e re  ts not enough in format ion  in the s ta t ic  
a r r a n g e m e n t  of the t ime se rve r  in te rva l s  to 
d e t e rm in e  why the sys tem is inconsis tent .  Ins tead,  
,he r(~t,,s of  the servers  must  be ex am in ed  in o rde r  ,o 
d e t e rm in e  how to recover.  An in t e res t ing  approach to 
this is to apply the  a lgor i thms  in this paper  to the 
rate.< of the (.locks as well as to the i r  values Two 
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Figure 4 
An Inconsistent Time Service 

clocks have consistent rates (are consonant) at some 
time to if their rate of separation is less than the sum 
of their maximum drift rates: 

d(c i ( t ) -Cj ( t ) )J  <-8.+8. 

A rate interval that  is equivalent to the time interval 
used in the previous algorithms can be defined based 
on this definition of consonance, Algorithms MM and 
[M can then be applied to maintain a consonant, set of 
8i, just  as they were previously used to maintain  a 
consistent set of tr The details are presented in 
[Marzullo 831 along with a more full development of 
the two algori thms described here 

[Boggs 801 

[Ellingston 73] 

{ Lamport 781 

[Lamport 821 

[Marzullo 831 

[Mills 811 
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