
Principle: Everything Is an Object6

I Basic types (integers, booleans, strings, etc.) are objects
I Classes are objects (in Emerald, mere syntactic sugar)
I Types are objects (of a special built-in type, Signature)
I Language constructs however, are not objects

(e.g., declarations, if-statements, for-loops, programs)

Alternative interpretation:

Every valid expression evaluates to an object

Consequently:

I Type names and declarations are expressions
I Class names and declarations are expressions

6Well, almost everything

Some Non-Objects: Trivial Emerald Programs

I An Emerald program is a list of constant declarations
I Each bearing a name, an expression, and optionally, a type
I The following (trivial) programs produce no output

With type inference:
const a <- 4
const b <- true
const c <- ’x’
const d <- "Hello, World!\n"

With type annotations:
const a : Integer <- 4
const b : Boolean <- true
const c : Character <- ’x’
const d : String <- "Hello, World!\n"

Some Hello-World Objects (1/3)
Time for some output!
const main <- object main

initially
stdout.putstring["Hello, World!\n"]

end initially
end main

To compile and run:
$ ec hello.m # Assuming you call the above file hello.m
$ emx hello.x # Assuming ec went well, you’ll get a hello.x

I The use of the name(s) “main” is purely conventional
I Emerald merely evaluates the declarations of a program

(and their expressions) in order, from top to bottom
I An initially-block can contain a list of declarations and

statements, and end in fault-handling code; more on
fault-handling in subsequent lectures

Some Hello-World Objects (2/3)

The following is also a valid Emerald program:
const alice <- object female

initially
stdout.putstring["Hello, I am Alice!\n"]

end initially
end female

const bob <- object male
initially

stdout.putstring["Hello, I am Bob!\n"]
end initially

end male

Compile and run:
$ ec hello.m
$ emx hello.x
Hello, I am Alice!
Hello, I am Bob!

Some Hello-World Objects (3/3)

So is this:
const main <- object main

initially
stdout.putstring["Hello, World!\n"]
stdout.putstring["Hello?\n"]
stdout.putstring["Is there anyone out there?\n"]

end initially
end main

Compile and run:
$ ec hello.m
$ emx hello.x
Hello, World!
Hello?
Is there anyone out there?

A More Elaborate Object (1/3)
% A random number generator
% Derived from https://stackoverflow.com/a/3062783/5801152
const rand <- object rand

var seed : Integer <- 123456789
const a <- 1103515245
const c <- 12345
const m <- 2147483648
op next -> [retval : Integer]

seed <- (a * seed + c) # m
retval <- seed

end next
initially

stdout.putstring[rand.next.asstring || "\n"]
stdout.putstring[rand.next.asstring || "\n"]
stdout.putstring[rand.next.asstring || "\n"]

end initially
end rand

I Many built-in types define an asstring method
I Append a line break (|| "\n") to flush stdout

A More Elaborate Object (2/3)
If we export the operation, we can use it outside:
const rand <- object rand

var seed : Integer <- 123456789
const a <- 1103515245
const c <- 12345
const m <- 2147483648
export op next -> [retval : Integer] % See here

seed <- (a * seed + c) # m
retval <- seed

end next
end rand % Here

%
const main <- object main %

initially
stdout.putstring[rand.next.asstring || "\n"]
stdout.putstring[rand.next.asstring || "\n"]
stdout.putstring[rand.next.asstring || "\n"]

end initially
end main % And here

A More Elaborate Object (3/3)
Now, with a bit more class:
const rand <- class rand % See here

var seed : Integer <- 123456789
const a <- 1103515245
const c <- 12345
const m <- 2147483648
export op next -> [retval : Integer]

seed <- (a * seed + c) # m
retval <- seed

end next
end rand

const main <- object main
initially

const r <- rand.create % And here
stdout.putstring[r.next.asstring || "\n"]
stdout.putstring[r.next.asstring || "\n"]
stdout.putstring[r.next.asstring || "\n"]

end initially
end main

What Is A Class (in Emerald) Anyway?

A class declares (1) an object type, and
(2) a means to create instances of that type

Consequently, an Emerald class C is syntactic sugar

for an Emerald object exporting the following methods:
getSignature -> Signature
create [p1, p2, ...] -> C

where

I Signature is a built-in type of all type objects
I The value (object) returned by create will “conform to”

the signature returned by getSignature

More on type objects and conformity after an example

A More Elaborate (Class) Object
The class from before, without syntactic sugar:
const rand <- object RandCreator

const RandType <- typeobject RandType
op next -> [seed : Integer]

end RandType
export function getSignature -> [r : Signature]

r <- RandType
end getSignature
export op create -> [r : RandType]

r <- object Rand
var seed : Integer <- 123456789
const a <- 1103515245
const c <- 12345
const m <- 2147483648
export operation next[] -> [r : Integer]

seed <- (a * seed + c) # m
r <- seed

end next
end Rand

end create
end RandCreator

