

UNIVERSITY OF OSLO **ExoMars Mission** · Scientific objectives: - Search for signs of life (past/present) on Mars; To characterise the water/geochemical environment as _ a function of depth in the shallow subsurface; To study the surface environment and identify hazards to future missions; To investigate the planet's subsurface and deep interior to better understand the evolution and habitability of Mars. **Pasteur Rover** with instruments: Camera, Organics detector, Mass spectrometer, GPR, Raman/LIBS, Microscope, Drill. GEP: Met-sensors, Dust, GPR, Electric field WISDOM = Water Ice and Subsurface Deposit • Observations on Mars

ES/

DEPARTMENT OF INFORMATICS

UNIVERSITY OF OSLO Satellite: optics, IR, radar Polar orbit, height: R=800 km				
Sensor	Wave length	Aperture	Ground resolution	Near field?
Light blue- green	λ=500 nm	D=40 mm	$X_a = \lambda \cdot R/D = 0.5 \cdot 10^{-6} \cdot 800 \cdot 10^3 / 0.04 = 10 m$	X _a > <i>D:</i> far field
Thermal IR	λ=10 μm	D=80 cm	$X_a = \lambda \cdot R/D = 10 \cdot 10^{-6} \cdot 800 \cdot 10^3 / 0.8 = 10 m$	X _a > <i>D:</i> far field
Radar	f=3 GHz,	D=10 m	$X_a = \lambda \cdot R/D = 0.1 \cdot 800 \cdot 10^3 / 10 = 8 \text{ km}$	X _a > <i>D:</i> far field
Radar, synthetic aperture beparture	λ=10 cm	D=8 km	$X_a = \lambda \cdot R/D = 0.1 \cdot 800 \cdot 10^3 / 8 \cdot 10^3 = 10 m$	X _a < D: near field 5

