INF-GEO 4310 Imaging

Lecture 16.09.2010

Fritz Albregtsen

 Geometrical Optics part II- Themes today:
- Imaging by Refraction
- Geometrical Optics: Diffraction
- Geometrical Optics: Scattering
- Literature:

- F. Albregtsen:
"2. Reflection, refraction, diffraction, and scattering"
(pages 37-82)

Geometrical Optics: Refraction

- Imaging by refraction
- Refraction at a planar surface (Snell's Law)
- Refraction at a single spherical surface
- Thin lenses; "The lensmakers equation"
- The camera;
- "Depth-of-field"
- The eye
- The magnifier
- The eyepiece
- Microscopes
- Telescopes
- Multiple lens systems

Refraction by spherical surface - I

- Convex surface with radius of curvature R facing incident light originating from P on the optical axis.
- A ray from P at an angle a to the axis is refracted at the surface.
- Angle of refraction is given by Snell's law, refracted ray crosses the optical axis at an angle β.
- All rays from P will intersect axis at the same point P^{\prime}, provided that the angle a is small.

Refraction by spherical surface - II

- Snell's law : $n_{a} \sin \theta_{a}=n_{b} \sin \theta_{b}$
- Paraxial approximation

$$
\Rightarrow n_{a} \theta_{a}=n_{b} \theta_{b} .
$$

- Combining this with $\theta_{a}=a+\varphi$ gives $\theta_{b}=(a+\varphi) n_{a} / n_{b}$.
- Substituting this into $\varphi=\beta+\theta_{b}$

- Tangents of a, β, and φ are simply

$$
\operatorname{tg}(a)=h /(s+\delta), \operatorname{tg}(\beta)=h /\left(s^{\prime}-\delta\right), \operatorname{tg}(\varphi)=h /(R-\delta) .
$$

- If the angle a is small, so are β and φ.
- Under the paraxial approximation,
δ may be neglected compared to s, s^{\prime}, and R.
- $=>a=h / s, \beta=h / s^{\prime}, \varphi=h / R$.

Refraction by spherical surface - III

- Substituting $a=h / s, \beta=h / s^{\prime}, \varphi=h / R$
into
$\left(n_{a} a+n_{b} \beta\right)=\left(n_{b}-n_{a}\right) \varphi$
we get general
object-image relation, for single spherical surface:

$$
\frac{n_{a}}{s}+\frac{n_{b}}{s^{\prime}}=\frac{n_{b}-n_{a}}{R}
$$

- Same expresssion, no matter if n_{a} is greater or less than n_{b}.
- Does not contain the angle a :
$=>$ all light rays coming from P will intersect at P^{\prime}.
16.09.2010

INF-GEO 4310 Lecture 3

Thin lenses

- Thin lens: two refracting surfaces close enough to neglect distance between them.
- Centers of curvature of spherical surfaces lie on and define optical axis.
- The first and second focal points are on either side of the lens.

- Focal length: distance from focal point to middle of lens.
- Focal length of convex lens is positive
- Focal length of concave lens is negative.

Imaging by spherical surface

- Given

$$
(y, s, R)
$$

- What is
- the size y^{\prime}
- position s^{\prime}
- of the real image ?

- We see that

$$
\operatorname{tg}\left(\theta_{a}\right)=y / s \text { and } \operatorname{tg}\left(\theta_{b}\right)=-y^{\prime} / s^{\prime}
$$

- Snell's law

$$
n_{a} \sin \left(\theta_{a}\right)=n_{b} \sin \left(\theta_{b}\right)
$$

- Small angles $=>n_{a} y / s=-n_{b} y^{\prime} / s^{\prime}$.
- Magnification: $m=y^{\prime} / y=-\left(n_{a} s^{\prime}\right) /\left(n_{b} s\right)$.
- (negative sign => inverted image)
16.09.2010

INF-GEO 4310 Lecture 3

Object-image relation

- We have two pairs of similar triangles, giving:

$$
\frac{y^{\prime}}{y}=\frac{s^{\prime}}{s} \text { and } \frac{y^{\prime}}{y}=\frac{s^{\prime}-f}{f} \text { implying } \frac{1}{s}+\frac{1}{s^{\prime}}=\frac{1}{f}
$$

- This is known as the "object-image relation".

Image size and magnification

- Size of the image?
- Two similar triangles
give the right hand ratios.
- Then use "object-image relation".
- The magnification is

$$
m=y^{\prime} / y
$$

- If object is far away:

$$
s \gg f=>m \ll 1
$$

Size of image of the Moon ?

- What is the size the Moon imaged by lens having $\mathrm{f}=50 \mathrm{~mm}$?
- Moon has a diameter of 3476 km
- Distance to Moon is 384405 km .
- $\mathrm{s}=384405 \mathrm{~km}, \mathrm{f}=50 \mathrm{~mm}, \mathrm{y}=3476 \mathrm{~km}$
- Then

$y^{\prime}=y \mathrm{f} /(\mathrm{s}-\mathrm{f})=3476 \mathrm{~km} \times 50 \mathrm{~mm} /(384405 \mathrm{~km}-50 \mathrm{~mm})=\underline{0.45 \mathrm{~mm}}$.
- This modest image fills less than 0.02% of the $24 \times 36 \mathrm{~mm}$ film area!

"The lensmakers equation"

- Lens has two surfaces => object-image relation applied twice:

$$
\frac{n_{a}}{s_{1}}+\frac{n_{b}}{s_{1}{ }^{\prime}}=\frac{n_{b}-n_{a}}{R_{1}}, \quad \frac{n_{b}}{s_{2}}+\frac{n_{a}}{s_{2}{ }^{\prime}}=\frac{n_{a}-n_{b}}{R_{2}}
$$

$s_{1}=$ distance to object, $\mathrm{s}_{2}{ }^{\prime}=$ distance to final image. $\mathrm{s}_{2}=-\mathrm{s}_{1}{ }^{\prime}$.
Set $n_{a}=1, n_{b}=n$. We get

$$
\frac{1}{s_{1}}+\frac{n}{s_{1}{ }^{\prime}}=\frac{n-1}{R_{1}},-\frac{n}{s_{1}^{\prime}}+\frac{1}{s_{2}{ }^{\prime}}=\frac{1-n}{R_{2}}
$$

- Adding equations:

$$
\frac{1}{f}=\frac{1}{s_{1}}+\frac{1}{s_{2}^{\prime}}=(n-1)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)
$$

- Note that:
- The two focal lengths are always equal, despite different curvatures.

Chromatic aberration

- Index of refraction depends on wavelength $=>$ images at different λ
focus at different distances.
- Achromatic lens
- two materials (e.g. crown and flint) bonded
- focus two wavelengths into same focal plane
- Reduces chromatic aberration

- Apochromatic lens

- more than two lenses of different materials
- focus three λ (e.g. R,G,B) into same plane
- order of magnitude better than achromat

The camera (lat:: small room)

- A camera consists of:
- light-tight box
- lens (several elements)
- adjustable aperture
- controllable shutter
- film or electronic detectors.

- Fixed focal plane =>
- lens closer to detector for distant object
- lens farther away from detector for nearby object.
- This is very different from imaging in the eye.

f-number and exposure

- Energy per unit area in the focal plane is proportional to
- aperture area and length of the exposure time interval.
- f-number of camera lens $N=f / D$.
- Intensity in focal plane is proportional to ($\mathrm{D} / \mathrm{f})^{2}$.
- Changing D by $\sqrt{ } 2$ changes intensity by a factor of 2 .
- f-numbers are often related by $\sqrt{ } 2$
- $1 / 500 \mathrm{~s}$ at f/4
- $1 / 250 \mathrm{~s}$ at $\mathrm{f} / 5.6$

- Shorter exposure times
- minimize motion-blurring
- allows larger effective lens aperture, giving
- better resolution of details in the image
- reduced depth of field and depth of focus.

Field of view (FOW)

- Using $24 \times 36 \mathrm{~mm}$ film, FOW measured along the diagonal will be
- 750 for $\mathrm{f}=28 \mathrm{~mm}$ (wide angle, landscapes)
- 470 for $\mathrm{f}=50 \mathrm{~mm}$ ("normal")
-25° for $\mathrm{f}=105 \mathrm{~mm}$ (ideal for portraits)
-8° for $f=300 \mathrm{~mm}$ (full moon is $1 / 2^{\circ}$).
- Replace $24 \times 36 \mathrm{~mm}$ film with digital detector, => smaller registered field of view.
- correspond to approximately 1.5 times longer focal lengths in cameras using $24 \times 36 \mathrm{~mm}$ film.

Same scene, different focal lengths

Zoom lenses

- Digital zoom: Cropping and enlarging an image
- always lower quality than optical zoom, no resolution gained.
- Optical zoom: Several lens elements are used
- focus and focal length can be varied, maintaining focal plane.
- Described by ratio of focal lengths:
- a 20 to 200 mm zoom is a 10:1 or " $10 \times$ " zoom.
- Two parts:
- a fixed-focal-length lens (L3)
- an afocal zoom lens system (L1 + L2)
- does not focus the light
- alters the size of a beam
- alters overall magnification.
16.09.2010

17

Depth of field

- DOF = distance in front of and beyond the focused object that appears to be in focus.
- A large DOF brings both foreground and background into focus.
- A small DOF will focus on part of an interesting object, and defocus a distracting background.

The Hitchcock zoom

- Zooming can manipulate perspective in time sequences.
- If the camera is pulled away from the object
- while lens zooms in to maintain Field Of Wiew, or vice versa,
- the size of the foreground objects will be constant,
- but background details will change size relative to foreground.
- Continuous perspective distortion is counter-intuitive:
- Perspective change without a size change is highly unsettling.
- Special effect used in Hitchcock's Vertigo
- hence called "Vertigo-" or "Hitchcock-zoom".
- Also used in "Jaws", "ET", ...
16.09.2010

INF-GEO 4310 Lecture 3

Lens aperture and Depth Of Field

- Large lens aperture D, low f/D - value:
- Shorter exposure time
- Focus more critical
- Better angular resolution
- Small lens aperture D, high f/D-value:
- Longer exposure time
- Focus less critical

- Poorer angular resolution

What determines DOF ?

- DOF is determined by three factors:
- the focal length of the lens
- the f-number of the lens aperture
- the camera-to-object distance.
- Increasing the f-number (smaller aperture)
increases the DOF.
- reduces the amount of light transmitted
- increases diffraction
- reduces angular resolution
=> There is a practical limit to the reduction of aperture.

Near and far limits of DOF

- An object at distance s from the lens is in focus at image distance v.
- Objects at $D_{\mathbf{F}}$ and $D_{\mathbf{N}}$ are in focus at image distances $v_{\mathbf{F}}$ and $v_{\mathbf{N}}$.
- At the image distance v, they are blurred spots.
- When blur spot diameter

is equal to the acceptable circle of confusion $c(C O C)$, the near and far limits of DOF are at D_{N} and D_{F}.
- From similar triangles we see that

$$
\frac{v_{N}-v}{v_{N}}=\frac{c}{d} \quad \frac{v-v_{F}}{v_{F}}=\frac{c}{d}
$$

Limits of DOF from $N=f / D$

- "f-number" is given by focal length f and aperture diameter d :

$$
\mathrm{N}=\mathrm{f} / \mathrm{d}
$$

- Substituting for d we get the focus limits on the image side of the lens

$$
v_{N}=\frac{f v}{f-N c} \quad v_{F}=\frac{f v}{f+N c}
$$

- Thin lens equation:

$$
\frac{1}{u}+\frac{1}{v}=\frac{1}{f}
$$

- Substituting this give limits of DOF in terms of
- focal length f
- "f-number" N
- object distance s
- circle of confusion c

$$
D_{N}=\frac{s f^{2}}{f^{2}+N c(s-f)} \quad D_{F}=\frac{s f^{2}}{f^{2}-N c(s-f)}
$$

Practical limits of DOF

- DOF beyond the object is always greater than

DOF in front of the object.

- For longer focal lengths the ratio tends towards unity.
- For the $35-\mathrm{mm}$ format, a typical COC is $30 \mu \mathrm{~m}$.
- A practical example:
$\mathrm{f}=50 \mathrm{~mm}$
$N=5.6$
$\mathrm{s}=10 \mathrm{~m}$
c $=30 \mu \mathrm{~m}$
- DOF ranges from 6 m to 30 m . => DOF extends

4 meters in front of and

20 meters beyond the focus distance.

- A smaller/larger COC gives a larger/smaller DOF.

DOF of a camera zoom lens

- On an old fashioned zoom lens, far and near limits of DOF indicated for the chosen f-number and focal length.

- Hyperfocal distance is the nearest focus distance at which the far limit of the DOF extends to infinity.

The eye

- Eye is nearly spherical and about 2.5 cm in diameter.
- cornea protects the eye, performs much of the focusing
- iris and pupil controls how much light will be let through
- lens produces a sharp image
- optic nerve transmits signals to brain.
- Lens
- responsible for ca 20% of the refraction.
- focal length, $f \approx 1.5 \mathrm{~cm}$.
- Focusing
adial ligaments around the lens stretch it to a flattened disc

- focus on far-away objects
- If ring-shaped muscle around the radial fibers is relaxed,
lens becomes more spherical and its focal length is shortened - Focus on closer objects.
- Lens - retina distance is constant, unlike fixed-focal-length lenses.
- Focusing power in "dioptres", d, where d=1/f (f in meters) Eye lens ≈ 67 d, cornea responsible for 45 d.

The hyperfocal distance

- The hyperfocal distance is the nearest focus distance H at which the far limit of the DOF extends to infinity.
- Setting the far limit D_{F} to infinity and solving for s gives us H :

$$
D_{F}=\frac{s f^{2}}{f^{2}-N c(s-f)}
$$

$$
s=H=\frac{f^{2}}{N c}+f \approx \frac{f^{2}}{N c}
$$

- Focusing the camera at the hyperfocal distance gives the largest possible DOF for a given f-number.
- You will see the hyperfocal distance again later!
16.09.2010

Accomodation and defects

- Accommodation - an automatic ability to alter the focal length
- is affected by ageing.
- young individuals may alter focal power by up to 4 dioptres.
- Presbyopia - near point recedes as one grows older
- Myopia (near-sighted) - infinity focused in front of retina. - Corrected by diverging lens ($f=1 / d<0$).
- moves virtual image of distant object at or inside far point.
- Hyperopia (far-sighted) - infinity focused behind retina.
- Corrected by converging lens ($f=1 / d>0$).
- forms virtual image of nearby object at or beyond near point.
- Astigmatism - different focus in horizontal and vertcal plane. - Remedied by lenses that are not rotationally symmetric.

The magnifier

- Max viewing angle is obtained at $\approx 25 \mathrm{~cm}$.
- Converging lens forms virtual image - More distant => larger than object.
- Then object may be moved inside near point.

- Angular magnification M given by ratio of the angle θ^{\prime} (with the magnifier) to the angle θ (without the magnifier).
- Assume that the eye is relaxed $=>$ virtual image placed at infinity.
- Assuming that θ (given in radians) $=\sin (\theta)=\operatorname{tg}(\theta)$:

$$
\begin{array}{ll}
\sin (\theta)=\operatorname{tg}(\theta): \\
\text { Magnification: } & \theta=\frac{y}{25 \mathrm{~cm}} \quad \theta^{\prime}=\frac{y}{f} \\
\text { sneeded. } & M=\frac{\theta^{\prime}}{\theta}=\frac{y / f}{y / 25 \mathrm{~cm}}=\frac{25 \mathrm{~cm}}{f} \\
\hline
\end{array}
$$

- Simple magnifiers give $M \approx 5$
- For more magnification, microscope is needed.
6.09.2010

INF-GEO 4310 Lecture 3

The eyepiece

- Concave mirrors and lenses form real images.
- To inspect real image, we may use a second lens.
- This magnifier produce an enlarged virtual image. - Found in telescopes and microscopes.
- Telescope and microscope oculars are compound lenses
- corrected for chromatic and geometric aberrations.
16.09.2010

Optical microscope

- Object just outside first focal point of the objective => real, inverted and enlarged image.
- This image just inside first focal point of eyepiece => a final virtual image.
- Lateral magnification of objective: $\mathrm{m}_{1}=-\mathrm{s}_{1}{ }^{\prime} / \mathrm{s}_{1}$.
- If object close to focal point: $m_{1}=-s_{1} / f_{1}$.
- Angular magnification of eyepiece: $\mathrm{M}_{2}=(25 \mathrm{~cm}) / \mathrm{f}_{2}$ (if real image is close to focal plane)
- Total angular magnification M :

$$
M=m_{1} M_{2}=-\frac{(25 \mathrm{~cm}) s_{1}^{\prime}}{f_{1} f_{2}}
$$

- Negative sign indicates that image is inverted.
- Use objectives of different f_{1} to vary magnification.

Refracting telescope

- Objective lens forms real, inverted and reduced image - distant object => real image at second focal point.
- Real image at the first focal point of eyepiece
=> final virtual image at infinity
=> objective to eyepiece distance = sum of focal lengths.
- Angle subtended at the eye by the final virtual image

$$
\theta^{\prime}=y^{\prime} / f_{2} \quad \text { (As with the magnifier) }
$$

- Angle of object when viewed by unaided eye $\theta=-y^{\prime} / \mathrm{f}_{\mathbf{1}}$
- Magnification:

$$
M=\frac{\theta^{\prime}}{\theta}=-\frac{y^{\prime} / f_{2}}{y^{\prime} / f_{1}}=-\frac{f_{1}}{f_{2}}
$$

- Negative sign indicates that image is inverted.
- Use eyepieces of different f_{2} to vary magnification.

Multiple lenses

- Focal length for two thin lenses in contact (achromat):

$$
\frac{1}{f}=\frac{1}{f_{1}}+\frac{1}{f_{2}} \Rightarrow f=\frac{f_{1} f_{2}}{f_{1}+f_{2}}
$$

- Back focal length (BFL) of two lenses separated by d :

$$
B F L=\frac{f_{2}\left(d-f_{1}\right)}{d-\left(f_{1}+f_{2}\right)} \quad(d->0=>\text { BFL }->f)
$$

- $d=f_{1}+f_{2} \Rightarrow \mathrm{BFL}$ is infinite. (collimating afocal)
- Alters width of beam
- Found in zoom lenses \& simple telescopes
- Magnification given by:

$$
M=-\frac{f_{1}}{f_{2}}
$$

- $f_{1}>0, f_{2}>0=>M<0$ \& inverted image
- $f_{1}>f_{2}>0 \quad=>M>0$ \& upright image
(convex plus concave lens).

Diffraction by an edge

- Light can bend around corners.
- When a point source casts shadow of a straight edge, the edge of the shadow is not a step edge.
- some light in the area expected to be in shadow
- alternating bright and dark fringes in illuminated area.
- Result of interference between many light waves
- (Huygens' Principle).

Geometrical Optics: Diffraction

- Fraunhofer diffraction pattern
- Single slit, twin slit, multiple slits
- Diffraction grating, spectrograph, spectroheliogr spectrograph
- Diffraction profile of circular aperture

- Airy disc and Rayleigh criterion
- Effect of central obstruction
- The smallest visible detail
- In a high quality camera
- In a compact digital camera
- In a mobile-phone camera
- Depth of focus
- Convolving PSF and sampling aperture
- Fresnel (near-field) diffraction
- Both light source and observation plane are close to the aperture.
- Curvature of the wave fronts must be taken into account.
- Fresnel diffraction effects later in the course.
- Fraunhofer (far-field) diffraction
- Wave fronts at aperture and observation plane considered planar.
- usually => light source and observation plane far from slit.
- We may use collimating lenses
- lens having light source in its primary focal point will collimate the beam before it reaches the aperture;
- lens behind the aperture may collimate the beam traveling towards the observation plane.
- The near/far-field limit is at the hyperfocal distance !!!

Single slit Fraunhofer diffraction

- Diffraction pattern of long, narrow slit:
- a central bright band,
- may be much wider than width of slit,
- bordered by parallel dark and bright bands - with rapidly decreasing intensity.
$I(\theta \mid a, \lambda)=\left(\frac{\sin [\pi a(\sin \theta) / \lambda]}{\pi a(\sin \theta) / \lambda}\right)^{2} I_{0}$
$a=$ the width of the slit
$\lambda=$ the wavelength
$\mathrm{I}_{0}=$ intensity at $\theta=0$.
- Visible light: $\lambda<a$, and $\sin (\theta) \approx \theta$.
$=>$ first minimum at $\theta=\lambda / a$.
$=>$ width of central bright band proportional to λ / a.

Twin slit Fraunhofer diffraction

- Diffraction pattern from two slits
a = slit width
d = distance between slits
$\lambda=$ monochromatic wavelength
$\mathrm{I}_{\mathbf{0}}=$ intensity at $\theta=0$.
$I(\theta \mid a, d, \lambda)=\cos ^{2}(\pi d(\sin \theta) / \lambda)\left(\frac{\sin [\pi a(\sin \theta) / \lambda]}{\pi a(\sin \theta) / \lambda}\right)^{2} I_{0}$

- Single-slit pattern acts as envelope on cosine interference pattern of two slits.
- Local maxima may be suppressed by envelope minima

$$
\begin{gathered}
\text { two slits } \\
-\pi / 16<\theta<\pi / 16 \\
a=10 \lambda, d=4 a
\end{gathered}
$$

Multiple slit diffraction

- Constructive interference for diffracted rays
with path length difference $=$ integer number of λ

$$
N=8 \text { slits }
$$

$$
-\pi / 80<\theta<\pi / 80
$$

$a / \lambda=10$
$d=4 a$.

Diffraction grating

- An assembly of narrow slits - or grooves in planar (or curved) mirror.
- Gratings for $\lambda=400$ to 700 nm usually have about 1000 lines $/ \mathrm{mm}$, corresponding to d on the order of $1 / 1000 \mathrm{~mm}=1000 \mathrm{~nm}$
- When a beam is incident on a grating with an angle θ_{i}
(measured from the normal of the grating),
it is diffracted into several beams.
- Specular reflection beam is called zero order ($m=0$).
- Other orders given by non-zero integers m in grating equation.
$d \cdot\left[\sin \theta_{m}(\lambda)+\sin \theta_{i}\right]=m \lambda, \quad m=0, \pm 1, \pm 2, \ldots$
d = groove period
$\lambda \quad=$ wavelength of incident light
$\theta_{\mathrm{m}}(\lambda)=$ value of the diffracted angle in order m.

A slit spectrograph

- Light is focused onto entrance slit (e).
- Tilted concave collimating mirror (m1) reflects onto a plane reflecting diffraction grating (g).
- Dispersed light of some order m from grating is focused by a second concave mirror (m2) onto detector array (d).
- Special-purpose spectrographs are complex - to avoid
- internal reflections
- unwanted straylight.

Spectroheliograph

- Produces monochromatic images of the Sun.
- An image of the Sun is focused on a plane.
- A narrow slit lets light into a spectrograph.
- Spectrograph produces a spectrum
- of the portion of the solar disk imaged on the entrance slit
at the same image scale as input image.
- Capture spectrum within an exit slit.
- Image scanned across entrance slit.
- Moving detector behind exit slit at same speed as the image is moving monochromatic image is recorded.

Slitless spectrograph

- Gives co-temporal spectra of all parts of extended objects.
- Concave grating produces image at all wavelengths.
- Spectral resolution given by reflective grating.
- Angular resolution given by telescope optics.
- X and λ are same direction.
- Images at different λ overlap.
- Spectral and spatial information mixed into complicated image.

Diffraction by rectangular aperture

- An a x b aperture gives two orthogonal 1-D diffraction patterns:

$$
I(\theta, \varphi \mid a, b, \lambda)=\left(\frac{\sin [\pi a(\sin \theta) / \lambda]}{\pi a(\sin \theta) / \lambda}\right)^{2}\left(\frac{\sin [\pi b(\sin \varphi) / \lambda]}{\pi b(\sin \varphi) / \lambda}\right)^{2} I_{0}
$$

- The widths of the central bright band are inversely proportional to the ratio of the size of the aperture (a, b) to the wavelength λ.

Diffraction pattern of rectangular aperture: Horizontal aperture a $=10 \mathrm{\lambda}$
Vertical aperture $b=5 \lambda$
For $a \pm 0.4$ radians range of θ and φ.

Diffraction profile of circular aperture

- Diffraction limits resolution and image quality.
- Diffraction by circular aperture will image point source as a small bright disc (Airy-disc) - surrounded by dark and bright rings,
- intensity of the decrease rapidly
- Angular point spread function (PSF) of circular aperture given by:
θ given in radians,
$\beta_{0}=\lambda / D$

16.09.2010

INF-GEO 4310 Lecture 3

Airy disc and diffraction rings

- Angular radii of first dark rings:

$$
\sin \theta_{1}=1.22 \frac{\lambda}{D} \quad \sin \theta_{2}=2.23 \frac{\lambda}{D} \quad \sin \theta_{3}=3.24 \frac{\lambda}{D}
$$

- Angular radii of bright rings:

$$
\sin \theta=1.63 \frac{\lambda}{D} \quad \sin \theta=2.68 \frac{\lambda}{D} \quad \sin \theta=3.70 \frac{\lambda}{D}
$$

- About 85% of energy within Airy disk
- peak intensity of 1 . ring $\approx 1.7 \%$
- peak intensity of 2 . ring $\approx 0.4 \%$
16.09.2010

Rayleigh criterion

- Cross-section through diffraction-limited image
- two equally bright point sources at infinity
- angular separation between point sources:

$$
\sin \theta=1.22 \frac{\lambda}{D}
$$

- Corresponds to overlaying two patterns
- maximum of first on first minimum of second.
- 27 \% "dip" between the peaks.
- This is the "Rayleigh criterion".
- For small angles, $\sin \theta=\theta$.

Sparrow criterion

- If the point sources are moved closer than the Rayleigh criterion, the "dip" will become shallower, until it becomes a flat plateau.
- This angular separation is the Sparrow criterion.
- The limit when two point sources "melt together".
- Sparrow: $\theta=0.952 \lambda / D$.

Circular aperture with central obstruction

- The diffraction profile of an annular aperture is given by the continuous circular symmetric function
$F(\theta \mid \delta)=\frac{1}{\left(1-\delta^{2}\right)^{2}}\left[\left(\frac{2 J_{1}(v)}{v}\right)-\delta^{2}\left(\frac{2 J_{1}(\delta v)}{\delta v}\right)\right]^{2}$
$\mathrm{J}_{\mathbf{1}}$ is the first order Bessel function $v=n \theta D / \lambda$
θ is given in radians
$\delta=d / D$
d = diameter of central obstruction
$\mathrm{D}=$ diameter of the aperture
- Central obstruction gives
> a slightly narrower central disk
$>$ more energy in the bright rings
> some energy is blocked out.

6.09.2010

INF-GEO 4310 Lecture 3

Airy patterns with central obstruction

- Airy pattern for obstructions of
- From 0 to $1 / 3$ radial obstruction, maximum intensity of first diffraction ring increases from 1.7 \% to 5.4 \%.
- Obstruction affects both
- the position of the minima
- intensity of maxima in the ring pattern.

Smallest detail visible ... to the eye

- Pupil diameter $\approx 2 \mathrm{~mm}$ in bright light.
- Angular resolution of human eye ≈ 60 lines per degree.
- 120 alternating black and white lines of equal thickness.
- A4 "landscape" paper at 30 cm distance covers $50^{\circ} \times 40^{\circ}$.
- 3000 black and 3000 white vertical stripes should be resolved
- 2400 black and 2400 white horizontal stripes should be resolved.
- Rayleigh criterion for $D=2.5 \mathrm{~mm}$ at $\lambda=550 \mathrm{~nm}$:

$$
\sin \theta=\frac{1.22 \lambda}{D}=\frac{1.22 \times 550 \times 10^{-9}}{2.5 \times 10^{-3}}=2.7 \times 10^{-4}
$$

- Converting from radians to degrees:

$$
\theta=2.7 \times 10^{-4} \frac{180}{\pi} \approx \frac{1}{60} \circ
$$

Accomodation distance ... Near point

= The closest distance we may focus sharply with the unaided eye.

- 7 cm for a 10 year old,
- 10 cm for a 20 year old,
- 14 cm for a 30 year old
- 22 cm for a 40 year old,
- 40 cm for a 50 year old,
- 100 cm for a 60 year old.
- 6000 dots / 11 inches, ≈ 550 dpi.
- $47 \mathrm{yrs}=>\mathrm{s} \approx 30 \mathrm{~cm}$.
- printer better than 600 dpi is a waste.
- $20 \mathrm{yrs}=>\mathrm{s}=10 \mathrm{~cm}$.
- can inspect the printout at 10 cm distance
- Will need 1200 dpi (common for printing high quality images).

Smallest detail visible by a camera

- Focal length $\mathrm{f}=35 \mathrm{~mm}$
- $f / D=3=>D=f / 3$.
- Object is $s=3.5$ meters away.
- Wavelength is $\lambda=500 \mathrm{~nm}$.

- Just resolvable angle, as seen from center of lens, given by Rayleigh criterion:
$\sin (\theta)=1.22 \lambda / D=1.22 \cdot 500 \cdot 10^{-9} \cdot 3 / 35 \cdot 10^{-3}=\underline{5.23 \cdot 10^{-3}}$.
- Q: What is distance y between two just resolved points on object ?
- A: Given by: $\operatorname{tg}(\theta)=(y / s)$.

For small angles $\sin (\theta)=\operatorname{tg}(\theta)=\theta$, when θ given in radians. $\mathrm{y}=3.5 \cdot 5.23 \cdot 10^{-3} \mathrm{~m}=1.83 \cdot 10^{-4} \mathrm{~m} \approx \mathbf{0 . 2} \mathbf{~ m m}$.

- Q: What is the corresponding distance y^{\prime} in the focal plane?
- A: $y^{\prime}=\mathrm{y} \bullet \mathrm{f} /(\mathrm{s}-\mathrm{f})$
$y^{\prime}=0.2 \cdot 35 /(3500-35) \mathrm{mm} \approx 0.002 \mathrm{~mm}=\underline{\mathbf{2}} \boldsymbol{\mu} \mathrm{m}$.

Resolution and detail - medium distance

- Object and image resolution depends on aperture and distance.
- At $\mathrm{s}=3.5$ meters:

Mobile phone camera: $\quad \Delta y=2.1 \mathrm{~mm}$ Compact digital zoom:

Compact 35 mm: $\Delta y=0.6-1.1 \mathrm{~mm}$

Digital SLR zoom $\Delta y=0.06-0.3 \mathrm{~mm}$

"old fashioned" $85 \mathrm{~mm}: \Delta y=0.05 \mathrm{~mm}$

Object resolution versus distance

- For a given lens and f / D, size of smallest resolvable object detail increases linearly with distance.
- Keeping f/D constant, size of smallest resolvable object detail decreases linearly with focal length.
- Keeping focal length constant, size of smallest resolvable object detail increases linearly with f/D.

Image resolution versus distance

- For given lens and f/D, size of smallest resolvable detail in image is independent of object distance, except when f is comparable to s.
- Keeping f/D constant, size of smallest resolvable object is independent of focal length, except when f is comparable to s.
- Keeping focal length constant, size of smallest resolvable object detail increases linearly with f/D.

Diffraction limited depth of focus

- Intensity of diffraction pattern near focus:
$\left.I(u, v)=\frac{2}{u}\right)\left[1+V_{0}^{2}(u, v)+V_{1}^{2}(u, v)-2 V_{0}(u, v) \cos \left\{\frac{1}{2}\left(u+\frac{v^{2}}{u}\right)\right\}-2 V_{1}(u, v) \sin \left\{\frac{1}{2}\left(u+\frac{v^{2}}{u}\right)\right\}\right] I_{0}$
u is along optical axis, v orthogonal to optical axis.
- Along optical axis:
$I(u, 0)=\left(\frac{2}{u}\right)^{2}\left[2-2 \cos \left\{\frac{u}{2}\right\}\right] I_{0}=\left(\frac{\sin (u / 4)}{u / 4}\right)^{2} I_{0}$
- Symmetric about the focal plane.

- First minimum at $\left.u / 4= \pm n_{1}=>\mathbf{z}= \pm \mathbf{2 \lambda (f / D}\right)^{2}$ from focal plane.
- $\mathrm{f} / \mathrm{D}=5.6, \lambda=500 \mathrm{~nm}=>z= \pm 0.032 \mathrm{~mm}$
$-f / D=22, \lambda=500 \mathrm{~nm} \Rightarrow>z= \pm 0.5 \mathrm{~mm}$
- $f / D=5.6, \lambda=1000 \mathrm{~nm}=>z= \pm 0.25 \mathrm{~mm}$.
- Depth of focus is independent of physical dimensions of the optics.

Convolving PSF and sampling aperture

- PSF determines resolution.
- Ideal:
- Point sampling in focal plane
- Sampling theorem => density
- Reality:
- Extended sampling aperture
- Fixed, non-overlapping
- Movable, overlapping
- Rectangles
- Circles
- Sampling aperture * PSF
16.09.2010

INF-GEO 4310 Lecture 3

Intensity along optical axis

- A contour plot of the intensity $\mathrm{I}(\mathrm{u}, \mathrm{v})$ in a meridional plane near the focus of a converging spherical wave diffracted by a spherical aperture.
- Vertical u-axis is the optical axis, and the horizontal v -axis is in the focal plane.
- The maxima and minima along the v-axis correspond to bright and dark rings of focal plane diffraction pattern.
- Maxima and minima along the u-axis illustrate "depth-of-focus".
- Contour plot from M. Born and E. Wolf: "Principles of Optics", Pergamon Press, 4th. Ed., 1970.
16.09.2010

INF-GEO 4310 Lecture 3

Geometrical Optics: Scattering

- What is scattering?
- Some effects of scattering
- Atmospheric blurring and straylight in images
- Turbidity in liquids
- Subsurface scattering in non-metallic materials and in tissues
- Doppler-shifted straylight

Inverse scattering problem

- A difficult challenge!
- Observe blurred object + scattering around it.
- Determine
- scattering parameters (PSF)
- distribution of radiation before scattering (true object).
- In general, the inverse is not unique.
- PSF can be determined by observing image of some wellknown object through the same scattering medium.
- PSF then used to deconvolve image of unknown object.

What is scattering?

- Scattering causes radiation to deviate from a straight trajectory.
- microscopic irregularities in surfaces
- non-uniformities in transparent media
- Elastic scattering : no (or a very small) loss or gain of energy
- Inelastic scattering : some change in energy
- Absorption : substantial or complete loss of energy
- Single scattering : one localized scattering center.
- treated as a random phenomenon, described by probability distribution.
- Multiple scattering : radiation is scattered several times.
- randomness of interaction averaged out by large number of events
=> deterministic angular distribution of intensity - PSF.
- Observed blurred image:
- convolution of true image with PSF (diffraction + scattering).
16.09.2010

INF-GEO 4310 Lecture 3
62

Wavelength dependence of scattering

- Rayleigh scattering

- in transparent solids, liquids and gases.
- wavelength dependence $\sim \lambda^{-4}$
- Blue sky: Blue light is scattered much more than red Inght.
- We observe blue light coming from all directions of the sky.
- At higher altitudes, less scattering particles => sky is much darker.
- Red sunset: Sunlight must pass through greater air mass.
- More scattering of blue light, little scattering of red light => red-hued sky.
- Mie scattering
- scattering by spheres larger than Rayleigh range.
- wavelength dependence $\sim 1 / \lambda$.
- shape of scattering center significant
- theory only applies well to spheres, spheroids and ellipsoids.

Atmospheric scattering

- Object is illuminated by sunligh
- Incident radiation detector:
- Specular reflection
- Diffuse reflection
- radiation scattered in the air:
- scattered before reaching object
- specular and diffuse reflection, scattered onto detector.
- Important to shield detector to minimize straylight.
- Even with shielding, scattering will be present.
- Corrections important
- In high precision measurements (e.g., astrophysics, ...)
- Remote sensing (radiation passing twice through atmosphere)

High density of scatterers

- Vapors:
- an object that is seen through mist or fog will look blurred.
- at some distance the object will disappear into the background fog.
- Water:
- Particles / organisms act as scatterers
- cause haziness that indicate water quality
- turbidity can be measured using Secchi disk
- lowered into water until it can no longer be seen.
- Translucent solids:
- light penetrates non-metallic surface and scatters inside material
- either absorbed or leaving the material at a different location.
- This phenomenon is called subsurface scattering (SSS).
- The effect is a "softer" image than a metallic surface would give.
- Tissues:
- human skin, salmon fillets, etc show subsurface scattering
- may depend on wavelength, condition of tissue, etc.
- Thus, measuring SSS may be useful for
- quality inspection of e.g., fish and meat
- medical diagnostic work.
16.09.2010

INF-GEO 4310 Lecture 3
66

Straylight integral

- Straylight causes a blurring of the image (here the Sun).
- Given
- circular symmetric PSF, $\Psi(r)$,
- true intensity $\Phi_{\mathbf{c}}\left(\mathrm{p}^{\prime}\right)$
- Observed intensity $\mathrm{I}(\mathrm{p})$ given by integral equation:

$$
I(p)=\int_{\oplus} \Phi_{C}\left(p^{\prime}\right) \Psi(r) d \omega
$$

- p and p^{\prime} are directions in the sky
- r is the angle between them.
- Integration is performed over the solid angle of the Sun.

Doppler shifted straylight

- Different parts of the Sun have different line-of-sight velocities.
=> Observed intensity contain straylight with different Doppler velocities.
$I(d, \lambda)=2 \int_{\rho_{0}}^{\rho_{1}} \int_{0}^{\alpha_{0}} \Phi_{C}(a)\left(1-I_{C}(a)\right) \exp \left[-(\lambda-\Delta \lambda)^{2} / w^{2}(d)\right] \Psi(\rho) d \rho d \alpha$
- $\Phi_{\mathrm{c}}=$ true continuum intensity distribution across the solar disc
- $w=$ Doppler width of Gaussian absorption line profile
- $I_{c}=$ central intensity of absorption line
- $d=$ distance from the centre of the solar disc
- λ = wavlength within a spectral line
- $\Psi(r)=$ circular symmetric PSF, :
- Straylight introduce errors $=0.1-1.0 \mathrm{~m} / \mathrm{s}$,
- Amplitudes of global solar oscillations $\approx 0.1 \mathrm{~m} / \mathrm{s}$. $=>$ Error \approx velocity oscillation signal.

