Introduction to Sonar INF-GEO4310

Roy Edgar Hansen

Department of Informatics, University of Oslo

October 2010

Sonar Basics

Outline

Г

[B](#page-0-0)asics

- **o** Introduction
- [Basic](#page-0-0) Physics
- **•** [Underwa](#page-1-0)ter sound

Sonar [Theory](#page-2-0)

- [Sona](#page-7-0)r types
- **[Positio](#page-7-0)n Estimation**
- Signal [proces](#page-8-0)sing

Sonar [Applicat](#page-11-0)ions

- **•** Fish [findin](#page-12-0)g
- **[HUGI](#page-12-0)N AUV**
- [Mappin](#page-13-0)g
- **•** [Ima](#page-13-0)ging

[Sum](#page-15-0)mary

 \Box $\overline{9}$

おす者 おす者 おし着い 298

RH, INF-GEO4310 (Ifi/UiO) Sonar Control 2010 4/76

Sonar Basics Introduction

History

Outline

If you cause your ship to stop and place the head of a long tube in the water and place the outer extremity to your ear, you will hear ships at a great distance from you.

Leonardo da Vinci, 1490

• 1914 Fessenden: first active sonar system (detect iceberg 2 miles)

ロトスタトスミドスミド ミニクダウ

Images from wikipedia.org.

The masters in sonar

From wikipedia.org.

Similar technologies

- SONAR = **So**und **N**avigation **A**nd **R**anging
- RADAR = **Ra**dio **D**etection **A**nd **R**anging
- Medical ultrasound, higher frequencies, shorter range and more complex medium
- Seismic exploration, lower frequencies, more complex medium

Literature

- Course text: sonar_introduction_2010.pdf
- Course presentation: inf-geo4310-2010-sonar-lecture.pdf
- Xavier Lurton, An introduction to underwater acoustics Springer Praxis, First edition 2002, Second edition 2010

Sonar Basics | Introduction

- www.wikipedia.org
	- \blacktriangleright sonar
	- \blacktriangleright underwater acoustics
	- \blacktriangleright side-scan sonar
	- \blacktriangleright biosonar, animal echolocation
	- \rightarrow beamforming
- Ocean Acoustics Library http://oalib.hlsresearch.com/

RH, INF-GEO4310 (Ifi/UiO) Sonar Oct. 2010 6 / 76

(ロトメ部) (중) (중) (중) (중)

 2990

Basic Physics

- Sound is waves travelling in *pressure perturbations*
- Or: compressional wave, longitudal wave, mechanical wave

Sonar Basics Physics

- The acoustic vibrations can be characterized by
	- \triangleright Wave period *T* [s]
	- Frequency $f = 1/T$ [Hz]
	- \triangleright Wavelength $\lambda = c/f$ [m]
	- ► Sound speed *c* [m/s]

o Al

 $\mathcal{A} \xrightarrow{\mathcal{B}} \mathcal{B} \xrightarrow{\mathcal{A}} \mathcal{B} \xrightarrow{\mathcal{B}} \mathcal{B} \xrightarrow{\mathcal{B}} \mathcal{B}.$

 2990

 \equiv

 2990

 $E(X)$ and $E(X)$

Sonar Basics Underwater sound

Sonar Basics Underwater sound

Underwater sound

- Acoustics is the only long range information carrier under water
- The pressure perturbations are very small
- Obtainable range is determined by
	- \blacktriangleright free space loss and absorption
	- \blacktriangleright the sensitivity to the receiver
- The ocean environment affects sound propagation:
	- \blacktriangleright sea surface
	- \blacktriangleright seafloor
	- \blacktriangleright temperature and salinity
	- \blacktriangleright currents and turbulence
- Underwater sound propagation is frequency dependent

Geometrical spreading loss - one way

- The acoustic wave expands as a spherical wave
- The acoustic intensity decreases with range in inverse proportion to the surface of the sphere
- The acoustic wave amplitude *A* decreases with range *R*

 $I \sim \frac{1}{B}$ *R*²

- The intensity $I = A^2$
- In homogeneous media

Sonar Basics Underwater sound

Sonar Basics Underwater sound

RH, INF-GEO4310 (Ifi/UiO) Sonar Sonar Oct. 2010 9/76

Geometrical spreading loss - two way

- The acoustic wave expands as a spherical wave to the reflector
- The reflected field expands as a spherical wave back to the receiver
- In homogeneous media, the two way loss becomes

$$
I \sim \frac{1}{R^2} \frac{1}{R^2} = \frac{1}{R^4}
$$

ロトメ 御 メモトメモト 一番

 299

Absorption

- Seawater is a dissipative medium through viscosity and chemical processes
- Acoustic absorption in seawater is frequency dependent
- **.** Lower frequencies will reach longer than higher frequencies

RH, INF-GEO4310 (Ifi/UIO) Sonar Content of the Second 11/76

o Al

 $A\equiv\mathbf{1}+\mathbf{1}+\mathbf{2}+\mathbf{1}$

 \Rightarrow

 2990

RH, INF-GEO4310 (Ifi/UiO) Sonar Oct. 2010 12 / 76

 QQQ

Transmission loss

- Transmission loss is geometrical spread + absorption
- Logarithmic (dB) scale: $I_{dB} = 10 \log_{10}(I)$
- A certain frequency will have a certain maximum range
- **•** Frequency is a critical design parameter

Sonar Basics Underwater sound

Reflection and Refraction in Acoustics

- Recall from first lecture on optical imaging
- The reflection angle is equal to the incident angle
- The angle of refraction is given by Snell's law

- The index of refraction $n = c_2/c_1$
- Snells law can be derived from *Fermats principle* or from the general *boundary conditions* From Wikipedia

 $\mathbf{A} \equiv \mathbf{A} \times \mathbf{A} \equiv \mathbf{A} \times \mathbf{A}$

 \Rightarrow QQ

The Ocean as Acoustic Medium

- The sound velocity environmental dependency
- Layering and refraction wavequides
- The sea floor and the sea surface scattering
- Noise sources

Sonar Basics Underwater sound

Refraction and the sound velocity

Medvins formula:

 $c = 1449.2 + 4.67 - 0.0557^2 + 0.000297^3$ $+ (1.34 - 0.010T)(S - 35) + 0.016D$

The sound velocity depends on 3 major parts:

- **•** Temperature *T* in degrees Celsius
- Salinity *S* in parts per thousand
- Depth *D* in meters

The sound velocity contains information about the ocean environment. Example: $T = 12.5 °C, S = 35$ ppt, $D = 100$ m gives $c = 1500$ m/s

 QQ

 $\mathcal{A} \times \mathcal{B} \times \mathcal{A} \times \mathcal{B} \times \mathcal{B}$

Sonar Basics Underwater sound

Deep sound velocity variation

Sonar Basics Underwater sound

Underwater sound channel

- waves are trapped in a quide
- The energy spreads in one dimension instead of two *I* ∼ 1/*R*
- Much longer range
- *Acoustical Oceanography*: Map the effect of the medium on underwater acoustics

Sound refraction

• The sound will refract towards areas of slower speed

O SOUND IS LAZY

Sonar Basics Underwater sound

RH, INF-GEO4310 (Ifi/UiO) Sonar Case of the Section 20/76

Coastal variability

Factors that affect sound propagation:

- The sound velocity profile
- **•** The sea surface
- Internal waves
- **•** Turbulence
- **Ocean current**

有

 $\epsilon \equiv \epsilon$

 \Rightarrow

RH, INF-GEO4310 (Ifi/UiO) Sonar Oct. 2010 21 / 76

Sonar Basics Underwater sound

Coastal variability

- The sound is trapped in a waveguide
- **o** The boundaries of the waveguide changes the properties of the sound wave

Reflection: the sea surface

• The sea surface (sea-air interface)

 $R = \frac{Z - Z_0}{Z + Z}$

 $\frac{Z}{Z + Z_0} \approx -1$

• Seawater: $Z_0 = 1.54 \times 10^6$

• Reflection coefficient

ロトメ 御 メモトメモト 一番

 299

Air c, ρ, Z

- **•** Characteristic impedance $Z_0 = \rho c$
	- \blacktriangleright ρ is the density [kg/m³]
	- \triangleright *c* is the sound speed $[m/s]$
- Reflection coefficient (normal incidence)

$$
R(f)=\frac{Z-Z_0}{Z+Z_0}
$$

• Transmission coefficient (normal incidence)

$$
T(f)=\frac{2Z_0}{Z+Z_0}
$$

The characteristic impedance is a material property

\n
$$
\text{RH, INF-GEO4310 (lfi/UiO)}
$$
\n

\n\n Sonar\n

\n\n Conar \n

\n\n Oct. 2010\n

\n\n 22/76\n

Sonar Basics Underwater sound

Sonar Basics Underwater sound

Reflection: the sea floor (or bottom)

- The sea floor (sea-bottom interface)
- Sand: $Z = 5.5 \times 10^6$
- Seawater: $Z_0 = 1.54 \times 10^6$
- **e** Reflection coefficient

$$
R=\frac{Z-Z_0}{Z+Z_0}\approx 0.56
$$

- Sandy seafloors partially reflects, partially transmits
- **Estimated reflection coefficient can** be used in classification of bottom type

Sea water c_0, ρ_0, Z_0 • The sea surface is a perfect reflector

> \overline{a} $A\cdot\overline{B} \rightarrow A\cdot\overline{B} \rightarrow 0$ \Rightarrow 2990 \Box

• Air: $Z = 415$

 2990

 $\mathbf{A} \equiv \mathbf{A} \cdot \mathbf{A} \equiv \mathbf{A} \cdot \mathbf{A}$

Sonar Basics Underwater sound

Scattering - smooth surfaces

A smooth surface gives mainly specular reflection

Scattering - rough surfaces

A rough surface gives specular reflection and diffuse scattering

Sonar Basics Underwater sound

Sonar Basics Underwater sound

Ambient Noise

RH, INF-GEO4310

The ocean is a noisy environment

- **•** Hydrodynamic
	- \blacktriangleright Tides, ocean current, storms, wind, surface waves, rain
- **•** Seismic
	- \blacktriangleright Movement of the earth (earthquakes)
- **•** Biological
	- \blacktriangleright Produced by marine life
- Man made
	- \blacktriangleright Shipping, industry

Marine Life and Acoustics

- Dolphins and whales use acoustics for echolocation and communication.
- Whale songs are in the frequency between 12 Hz and a few kHz.
- Dolphins use a series of high frequency clicks in the range from 50 to 200 kHz for echolocation.

From wikipedia.org. Courtesy of NASA.

From wikipedia.org. Author Zorankovacevic.

 \Box

 \overline{AB}) \overline{AB}) \overline{AB}

Theory

Outline

- **Basics**
	- Introduction
	- Basic Physics
	- **·** Underwater sound

2 Sonar Theory

- Sonar types
- Position Estimation
- Signal processing

Sonar Applications

- **•** Fish finding
- **HUGIN AUV**
- Mapping
- **•** Imaging

Summary

Theory Sonar types

Active sonar

- [Transm](#page-7-0)its a signal
- The signal propagates towards the [object of interes](#page-8-0)t
- The [signal is r](#page-11-0)eflected by the target
- The [signal is](#page-12-0) recorded by a receiver

Active sonar

- **•** Transmits a signal
- The signal propagates towards the object of interest
- The signal is reflected by the target
- The signal is recorded by a receiver

Theory Sonar types

Passive sonar

• Passive sonar only records signals

 \Rightarrow

 2990

 $\mathcal{A} \xrightarrow{\sim} \mathcal{B} \xrightarrow{\sim} \mathcal{A} \xrightarrow{\sim} \mathcal{B} \xrightarrow{\sim} \mathcal{B}$

r All

 \Box

Range Estimation

- **Estimation of time delay (or two way travel time)** τ
- Relate time delay to range

$$
R=\frac{c\tau}{2}
$$

• Sound velocity must be known

Theory **Positioning**

Pulse forms 1 - active sonar

Different pulse forms for different applications

- Gated Continuous Wave (CW) Simple and good Doppler sensitivity but does not have high BT
- Linear Frequency Modulated (LFM) (or chirp) Long range and high resolution but cannot handle Doppler

Range Resolution

- The minimum distance two echoes can be seperated
- \bullet Related to the pulse length T_p for *non-coded* pulses

$$
\delta R = \frac{cT_p}{2}
$$

Related to bandwidth *B* for *coded* pulses

Theory **Positioning**

Pulse forms 2 - active sonar

Different pulse forms for different applications

- Hyperbolic Frequency Modulated (HFM) pulses Long range and high resolution and Doppler resistive
- Pseudo Random Noise (PRN) BPSK Coded CW High resolution and good Doppler sensitivity but low efficiency

Directivity

- **•** Transducers (or antennas or loudspeakers) are directive
- The beamwidth (or field of view) of a disc of size *D* is

$\beta \approx \frac{\lambda}{\sqrt{2}}$ *D*

• The beamwidth is frequency dependent. Higher frequency gives narrower beam.

Theory **Positioning**

Bearing estimation - array sensor

By delaying the data from each element in an array, the array can be steered (electronically)

Bearing estimation - arbitrary Rx positions

Direction of arrival can be calculated from the time difference of arrival

Theory **Positioning**

Bearing estimation - array sensor

• Direction of arrival from several reflectors can be estimated by using several receivers.

 QQ

 \triangleleft

 \Box

Imaging sonar / beamforming

- Echo location is estimation of range and bearing of an echo (or target)
- Imaging sonar is to produce an image by estimating the echo strength (target strength) in every direction and range

$\Box \rightarrow \Box \Box \Box \rightarrow \Box \rightarrow \Box \Box \rightarrow \Box$ \mathbb{R}^n 000 RH, INF-GEO4310 (Ifi/UiO) **Sonar Community Sonar Oct. 2010** 40 / 76

Theory **Positioning**

Beamforming algorithm in time domain

Beamforming defined

Beamforming

Processing algorithm that focus the array's signal capturing ability in a particular direction

- Beamforming is spatio-temporal filtering
- Beamforming turns recorded time series into images (from time to space)
- Beamforming can be applied to all types of multi-receiver sonars: active, passive, towed array, bistatic, multistatic, synthetic aperture

Theory **Positioning**

Imaging sonar resolution

- Range resolution given by pulse length (actually bandwidth)
- Azimuth resolution given by array length measured in wavelengths
- Field of view is given by element length measured in wavelengths

 298

Array signal processing in imaging is the primary topic in INF 5410

RH, INF-GEO4310 (Ifi/UiO) **Sonar** Cost. 2010 42/76

 QQ

Imaging: Performance measures

Detail resolution

Geometrical resolution - minimum resolvable distance

Contrast resolution

Value resolution, echogenicity, accuracy

Temporal resolution Number of independent images per unit time

Dynamic range

Resolvability of small targets in the presence of large targets

\bullet Sensitivity

Detection ability of low level targets

time spread time spread from enroad from enroad Contact Signal angle spread angle spread Source Receiver surface scatterers volume scatterers **bottom scatterers Additive noise** ambient nois flow noise $\Box \rightarrow A \Box B \rightarrow A \Box B \rightarrow A \Box B \rightarrow$ \equiv 000 RH, INF-GEO4310 (Ifi/UiO) Sonar Oct. 2010 45 / 76

Theory Signal processing

Theory Signal processing

The sonar equation

The sonar equation is an equation for energy conservation for evaluation of the sonar system performace.

- In its simplest form: Signal Noise + Gain > Threshold
- More detailed (for active sonar):

SL − 2*TL* + *TS* − *NL* + *DI* + *PG* > *RT*

Water

column

- **•** *SL* is source level
- **•** *TL* is transmission loss
- *TS* is target strenght
- **•** *NL* is noise level
- *DI* is directivity index
- **•** PG is processing gain
- **• RT** is reception threshold

 \Box

Echo from the seafloor

Target

Noise floor

 \Rightarrow

 QQ

 $\epsilon \equiv 1$

Applications

Outline

- **Basics**
	- **•** Introduction
	- Basic Physics
	- **·** Underwater sound

Sonar Theory

- Sonar types
- **Position Estimation**
- Signal processing

Sonar Applications

- **•** Fish finding
- **HUGIN AUV**
- **•** Mapping
- **•** Imaging

Summary

Applications Fish finding

Stock abundance and species characterisation

 \Box

r All

 $\mathbf{A} \equiv \mathbf{A} \times \mathbf{A} \equiv \mathbf{A}$

 \Rightarrow

 2990

Echosounders

- The echosounder is oriented vertically
- The target strength is estimated in every range (depth)
- The ship moves forward to make a 2D map of fish density
- The target strength is related to fish size (biomass)
- Different frequencies can be used for species characterisation

Applications Fish finding

Applications Fish finding

Fish detection range

- Modern echosounders can detect a single fish at 1000 m range.
- Some fish have a swimbladder (air filled) which gives extra large target strength

From www.simrad.com.

Courtesy of Kongsberg Maritime

RH, INF-GEO4310 (Ifi/UiO) Sonar Oct. 2010 51 / 76

Applications **HUGIN AUV**

The HUGIN autonomous underwater vehicle

The HUGIN autonomous underwater vehicle

- **•** Free swimming underwater vehicle
- Preprogrammed (semi-autonomous)
- Used primarily to map and image the seafloor
- Runs up to 60 hours, typically in 4 knots (2 m/s)
- Maximum depth: 1000, 3000, 4500 m

RH, INF-GEO4310 (Ifi/UiO) Sonar Oct. 2010 52 / 76

Applications **HUGIN AUV**

Acoustic sensors on HUGIN

- Multibeam echosounder
- Imaging sonar
- **o** Altimeter
- Anti collision sonar
- **·** Doppler velocity logger
- **•** Subbottom profiler
- **•** Acoustic communications

ロトメ 御 トメ きょくきょ

 000

r All $\mathbf{A} \equiv \mathbf{A} \times \mathbf{A} \equiv \mathbf{A}$ \equiv QQQ RH, INF-GEO4310 (Ifi/UiO) **Sonar** Character Control Co

Applications Mapping

Multibeam echosounders

- Multibeam echosounders maps the seafloor by estimating the range in different direction
- The map resolution is determined by the 2D beamwidth and the range resolution

 QQQ

 $\epsilon \gg 1$

有

Applications Mapping

MBE Example 1

- Data collected by HUGIN AUV
- Maps from the Ormen Lange field
- The peaks are 50 m high

Applications Mapping

MBE Example 3

- Data collected by HUGIN AUV
- Example area with large sand ripples

MBE Example 2

- Data collected by HUGIN AUV
- Maps from the Ormen Lange field
- The ridge is 900 m long and 50 m high.

Applications Mapping

MBE Example 3

- Hull mounted MBE
- 70 100 kHz
- Magic T (Mills cross) layout

From www.simrad.com. Courtesy of Kongsberg Maritime

 2990

e a

 \Box

(御) メミンメミン

 \Rightarrow

Applications Mapping

MBE Example 4

- **•** Hull mounted MBE
- 70 100 kHz
- Colour coded seafloor height

Applications Imaging

Sidescan sonar area coverage

- Range resolution is given by the pulse length (or bandwidth)
- Along-track resolution is range dependent

Sidescan sonar

- Sidescan sonar: sidelooking sonar to image the seafloor
- Typical platform: towfish, hull mounted, AUV
- An image is created by moving and stacking range lines
- Typically frequency 100 kHz 500 kHz
- Typical range 100 500 m

Applications Imaging

Sidescan sonar example

Image collected by HUGIN AUV. Courtesy of Kongsberg Maritime / FFI

RH, INF-GEO4310 (Ifi/UiO) Sonar Oct. 2010 63 / 76

Applications Imaging

Synthetic aperture sonar principle

- Collect succesive pulses in a large synthetic array (aperture)
- Increase the azimuth (or along-track) resolution
- Requires accurate navigation within a fraction of a wavelength

Applications Imaging

Sidelooking Example - very high resolution (SAS)

Image collected by HUGIN AUV. Courtesy of Kongsberg Maritime / FFI

 \Rightarrow

 2990

 $\Box \rightarrow \Box \Box$

Synthetic aperture sonar principle

- The length of the synthetic aperture increases with range
- Along-track resolution becomes independent of range
- Along-track resolution becomes independent of frequency

Applications Imaging

Resolution matters

Image collected by HUGIN AUV. Courtesy of Kongsberg Maritime / FFI

RH, INF-GEO4310 (Ifi/UiO) and Cost. 2010 67/76

CO K 4 伊

 2990

 $A \equiv A \cdot A \equiv A$

Example: Fishing boat

Properties in a sonar image

- **•** Geometry: Range and elevation
- **•** Resolution
- Random variability speckle
- **•** Signal to noise
- Object highlight and shadow

Applications Imaging

Applications Imaging

Example large scene with small objects

Comparison of sonar image with optical image

• Sonar range: 112 m

• Optical range: 4.5 m

Image collected by HUGIN AUV. Courtesy of Kongsberg Maritime / FFI

 $(\Box \rightarrow 4 \Box \rightarrow 4 \Box \rightarrow 4 \Box \rightarrow 4 \Box$ ■ 2990

Applications Imaging

Comparison of sonar image with optical image

• Sonar range: 73 m

• Optical range: 5 m

Image collected by HUGIN AUV. Courtesy of Kongsberg Maritime / FFI

Summary

Summary

- [Acousti](#page-0-0)cs is the only long ranging information carrier under water
- [Sound](#page-1-0) velocity variations cause refraction of acoustic waves
- The [ocean is l](#page-2-0)ossy: higher frequencies have shorter range
- [SONAR](#page-7-0) is used for
	- \triangleright [pos](#page-7-0)itioning
	- \blacktriangleright [velocity est](#page-8-0)imation
	- \blacktriangleright characterisation
- **•** [Applications:](#page-11-0)
	- \blacktriangleright [Fish](#page-12-0) finding
	- \blacktriangleright [Ima](#page-12-0)ging of the seafloor
	- \blacktriangleright [Map](#page-13-0)ping of the seafloor
	- \blacktriangleright Military

Summary

Summary

På Norsk

Outline

 \Box

K @ ▶ K ミ K K ミ K _ X S X Q Q Q

 \Box

 2990

◆ 御き ※ 差 * ※ 差 * ~ 差 ・