Exercise

We consider a simple two-layer model as shown in the figure above, where the P-wave velocity of layer 1 and 2 is v_{1} and v_{2}, respectively (note $v_{2}>v_{1}$). In general, a receiver will measure three different wave contributions: direct wave, reflected wave and refracted wave.
(a) Find an expression for the traveltime to an arbitrary receiver for the direct wave in the first layer as a function of offset x (i.e. source-receiver distance).
(b) The refracted wave can only be received after the critical distance $x_{\text {crit. }}$. Find an explicit expression for this distance.
(c) The cross-over distance $x_{\text {cross }}$ is the distance where the refracted wave starts to take over to be the first arrive at a point. Show that this distance can be written as:

$$
x_{\text {cross }}=2 h \sqrt{\frac{v_{1}+v_{2}}{v_{2}-v_{1}}}
$$

(d) Find an expression for the traveltime to an arbitrary receiver for the reflected wave for this 2-layer model.

SOLUTION

(a) The traveltime for the direct wave:

$$
\mathrm{t}_{\text {direct }}=\mathrm{x} / \mathrm{v}_{1}
$$

(b) The critical angle is defined by:

$$
\sin i_{c}=v_{1} / v_{2}
$$

from the figure it follows

$$
\tan i_{c}=\frac{\sin i_{c}}{\cos i_{c}}=\frac{x_{c r i t} / 2}{h} \Rightarrow x_{c r i t}=2 h \frac{\sin i_{c}}{\sqrt{1-\sin ^{2} i_{c}}}=\frac{2 h}{\sqrt{\left(\frac{v_{2}}{v_{1}}\right)^{2}-1}}
$$

(c) First find traveltime of refracted wave:

$$
t_{\text {refract }}=\frac{2 \sqrt{h^{2}+\left(x_{\text {crit }} / 2\right)^{2}}}{v_{1}}+\frac{\left(x-x_{\text {crit }}\right)}{v_{2}}=\frac{2 h}{v_{1}} \frac{\sqrt{v_{2}^{2}-v_{1}^{2}}}{v_{2}}+\frac{x}{v_{2}}
$$

Next, the cross-over distance is defined by :

$$
\begin{aligned}
& t_{\text {direct }}=t_{\text {refract }} \Rightarrow \frac{x_{\text {cross }}}{v_{1}}=\frac{2 h}{v_{1}} \frac{\sqrt{v_{2}^{2}-v_{1}^{2}}}{v_{2}}+\frac{x_{\text {cross }}}{v_{2}} \Rightarrow \\
& x_{\text {cross }}=2 h \frac{\sqrt{v_{2}^{2}-v_{1}^{2}}}{\left(v_{2}-v_{1}\right)}=2 h \sqrt{\frac{\left(v_{2}+v_{1}\right)}{\left(v_{2}-v_{1}\right)}}
\end{aligned}
$$

(d) Start with ray path and knowledge of Snell's law

$$
\left(v_{1} \frac{t_{\text {refl }}}{2}\right)^{2}=\left(\frac{x}{2}\right)^{2}+h^{2} \Rightarrow t_{\text {refl }}=\frac{\sqrt{x^{2}+4 h^{2}}}{v_{1}}
$$

This expression can be reformatted as

$$
\frac{v_{1}^{2} t_{\text {refl }}^{2}}{4 h^{2}}-\frac{x^{2}}{4 h^{2}}=1
$$

which is the equation for a hyperbola curve

Exercise 2

Consider a horizontally 3-layered earth model as shown in the figure and assume that 2D marine seismic data are acquired at the surface employing a streamer with 120 hydrophone groups (group interval $\Delta g=\mathbf{2 5} \mathbf{~ m}$). Distance between shot and first hydrophone group is 100 m .

a) Compute the zero-offset reflection coefficient at the seafloor if the density of layer $\mathbf{2}$ is set to $2.2 \mathrm{~g} / \mathrm{cm}^{3}$. Compute also the maximum normal moveout (i.e. the difference between maximum traveltime recorded and a zero-offset case) for the reflection events from the seafloor.

- Zero-offset reflection coefficient:
$R=\frac{2000 \cdot 2.2-1500 \cdot 1}{2000 \cdot 2.2+1500 \cdot 1} \cong 0.49$
- Maximum normal moveout:

$$
\begin{aligned}
& \Delta t_{1}=\sqrt{t_{0}{ }^{2}+\left(\frac{x}{V}\right)^{2}}-t_{0}, \quad t_{0}=\frac{2 Z}{V} \\
& \Delta t_{1}=\sqrt{\left(\frac{2 Z_{1}}{V_{1}}\right)^{2}+\left(\frac{100 \mathrm{~m}+25 \mathrm{~m} \cdot(120-1)}{V_{1}}\right)^{2}}-\frac{2 Z_{1}}{V_{1}} \\
& \Delta t_{1}=\sqrt{\left(\frac{2 \cdot 2000 \mathrm{~m}}{1500 \mathrm{~m} / \mathrm{s}}\right)^{2}+\left(\frac{3075 \mathrm{~m}}{1500 \mathrm{~m} / \mathrm{s}}\right)^{2}}-\frac{2 \cdot 2000 \mathrm{~m}}{1500 \mathrm{~m} / \mathrm{s}} \\
& \Delta t_{1} \cong \underline{\underline{0.70 \mathrm{~s}}}
\end{aligned}
$$

b) Determine the maximum incidence angle for reflections at the interface between layers 2 and 3 .
Maximum angle: $\sin \theta=\frac{V_{\mathrm{p} 2}}{V_{\mathrm{p} 3}}=\frac{2000}{2200} \Rightarrow \theta=\underline{\underline{65.4^{\circ}}}$.

