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1 Reflection by a symmetric triangular prism 
Let α be the angle between the two faces of a symmetric triangular prism. Let the edge A 
where the two faces meet be perpendicular to the plane which contains the incident and 
emergent rays.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Two parallel beams of light are reflected off the two symmetric faces of the prism.  
 
 
 

a. Show that the angle between the two reflected beams is twice the angle 
between the two reflecting surfaces. 
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First: the simple case where the incident beams are parallel to the 
symmetry plane of the prism: 
 
Let the plane of symmetry halve the top angle α of the prism. 
Let half the angle between the two reflected beams be called β/2. 

 
 
The angle of incidence θi equals the angle of reflection θr 

- and the same is true for their 90° complements. 
 

Since the two parallel beams are parallel to the symmetry axis,  
90°-θr=90°-θi =α/2. 
 

Now we have a triangle with angles α/2 , α/2 and 180° – β/2.  
 
The sum of angles within the triangle is 180°, so 

 
180° = α/2 + α/2 + 180° – β/2 

 
=> β = 2 α. 

θr 
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Second: The general case of two parallel beams: 
 
One beam strikes the left hand face of the prism under an angle of 
incidence θ1, giving the relation γ = α + 90° - θ1. 
 
The other beam strikes the right hand face under an angle of 
incidence θ2, giving the relation γ = β + θ2 - 90°. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The two expressions for γ give: 
 
β + θ2 – 90° = α + 90° - θ1     
=>     β + θ1 + θ2 = 180° + α   
 
And since θ1 + θ2 = 180° – α,  
 
we get 
 

β + 180° - α = 180° + α   
 

=>   
 

β  = 2 α 

γ θ2 
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2 Refraction in plane parallel slab of glass 
 

a. Verify the expressions for the displacements d and l in section 2.3.3.1 
 

 
Let the angle of incidence be α, while β is the angle of refraction as the beam 
enters the plane parallel slab. The index of refraction is n, and the thickness 
of the slab is T. 
 
The displacement, d, given relative to the thickness T of the slab, is 
 
 
 
 
And (T/s) = sin (90 – β).  So we get 
 
 
 
 
Snell’s law gives: 
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The twice reflected beam: 

 
The twice reflected beam will be displaced relative to the first by 
an amount l, given in units of the thickness of the slab: 
 
 
 
 
 
 
 
We have established that 
 
 
 
So that 
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3 Dispersion in a plane parallel slab of glass 
 
Assume that a thin beam is incident on a plane parallel slab of glass in air, as in section 
2.3.3.1. But now the beam is not monochromatic; it is white light, so the beam is spread 
out into a spectrum as it passes through the slab. 
 

a. Will the emerging rays of different colors be parallel or not? 
 
For each color there will be a different value of the index of 
refraction, n, giving different displacements d for different 
wavelengths. 
 
But all the displaced beams will be parallel to the input beam, 
And therefore also parallel to each other. 
 

b. What determines the thickness of the beam as it exits the slab? 
 

- The dispersion of the glass slab used, i.e. the variation of the 
index of refraction with wavelength,  

- The thickness, T, of the slab. 
- The angle of incidence. 
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4 Critical angle and total internal reflection 
 
Assume that we have a a semi-circular bowl of water at 25°C. A light-ray from a 632.8 
nm laser enters perpendicular to the surface 4/10 of the radius from the bowl centre. 
 
We want to obtain grazing refraction and total internal reflection of the light beam that is 
reflected towards the water / air interface. 
 

a. Does the material of the bowl play any role in this? 
 
No. The material in the bowl only reflects the beam towards the 
water / air interface. 
 

b. How much do we have to raise the refractive index of the water by 
increasing the salinity? 

 
The refractive index of water can be found at 
http://www.luxpop.com 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
It increases approximately linearly from 1.33260 for pure water. 
The slope of the curve is 0.00195, and we make the assumption 
that this may be extrapolated linearly. 
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At the point where the reflected beam hits the water surface,  
we have 
 

sin(θi/2) = 0.4 => θi=2 arcsin(0.4) 
 
Grazing refraction occurs when 
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5  Atmospheric refraction 
Make the simplifying assumption that the Earth’s atmosphere is uniform (thus having a 
uniform index of refraction), and that it extends to a height h. Beyond that, we assume 
that there is vacuum.The Earth’s radius is R. 
 

a. Verify that as we observe an object setting on the horizon, under these 
assumptions it is actually an angle δ below the horizon, given by 

 
 
 
 
 

 
An object on the horizon is lifted by refraction by an angle δ. 
Assuming vacuum outside a uniform atmosphere, Snell’s law 
gives:  

sin(δ+φ) = n sin φ 
 

 δ+φ = arcsin( n sin φ ) 
 

But sin φ is given by sin φ = R/(R+h)   =>  φ = arcsin[R/(R+h)] 
so  

δ +  arcsin[R/(R+h)] = arcsin[ nR/(R+h)] 
 

=>  
 

δ  = arcsin[ nR/(R+h)] - arcsin[R/(R+h)] 
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b. Calculate δ for R = 6378 km and h = 20 km. Assume that  n = 1.0003. 
 
  δ  = arcsin[ nR/(R+h)] - arcsin[R/(R+h)] 

= arcsin[ 1.0003 * 6378 / 6398 ]  - arcsin [ 6378 / 6398 ] 
= 85,69080° – 85.46848° 
= 
= 0.22°*60 = 

0.22° 

 
13.2’ 

 
c. How does this compare to the statements about atmospheric refraction 

in section 2.3.3.9 ? 
 
“On the horizon itself refraction is about 34', … 
but only 29' half a degree (one solar diameter) above it.” 
 
Our simple model where refraction only occurs at the top of a 
uniform atmosphere is clearly too simple, as it underestimates the 
horizontal refraction. 
 

 

 Multiple choice  – geometrical optics 
 
1. What do we mean by ”critical angle” at a boundary between two optical media? 
 The angle of incidence where equal parts of refraction and reflection occurs 
 The largest angle of incidence where all light is reflected 
 The smallest angle of incidence where no light is reflected 
 The smallest angle of incidence where all light is refracted 
 The angle of incidence where refracted light is tangent to the boundary 
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2.  Geometrical optics (20 points).  
 
We can use a number of optical prisms to alter the 
direction of a light beam.  An equilateral right angle 
prism will change the direction by 90°,  
as shown in the sketch to the right. 
 
 

a) Below we give you two figures from the curriculum 
text showing the reflection coefficient of p-polarized light (polarized in the plane 
of the sketch) at the transition from air to glass (left) and glass to air (right).  
  
  
  
  
  
 

  
  
  
  
  
 
Mark which part of the figures that describe the situation at points α, β, and γ in the 
first sketch. What do we call the phenomenon that occurs at the point β? 
 
At α, the light beam goes from air to glass at an incidence angle of zero, and a small 
fraction of the incident light is reflected (R = 0.04), as indicated by the circled point 
to the left in the left hand figure above. 
 
At β, the light beam is reflected at the glass/air interface at an incidence angle of 45°. 
When moving from a more dense medium into a less dense one (i.e. n1 > n2), above 
an incidence angle known as the critical angle, all light is reflected and R = 1, as 
illustrated in the right hand figure. This is known as ”total internal reflection”.  
The critical angle is approximately 41° for glass in air. Thus, the reflection coefficient 
is exactly 1.0 at β, as indicated by the circled point in the right hand figure above. 
 
The reflection angle is equal to the incidence angle at β (45°). Therefore, the beam 
strikes the glass/air interface orthogonaly at γ, so the reflection coefficient (R = 0.04) 
here is found in the left hand circle of the right hand figure above. 
 
 
b) We substitute the prism above by a right angle Brewster prism, where one angle is 

given by θB = arctg(n2/n1), where n2 is the refractive index of glass, and n1 the 
refractive index of air. We place the prism in the light path from P, as shown in 
the figure to the right, so that the incidence angle is θi = θB ≈ 56°.  
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Now the refraction angle θr is given by θi + θr = π/2.  
Draw and explain the path of the light 
beam through the prism. 

 
 
 
 
 
 
 
At an incidence angle equal to the Brewster angle, p-polarized light going from air to 
glass is not reflected, so there is purely refraction at α. 
 
The incidence angle at β is given by  π/2 – θr = π/2 – (π/2 - θi) = θi = θB 
which is larger than the critical angle (41°). So there is total reflection at β. 
 
The reflection angle at β is equal to the incidence angle. So the angle between the 
incident ray and the glass/air interface at γ is π - θB – θ r = π - θB – (π/2 - θB ) = π /2. 
Which means that the incidence angle at γ is 0°, and a small fraction R is reflected 
while (1-R) is transmitted, orthogonal to the interface. 
 
c) How much light is reflected back to P in exercise b, compared to the equilateral 

prism in exercise a, if n1 = 1 and n2 = 1.5? 
 
At normal incidence (θi = 0), the reflection coefficient in the two figures is given by  
R =[(n1-n2)/(n1+n2)]2. For n1 = 1 and n2 = 1.5 we get R = 0.25/6.25 = 0.04.  
 
In exercise b, no light is lost from α through γ. At γ, 4% (R) is reflected back to β.  
At β there is only reflection to α, and at α there is no reflection (see right hand figure 
for incidence angle = 34°), only refraction to P.  
So 4% (R) is reflected and refracted back to P. 
 
In exercise a, R is reflected at α. At γ, R(1-R) is reflected via β to α. R(1-R)2 goes to P 
while R2(1-R) is reflected back to γ via β. From γ, R3(1-R) is reflected via β to α. 
Now R3(1-R)2 goes to P and R4(1-R)2 goes to γ. 
So R + R(1-R)2 + R3(1-R)2 + R5(1-R)2 + ... should be summed at P, giving 
R + R -2R2 + R3 + R3 – 2R4 + R5 + R5 - 2R6 + R7 + ... 
= 2R(1 – R + R2 – R3 + R4 – R5 + R6 - ...) = 2R/(1+R). 
 

 

So the ratio of the reflected light in b) to the reflected light in a) is   
R / (2R/(1+R)) = (1 + R)/2, or  0.52. 

If we just consider the first two contributions in exercise a, R + R(1-R)2, the ratio 
becomes 1/(2 - 2R + R2)  = 0,5204, which is a little more than 0.5, and very close to 
the final sum. 
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