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Running a program, say ball_yc.py, in the terminal window, followed by some
possible output is typeset as

Terminal

ball_yc.py
At t=0.0417064 s and 0.977662 s, the height is 0.2 m.

Recall from Sect. 1.5.3 that we just write the program name. A real execution
demands prefixing the program name by python in a terminal window, or by run if
you run the program from an interactive IPython session. We refer to Appendix H.5
for more complete information on running Python programs in different ways.

Sometimes just the output from a program is shown, and this output appears as
plain computer text:

h = 0.2

order=0, error=0.221403

order=1, error=0.0214028

order=2, error=0.00140276

order=3, error=6.94248e-05

order=4, error=2.75816e-06

Files containing data are shown in a similar way in this book:

date Oslo London Berlin Paris Rome Helsinki

01.05 18 21.2 20.2 13.7 15.8 15

01.06 21 13.2 14.9 18 24 20

01.07 13 14 16 25 26.2 14.5

Style guide for Python code This book presents Python code that is (mostly) in
accordance with the official Style Guide for Python Code5, known in the Python
community as PEP8. Some exceptions to the rules are made to make code snippets
shorter: multiple imports on one line and less blank lines.

1.9 Exercises

About solving exercises There is only one way to learn programming: you have to
program yourself. This means that you have to do a lot of exercises! Reading this
book is necessary to learn about the Python syntax and studying the examples in
depth is necessary to grasp how to think about programming and solving problems.
But the main effort in the learning process is your work with exercises or your own
programming projects.

Solving an exercise is a three-stage procedure. First, you have to study the text
in the exercise carefully to understand what the problem is about. Programming
exercises, especially in this book, are about a problem setting that has to be thor-
oughly understood before it makes sense to understand the specific questions in

5 http://www.python.org/dev/peps/pep-0008/

http://www.python.org/dev/peps/pep-0008/
http://www.python.org/dev/peps/pep-0008/
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the exercise. The second phase is to write the program. The more efforts you put
into the first phase, the easier it will be to find the right statements and write the
code. The third and final stage is to test the program and remove errors (known
as debugging and verification from Sect. 1.2). This is by far the greatest challenge
for beginners. Very often, especially for newcomers to programming, it boils down
to writing out the result of every statement and checking these results carefully by
playing computer with pen and paper.

Beginners often underestimate the amount of work required in the first and third
stage and instead try to do the second stage (i.e., write the program) as quickly as
possible. The more work you put into the first stage, the easier it will be to find
an example in this book or elsewhere that is similar to the exercise and that can
help you get started. And the more work you put into stage three up front, with
constructing a test case, the better your understanding of the statements will be and
the fewer errors you will commit. Experience will prove that all these assertions are
right!

Most exercises are associated with a filename, e.g., myexer. If the answer to the
exercise is a Python program, you should store the program in a file myexer.py. If
the answer can be an explanation, you may store it in a plain text file, myexer.txt,
or write the text in a word processor and produce a PDF file (myexer.pdf).

When you hand in exercises to teaching assistants, it is often a requirement that
a trial run of the program is inserted at the end of the code. This means that you
run some case with known result, direct the output to a file result,

Terminal

Terminal> python myprogram.py > result

and copy the contents of result to a triple-quoted string with appropriate com-
ments after the statements of the program. Here is an example of a program with its
trial run inserted:

F = 69.8 # Fahrenheit degrees

C = (5.0/9)*(F - 32) # Corresponding Celsius degrees

print C

’’’

Trial run (correct result is 21):

python f2c.py

21.0

’’’

The trial run demonstrates that the program runs and produces correct results in
a test case.

Exercise 1.1: Compute 1+1
The first exercise concerns some very basic mathematics and programming: assign
the result of 1C1 to a variable and print the value of that variable.
Filename: 1plus1.
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Exercise 1.2: Write a Hello World program
Almost all books about programming languages start with a very simple program
that prints the text Hello, World! to the screen. Make such a program in Python.
Filename: hello_world.

Exercise 1.3: Derive and compute a formula
Can a newborn baby in Norway expect to live for one billion (109) seconds? Write
a Python program for doing arithmetics to answer the question.
Filename: seconds2years.

Exercise 1.4: Convert from meters to British length units
Make a program where you set a length given in meters and then compute and write
out the corresponding length measured in inches, in feet, in yards, and in miles. Use
that one inch is 2.54 cm, one foot is 12 inches, one yard is 3 feet, and one British
mile is 1760 yards. For verification, a length of 640 meters corresponds to 25196.85
inches, 2099.74 feet, 699.91 yards, or 0.3977 miles.
Filename: length_conversion.

Exercise 1.5: Compute the mass of various substances
The density of a substance is defined as % D m=V , where m is the mass of a volume
V . Compute and print out the mass of one liter of each of the following substances
whose densities in g/cm3 are found in the file src/files/densities.dat6: iron,
air, gasoline, ice, the human body, silver, and platinum.
Filename: 1liter.

Exercise 1.6: Compute the growth of money in a bank
Let p be a bank’s interest rate in percent per year. An initial amount A has then
grown to

A
�
1C p

100

�n

after n years. Make a program for computing how much money 1000 euros have
grown to after three years with 5 percent interest rate.
Filename: interest_rate.

Exercise 1.7: Find error(s) in a program
Suppose somebody has written a simple one-line program for computing sin.1/:

x=1; print ’sin(%g)=%g’ % (x, sin(x))

Create this program and try to run it. What is the problem?
Filename: find_errors_sin1.

Exercise 1.8: Type in program text
Type the following program in your editor and execute it. If your program does not
work, check that you have copied the code correctly.

6 http://tinyurl.com/pwyasaa/files/densities.dat

http://tinyurl.com/pwyasaa/files/densities.dat
http://tinyurl.com/pwyasaa/files/densities.dat
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from math import pi

h = 5.0 # height

b = 2.0 # base

r = 1.5 # radius

area_parallelogram = h*b

print ’The area of the parallelogram is %.3f’ % area_parallelogram

area_square = b**2

print ’The area of the square is %g’ % area_square

area_circle = pi*r**2

print ’The area of the circle is %.3f’ % area_circle

volume_cone = 1.0/3*pi*r**2*h

print ’The volume of the cone is %.3f’ % volume_cone

Filename: formulas_shapes.

Exercise 1.9: Type in programs and debug them
Type these short programs in your editor and execute them. When they do not work,
identify and correct the erroneous statements.

a) Does sin2.x/C cos2.x/ D 1?

from math import sin, cos

x = pi/4

1_val = math.sin^2(x) + math.cos^2(x)

print 1_VAL

b) Compute s in meters when s D v0t C 1
2
at2, with v0 D 3 m/s, t D 1 s, a D

2 m/s2.

v0 = 3 m/s

t = 1 s

a = 2 m/s**2

s = v0.t + 0,5.a.t**2

print s

c) Verify these equations:

.aC b/2 D a2 C 2ab C b2

.a � b/2 D a2 � 2ab C b2

a = 3,3 b = 5,3

a2 = a**2

b2 = b**2
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eq1_sum = a2 + 2ab + b2

eq2_sum = a2 - 2ab + b2

eq1_pow = (a + b)**2

eq2_pow = (a - b)**2

print ’First equation: %g = %g’, % (eq1_sum, eq1_pow)

print ’Second equation: %h = %h’, % (eq2_pow, eq2_pow)

Filename: find_errors_programs.

Exercise 1.10: Evaluate a Gaussian function
The bell-shaped Gaussian function,

f .x/ D 1p
2� s

exp
�
�1

2

�x �m

s

�2
�
; (1.7)

is one of the most widely used functions in science and technology. The parameters
m and s > 0 are prescribed real numbers. Make a program for evaluating this
function when m D 0, s D 2, and x D 1. Verify the program’s result by comparing
with hand calculations on a calculator.
Filename: gaussian1.

Remarks The function (1.7) is named after Carl Friedrich Gauss7, 1777–1855,
who was a German mathematician and scientist, now considered as one of the
greatest scientists of all time. He contributed to many fields, including number
theory, statistics, mathematical analysis, differential geometry, geodesy, electrostat-
ics, astronomy, and optics. Gauss introduced the function (1.7) when he analyzed
probabilities related to astronomical data.

Exercise 1.11: Compute the air resistance on a football
The drag force, due to air resistance, on an object can be expressed as

Fd D 1

2
CD%AV 2; (1.8)

where % is the density of the air, V is the velocity of the object, A is the cross-
sectional area (normal to the velocity direction), and CD is the drag coefficient,
which depends heavily on the shape of the object and the roughness of the surface.

The gravity force on an object with mass m is Fg D mg, where g D 9:81ms�2.
We can use the formulas for Fd and Fg to study the importance of air resistance

versus gravity when kicking a football. The density of air is % D 1:2 kg m�3. We
have A D �a2 for any ball with radius a. For a football, a D 11 cm and the mass
is 0.43 kg. The drag coefficient CD varies with the velocity and can be taken as 0.4.

Make a program that computes the drag force and the gravity force on a football.
Write out the forces with one decimal in units of Newton (N D kgm=s2). Also
print the ratio of the drag force and the gravity force. Define CD , %, A, V , m, g,

7 http://en.wikipedia.org/wiki/Carl_Gauss

http://en.wikipedia.org/wiki/Carl_Gauss
http://en.wikipedia.org/wiki/Carl_Gauss
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Fd , and Fg as variables, and put a comment with the corresponding unit. Use the
program to calculate the forces on the ball for a hard kick, V D 120 km=h and for
a soft kick, V D 30 km=h (it is easy to mix inconsistent units, so make sure you
compute with V expressed in m=s).
Filename: kick.

Exercise 1.12: How to cook the perfect egg
As an egg cooks, the proteins first denature and then coagulate. When the temper-
ature exceeds a critical point, reactions begin and proceed faster as the temperature
increases. In the egg white, the proteins start to coagulate for temperatures above
63 ıC, while in the yolk the proteins start to coagulate for temperatures above 70 ıC.
For a soft boiled egg, the white needs to have been heated long enough to coagulate
at a temperature above 63 ıC, but the yolk should not be heated above 70 ıC. For
a hard boiled egg, the center of the yolk should be allowed to reach 70 ıC.

The following formula expresses the time t it takes (in seconds) for the center of
the yolk to reach the temperature Ty (in Celsius degrees):

t D M 2=3c�1=3

K�2.4�=3/2=3
ln

�
0:76

To � Tw

Ty � Tw

�
: (1.9)

Here, M , �, c, and K are properties of the egg: M is the mass, � is the density,
c is the specific heat capacity, and K is thermal conductivity. Relevant values are
M D 47 g for a small egg and M D 67 g for a large egg, � D 1:038 g cm�3, c D
3:7 J g�1 K�1, and K D 5:4 �10�3 Wcm�1 K�1. Furthermore, Tw is the temperature
(in C degrees) of the boiling water, and To is the original temperature (in C degrees)
of the egg before being put in the water. Implement the formula in a program, set
Tw D 100 ıC and Ty D 70 ıC, and compute t for a large egg taken from the fridge
(To D 4 ıC) and from room temperature (To D 20 ıC).
Filename: egg.

Exercise 1.13: Derive the trajectory of a ball
The purpose of this exercise is to explain how Equation (1.6) for the trajectory of
a ball arises from basic physics. There is no programming in this exercise, just
physics and mathematics.

The motion of the ball is governed by Newton’s second law:

Fx D max (1.10)

Fy D may (1.11)

where Fx and Fy are the sum of forces in the x and y directions, respectively, ax

and ay are the accelerations of the ball in the x and y directions, and m is the
mass of the ball. Let .x.t/; y.t// be the position of the ball, i.e., the horizontal and
vertical coordinate of the ball at time t . There are well-known relations between
acceleration, velocity, and position: the acceleration is the time derivative of the
velocity, and the velocity is the time derivative of the position. Therefore we have
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that

ax D d 2x

dt2
; (1.12)

ay D d 2y

dt2
: (1.13)

If we assume that gravity is the only important force on the ball, Fx D 0 and
Fy D �mg.

Integrate the two components of Newton’s second law twice. Use the initial
conditions on velocity and position,

d

dt
x.0/ D v0 cos �; (1.14)

d

dt
y.0/ D v0 sin �; (1.15)

x.0/ D 0; (1.16)

y.0/ D y0; (1.17)

to determine the four integration constants. Write up the final expressions for x.t/

and y.t/. Show that if � D �=2, i.e., the motion is purely vertical, we get the
formula (1.1) for the y position. Also show that if we eliminate t , we end up with
the relation (1.6) between the x and y coordinates of the ball. You may read more
about this type of motion in a physics book, e.g., [15].
Filename: trajectory.

Exercise 1.14: Find errors in the coding of formulas
Some versions of our program for calculating the formula (1.3) are listed below.
Find the versions that will not work correctly and explain why in each case.

C = 21; F = 9/5*C + 32; print F

C = 21.0; F = (9/5)*C + 32; print F

C = 21.0; F = 9*C/5 + 32; print F

C = 21.0; F = 9.*(C/5.0) + 32; print F

C = 21.0; F = 9.0*C/5.0 + 32; print F

C = 21; F = 9*C/5 + 32; print F

C = 21.0; F = (1/5)*9*C + 32; print F

C = 21; F = (1./5)*9*C + 32; print F

Filename: find_errors_division.

Exercise 1.15: Explain why a program does not work
Figure out why the following program does not work:

C = A + B

A = 3

B = 2

print C

Filename: find_errors_vars.
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Exercise 1.16: Find errors in Python statements
Try the following statements in an interactive Python shell. Explain why some
statements fail and correct the errors.

1a = 2

a1 = b

x = 2

y = X + 4 # is it 6?

from Math import tan

print tan(pi)

pi = "3.14159’

print tan(pi)

c = 4**3**2**3

_ = ((c-78564)/c + 32))

discount = 12%

AMOUNT = 120.-

amount = 120$

address = hpl@simula.no

and = duck

class = ’INF1100, gr 2"

continue_ = x > 0

rev = fox = True

Norwegian = [’a human language’]

true = fox is rev in Norwegian

Hint It is wise to test the values of the expressions on the right-hand side, and the
validity of the variable names, separately before you put the left- and right-hand
sides together in statements. The last two statements work, but explaining why
goes beyond what is treated in this chapter.
Filename: find_errors_syntax.

Exercise 1.17: Find errors in the coding of a formula
Given a quadratic equation,

ax2 C bx C c D 0;

the two roots are

x1 D �b Cpb2 � 4ac

2a
; x2 D �b �pb2 � 4ac

2a
: (1.18)

What are the problems with the following program?

a = 2; b = 1; c = 2

from math import sqrt

q = b*b - 4*a*c

q_sr = sqrt(q)

x1 = (-b + q_sr)/2*a

x2 = (-b - q_sr)/2*a

print x1, x2

Correct the program so that it solves the given equation.
Filename: find_errors_roots.
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Exercise 1.18: Find errors in a program
What is the problem in the following program?

from math import pi, tan

tan = tan(pi/4)

tan2 = tan(pi/3)

print tan, tan2

Filename: find_errors_tan.
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2.7 Exercises

Exercise 2.1: Make a Fahrenheit-Celsius conversion table
Write a Python program that prints out a table with Fahrenheit degrees 0; 10; 20; : : : ;

100 in the first column and the corresponding Celsius degrees in the second column.

Hint Modify the c2f_table_while.py program from Sect. 2.1.2.
Filename: f2c_table_while.

Exercise 2.2: Generate an approximate Fahrenheit-Celsius conversion table
Many people use an approximate formula for quickly converting Fahrenheit (F ) to
Celsius (C ) degrees:

C � OC D .F � 30/=2 (2.2)

Modify the program from Exercise 2.1 so that it prints three columns: F , C , and
the approximate value OC .
Filename: f2c_approx_table.

Exercise 2.3: Work with a list
Set a variable primes to a list containing the numbers 2, 3, 5, 7, 11, and 13. Write
out each list element in a for loop. Assign 17 to a variable p and add p to the end
of the list. Print out the entire new list.
Filename: primes.

Exercise 2.4: Generate odd numbers
Write a program that generates all odd numbers from 1 to n. Set n in the beginning
of the program and use a while loop to compute the numbers. (Make sure that if n
is an even number, the largest generated odd number is n-1.)
Filename: odd.

Exercise 2.5: Compute the sum of the first n integers
Write a program that computes the sum of the integers from 1 up to and including
n. Compare the result with the famous formula n.nC 1/=2.
Filename: sum_int.

Exercise 2.6: Compute energy levels in an atom
The n-th energy level for an electron in a Hydrogen atom is given by

En D �mee
4

8�2
0h2
� 1

n2
;

where me D 9:1094 � 10�31 kg is the electron mass, e D 1:6022 � 10�19 C is the
elementary charge, �0 D 8:8542 � 10�12 C2 s2 kg�1 m�3 is the electrical permittivity
of vacuum, and h D 6:6261 � 10�34 Js.

a) Write a Python program that calculates and prints the energy level En for n D
1; : : : ; 20.
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b) The released energy when an electron moves from level ni to level nf is given
by

�E D �mee
4

8�2
0h2
�
 

1

n2
i

� 1

n2
f

!
:

Add statements to the program from a) so that it prints a second, nicely formatted
table where the cell in column i and row f contains the energy released when
an electron moves from energy level i to level f , for i; f D 1; : : : ; 5.

Filename: energy_levels.

Exercise 2.7: Generate equally spaced coordinates
We want to generate nC 1 equally spaced x coordinates in Œa; b�. Store the coordi-
nates in a list.

a) Start with an empty list, use a for loop and append each coordinate to the list.

Hint With n intervals, corresponding to n C 1 points, in Œa; b�, each interval has
length h D .b � a/=n. The coordinates can then be generated by the formula
xi D aC ih, i D 0; : : : ; nC 1.

b) Use a list comprehension as an alternative implementation.

Filename: coor.

Exercise 2.8: Make a table of values from a formula
The purpose of this exercise is to write code that prints a nicely formatted table of t

and y.t/ values, where

y.t/ D v0t � 1

2
gt2 :

Use nC 1 uniformly spaced t values throughout the interval Œ0; 2v0=g�.

a) Use a for loop to produce the table.
b) Add code with a while loop to produce the table.

Hint Because of potential round-off errors, you may need to adjust the upper limit
of the while loop to ensure that the last point (t D 2v0=g, y D 0) is included.
Filename: ball_table1.

Exercise 2.9: Store values from a formula in lists
This exercise aims to produce the same table of numbers as in Exercise 2.8, but with
different code. First, store the t and y values in two lists t and y. Thereafter, write
out a nicely formatted table by traversing the two lists with a for loop.

Hint In the for loop, use either zip to traverse the two lists in parallel, or use an
index and the range construction.
Filename: ball_table2.
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Exercise 2.10: Simulate operations on lists by hand
You are given the following program:

a = [1, 3, 5, 7, 11]

b = [13, 17]

c = a + b

print c

b[0] = -1

d = [e+1 for e in a]

print d

d.append(b[0] + 1)

d.append(b[-1] + 1)

print d[-2:]

for e1 in a:

for e2 in b:

print e1 + e2

Go through each statement and explain what is printed by the program.
Filename: simulate_lists.

Exercise 2.11: Compute a mathematical sum
The following code is supposed to compute the sum s DPM

kD1
1
k
:

s = 0; k = 1; M = 100

while k < M:

s += 1/k

print s

This program does not work correctly. What are the three errors? (If you try to run
the program, nothing will happen on the screen. Type Ctrl+c, i.e., hold down the
Control (Ctrl) key and then type the c key, to stop the program.) Write a correct
program.

Hint There are two basic ways to find errors in a program:

1. read the program carefully and think about the consequences of each statement,
2. print out intermediate results and compare with hand calculations.

First, try method 1 and find as many errors as you can. Thereafter, try method 2 for
M D 3 and compare the evolution of s with your own hand calculations.
Filename: sum_while.

Exercise 2.12: Replace a while loop by a for loop
Rewrite the corrected version of the program in Exercise 2.11 using a for loop over
k values instead of a while loop.
Filename: sum_for.
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Exercise 2.13: Simulate a program by hand
Consider the following program for computing with interest rates:

initial_amount = 100

p = 5.5 # interest rate

amount = initial_amount

years = 0

while amount <= 1.5*initial_amount:

amount = amount + p/100*amount

years = years + 1

print years

a) Use a pocket calculator or an interactive Python shell and work through the
program calculations by hand. Write down the value of amount and years in
each pass of the loop.

b) Set p = 5 instead. Why will the loop now run forever? (Apply Ctrl+c, see Ex-
ercise 2.11, to stop a program with a loop that runs forever.) Make the program
robust against such errors.

c) Make use of the operator += wherever possible in the program.
d) Explain with words what type of mathematical problem that is solved by this

program.

Filename: interest_rate_loop.

Exercise 2.14: Explore Python documentation
Suppose you want to compute with the inverse sine function: sin�1 x. How do you
do that in a Python program?

Hint The math module has an inverse sine function. Find the correct name of the
function by looking up the module content in the online Python Standard Library7

document or use pydoc, see Sect. 2.6.3.
Filename: inverse_sine.

Exercise 2.15: Index a nested list
We define the following nested list:

q = [[’a’, ’b’, ’c’], [’d’, ’e’, ’f’], [’g’, ’h’]]

a) Index this list to extract 1) the letter a; 2) the list [’d’, ’e’, ’f’]; 3) the last
element h; 4) the d element. Explain why q[-1][-2] has the value g.

b) We can visit all elements of q using this nested for loop:

for i in q:

for j in range(len(i)):

print i[j]

What type of objects are i and j?

Filename: index_nested_list.

7 http://docs.python.org/2/library/

http://docs.python.org/2/library/
http://docs.python.org/2/library/
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Exercise 2.16: Store data in lists
Modify the program from Exercise 2.2 so that all the F , C , and OC values are
stored in separate lists F, C, and C_approx, respectively. Then make a nested list
conversion so that conversion[i] holds a row in the table: [F[i], C[i],
C_approx[i]]. Finally, let the program traverse the conversion list and write
out the same table as in Exercise 2.2.
Filename: f2c_approx_lists.

Exercise 2.17: Store data in a nested list
The purpose of this exercise is to store tabular data in two alternative ways, either
as a list of columns or as a list of rows. In order to write out a nicely formatted
table, one has to traverse the data, and the technique for traversal depends on how
the tabular data is stored.

a) Compute two lists of t and y values as explained in Exercise 2.9. Store the two
lists in a new nested list ty1 such that ty1[0] and ty1[1] correspond to the
two lists. Write out a table with t and y values in two columns by looping over
the data in the ty1 list. Each number should be written with two decimals.

b) Make a list ty2 which holds each row in the table of t and y values (ty1 is a list
of table columns while ty2 is a list of table rows, as explained in Sect. 2.4).
Loop over the ty2 list and write out the t and y values with two decimals each.

Filename: ball_table3.

Exercise 2.18: Values of boolean expressions
Explain the outcome of each of the following boolean expressions:

C = 41

C == 40

C != 40 and C < 41

C != 40 or C < 41

not C == 40

not C > 40

C <= 41

not False

True and False

False or True

False or False or False

True and True and False

False == 0

True == 0

True == 1

Note
It makes sense to compare True and False to the integers 0 and 1, but not other
integers (e.g., True == 12 is False although the integer 12 evaluates to True
in a boolean context, as in bool(12) or if 12).

Filename: eval_bool.
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Exercise 2.19: Explore round-off errors from a large number of inverse
operations
Maybe you have tried to hit the square root key on a calculator multiple times and
then squared the number again an equal number of times. These set of inverse
mathematical operations should of course bring you back to the starting value for
the computations, but this does not always happen. To avoid tedious pressing of
calculator keys, we can let a computer automate the process. Here is an appropriate
program:

from math import sqrt

for n in range(1, 60):

r = 2.0

for i in range(n):

r = sqrt(r)

for i in range(n):

r = r**2

print ’%d times sqrt and **2: %.16f’ % (n, r)

Explain with words what the program does. Then run the program. Round-off
errors are here completely destroying the calculations when n is large enough! In-
vestigate the case when we come back to 1 instead of 2 by fixing an n value where
this happens and printing out r in both for loops over i. Can you now explain why
we come back to 1 and not 2?
Filename: repeated_sqrt.

Exercise 2.20: Explore what zero can be on a computer
Type in the following code and run it:

eps = 1.0

while 1.0 != 1.0 + eps:

print ’...............’, eps

eps = eps/2.0

print ’final eps:’, eps

Explain with words what the code is doing, line by line. Then examine the output.
How can it be that the “equation” 1 ¤ 1C eps is not true? Or in other words, that
a number of approximately size 10�16 (the final eps value when the loop terminates)
gives the same result as if eps were zero?
Filename: machine_zero.

Remarks The nonzero eps value computed above is called machine epsilon or
machine zero and is an important parameter to know, especially when certain math-
ematical techniques are applied to control round-off errors.

Exercise 2.21: Compare two real numbers with a tolerance
Run the following program:

a = 1/947.0*947

b = 1

if a != b:

print ’Wrong result!’
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The lesson learned from this program is that one should never compare two
floating-point objects directly using a == b or a != b, because round-off errors
quickly make two identical mathematical values different on a computer. A better
result is to test if abs(a - b) < tol, where tol is a very small number. Modify
the test according to this idea.
Filename: compare_floats.

Exercise 2.22: Interpret a code
The function time in the module time returns the number of seconds since a partic-
ular date (called the Epoch, which is January 1, 1970, on many types of computers).
Python programs can therefore use time.time() to mimic a stop watch. Another
function, time.sleep(n) causes the program to pause for n seconds and is handy
for inserting a pause. Use this information to explain what the following code does:

import time

t0 = time.time()

while time.time() - t0 < 10:

print ’....I like while loops!’

time.sleep(2)

print ’Oh, no - the loop is over.’

How many times is the print statement inside the loop executed? Now, copy the
code segment and change the < sign in the loop condition to a > sign. Explain what
happens now.
Filename: time_while.

Exercise 2.23: Explore problems with inaccurate indentation
Type in the following program in a file and check carefully that you have exactly
the same spaces:

C = -60; dC = 2

while C <= 60:

F = (9.0/5)*C + 32

print C, F

C = C + dC

Run the program. What is the first problem? Correct that error. What is the next
problem? What is the cause of that problem? (See Exercise 2.11 for how to stop
a hanging program.)
Filename: indentation.

Remarks The lesson learned from this exercise is that one has to be very care-
ful with indentation in Python programs! Other computer languages usually en-
close blocks belonging to loops in curly braces, parentheses, or begin-end marks.
Python’s convention with using solely indentation contributes to visually attractive,
easy-to-read code, at the cost of requiring a pedantic attitude to blanks from the
programmer.
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Exercise 2.24: Explore punctuation in Python programs
Some of the following assignments work and some do not. Explain in each case
why the assignment works/fails and, if it works, what kind of object x refers to and
what the value is if we do a print x.

x = 1

x = 1.

x = 1;

x = 1!

x = 1?

x = 1:

x = 1,

Hint Explore the statements in an interactive Python shell.
Filename: punctuation.

Exercise 2.25: Investigate a for loop over a changing list
Study the following interactive session and explain in detail what happens in each
pass of the loop, and use this explanation to understand the output.

>>> numbers = range(10)

>>> print numbers

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

>>> for n in numbers:

... i = len(numbers)/2

... del numbers[i]

... print ’n=%d, del %d’ % (n,i), numbers

...

n=0, del 5 [0, 1, 2, 3, 4, 6, 7, 8, 9]

n=1, del 4 [0, 1, 2, 3, 6, 7, 8, 9]

n=2, del 4 [0, 1, 2, 3, 7, 8, 9]

n=3, del 3 [0, 1, 2, 7, 8, 9]

n=8, del 3 [0, 1, 2, 8, 9]

Warning
The message in this exercise is to never modify a list that we are looping over.
Modification is indeed technically possible, as shown above, but you really need
to know what you are doing. Otherwise you will experience very strange pro-
gram behavior.

Filename: for_changing_list.
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To test if n is an odd integer, we see if it can be divided by 2 and yield an integer
without any reminder: n % 2 == 0.

The improved Simpson function with validity tests on the provided arguments,
as well as a doc string (Sect. 3.1.11), can look like this:

def Simpson(f, a, b, n=500):

"""

Return the approximation of the integral of f

from a to b using Simpson’s rule with n intervals.

"""

if a > b:

print ’Error: a=%g > b=%g’ % (a, b)

return None

# check that n is even:

if n % 2 != 0:

print ’Error: n=%d is not an even integer!’ % n

n = n+1 # make n even

h = (b - a)/float(n)

sum1 = 0

for i in range(1, n/2 + 1):

sum1 += f(a + (2*i-1)*h)

sum2 = 0

for i in range(1, n/2):

sum2 += f(a + 2*i*h)

integral = (b-a)/(3*n)*(f(a) + f(b) + 4*sum1 + 2*sum2)

return integral

The complete code is found in the file Simpson.py.
A very good exercise is to simulate the program flow by hand, starting with the

call to the application function. The Online Python Tutor8 or a debugger (see
Sect. F.1) are convenient tools for controlling that your thinking is correct.

3.5 Exercises

Exercise 3.1: Implement a simple mathematical function
Implement the mathematical function

g.t/ D e�t sin.�t/;

in a Python function g(t). Print out g.0/ and g.1/.
Filename: expsin.

Exercise 3.2: Implement a simple mathematical function with a parameter
Let us extend the function g.t/ in Exercise 3.1 to

h.t/ D e�at sin.�t/;

8 http://www.pythontutor.com/

http://tinyurl.com/pwyasaa/funcif/Simpson.py
http://www.pythontutor.com/
http://www.pythontutor.com/
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where a is a parameter. How can the corresponding Python function be imple-
mented in this case? Print out h.0/ and h.1/ for the case a D 10.
Filename: expsin_a.

Exercise 3.3: Explain how a program works
Explain how the following program works:

def add(A, B):

C = A + B

return C

a = 3

b = 2

print add(a, b)

print add(2*a, b+1)*3

Figure out what is being printed without running the program.
Filename: explain_func.

Exercise 3.4: Write a Fahrenheit-Celsius conversion functions
The formula for converting Fahrenheit degrees to Celsius reads

C D 5

9
.F � 32/ : (3.7)

Write a function C(F) that implements this formula. Also write the inverse function
F(C) for going from Celsius to Fahrenheit degrees. How can you test that the two
functions work?

Hint C(F(c)) should result in c and F(C(f)) should result in f.
Filename: f2c.

Exercise 3.5: Write a test function for Exercise 3.4
Write a test function test_F_C that checks the computation of C(F(c)) and
F(C(f)), involving the C(F) and F(C) functions in Exercise 3.4.

Hint Use a tolerance in the comparison. Let the test function follow the conven-
tions in the nose and pytest frameworks (see Sect. 3.3.3 for a first intro and Sect. H.9
for more overview).
Filename: test_f2c.

Exercise 3.6: Given a test function, write the function
Here is a test function:

def test_double():

assert double(2) == 4

assert abs(double(0.1) - 0.2) < 1E-15

assert double([1, 2]) == [1, 2, 1, 2]

assert double((1, 2)) == (1, 2, 1, 2)

assert double(3+4j) == 6+8j

assert double(’hello’) == ’hellohello’
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Write the associated function to be tested (double) and run test_double.
Filename: test_double.

Exercise 3.7: Evaluate a sum and write a test function

a) Write a Python function sum_1k(M) that returns the sum s DPM
kD1

1
k
.

b) Compute s for the case M D 3 by hand and write another function test_sum_
1k() that calls sum_1k(3) and checks that the answer is correct.

Hint We recommend that test_sum_1k follows the conventions of the pytest and
nose testing frameworks as explained in Sects. 3.3.3 and 3.4.2 (see also Sect. H.9).
Filename: sum_func.

Exercise 3.8: Write a function for solving ax2 C bx C c D 0

a) Given a quadratic equation ax2 C bx C c D 0, write a function roots(a,
b, c) that returns the two roots of the equation. The returned roots should be
float-type objects when the roots are real, otherwise complex-type objects.

Hint You can test on the sign of the expression in the square root and return stan-
dard float or complex Python objects accordingly. Alternatively, you can simply
use sqrt from the numpy.lib.scimath library, see Chap. 1.6.3. This sqrt func-
tion returns an object of type numpy.complex128 in case of a negative argument
(and hence a complex square root) and an object of type numpy.float64 other-
wise.

b) Construct two test cases with known solutions, one with real roots and the
other with complex roots. Implement the two test cases in two test functions
test_roots_float and test_roots_complex, where you call the roots
function and check the value of the returned objects.

Filename: roots_quadratic.

Exercise 3.9: Implement the sum function
The standard Python function called sum takes a list as argument and computes the
sum of the elements in the list:

>>> sum([1,3,5,-5])

4

>>> sum([[1,2], [4,3], [8,1]])

[1, 2, 4, 3, 8, 1]

>>> sum([’Hello, ’, ’World!’])

’Hello, World!’

Implement your own version of sum.
Filename: mysum.
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Exercise 3.10: Compute a polynomial via a product
Given nC 1 roots r0; r1; : : : ; rn of a polynomial p.x/ of degree nC 1, p.x/ can be
computed by

p.x/ D
nY

iD0

.x � ri / D .x � r0/.x � r1/ � � � .x � rn�1/.x � rn/ : (3.8)

Write a function poly(x, roots) that takes x and a list roots of the roots as
arguments and returns p.x/. Construct a test case for verifying the implementation.
Filename: polyprod.

Exercise 3.11: Integrate a function by the Trapezoidal rule

a) An approximation to the integral of a function f .x/ over an interval Œa; b� can
be found by first approximating f .x/ by the straight line that goes through the
end points .a; f .a// and .b; f .b//, and then finding the area under the straight
line, which is the area of a trapezoid. The resulting formula becomes

bZ
a

f .x/dx � b � a

2
.f .a/C f .b// : (3.9)

Write a function trapezint1(f, a, b) that returns this approximation to the
integral. The argument f is a Python implementation f(x) of the mathematical
function f .x/.

b) Use the approximation (3.9) to compute the following integrals:
R �

0
cosx dx,R �

0
sin x dx, and

R �=2

0
sin x dx, In each case, write out the error, i.e., the dif-

ference between the exact integral and the approximation (3.9). Make rough
sketches of the trapezoid for each integral in order to understand how the method
behaves in the different cases.

c) We can easily improve the formula (3.9) by approximating the area under the
function f .x/ by two equal-sized trapezoids. Derive a formula for this ap-
proximation and implement it in a function trapezint2(f, a, b). Run the
examples from b) and see how much better the new formula is. Make sketches
of the two trapezoids in each case.

d) A further improvement of the approximate integration method from c) is to di-
vide the area under the f .x/ curve into n equal-sized trapezoids. Based on this
idea, derive the following formula for approximating the integral:

bZ
a

f .x/dx �
n�1X
iD1

1

2
h .f .xi /C f .xiC1// ; (3.10)

where h is the width of the trapezoids, h D .b � a/=n, and xi D a C ih,
i D 0; : : : ; n, are the coordinates of the sides of the trapezoids. The figure
below visualizes the idea of the Trapezoidal rule.
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Implement (3.10) in a Python function trapezint(f, a, b, n). Run the
examples from b) with n D 10.

e) Write a test function test_trapezint() for verifying the implementation of
the function trapezint in d).

Hint Obviously, the Trapezoidal method integrates linear functions exactly for
any n. Another more surprising result is that the method is also exact for, e.g.,R 2�

0
cosx dx for any n. Use one of these cases for the test function test_trapezint.

Filename: trapezint.

Remarks Formula (3.10) is not the most common way of expressing the Trape-
zoidal integration rule. The reason is that f .xiC1/ is evaluated twice, first in term
i and then as f .xi / in term i C 1. The formula can be further developed to avoid
unnecessary evaluations of f .xiC1/, which results in the standard form

bZ
a

f .x/dx � 1

2
h.f .a/C f .b//C h

n�1X
iD1

f .xi / : (3.11)

Exercise 3.12: Derive the general Midpoint integration rule
The idea of the Midpoint rule for integration is to divide the area under the curve
f .x/ into n equal-sized rectangles (instead of trapezoids as in Exercise 3.11). The
height of the rectangle is determined by the value of f at the midpoint of the rect-
angle. The figure below illustrates the idea.
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Compute the area of each rectangle, sum them up, and arrive at the formula for
the Midpoint rule:

bZ
a

f .x/dx � h

n�1X
iD0

f .aC ihC 1

2
h/; (3.12)

where h D .b � a/=n is the width of each rectangle. Implement this formula in
a Python function midpointint(f, a, b, n) and test the function on the exam-
ples listed in Exercise 3.11b. How do the errors in the Midpoint rule compare with
those of the Trapezoidal rule for n D 1 and n D 10?
Filename: midpointint.

Exercise 3.13: Make an adaptive Trapezoidal rule
A problem with the Trapezoidal integration rule (3.10) in Exercise 3.11 is to decide
how many trapezoids (n) to use in order to achieve a desired accuracy. Let E be the
error in the Trapezoidal method, i.e., the difference between the exact integral and
that produced by (3.10). We would like to prescribe a (small) tolerance � and find
an n such that E � �.

Since the exact value
R b

a
f .x/dx is not available (that is why we use a numer-

ical method!), it is challenging to compute E. Nevertheless, it has been shown by
mathematicians that

E � 1

12
.b � a/h2 max

x2Œa;b�
jf 00.x/j : (3.13)

The maximum of jf 00.x/j can be computed (approximately) by evaluating f 00.x/

at a large number of points in Œa; b�, taking the absolute value jf 00.x/j, and finding
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the maximum value of these. The double derivative can be computed by a finite
difference formula:

f 00.x/ � f .x C h/ � 2f .x/C f .x � h/

h2
:

With the computed estimate of max jf 00.x/j we can find h from setting the right-
hand side in (3.13) equal to the desired tolerance:

1

12
.b � a/h2 max

x2Œa;b�
jf 00.x/j D � :

Solving with respect to h gives

h D p12�

�
.b � a/ max

x2Œa;b�
jf 00.x/j

��1=2

: (3.14)

With n D .b � a/=h we have the n that corresponds to the desired accuracy �.

a) Make a Python function adaptive_trapezint(f, a, b, eps=1E-5) for
computing the integral

R b

a
f .x/dx with an error less than or equal to � (eps).

Hint Compute the n corresponding to � as explained above and call trapezint(f,
a, b, n) from Exercise 3.11.

b) Apply the function to compute the integrals from Exercise 3.11b. Write out the
exact error and the estimated n for each case.

Filename: adaptive_trapezint.

Remarks A numerical method that applies an expression for the error to adapt the
choice of the discretization parameter to a desired error tolerance, is known as an
adaptive numerical method. The advantage of an adaptive method is that one can
control the approximation error, and there is no need for the user to determine an
appropriate number of intervals n.

Exercise 3.14: Simulate a program by hand
Simulate the following program by hand to explain what is printed.

def a(x):

q = 2

x = 3*x

return q + x

def b(x):

global q

q += x

return q + x

q = 0

x = 3

print a(x), b(x), a(x), b(x)
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Hint If you encounter problems with understanding function calls and local versus
global variables, paste the code into the Online Python Tutor9 and step through the
code to get a better explanation of what happens.
Filename: simulate_func.

Exercise 3.15: Debug a given test function
Given a Python function

def triple(x):

return x + x*2

we want to test it with a proper test function. The following function is written

def test_triple():

assert triple(3) == 9

assert triple(0.1) == 0.3

assert triple([1, 2]) == [1, 2, 1, 2, 1, 2]

assert triple(’hello ’) == ’hello hello 2’

What is wrong with the test function? Write a test function where all boolean
comparisons work well.
Filename: test_triple.

Exercise 3.16: Compute the area of an arbitrary triangle
An arbitrary triangle can be described by the coordinates of its three vertices:
.x1; y1/, .x2; y2/, .x3; y3/, numbered in a counterclockwise direction. The area of
the triangle is given by the formula

A D 1

2
jx2y3 � x3y2 � x1y3 C x3y1 C x1y2 � x2y1j : (3.15)

Write a function triangle_area(vertices) that returns the area of a triangle
whose vertices are specified by the argument vertices, which is a nested list of
the vertex coordinates. Make sure your implementation passes the following test
function, which also illustrates how the triangle_area function works:

def test_triangle_area():

"""

Verify the area of a triangle with vertex coordinates

(0,0), (1,0), and (0,2).

"""

v1 = (0,0); v2 = (1,0); v3 = (0,2)

vertices = [v1, v2, v3]

expected = 1

computed = triangle_area(vertices)

tol = 1E-14

success = diff(expected - computed) < tol

msg = ’computed area=%g != %g (expected)’ % \

(computed, expected)

assert success, msg

Filename: area_triangle.

9 http://www.pythontutor.com/visualize.html

http://www.pythontutor.com/visualize.html
http://www.pythontutor.com/visualize.html
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Exercise 3.17: Compute the length of a path
Some object is moving along a path in the plane. At nC 1 points of time we have
recorded the corresponding .x; y/ positions of the object: .x0; y0/, .x1; y2/, : : :,
.xn; yn/. The total length L of the path from .x0; y0/ to .xn; yn/ is the sum of all
the individual line segments (.xi�1; yi�1/ to .xi ; yi /, i D 1; : : : ; n):

L D
nX

iD1

p
.xi � xi�1/2 C .yi � yi�1/2 : (3.16)

a) Make a Python function pathlength(x, y) for computing L according to the
formula. The arguments x and y hold all the x0; : : : ; xn and y0; : : : ; yn coordi-
nates, respectively.

b) Write a test function test_pathlength()where you check that pathlength
returns the correct length in a test problem.

Filename: pathlength.

Exercise 3.18: Approximate �

The value of � equals the circumference of a circle with radius 1=2. Suppose we
approximate the circumference by a polygon through n C 1 points on the circle.
The length of this polygon can be found using the pathlength function from Ex-
ercise 3.17. Compute nC 1 points .xi ; yi / along a circle with radius 1=2 according
to the formulas

xi D 1

2
cos.2�i=n/; yi D 1

2
sin.2�i=n/; i D 0; : : : ; n :

Call the pathlength function and write out the error in the approximation of � for
n D 2k , k D 2; 3; : : : ; 10.
Filename: pi_approx.

Exercise 3.19: Compute the area of a polygon
One of the most important mathematical problems through all times has been to
find the area of a polygon. For example, real estate areas often had the shape of
polygons, and the tax was proportional to the area. Suppose we have some poly-
gon with vertices (“corners”) specified by the coordinates .x1; y1/, .x2; y2/, : : :,
.xn; yn/, numbered either in a clockwise or counter clockwise fashion around the
polygon. The area A of the polygon can amazingly be computed by just knowing
the boundary coordinates:

A D 1

2
j.x1y2 C x2y3 C � � � C xn�1yn C xny1/�
.y1x2 C y2x3 C � � � C yn�1xn C ynx1/j : (3.17)

Write a function polygon_area(x, y) that takes two coordinate lists with the
vertices as arguments and returns the area.

Test the function on a triangle, a quadrilateral, and a pentagon where you can
calculate the area by alternative methods for comparison.
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Hint Since Python lists and arrays has 0 as their first index, it is wise to rewrite the
mathematical formula in terms of vertex coordinates numbered as x0; x1; : : : ; xn�1

and y0; y1; : : : ; yn�1 before you start programming.
Filename: polygon_area.

Exercise 3.20: Write functions
Three functions, hw1, hw2, and hw3, work as follows:

>>> print hw1()

Hello, World!

>>> hw2()

Hello, World!

>>> print hw3(’Hello, ’, ’World!’)

Hello, World!

>>> print hw3(’Python ’, ’function’)

Python function

Write the three functions.
Filename: hw_func.

Exercise 3.21: Approximate a function by a sum of sines
We consider the piecewise constant function

f .t/ D

8̂<
:̂

1; 0 < t < T=2;

0; t D T=2;

�1; T=2 < t < T

(3.18)

Sketch this function on a piece of paper. One can approximate f .t/ by the sum

S.t In/ D 4

�

nX
iD1

1

2i � 1
sin

�
2.2i � 1/�t

T

�
: (3.19)

It can be shown that S.t In/! f .t/ as n!1.

a) Write a Python function S(t, n, T) for returning the value of S.t In/.
b) Write a Python function f(t, T) for computing f .t/.
c) Write out tabular information showing how the error f .t/ � S.t In/ varies with

n and t for the cases where n D 1; 3; 5; 10; 30; 100 and t D ˛T , with T D 2� ,
and ˛ D 0:01; 0:25; 0:49. Use the table to comment on how the quality of the
approximation depends on ˛ and n.

Filename: sinesum1.

Remarks A sum of sine and/or cosine functions, as in (3.19), is called a Fourier
series. Approximating a function by a Fourier series is a very important technique
in science and technology. Exercise 5.41 asks for visualization of how well S.t In/

approximates f .t/ for some values of n.
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Exercise 3.22: Implement a Gaussian function
Make a Python function gauss(x, m=0, s=1) for computing the Gaussian func-
tion

f .x/ D 1p
2� s

exp
�
�1

2

�x �m

s

�2
�

:

Write out a nicely formatted table of x and f .x/ values for n uniformly spaced x

values in Œm� 5s; mC 5s�. (Choose m, s, and n as you like.)
Filename: gaussian2.

Exercise 3.23: Wrap a formula in a function
Implement the formula (1.9) from Exercise 1.12 in a Python function with three
arguments: egg(M, To=20, Ty=70). The parameters �, K, c, and Tw can be set
as local (constant) variables inside the function. Let t be returned from the function.
Compute t for a soft and hard boiled egg, of a small (M D 47 g) and large (M D 67

g) size, taken from the fridge (To D 4 C) and from a hot room (To D 25 C).
Filename: egg_func.

Exercise 3.24: Write a function for numerical differentiation
The formula

f 0.x/ � f .x C h/ � f .x � h/

2h
(3.20)

can be used to find an approximate derivative of a mathematical function f .x/ if h

is small.

a) Write a function diff(f, x, h=1E-5) that returns the approximation (3.20)
of the derivative of a mathematical function represented by a Python function
f(x).

b) Write a function test_diff() that verifies the implementation of the function
diff. As test case, one can use the fact that (3.20) is exact for quadratic func-
tions (at least for not so small h values that rounding errors in (3.20) become
significant – you have to experiment with finding a suitable tolerance and h).
Follow the conventions of the pytest and nose testing frameworks, as outlined in
Exercise 3.7 and Sects. 3.3.3, 3.4.2, and H.9.

c) Apply (3.20) to differentiate
� f .x/ D ex at x D 0,
� f .x/ D e�2x2

at x D 0,
� f .x/ D cosx at x D 2� ,
� f .x/ D lnx at x D 1.
Use h D 0:01. In each case, write out the error, i.e., the difference between
the exact derivative and the result of (3.20). Collect these four examples in
a function application().

Filename: centered_diff.

Exercise 3.25: Implement the factorial function
The factorial of n is written as nŠ and defined as

nŠ D n.n � 1/.n � 2/ � � �2 � 1; (3.21)
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with the special cases
1Š D 1; 0Š D 1 : (3.22)

For example, 4Š D 4 � 3 � 2 � 1 D 24, and 2Š D 2 � 1 D 2. Write a Python
function fact(n) that returns nŠ. (Do not simply call the ready-made function
math.factorial(n) – that is considered cheating in this context!)

Make sure your fact function passes the test in the following test function:

def test_fact():

# Check an arbitrary case

n = 4

expected = 4*3*2*1

computed = fact(n)

assert computed == expected

# Check the special cases

assert fact(0) == 1

assert fact(1) == 1

Hint Return 1 immediately if x is 1 or 0, otherwise use a loop to compute nŠ.
Filename: fact.

Exercise 3.26: Compute velocity and acceleration from 1D position data
Suppose we have recorded GPS coordinates x0; : : : ; xn at times t0; : : : ; tn while
running or driving along a straight road. We want to compute the velocity vi and
acceleration ai from these position coordinates. Using finite difference approxima-
tions, one can establish the formulas

vi � xiC1 � xi�1

tiC1 � ti�1

; (3.23)

ai � 2.tiC1 � ti�1/�1

�
xiC1 � xi

tiC1 � ti
� xi � xi�1

ti � ti�1

�
; (3.24)

for i D 1; : : : ; n � 1 (vi and ai correspond to the velocity and acceleration at point
xi at time ti , respectively).

a) Write a Python function kinematics(i, x, t) for computing vi and ai ,
given the arrays x and t of position and time coordinates (x0; : : : ; xn and
t0; : : : ; tn).

b) Write a Python function test_kinematics() for testing the implementation
in the case of constant velocity V . Set t0 D 0, t1 D 0:5, t2 D 1:5, and t3 D 2:2,
and xi D V ti . Call the kinematics function for the legal i values.

Filename: kinematics1.

Exercise 3.27: Find the max and min values of a function
The maximum and minimum values of a mathematical function f .x/ on Œa; b� can
be found by computing f at a large number (n) of points and selecting the maxi-
mum and minimum values at these points. Write a Python function maxmin(f, a,
b, n=1000) that returns the maximum and minimum value of a function f(x).
Also write a test function for verifying the implementation for f .x/ D cosx,
x 2 Œ��=2; 2��.
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Hint The x points where the mathematical function is to be evaluated can be uni-
formly distributed: xi D a C ih, i D 0; : : : ; n � 1, h D .b � a/=.n � 1/. The
Python functions max(y) and min(y) return the maximum and minimum values in
the list y, respectively.
Filename: maxmin_f.

Exercise 3.28: Find the max and min elements in a list
Given a list a, the max function in Python’s standard library computes the largest
element in a: max(a). Similarly, min(a) returns the smallest element in a. Write
your own max and min functions.

Hint Initialize a variable max_elem by the first element in the list, then visit all the
remaining elements (a[1:]), compare each element to max_elem, and if greater, set
max_elem equal to that element. Use a similar technique to compute the minimum
element.
Filename: maxmin_list.

Exercise 3.29: Implement the Heaviside function
The following step function is known as the Heaviside function and is widely used
in mathematics:

H.x/ D
(

0; x < 0

1; x 	 0
(3.25)

a) Implement H.x/ in a Python function H(x).
b) Make a Python function test_H() for testing the implementation of H(x).

Compute H.�10/, H.�10�15/, H.0/, H.10�15/, H.10/ and test that the an-
swers are correct.

Filename: Heaviside.

Exercise 3.30: Implement a smoothed Heaviside function
The Heaviside function (3.25) listed in Exercise 3.29 is discontinuous. It is in many
numerical applications advantageous to work with a smooth version of the Heavi-
side function where the function itself and its first derivative are continuous. One
such smoothed Heaviside function is

H�.x/ D

8̂<
:̂

0; x < ��;
1
2
C x

2�
C 1

2�
sin
�

�x
�

	
; �� � x � �

1; x > �

(3.26)

a) Implement H�.x/ in a Python function H_eps(x, eps=0.01).
b) Make a Python function test_H_eps() for testing the implementation of

H_eps. Check the values of some x < ��, x D ��, x D 0, x D �, and some
x > �.

Filename: smoothed_Heaviside.
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Exercise 3.31: Implement an indicator function
In many applications there is need for an indicator function, which is 1 over some
interval and 0 elsewhere. More precisely, we define

I.xIL; R/ D
(

1; x 2 ŒL; R�;

0; elsewhere
(3.27)

a) Make two Python implementations of such an indicator function, one with a di-
rect test if x 2 ŒL; R� and one that expresses the indicator function in terms of
Heaviside functions (3.25):

I.xIL; R/ D H.x � L/H.R � x/ : (3.28)

b) Make a test function for verifying the implementation of the functions in a).
Check that correct values are returned for some x < L, x D L, x D .LCR/=2,
x D R, and some x > R.

Filename: indicator_func.

Exercise 3.32: Implement a piecewise constant function
Piecewise constant functions have a lot of important applications when modeling
physical phenomena by mathematics. A piecewise constant function can be defined
as

f .x/ D

8̂̂
ˆ̂̂̂̂
ˆ̂̂<
ˆ̂̂̂̂
ˆ̂̂̂̂
:

v0; x 2 Œx0; x1/;

v1; x 2 Œx1; x2/;
:::

vi x 2 Œxi ; xiC1/;
:::

vn x 2 Œxn; xnC1�

(3.29)

That is, we have a union of non-overlapping intervals covering the domain
Œx0; xnC1�, and f .x/ is constant in each interval. One example is the function
that is �1 on Œ0; 1�, 0 on Œ1; 1:5�, and 4 on Œ1:5; 2�, where we with the notation in
(3.29) have x0 D 0; x1 D 1; x2 D 1:5; x3 D 2 and v0 D �1; v1 D 0; v3 D 4.

a) Make a Python function piecewise(x, data) for evaluating a piecewise con-
stant mathematical function as in (3.29) at the point x. The data object is a list
of pairs .vi ; xi / for i D 0; : : : ; n. For example, data is [(0, -1), (1, 0),
(1.5, 4)] in the example listed above. Since xnC1 is not a part of the data
object, we have no means for detecting whether x is to the right of the last in-
terval Œxn; xnC1�, i.e., we must assume that the user of the piecewise function
sends in an x � xnC1.

b) Design suitable test cases for the function piecewise and implement them in
a test function test_piecewise().

Filename: piecewise_constant1.
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Exercise 3.33: Apply indicator functions
Implement piecewise constant functions, as defined in Exercise 3.32, by observing
that

f .x/ D
nX

iD0

vi I.xIxi ; xiC1/; (3.30)

where I.xIxi ; xiC1/ is the indicator function from Exercise 3.31.
Filename: piecewise_constant2.

Exercise 3.34: Test your understanding of branching
Consider the following code:

def where1(x, y):

if x > 0:

print ’quadrant I or IV’

if y > 0:

print ’quadrant I or II’

def where2(x, y):

if x > 0:

print ’quadrant I or IV’

elif y > 0:

print ’quadrant II’

for x, y in (-1, 1), (1, 1):

where1(x,y)

where2(x,y)

What is printed?
Filename: simulate_branching.

Exercise 3.35: Simulate nested loops by hand
Go through the code below by hand, statement by statement, and calculate the num-
bers that will be printed.

n = 3

for i in range(-1, n):

if i != 0:

print i

for i in range(1, 13, 2*n):

for j in range(n):

print i, j

for i in range(1, n+1):

for j in range(i):

if j:

print i, j
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for i in range(1, 13, 2*n):

for j in range(0, i, 2):

for k in range(2, j, 1):

b = i > j > k

if b:

print i, j, k

Youmay use a debugger, see Sect. F.1, or the Online Python Tutor10, see Sect. 3.1.2,
to control what happens when you step through the code.
Filename: simulate_nested_loops.

Exercise 3.36: Rewrite a mathematical function
We consider the L.xIn/ sum as defined in Sect. 3.1.8 and the corresponding func-
tion L3(x, epsilon) function from Sect. 3.1.10. The sum L.xIn/ can be written
as

L.xIn/ D
nX

iD1

ci ; ci D 1

i

�
x

1C x

�i

:

a) Derive a relation between ci and ci�1,

ci D aci�1;

where a is an expression involving i and x.
b) The relation ci D aci�1 means that we can start with term as c1, and then in

each pass of the loop implementing the sum
P

i ci we can compute the next
term ci in the sum as

term = a*term

Write a new version of the L3 function, called L3_ci(x, epsilon), that makes
use of this alternative computation of the terms in the sum.

c) Write a Python function test_L3_ci() that verifies the implementation of
L3_ci by comparing with the original L3 function.

Filename: L3_recursive.

Exercise 3.37: Make a table for approximations of cosx

The function cos.x/ can be approximated by the sum

C.xIn/ D
nX

jD0

cj ; (3.31)

where

cj D �cj�1

x2

2j.2j � 1/
; j D 1; 2; : : : ; n;

and c0 D 1.

10 http://www.pythontutor.com/

http://www.pythontutor.com/
http://www.pythontutor.com/
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a) Make a Python function for computing C.xIn/.

Hint Represent cj by a variable term, make updates term = -term*... inside
a for loop, and accumulate the term variable in a variable for the sum.

b) Make a function for writing out a table of the errors in the approximationC.xIn/

of cos.x/ for some x and n values given as arguments to the function. Let the
x values run downward in the rows and the n values to the right in the columns.
For example, a table for x D 4�; 6�; 8�; 10� and n D 5; 25; 50; 100; 200 can
look like

x 5 25 50 100 200

12.5664 1.61e+04 1.87e-11 1.74e-12 1.74e-12 1.74e-12

18.8496 1.22e+06 2.28e-02 7.12e-11 7.12e-11 7.12e-11

25.1327 2.41e+07 6.58e+04 -4.87e-07 -4.87e-07 -4.87e-07

31.4159 2.36e+08 6.52e+09 1.65e-04 1.65e-04 1.65e-04

Observe how the error increases with x and decreases with n.

Filename: cos_sum.

Exercise 3.38: Use None in keyword arguments
Consider the functions L2(x, n) and L3(x, epsilon) from Sects. 3.1.8 and
3.1.10, whose program code is found in the file lnsum.py.

Make a more flexible function L4 where we can either specify a tolerance
epsilon or a number of terms n in the sum. Moreover, we can also choose
whether we want the sum to be returned or the sum and the number of terms:

value, n = L4(x, epsilon=1E-8, return_n=True)

value = L4(x, n=100)

Hint The starting point for all this flexibility is to have some keyword arguments
initialized to an “undefined” value, called None, which can be recognized inside the
function:

def L3(x, n=None, epsilon=None, return_n=False):

if n is not None:

...

if epsilon is not None:

...

One can also apply if n != None, but the is operator is most common.
Print error messages for incompatible values when n and epsilon are None or

both are given by the user.
Filename: L4.

Exercise 3.39: Write a sort function for a list of 4-tuples
Below is a list of the nearest stars and some of their properties. The list elements are
4-tuples containing the name of the star, the distance from the sun in light years, the

http://tinyurl.com/pwyasaa/funcif/lnsum.py
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apparent brightness, and the luminosity. The apparent brightness is how bright the
stars look in our sky compared to the brightness of Sirius A. The luminosity, or the
true brightness, is how bright the stars would look if all were at the same distance
compared to the Sun. The list data are found in the file stars.txt11, which looks
as follows:

data = [

(’Alpha Centauri A’, 4.3, 0.26, 1.56),

(’Alpha Centauri B’, 4.3, 0.077, 0.45),

(’Alpha Centauri C’, 4.2, 0.00001, 0.00006),

("Barnard’s Star", 6.0, 0.00004, 0.0005),

(’Wolf 359’, 7.7, 0.000001, 0.00002),

(’BD +36 degrees 2147’, 8.2, 0.0003, 0.006),

(’Luyten 726-8 A’, 8.4, 0.000003, 0.00006),

(’Luyten 726-8 B’, 8.4, 0.000002, 0.00004),

(’Sirius A’, 8.6, 1.00, 23.6),

(’Sirius B’, 8.6, 0.001, 0.003),

(’Ross 154’, 9.4, 0.00002, 0.0005),

]

The purpose of this exercise is to sort this list with respect to distance, apparent
brightness, and luminosity. Write a program that initializes the data list as above
and writes out three sorted tables: star name versus distance, star name versus ap-
parent brightness, and star name versus luminosity.

Hint To sort a list data, one can call sorted(data), as in

for item in sorted(data):

...

However, in the present case each element is a 4-tuple, and the default sorting of
such 4-tuples results in a list with the stars appearing in alphabetic order. This is not
what you want. Instead, we need to sort with respect to the 2nd, 3rd, or 4th element
of each 4-tuple. If such a tailored sort mechanism is necessary, we can provide our
own sort function as an argument to sorted. There are two alternative ways of
doing this.

A comparison function A sort user-provided sort function mysort(a, b) must
take two arguments a and b and return �1 if a should become before b in the sorted
sequence, 1 if b should become before a, and 0 if they are equal. In the present
case, a and b are 4-tuples, so we need to make the comparison between the right
elements in a and b. For example, to sort with respect to luminosity we can write

def mysort(a, b):

if a[3] < b[3]:

return -1

elif a[3] > b[3]:

return 1

else:

return 0

11 http://tinyurl.com/pwyasaa/funcif/stars.txt

http://tinyurl.com/pwyasaa/funcif/stars.txt
http://tinyurl.com/pwyasaa/funcif/stars.txt
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The relevant call using this tailored sort function is

sorted(data, cmp=mysort)

A key function A quicker construction is to provide a key argument to sorted for
filtering out the relevant part of an object to be sorted. Here, we want to sort 4-
tuples, but use only one of the elements, say the one with index 3, for comparison.
Writing

sorted(data, key=lambda obj: obj[3])

will send all objects (4-tuples) through the key function whose return value is used
for the sorting. A lambda construction (see Sect. 3.1.14) is used to write the filtering
function inline.
Filename: sorted_stars_data.

Exercise 3.40: Find prime numbers
The Sieve of Eratosthenes is an algorithm for finding all prime numbers less than or
equal to a number N . Read about this algorithm on Wikipedia and implement it in
a Python program.
Filename: find_primes.

Exercise 3.41: Find pairs of characters
Write a function count_pairs(dna, pair) that returns the number of occur-
rences of a pair of characters (pair) in a DNA string (dna). For example, calling
the function with dna as ’ACTGCTATCCATT’ and pair as ’AT’ will return 2.
Filename: count_pairs.

Exercise 3.42: Count substrings
This is an extension of Exercise 3.41: count howmany times a certain string appears
in another string. For example, the function returns 3 when called with the DNA
string ’ACGTTACGGAACG’ and the substring ’ACG’.

Hint For each match of the first character of the substring in the main string, check
if the next n characters in the main string matches the substring, where n is the
length of the substring. Use slices like s[3:9] to pick out a substring of s.
Filename: count_substr.

Exercise 3.43: Resolve a problem with a function
Consider the following interactive session:

>>> def f(x):

... if 0 <= x <= 2:

... return x**2

... elif 2 < x <= 4:

... return 4

... elif x < 0:

... return 0

...
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>>> f(2)

4

>>> f(5)

>>> f(10)

Why do we not get any output when calling f(5) and f(10)?

Hint Save the f value in a variable r and do print r.
Filename: fix_branching.

Exercise 3.44: Determine the types of some objects
Consider the following calls to the makelist function from Sect. 3.1.6:

l1 = makelist(0, 100, 1)

l2 = makelist(0, 100, 1.0)

l3 = makelist(-1, 1, 0.1)

l4 = makelist(10, 20, 20)

l5 = makelist([1,2], [3,4], [5])

l6 = makelist((1,-1,1), (’myfile.dat’, ’yourfile.dat’))

l7 = makelist(’myfile.dat’, ’yourfile.dat’, ’herfile.dat’)

Simulate each call by hand to determine what type of objects that become elements
in the returned list and what the contents of value is after one pass in the loop.

Hint Note that some of the calls will lead to infinite loops if you really perform the
above makelist calls on a computer.

You can go to the Online Python Tutor12, paste in the makelist function and
the session above, and step through the program to see what actually happens.
Filename: find_object_type.

Remarks This exercise demonstrates that we can write a function and have in mind
certain types of arguments, here typically int and float objects. However, the
function can be used with other (originally unintended) arguments, such as lists and
strings in the present case, leading to strange and irrelevant behavior (the problem
here lies in the boolean expression value <= stopwhich is meaningless for some
of the arguments).

Exercise 3.45: Find an error in a program
For the formula

f .x/ D erx sin.mx/C esx sin.nx/

we have made the program

def f(x, m, n, r, s):

return expsin(x, r, m) + expsin(x, s, n)

x = 2.5

print f(x, 0.1, 0.2, 1, 1)

12 http://www.pythontutor.com/

http://www.pythontutor.com/
http://www.pythontutor.com/
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from math import exp, sin

def expsin(x, p, q):

return exp(p*x)*sin(q*x)

Running this code results in

NameError: global name ’expsin’ is not defined

What is the problem? Simulate the program flow by hand, use the debugger to step
from line to line, or use the Online Python Tutor. Correct the program.
Filename: find_error_undef.
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Terminal

bisection.py "x-tanh(x)" -10 10
Found root x=-5.96046e-07 in 25 iterations

bisection.py "x**5-tanh(x**5)" -10 10
Found root x=-0.0266892 in 25 iterations

These results look strange. In both cases we halve the start interval Œ�10; 10� 25
times, but in the second case we end up with a much less accurate root although the
value of � is the same. A closer inspection of what goes on in the bisection algorithm
reveals that the inaccuracy is caused by rounding errors. As a; b; m ! 0, raising
a small number to the fifth power in the expression for f .x/ yields a much smaller
result. Subtracting a very small number tanhx5 from another very small number
x5 may result in a small number with wrong sign, and the sign of f is essential
in the bisection algorithm. We encourage the reader to graphically inspect this
behavior by running these two examples with the bisection_plot.py program
using a smaller interval Œ�1; 1� to better see what is going on. The command-
line arguments for the bisection_plot.py program are ’x-tanh(x)’ -1 1 and
’x**5-tanh(x**5)’ -1 1. The very flat area, in the latter case, where f .x/ � 0

for x 2 Œ�1=2; 1=2� illustrates well that it is difficult to locate an exact root.

Distributing the bisection module to others The Python standard for installing
software is to run a setup.py program,

Terminal

Terminal> sudo python setup.py install

to install the system. The relevant setup.py for the bisection module arises
from substituting the name interest by bisection in the setup.py file listed in
Sect. 4.9.8. You can then distribute bisection.py and setup.py together.

4.12 Exercises

Exercise 4.1: Make an interactive program
Make a program that asks the user for a temperature in Fahrenheit degrees and reads
the number; computes the corresponding temperature in Celsius degrees; and prints
out the temperature in the Celsius scale.
Filename: f2c_qa.

Exercise 4.2: Read a number from the command line
Modify the program from Exercise 4.1 such that the Fahrenheit temperature is read
from the command line.
Filename: f2c_cml.

Exercise 4.3: Read a number from a file
Modify the program from Exercise 4.1 such that the Fahrenheit temperature is read
from a file with the following content:

http://tinyurl.com/pwyasaa/input/bisection_plot.py
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Temperature data

----------------

Fahrenheit degrees: 67.2

Hint Create a sample file manually. In the program, skip the first three lines, split
the fourth line into words and grab the third word.
Filename: f2c_file_read.

Exercise 4.4: Read and write several numbers from and to file
This is a variant of Exercise 4.3 where we have several Fahrenheit degrees in a file
and want to read all of them into a list and convert the numbers to Celsius degrees.
Thereafter, we want to write out a file with two columns, the left with the Fahrenheit
degrees and the right with the Celsius degrees.

An example on the input file format looks like

Temperature data

----------------

Fahrenheit degrees: 67.2

Fahrenheit degrees: 66.0

Fahrenheit degrees: 78.9

Fahrenheit degrees: 102.1

Fahrenheit degrees: 32.0

Fahrenheit degrees: 87.8

A sample file is Fdeg.dat6.
Filename: f2c_file_read_write.

Exercise 4.5: Use exceptions to handle wrong input
Extend the program from Exercise 4.2 with a try-except block to handle the
potential error that the Fahrenheit temperature is missing on the command line.
Filename: f2c_cml_exc.

Exercise 4.6: Read input from the keyboard
Make a program that asks for input from the user, applies eval to this input, and
prints out the type of the resulting object and its value. Test the program by pro-
viding five types of input: an integer, a real number, a complex number, a list, and
a tuple.
Filename: objects_qa.

Exercise 4.7: Read input from the command line

a) Let a program store the result of applying the eval function to the first
command-line argument. Print out the resulting object and its type.

b) Run the program with different input: an integer, a real number, a list, and
a tuple.

6 http://tinyurl.com/pwyasaa/input/Fdeg.dat

http://tinyurl.com/pwyasaa/input/Fdeg.dat
http://tinyurl.com/pwyasaa/input/Fdeg.dat
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Hint On Unix systems you need to surround the tuple expressions in quotes on the
command line to avoid error message from the Unix shell.

c) Try the string "this is a string" as a command-line argument. Why does
this string cause problems and what is the remedy?

Filename: objects_cml.

Exercise 4.8: Try MSWord or LibreOffice to write a program
The purpose of this exercise is to tell you how hard it may be to write Python
programs in the standard programs that most people use for writing text.

a) Type the following one-line program in either MSWord or LibreOffice:

print "Hello, World!"

Both Word and LibreOffice are so “smart” that they automatically edit “print”
to “Print” since a sentence should always start with a capital. This is just an
example that word processors are made for writing documents, not computer
programs.

b) Save the program as a .docx (Word) or .odt (LibreOffice) file. Now try to run
this file as a Python program. What kind of error message do you get? Can you
explain why?

c) Save the program as a .txt file in Word or LibreOffice and run the file as
a Python program. What happened now? Try to find out what the problem
is.

Exercise 4.9: Prompt the user for input to a formula
Consider the simplest program for evaluating the formula y.t/ D v0t � 1

2
gt2:

v0 = 3; g = 9.81; t = 0.6

y = v0*t - 0.5*g*t**2

print y

Modify this code so that the program asks the user questions t=? and v0=?, and
then gets t and v0 from the user’s input through the keyboard.
Filename: ball_qa.

Exercise 4.10: Read parameters in a formula from the command line
Modify the program listed in Exercise 4.9 such that v0 and t are read from the
command line.
Filename: ball_cml.

Exercise 4.11: Use exceptions to handle wrong input
The program from Exercise 4.10 reads input from the command line. Extend that
program with exception handling such that missing command-line arguments are
detected. In the except IndexError block, use the raw_input function to ask
the user for missing input data.
Filename: ball_cml_qa.
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Exercise 4.12: Test validity of input data
Test if the t value read in the program from Exercise 4.10 lies between 0 and 2v0=g.
If not, print a message and abort the execution.
Filename: ball_cml_tcheck.

Exercise 4.13: Raise an exception in case of wrong input
Instead of printing an error message and aborting the program explicitly, raise
a ValueError exception in the if test on legal t values in the program from Exer-
cise 4.12. Notify the user about the legal interval for t in the exception message.
Filename: ball_cml_ValueError.

Exercise 4.14: Evaluate a formula for data in a file
We consider the formula y.t/ D v0t � 0:5gt2 and want to evaluate y for a range of
t values found in a file with format

v0: 3.00

t:

0.15592 0.28075 0.36807889 0.35 0.57681501876

0.21342619 0.0519085 0.042 0.27 0.50620017 0.528

0.2094294 0.1117 0.53012 0.3729850 0.39325246

0.21385894 0.3464815 0.57982969 0.10262264

0.29584013 0.17383923

More precisely, the first two lines are always present, while the next lines contain
an arbitrary number of t values on each line, separated by one or more spaces.

a) Write a function that reads the input file and returns v0 and a list with the t

values. A sample file is ball.dat7

b) Make a test function that generates an input file, calls the function in a) for
reading the file, and checks that the returned data objects are correct.

c) Write a function that creates a file with two nicely formatted columns containing
the t values to the left and the corresponding y values to the right. Let the t

values appear in increasing order (note that the input file does not necessarily
have the t values sorted).

Filename: ball_file_read_write.

Exercise 4.15: Write a function given its test function
A common software development technique in the IT industry is to write the test
function before writing the function itself.

a) We want to write a function halve(x) that returns the half of its argument x.
The test function is

def test_halve():

assert halve(5.0) == 2.5 # Real number division

assert halve(5) == 2 # Integer division

7 http://tinyurl.com/pwyasaa/input/ball.dat

http://tinyurl.com/pwyasaa/input/ball.dat
http://tinyurl.com/pwyasaa/input/ball.dat
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Write the associated function halve. Call test_halve (or run pytest or nose)
to verify that halve works.

b) We want to write a function add(a, b) that returns the sum of its arguments a
and b. The test function reads

def test_add():

# Test integers

assert add(1, 2) == 3

# Test floating-point numbers with rounding error

tol = 1E-14

a = 0.1; b = 0.2

computed = add(a, b)

expected = 0.3

assert abs(expected - computed) < tol

# Test lists

assert add([1,4], [4,7]) == [1,4,4,7]

# Test strings

assert add(’Hello, ’, ’World!’) == ’Hello, World!’

Write the associated function add. Call test_add (or run pytest or nose) to
verify that add works.

c) We want to write a function equal(a, b) for determining if two strings a and
b are equal. If equal, the function returns True and the string a. If not equal,
the function returns False and a string displaying the differences. This latter
string contains the characters common in a and b, but for every difference, the
character from a and b are written with a pipe symbol ’|’ in between. In case a
and b are of unequal length, pad the string displaying differences with a * where
one of the strings lacks content. For example, equal(’abc’, ’aBc’) would
return False, ’ab|Bc’, while equal(’abc’, ’aBcd’)would return False,
’ab|Bc*|d’. Here is the test function:

def test_equal():

assert equal(’abc’, ’abc’) == (True, ’abc’)

assert equal(’abc’, ’aBc’) == (False, ’ab|Bc’)

assert equal(’abc’, ’aBcd’) == (False, ’ab|Bc*|d’)

assert equal(’Hello, World!’, ’hello world’) == \

(False, ’H|hello,| |wW|oo|rr|ll|dd|*!|*’)

Write the equal function (which is handy to detect very small differences be-
tween texts).

Filename: testfunc2func.

Exercise 4.16: Compute the distance it takes to stop a car
A car driver, driving at velocity v0, suddenly puts on the brake. What braking
distance d is needed to stop the car? One can derive, using Newton’s second law of
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motion or a corresponding energy equation, that

d D 1

2

v2
0

	g
: (4.7)

Make a program for computing d in (4.7) when the initial car velocity v0 and
the friction coefficient 	 are given on the command line. Run the program for two
cases: v0 D 120 and v0 D 50 km/h, both with 	 D 0:3 (	 is dimensionless).

Hint Remember to convert the velocity from km/h to m/s before inserting the value
in the formula.
Filename: stopping_length.

Exercise 4.17: Look up calendar functionality
The purpose of this exercise is to make a program that takes a date, consisting of
year (4 digits), month (2 digits), and day (1–31) on the command line and prints the
corresponding name of the weekday (Monday, Tuesday, etc.). Python has a module
calendar, which makes it easy to solve the exercise, but the task is to find out how
to use this module.
Filename: weekday.

Exercise 4.18: Use the StringFunction tool
Make the program integrate.py from Sect. 4.3.2 shorter by using the convenient
StringFunction tool from Sect. 4.3.3. Write a test function for verifying this new
implementation.
Filename: integrate2.

Exercise 4.19: Why we test for specific exception types
The simplest way of writing a try-except block is to test for any exception, for
example,

try:

C = float(sys.arg[1])

except:

print ’C must be provided as command-line argument’

sys.exit(1)

Write the above statements in a program and test the program. What is the problem?
The fact that a user can forget to supply a command-line argument when running

the program was the original reason for using a try block. Find out what kind of
exception that is relevant for this error and test for this specific exception and re-run
the program. What is the problem now? Correct the program.
Filename: unnamed_exception.

Exercise 4.20: Make a complete module

a) Make six conversion functions between temperatures in Celsius, Kelvin, and
Fahrenheit: C2F, F2C, C2K, K2C, F2K, and K2F.
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b) Collect these functions in a module convert_temp.
c) Import the module in an interactive Python shell and demonstrate some sample

calls on temperature conversions.
d) Insert the session from c) in a triple quoted string at the top of the module file as

a doc string for demonstrating the usage.
e) Write a function test_conversion() that verifies the implementation. Call

this function from the test block if the first command-line argument is verify.

Hint Check that C2F(F2C(f)) is f, K2C(C2K(c)) is c, and K2F(F2K(f)) is f –
with tolerance. Follow the conventions for test functions outlined in Sects. 4.9.4
and 4.11.2 with a boolean variable that is False if a test failed, and True if all test
are passed, and then an assert statement to abort the program when any test fails.

f) Add a user interface to the module such that the user can write a temperature as
the first command-line argument and the corresponding temperature scale as the
second command-line argument, and then get the temperature in the two other
scales as output. For example, 21.3 C on the command line results in the output
70.3 F 294.4 K. Encapsulate the user interface in a function, which is called
from the test block.

Filename: convert_temp.

Exercise 4.21: Organize a previous program as a module
Collect the f and S functions in the program from Exercise 3.21 in a sep-
arate file such that this file becomes a module. Put the statements making
the table (i.e., the main program from Exercise 3.21) in a separate function
table(n_values, alpha_values, T). Make a test block in the module to
read T and a series of n and ˛ values as positional command-line arguments and
make a corresponding call to table.
Filename: sinesum2.

Exercise 4.22: Read options and values from the command line
Let the input to the program in Exercise 4.21 be option-value pairs with the options
–n, –alpha, and –T. Provide sensible default values in the module file.

Hint Apply the argparse module to read the command-line arguments. Do not
copy code from the sinesum2 module, but make a new file for reading option-
value pairs from the command and import the table function from the sinesum2
module.
Filename: sinesum3.

Exercise 4.23: Check if mathematical identities hold
Because of rounding errors, it could happen that a mathematical rule like .ab/3 D
a3b3 does not hold exactly on a computer. The idea of testing this potential problem
is to check such identities for a large number of random numbers. We can make
random numbers using the randommodule in Python:

import random

a = random.uniform(A, B)

b = random.uniform(A, B)
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Here, a and b will be random numbers, which are always larger than or equal to A
and smaller than B.

a) Make a function power3_identity(A=-100, B=100, n=1000) that tests the
identity (a*b)**3 == a**3*b**3 a large number of times, n. Return the frac-
tion of failures.

Hint Inside the loop over n, draw random numbers a and b as described above and
count the number of times the test is True.

b) We shall now parameterize the expressions to be tested. Make a function

equal(expr1, expr2, A=-100, B=100, n=500)

where expr1 and expr2 are strings containing the two mathematical expres-
sions to be tested. More precisely, the function draws random numbers a and
b between A and B and tests if eval(expr1) == eval(expr2). Return the
fraction of failures.
Test the function on the identities .ab/3 D a3b3, eaCb D eaeb , and ln ab D
b ln a.

Hint Make the equal function robust enough to handle illegal a and b values in
the mathematical expressions (e.g., a � 0 in ln a).

c) We want to test the validity of the following set of identities on a computer:
� a � b and �.b � a/

� a=b and 1=.b=a/

� .ab/4 and a4b4

� .aC b/2 and a2 C 2ab C b2

� .aC b/.a � b/ and a2 � b2

� eaCb and eaeb

� ln ab and b ln a

� ln ab and ln aC ln b

� ab and eln aCln b

� 1=.1=aC 1=b/ and ab=.aC b/

� a.sin2 b C cos2 b/ and a

� sinh.aC b/ and .eaeb � e�ae�b/=2

� tan.aC b/ and sin.aC b/= cos.aC b/

� sin.aC b/ and sin a cos b C sin b cos a

Store all the expressions in a list of 2-tuples, where each 2-tuple contains two
mathematically equivalent expressions as strings, which can be sent to the
equal function. Make a nicely formatted table with a pair of equivalent expres-
sions at each line followed by the failure rate. Write this table to a file. Try out
A=1 and B=2 as well as A=1 and B=100. Does the failure rate seem to depend on
the magnitude of the numbers a and b?

Filename: math_identities_failures.
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Exercise 4.24: Compute probabilities with the binomial distribution
Consider an uncertain event where there are two outcomes only, typically success
or failure. Flipping a coin is an example: the outcome is uncertain and of two types,
either head (can be considered as success) or tail (failure). Throwing a die can be
another example, if (e.g.) getting a six is considered success and all other outcomes
represent failure. Such experiments are called Bernoulli trials.

Let the probability of success be p and that of failure 1 � p. If we perform
n experiments, where the outcome of each experiment does not depend on the
outcome of previous experiments, the probability of getting success x times, and
consequently failure n � x times, is given by

B.x; n; p/ D nŠ

xŠ.n � x/Š
px.1 � p/n�x : (4.8)

This formula (4.8) is called the binomial distribution. The expression xŠ is the facto-
rial of x: xŠ D x.x�1/.x�2/ � � �1 and math.factorial can do this computation.

a) Implement (4.8) in a function binomial(x, n, p).
b) What is the probability of getting two heads when flipping a coin five times?

This probability corresponds to n D 5 events, where the success of an event
means getting head, which has probability p D 1=2, and we look for x D 2

successes.
c) What is the probability of getting four ones in a row when throwing a die?

This probability corresponds to n D 4 events, success is getting one and has
probability p D 1=6, and we look for x D 4 successful events.

d) Suppose cross country skiers typically experience one ski break in one out of
120 competitions. Hence, the probability of breaking a ski can be set to p D
1=120. What is the probability b that a skier will experience a ski break during
five competitions in a world championship?

Hint This question is a bit more demanding than the other two. We are looking for
the probability of 1, 2, 3, 4 or 5 ski breaks, so it is simpler to ask for the probability
c of not breaking a ski, and then compute b D 1 � c. Define success as breaking
a ski. We then look for x D 0 successes out of n D 5 trials, with p D 1=120 for
each trial. Compute b.
Filename: Bernoulli_trials.

Exercise 4.25: Compute probabilities with the Poisson distribution
Suppose that over a period of tm time units, a particular uncertain event happens (on
average) 
tm times. The probability that there will be x such events in a time period
t is approximately given by the formula

P.x; t; 
/ D .
t/x

xŠ
e�
t : (4.9)

This formula is known as the Poisson distribution. (It can be shown that (4.9) arises
from (4.8) when the probability p of experiencing the event in a small time interval
t=n is p D 
t=n and we let n!1.) An important assumption is that all events are
independent of each other and that the probability of experiencing an event does not



4.12 Exercises 225

change significantly over time. This is known as a Poisson process in probability
theory.

a) Implement (4.9) in a function Poisson(x, t, nu), and make a program
that reads x, t , and 
 from the command line and writes out the probability
P.x; t; 
/. Use this program to solve the problems below.

b) Suppose you are waiting for a taxi in a certain street at night. On average, 5
taxis pass this street every hour at this time of the night. What is the probability
of not getting a taxi after having waited 30 minutes? Since we have 5 events in
a time period of tm D 1 hour, 
tm D 
 D 5. The sought probability is then
P.0; 1=2; 5/. Compute this number. What is the probability of having to wait
two hours for a taxi? If 8 people need two taxis, that is the probability that two
taxis arrive in a period of 20 minutes?

c) In a certain location, 10 earthquakes have been recorded during the last 50 years.
What is the probability of experiencing exactly three earthquakes over a period
of 10 years in this area? What is the probability that a visitor for one week
does not experience any earthquake? With 10 events over 50 years we have

tm D 
 � 50 years D 10 events, which implies 
 D 1=5 event per year. The
answer to the first question of having x D 3 events in a period of t D 10 years
is given directly by (4.9). The second question asks for x D 0 events in a time
period of 1 week, i.e., t D 1=52 years, so the answer is P.0; 1=52; 1=5/.

d) Suppose that you count the number of misprints in the first versions of the re-
ports you write and that this number shows an average of six misprints per page.
What is the probability that a reader of a first draft of one of your reports reads
six pages without hitting a misprint? Assuming that the Poisson distribution can
be applied to this problem, we have “time” tm as 1 page and 
 � 1 D 6, i.e.,

 D 6 events (misprints) per page. The probability of no events in a “period” of
six pages is P.0; 6; 6/.

Filename: Poisson_processes.
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5.14 Exercises

Exercise 5.1: Fill lists with function values
Define

h.x/ D 1p
2�

e�
1
2 x2

: (5.20)

Fill lists xlist and hlist with x and h.x/ values for 41 uniformly spaced x coor-
dinates in Œ�4; 4�.

Hint You may adapt the example in Sect. 5.2.1.
Filename: fill_lists.

Exercise 5.2: Fill arrays; loop version
The aim is to fill two arrays x and y with x and h.x/ values, respectively, where
h.x/ is defined in (5.20). Let the x values be as in Exercise 5.1. Create empty x and
y arrays and compute each element in x and y with a for loop.
Filename: fill_arrays_loop.

Exercise 5.3: Fill arrays; vectorized version
Vectorize the code in Exercise 5.2 by creating the x values using the linspace
function from the numpy package and by evaluating h.x/ for an array argument.
Filename: fill_arrays_vectorized.

Exercise 5.4: Plot a function
Make a plot of the function in Exercise 5.1 for x 2 Œ�4; 4�.
Filename: plot_Gaussian.

Exercise 5.5: Apply a function to a vector
Given a vector v D .2; 3;�1/ and a function f .x/ D x3 C xex C 1, apply f to
each element in v. Then calculate by hand f .v/ as the NumPy expression v**3 +
v*exp(v) + 1 using vector computing rules. Demonstrate that the two results are
equal.
Filename: apply_vecfunc.

Exercise 5.6: Simulate by hand a vectorized expression
Suppose x and t are two arrays of the same length, entering a vectorized expression

y = cos(sin(x)) + exp(1/t)

If x holds two elements, 0 and 2, and t holds the elements 1 and 1.5, calculate
by hand (using a calculator) the y array. Thereafter, write a program that mimics
the series of computations you did by hand (typically a sequence of operations of
the kind we listed in Sect. 5.1.3 – use explicit loops, but at the end you can use
Numerical Python functionality to check the results).
Filename: simulate_vector_computing.
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Exercise 5.7: Demonstrate array slicing
Create an array w with values 0; 0:1; 0:2; : : : ; 3. Write out w[:], w[:-2], w[::5],
w[2:-2:6]. Convince yourself in each case that you understand which elements of
the array that are printed.
Filename: slicing.

Exercise 5.8: Replace list operations by array computing
The data analysis problem in Sect. 2.6.2 is solved by list operations. Convert the
list to a two-dimensional array and perform the computations using array operations
(i.e., no explicit loops, but you need a loop to make the printout).
Filename: sun_data_vec.

Exercise 5.9: Plot a formula
Make a plot of the function y.t/ D v0t � 1

2
gt2 for v0 D 10, g D 9:81, and

t 2 Œ0; 2v0=g�. Set the axes labels as time (s) and height (m).
Filename: plot_ball1.

Exercise 5.10: Plot a formula for several parameters
Make a program that reads a set of v0 values from the command line and plots the
corresponding curves y.t/ D v0t � 1

2
gt2 in the same figure, with t 2 Œ0; 2v0=g� for

each curve. Set g D 9:81.

Hint You need a different vector of t coordinates for each curve.
Filename: plot_ball2.

Exercise 5.11: Specify the extent of the axes in a plot
Extend the program from Exercises 5.10 such that the minimum and maximum t

and y values are computed, and use the extreme values to specify the extent of the
axes. Add some space above the highest curve to make the plot look better.
Filename: plot_ball3.

Exercise 5.12: Plot exact and inexact Fahrenheit-Celsius conversion formulas
A simple rule to quickly compute the Celsius temperature from the Fahrenheit de-
grees is to subtract 30 and then divide by 2: C D .F � 30/=2. Compare this curve
against the exact curve C D .F � 32/5=9 in a plot. Let F vary between �20 and
120.
Filename: f2c_shortcut_plot.

Exercise 5.13: Plot the trajectory of a ball
The formula for the trajectory of a ball is given by

f .x/ D x tan � � 1

2v2
0

gx2

cos2 �
C y0; (5.21)

where x is a coordinate along the ground, g is the acceleration of gravity, v0 is the
size of the initial velocity, which makes an angle � with the x axis, and .0; y0/ is
the initial position of the ball.
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In a program, first read the input data y0, � , and v0 from the command line. Then
plot the trajectory y D f .x/ for y 	 0.
Filename: plot_trajectory.

Exercise 5.14: Plot data in a two-column file
The file src/plot/xy.dat12 contains two columns of numbers, corresponding to
x and y coordinates on a curve. The start of the file looks as this:

-1.0000 -0.0000

-0.9933 -0.0087

-0.9867 -0.0179

-0.9800 -0.0274

-0.9733 -0.0374

Make a program that reads the first column into a list x and the second column into
a list y. Plot the curve. Print out the mean y value as well as the maximum and
minimum y values.

Hint Read the file line by line, split each line into words, convert to float, and
append to x and y. The computations with y are simpler if the list is converted to
an array.
Filename: read_2columns.

Remarks The function loadtxt in numpy can read files with tabular data (any
number of columns) and return the data in a two-dimensional array:

import numpy as np

# Read table of floats

data = np.loadtxt(’xy.dat’, dtype=np.float)

# Extract one-dim arrays from two-dim data

x = data[:,0] # column with index 0

y = data[:,1] # column with index 1

The present exercise asks you to implement a simplified version of loadtxt, but for
later loading of a file with tabular data into an array you will certainly use loadtxt.

Exercise 5.15: Write function data to file
We want to dump x and f .x/ values to a file, where the x values appear in the
first column and the f .x/ values appear in the second. Choose n equally spaced x

values in the interval Œa; b�. Provide f , a, b, n, and the filename as input data on
the command line.

Hint You may use the StringFunction tool (see Sects. 4.3.3 and 5.5.1) to turn
the textual expression for f into a Python function. (Note that the program from
Exercise 5.14 can be used to read the file generated in the present exercise into
arrays again for visualization of the curve y D f .x/.)
Filename: write_cml_function.

12 http://tinyurl.com/pwyasaa/plot/xy.dat

http://tinyurl.com/pwyasaa/plot/xy.dat
http://tinyurl.com/pwyasaa/plot/xy.dat
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Exercise 5.16: Plot data from a file
The files density_water.dat and density_air.dat files in the folder src/
plot13 contain data about the density of water and air (respectively) for differ-
ent temperatures. The data files have some comment lines starting with # and some
lines are blank. The rest of the lines contain density data: the temperature in the
first column and the corresponding density in the second column. The goal of this
exercise is to read the data in such a file and plot the density versus the temperature
as distinct (small) circles for each data point. Let the program take the name of the
data file as command-line argument. Apply the program to both files.
Filename: read_density_data.

Exercise 5.17: Write table to file
Given a function of two parameters x and y, we want to create a file with a table
of function values. The left column of the table contains y values in decreasing
order as we go down the rows, and the last row contains the x values in increasing
order. That is, the first column and the last row act like numbers on an x and y

axis in a coordinate system. The rest of the table cells contains function values
corresponding to the x and y values for the respective rows and columns. For
example, if the function formula is xC 2y, x runs from 0 to 2 in steps of 0.5, and y

run from �1 to 2 in steps of 1, the table looks as follows:

2 4 4.5 5 5.5 6

1 2 2.5 3 3.5 4

0 0 0.5 1 1.5 2

-1 -2 -1.5 -1 -0.5 0

0 0.5 1 1.5 2

The task is to write a function

def write_table_to_file(f, xmin, xmax, nx, ymin, ymax, ny,

width=10, decimals=None,

filename=’table.dat’):

where f is the formula, given as a Python function; xmin, xmax, ymin, and ymax are
the minimum and maximum x and y values; nx is the number of intervals in the x

coordinates (the number of steps in x direction is then (xmax-xmin)/nx); ny is the
number of intervals in the y coordinates; width is the width of each column in the
table (a positive integer); decimals is the number of decimals used when writing
out the numbers (Nonemeans no decimal specification), and filename is the name
of the output file. For example, width=10 and decimals=1 gives the output format
%10.1g, while width=5 and decimals=None implies %5g.

13 http://tinyurl.com/pwyasaa/plot

http://tinyurl.com/pwyasaa/plot
http://tinyurl.com/pwyasaa/plot
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Here is a test function which you should use to verify the implementation:

def test_write_table_to_file():

filename = ’tmp.dat’

write_table_to_file(f=lambda x, y: x + 2*y,

xmin=0, xmax=2, nx=4,

ymin=-1, ymax=2, ny=3,

width=5, decimals=None,

filename=filename)

# Load text in file and compare with expected results

with open(filename, ’r’) as infile:

computed = infile.read()

expected = """\

2 4 4.5 5 5.5 6

1 2 2.5 3 3.5 4

0 0 0.5 1 1.5 2

-1 -2 -1.5 -1 -0.5 0

0 0.5 1 1.5 2"""

assert computed == expected

Filename: write_table_to_file.

Exercise 5.18: Fit a polynomial to data points
The purpose of this exercise is to find a simple mathematical formula for how the
density of water or air depends on the temperature. The idea is to load density
and temperature data from file as explained in Exercise 5.16 and then apply some
NumPy utilities that can find a polynomial that approximates the density as a func-
tion of the temperature.

NumPy has a function polyfit(x, y, deg) for finding a best fit of a poly-
nomial of degree deg to a set of data points given by the array arguments x and
y. The polyfit function returns a list of the coefficients in the fitted polynomial,
where the first element is the coefficient for the term with the highest degree, and
the last element corresponds to the constant term. For example, given points in x
and y, polyfit(x, y, 1) returns the coefficients a, b in a polynomial a*x + b
that fits the data in the best way. (More precisely, a line y D ax C b is a best fit
to the data points .xi ; yi /, i D 0; : : : ; n � 1 if a and b are chosen to make the sum
of squared errors R DPn�1

jD0.yj � .axj C b//2 as small as possible. This approach
is known as least squares approximation to data and proves to be extremely useful
throughout science and technology.)

NumPy also has a utility poly1d, which can take the tuple or list of coefficients
calculated by, e.g., polyfit and return the polynomial as a Python function that
can be evaluated. The following code snippet demonstrates the use of polyfit and
poly1d:

coeff = polyfit(x, y, deg)

p = poly1d(coeff)

print p # prints the polynomial expression

y_fitted = p(x) # computes the polynomial at the x points

# Use red circles for data points and a blue line for the polyn.

plot(x, y, ’ro’, x, y_fitted, ’b-’,

legend=(’data’, ’fitted polynomial of degree %d’ % deg))
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a) Write a function fit(x, y, deg) that creates a plot of data in x and y arrays
along with polynomial approximations of degrees collected in the list deg as
explained above.

b) We want to call fit to make a plot of the density of water versus temperature
and another plot of the density of air versus temperature. In both calls, use
deg=[1,2] such that we can compare linear and quadratic approximations to
the data.

c) From a visual inspection of the plots, can you suggest simple mathematical for-
mulas that relate the density of air to temperature and the density of water to
temperature?

Filename: fit_density_data.

Exercise 5.19: Fit a polynomial to experimental data
Suppose we have measured the oscillation period T of a simple pendulum with
a mass m at the end of a massless rod of length L. We have varied L and
recorded the corresponding T value. The measurements are found in a file
src/plot/pendulum.dat14. The first column in the file contains L values and
the second column has the corresponding T values.

a) Plot L versus T using circles for the data points.
b) We shall assume that L as a function of T is a polynomial. Use the NumPy

utilities polyfit and poly1d, as explained in Exercise 5.18, to fit polynomials
of degree 1, 2, and 3 to the L and T data. Visualize the polynomial curves
together with the experimental data. Which polynomial fits the measured data
best?

Filename: fit_pendulum_data.

Exercise 5.20: Read acceleration data and find velocities
A file src/plot/acc.dat15 contains measurements a0; a1; : : : ; an�1 of the accel-
eration of an object moving along a straight line. The measurement ak is taken at
time point tk D k�t , where �t is the time spacing between the measurements. The
purpose of the exercise is to load the acceleration data into a program and compute
the velocity v.t/ of the object at some time t .

In general, the acceleration a.t/ is related to the velocity v.t/ through v0.t/ D
a.t/. This means that

v.t/ D v.0/C
tZ

0

a.�/d� : (5.22)

If a.t/ is only known at some discrete, equally spaced points in time, a0; : : : ; an�1

(which is the case in this exercise), we must compute the integral in (5.22) numeri-
cally, for example by the Trapezoidal rule:

v.tk/ � �t

 
1

2
a0 C 1

2
ak C

k�1X
iD1

ai

!
; 1 � k � n � 1 : (5.23)

We assume v.0/ D 0 so that also v0 D 0.

14 http://tinyurl.com/pwyasaa/plot/pendulum.dat
15 http://tinyurl.com/pwyasaa/plot/acc.dat

http://tinyurl.com/pwyasaa/plot/pendulum.dat
http://tinyurl.com/pwyasaa/plot/acc.dat
http://tinyurl.com/pwyasaa/plot/pendulum.dat
http://tinyurl.com/pwyasaa/plot/acc.dat
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Read the values a0; : : : ; an�1 from file into an array, plot the acceleration versus
time, and use (5.23) to compute one v.tk/ value, where �t and k 	 1 are specified
on the command line.
Filename: acc2vel_v1.

Exercise 5.21: Read acceleration data and plot velocities
The task in this exercise is the same as in Exercise 5.20, except that we now want to
compute v.tk/ for all time points tk D k�t and plot the velocity versus time. Now
only �t is given on the command line, and the a0; : : : ; an�1 values must be read
from file as in Exercise 5.20.

Hint Repeated use of (5.23) for all k values is very inefficient. A more efficient
formula arises if we add the area of a new trapezoid to the previous integral (see
also Sect. A.1.7):

v.tk/ D v.tk�1/C
tkZ

tk�1

a.�/d� � v.tk�1/C�t
1

2
.ak�1 C ak/; (5.24)

for k D 1; 2; : : : ; n � 1, while v0 D 0. Use this formula to fill an array v with
velocity values.
Filename: acc2vel.

Exercise 5.22: Plot a trip’s path and velocity from GPS coordinates
A GPS device measures your position at every s seconds. Imagine that the po-
sitions corresponding to a specific trip are stored as .x; y/ coordinates in a file
src/plot/pos.dat16 with an x and y number on each line, except for the first
line, which contains the value of s.

a) Plot the two-dimensional curve of corresponding to the data in the file.

Hint Load s into a float variable and then the x and y numbers into two arrays.
Draw a straight line between the points, i.e., plot the y coordinates versus the x

coordinates.

b) Plot the velocity in x direction versus time in one plot and the velocity in y

direction versus time in another plot.

Hint If x.t/ and y.t/ are the coordinates of the positions as a function of time,
we have that the velocity in x direction is vx.t/ D dx=dt , and the velocity in y

direction is vy D dy=dt . Since x and y are only known for some discrete times,
tk D ks, k D 0; : : : ; n � 1, we must use numerical differentiation. A simple
(forward) formula is

vx.tk/ � x.tkC1/ � x.tk/

s
; vy.tk/ � y.tkC1/ � y.tk/

s
; k D 0; : : : ; n � 2 :

16 http://tinyurl.com/pwyasaa/plot/pos.dat

http://tinyurl.com/pwyasaa/plot/pos.dat
http://tinyurl.com/pwyasaa/plot/pos.dat
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Compute arrays vx and vy with velocities based on the formulas above for vx.tk/

and vy.tk/, k D 0; : : : ; n � 2.
Filename: position2velocity.

Exercise 5.23: Vectorize the Midpoint rule for integration
The Midpoint rule for approximating an integral can be expressed as

bZ
a

f .x/dx � h

nX
iD1

f .a � 1

2
hC ih/; (5.25)

where h D .b � a/=n.

a) Write a function midpointint(f, a, b, n) to compute Midpoint rule. Use
a plain Python for loop to implement the sum.

b) Make a vectorized implementation of the Midpoint rule where you compute the
sum by Python’s built-in function sum.

c) Make another vectorized implementation of the Midpoint rule where you com-
pute the sum by the sum function in the numpy package.

d) Organize the three implementations above in a module file midpoint_vec.py.
Equip the module with one test function for verifying the three implementations.
Use the integral

R 4

2
2xdx D 12 as test case since the Midpoint rule will integrate

such a linear integrand exactly.
e) Start IPython, import the functions from midpoint_vec.py, define some

Python implementation of a mathematical function f .x/ to integrate, and use
the %timeit feature of IPython to measure the efficiency of the three alternative
implementations.

Hint The %timeit feature is described in Sect. H.8.1.
Filename: midpoint_vec.

Remarks The lesson learned from the experiments in e) is that numpy.sum is much
more efficient than Python’s built-in function sum. Vectorized implementations
must always make use of numpy.sum to compute sums.

Exercise 5.24: Vectorize a function for computing the area of a polygon
The area of a polygon is given by (3.17) in Exercise 3.19. Vectorize this formula
such that there are no Python loops in the implementation. Make a test function that
compares the scalar implementation in the referred exercise with the new vectorized
implementation for some chosen polygons (the scalar version must then be available
in a module so that the function can be imported).

Hint Observe that the formula x1y2 C x2y3 C � � � C xn�1yn D
Pn�1

iD0 xiyiC1 is
the dot product of two vectors, x[:-1] and y[1:], which can be computed as
numpy.dot(x[:-1], y[1:]).
Filename: polygon_area_vec.
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Exercise 5.25: Implement Lagrange’s interpolation formula
Imagine we have n C 1 measurements of some quantity y that depends on x:
.x0; y0/; .x1; y1/; : : : ; .xn; yn/. We may think of y as a function of x and ask what y

is at some arbitrary point x not coinciding with any of the points x0; : : : ; xn. It is not
clear how y varies between the measurement points, but we can make assumptions
or models for this behavior. Such a problem is known as interpolation.

One way to solve the interpolation problem is to fit a continuous function that
goes through all the nC 1 points and then evaluate this function for any desired x.
A candidate for such a function is the polynomial of degree n that goes through all
the points. It turns out that this polynomial can be written

pL.x/ D
nX

kD0

ykLk.x/; (5.26)

where

Lk.x/ D
nY

iD0;i¤k

x � xi

xk � xi

: (5.27)

The
Q

notation corresponds to
P

, but the terms are multiplied. For example,

nY
iD0;i¤k

xi D x0x1 � � �xk�1xkC1 � � �xn :

The polynomial pL.x/ is known as Lagrange’s interpolation formula, and the points
.x0; y0/; : : : ; .xn; yn/ are called interpolation points.

a) Make functions p_L(x, xp, yp) and L_k(x, k, xp, yp) that evaluate
pL.x/ and Lk.x/ by (5.26) and (5.27), respectively, at the point x. The arrays
xp and yp contain the x and y coordinates of the n C 1 interpolation points,
respectively. That is, xp holds x0; : : : ; xn, and yp holds y0; : : : ; yn.

b) To verify the program, we observe that Lk.xk/ D 1 and that Lk.xi / D 0 for
i ¤ k, implying that pL.xk/ D yk . That is, the polynomial pL goes through
all the points .x0; y0/; : : : ; .xn; yn/. Write a function test_p_L(xp, yp) that
computes jpL.xk/ � yk j at all the interpolation points .xk; yk/ and checks that
the value is approximately zero. Call test_p_L with xp and yp corresponding
to 5 equally spaced points along the curve y D sin.x/ for x 2 Œ0; ��. Thereafter,
evaluate pL.x/ for an x in the middle of two interpolation points and compare
the value of pL.x/ with the exact one.

Filename: Lagrange_poly1.

Exercise 5.26: Plot Lagrange’s interpolating polynomial

a) Write a function

def graph(f, n, xmin, xmax, resolution=1001):
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for plotting pL.x/ in Exercise 5.25, based on interpolation points taken from
some mathematical function f .x/ represented by the argument f. The argu-
ment n denotes the number of interpolation points sampled from the f .x/ func-
tion, and resolution is the number of points between xmin and xmax used
to plot pL.x/. The x coordinates of the n interpolation points can be uni-
formly distributed between xmin and xmax. In the graph, the interpolation points
.x0; y0/; : : : ; .xn; yn/ should be marked by small circles. Test the graph func-
tion by choosing 5 points in Œ0; �� and f as sin x.

b) Make a module Lagrange_poly2 containing the p_L, L_k, test_p_L, and
graph functions. The call to test_p_L described in Exercise 5.25 and the call
to graph described above should appear in the module’s test block.

Hint Section 4.9 describes how to make a module. In particular, a test block is ex-
plained in Sect. 4.9.3, test functions like test_p_L are demonstrated in Sect. 4.9.4
and also in Sect. 3.4.2, and how to combine test_p_L and graph calls in the test
block is exemplified in Sect. 4.9.5.
Filename: Lagrange_poly2.

Exercise 5.27: Investigate the behavior of Lagrange’s interpolating
polynomials
Unfortunately, the polynomial pL.x/ defined and implemented in Exercise 5.25
can exhibit some undesired oscillatory behavior that we shall explore graphically
in this exercise. Call the graph function from Exercise 5.26 with f .x/ D jxj,
x 2 Œ�2; 2�, for n D 2; 4; 6; 10. All the graphs of pL.x/ should appear in the same
plot for comparison. In addition, make a new figure with results from calls to graph
for n D 13 and n D 20. All the code necessary for solving this exercise should
appear in some separate program file, which imports the Lagrange_poly2module
made in Exercise 5.26.
Filename: Lagrange_poly2b.

Remarks The purpose of the pL.x/ function is to compute .x; y/ between some
given (often measured) data points .x0; y0/; : : : ; .xn; yn/. We see from the graphs
that for a small number of interpolation points, pL.x/ is quite close to the curve
y D jxj we used to generate the data points, but as n increases, pL.x/ starts to
oscillate, especially toward the end points .x0; y0/ and .xn; yn/. Much research has
historically been focused on methods that do not result in such strange oscillations
when fitting a polynomial to a set of points.

Exercise 5.28: Plot a wave packet
The function

f .x; t/ D e�.x�3t/2

sin .3�.x � t// (5.28)

describes for a fixed value of t a wave localized in space. Make a program that
visualizes this function as a function of x on the interval Œ�4; 4� when t D 0.
Filename: plot_wavepacket.

Exercise 5.29: Judge a plot
Assume you have the following program for plotting a parabola:
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import numpy as np

x = np.linspace(0, 2, 20)

y = x*(2 - x)

import matplotlib.pyplot as plt

plt.plot(x, y)

plt.show()

Then you switch to the function cos.18�x/ by altering the computation of y to y
= cos(18*pi*x). Judge the resulting plot. Is it correct? Display the cos.18�x/

function with 1000 points in the same plot.
Filename: judge_plot.

Exercise 5.30: Plot the viscosity of water
The viscosity of water, 	, varies with the temperature T (in Kelvin) according to

	.T / D A � 10B=.T�C /; (5.29)

where A D 2:414 � 10�5 Pa s, B D 247:8K, and C D 140K. Plot 	.T / for T

between 0 and 100 degrees Celsius. Label the x axis with ‘temperature (C)’ and the
y axis with ‘viscosity (Pa s)’. Note that T in the formula for 	 must be in Kelvin.
Filename: water_viscosity.

Exercise 5.31: Explore a complicated function graphically
The wave speed c of water surface waves depends on the length � of the waves.
The following formula relates c to �:

c.�/ D
s

g�

2�

�
1C s

4�2

�g�2

�
tanh

�
2�h

�

�
: (5.30)

Here, g is the acceleration of gravity (9:81m/s2), s is the air-water surface tension
(7:9 � 10�2 N/m), � is the density of water (can be taken as 1000 kg/m3), and h is
the water depth. Let us fix h at 50m. First make a plot of c.�/ (in m/s) for small �

(0.001m to 0.1m). Then make a plot c.�/ for larger � (1m to 2 km.
Filename: water_wave_velocity.

Exercise 5.32: Plot Taylor polynomial approximations to sinx

The sine function can be approximated by a polynomial according to the following
formula:

sin x � S.xIn/ D
nX

jD0

.�1/j x2jC1

.2j C 1/Š
: (5.31)

The expression .2j C1/Š is the factorial (math.factorial can compute this quan-
tity). The error in the approximation S.xIn/ decreases as n increases and in the
limit we have that limn!1 S.xIn/ D sin x. The purpose of this exercise is to
visualize the quality of various approximations S.xIn/ as n increases.

a) Write a Python function S(x, n) that computes S.xIn/. Use a straightfor-
ward approach where you compute each term as it stands in the formula, i.e.,
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.�1/j x2jC1 divided by the factorial .2j C 1/Š. (We remark that Exercise A.14
outlines a much more efficient computation of the terms in the series.)

b) Plot sin x on Œ0; 4�� together with the approximations S.xI 1/, S.xI 2/, S.xI 3/,
S.xI 6/, and S.xI 12/.

Filename: plot_Taylor_sin.

Exercise 5.33: Animate a wave packet
Display an animation of the function f .x; t/ in Exercise 5.28 by plotting f as
a function of x on Œ�6; 6� for a set of t values in Œ�1; 1�. Also make an animated
GIF file.

Hint A suitable resolution can be 1000 intervals (1001 points) along the x axis, 60
intervals (61 points) in time, and 6 frames per second in the animated GIF file. Use
the recipe in Sect. 5.3.4 and remember to remove the family of old plot files in the
beginning of the program.
Filename: plot_wavepacket_movie.

Exercise 5.34: Animate a smoothed Heaviside function
Visualize the smoothed Heaviside function H�.x/, defined in 3.26), as an animation
where � starts at 2 and then goes to zero.
Filename: smoothed_Heaviside_movie.

Exercise 5.35: Animate two-scale temperature variations
We consider temperature oscillations in the ground as addressed in Sect. 5.13.2.
Now we want to visualize daily and annual variations. Let A1 be the amplitude of
annual variations and A2 the amplitude of the day/night variations. Let also P1 D
365 days and P2 D 24 h be the periods of the annual and the daily oscillations. The
temperature at time t and depth z is then given by

T .z; t/ D T0 C A1e�a1z sin.!1t � a1z/C A2e�a2z sin.!2t � a2z/; (5.32)

where

!1 D 2�P1;

!2 D 2�P2;

a1 D
r

!1

2k
;

a2 D
r

!2

2k
:

Choose k D 10�6 m2=s, A1 D 15 C, A2 D 7 C, and the resolution �t as P2=10.
Modify the heatwave.py program in order to animate this new temperature func-
tion.
Filename: heatwave2.
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Remarks We assume in this problem that the temperature T equals the reference
temperature T0 at t D 0, resulting in a sine variation rather than the cosine variation
in (5.18).

Exercise 5.36: Use non-uniformly distributed coordinates for visualization
Watching the animation in Exercise 5.35 reveals that there are rapid oscillations in
a small layer close to z D 0. The variations away from z D 0 are much smaller
in time and space. It would therefore be wise to use more z coordinates close to
z D 0 than for larger z values. Given a set x0 < x1 < � � � < xn of uniformly spaced
coordinates in Œa; b�, we can compute new coordinates Nxi , stretched toward x D a,
by the formula

Nxi D aC .b � a/
�xi � a

b � a

�s

;

for some s > 1. In the present example, we can use this formula to stretch the z

coordinates to the left.

a) Experiment with s 2 Œ1:2; 3� and few points (say 15) and visualize the curve
as a line with circles at the points so that you can easily see the distribution of
points toward the left end. Identify a suitable value of s.

b) Run the animation with no circles and (say) 501 points with the found s value.

Filename: heatwave2a.

Exercise 5.37: Animate a sequence of approximations to �

Exercise 3.18 outlines an idea for approximating � as the length of a polygon in-
side the circle. Wrap the code from that exercise in a function pi_approx(N),
which returns the approximation to � using a polygon with N C 1 equally dis-
tributed points. The task of the present exercise is to visually display the polygons
as a movie, where each frame shows the polygon with N C 1 points together with
the circle and a title reflecting the corresponding error in the approximate value of
� . The whole movie arises from letting N run through 4; 5; 6; : : : ; K, where K is
some (large) prescribed value. Let there be a pause of 0.3 s between each frame in
the movie. By playing the movie you will see how the polygons move closer and
closer to the circle and how the approximation to � improves.
Filename: pi_polygon_movie.

Exercise 5.38: Animate a planet’s orbit
A planet’s orbit around a star has the shape of an ellipse. The purpose of this ex-
ercise is to make an animation of the movement along the orbit. One should see
a small disk, representing the planet, moving along an elliptic curve. An evolving
solid line shows the development of the planet’s orbit as the planet moves and the
title displays the planet’s instantaneous velocity magnitude. As a test, run the spe-
cial case of a circle and verify that the magnitude of the velocity remains constant
as the planet moves.

Hint 1 The points .x; y/ along the ellipse are given by the expressions

x D a cos.!t/; y D b sin.!t/;
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where a is the semi-major axis of the ellipse, b is the semi-minor axis, ! is an
angular velocity of the planet around the star, and t denotes time. One complete
orbit corresponds to t 2 Œ0; 2�=!�. Let us discretize time into time points tk D k�t ,
where �t D 2�=.!n/. Each frame in the movie corresponds to .x; y/ points along
the curve with t values t0; t1; : : : ; ti , i representing the frame number (i D 1; : : : ; n).

Hint 2 The velocity vector is

.
dx

dt
;

dy

dt
/ D .�!a sin.!t/; !b cos.!t//;

and the magnitude of this vector becomes !
p

a2 sin2.!t/C b2 cos2.!t/.
Filename: planet_orbit.

Exercise 5.39: Animate the evolution of Taylor polynomials
A general series approximation (to a function) can be written as

S.xIM; N / D
NX

kDM

fk.x/ :

For example, the Taylor polynomial of degree N for ex equals S.xI 0; N / with
fk.x/ D xk=kŠ. The purpose of the exercise is to make a movie of how S.xIM; N /

develops and improves as an approximation as we add terms in the sum. That
is, the frames in the movie correspond to plots of S.xIM; M /, S.xIM; M C 1/,
S.xIM; M C 2/, : : :, S.xIM; N /.

a) Make a function

animate_series(fk, M, N, xmin, xmax, ymin, ymax, n, exact)

for creating such animations. The argument fk holds a Python function imple-
menting the term fk.x/ in the sum, M and N are the summation limits, the next
arguments are the minimum and maximum x and y values in the plot, n is the
number of x points in the curves to be plotted, and exact holds the function
that S.x/ aims at approximating.

Hint Here is some more information on how to write the animate_series func-
tion. The function must accumulate the fk.x/ terms in a variable s, and for each
k value, s is plotted against x together with a curve reflecting the exact function.
Each plot must be saved in a file, say with names tmp_0000.png, tmp_0001.png,
and so on (these filenames can be generated by tmp_%04d.png, using an appropri-
ate counter). Use the movie function to combine all the plot files into a movie in
a desired movie format.

In the beginning of the animate_series function, it is necessary to remove all
old plot files of the form tmp_*.png. This can be done by the glob module and
the os.remove function as exemplified in Sect. 5.3.4.
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b) Call the animate_series function for the Taylor series for sin x, where
fk.x/ D .�1/kx2kC1=.2k C 1/Š, and x 2 Œ0; 13��, M D 0, N D 40,
y 2 Œ�2; 2�.

c) Call the animate_series function for the Taylor series for e�x , where fk.x/ D
.�x/k=kŠ, and x 2 Œ0; 15�, M D 0, N D 30, y 2 Œ�0:5; 1:4�.

Filename: animate_Taylor_series.

Exercise 5.40: Plot the velocity profile for pipeflow
A fluid that flows through a (very long) pipe has zero velocity on the pipe wall and
a maximum velocity along the centerline of the pipe. The velocity v varies through
the pipe cross section according to the following formula:

v.r/ D
�

ˇ

2	0

�1=n
n

nC 1

�
R1C1=n � r1C1=n

	
; (5.33)

where R is the radius of the pipe, ˇ is the pressure gradient (the force that drives the
flow through the pipe), 	0 is a viscosity coefficient (small for air, larger for water
and even larger for toothpaste), n is a real number reflecting the viscous properties
of the fluid (n D 1 for water and air, n < 1 for many modern plastic materials), and
r is a radial coordinate that measures the distance from the centerline (r D 0 is the
centerline, r D R is the pipe wall).

a) Make a Python function that evaluates v.r/.
b) Plot v.r/ as a function of r 2 Œ0; R�, with R D 1, ˇ D 0:02, 	0 D 0:02, and

n D 0:1.
c) Make an animation of how the v.r/ curves varies as n goes from 1 and down

to 0.01. Because the maximum value of v.r/ decreases rapidly as n decreases,
each curve can be normalized by its v.0/ value such that the maximum value is
always unity.

Filename: plot_velocity_pipeflow.

Exercise 5.41: Plot sum-of-sines approximations to a function
Exercise 3.21 defines the approximation S.t In/ to a function f .t/. Plot S.t I 1/,
S.t I 3/, S.t I 20/, S.t I 200/, and the exact f .t/ function in the same plot. Use T D
2� .
Filename: sinesum1_plot.

Exercise 5.42: Animate the evolution of a sum-of-sine approximation to
a function
First perform Exercise 5.41. A natural next step is to animate the evolution of
S.t In/ as n increases. Create such an animation and observe how the discontinuity
in f .t/ is poorly approximated by S.t In/, even when n grows large (plot f .t/ in
each frame). This is a well-known deficiency, called Gibb’s phenomenon, when
approximating discontinuous functions by sine or cosine (Fourier) series.
Filename: sinesum1_movie.
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Exercise 5.43: Plot functions from the command line
For quickly getting a plot of a function f .x/ for x 2 Œxmin; xmax� it could be nice to
a have a program that takes the minimum amount of information from the command
line and produces a plot on the screen and saves the plot to a file tmp.png. The
usage of the program goes as follows:

Terminal

plotf.py "f(x)" xmin xmax

Plotting e�0:2x sin.2�x/ for x 2 Œ0; 4�� is then specified as

Terminal

plotf.py "exp(-0.2*x)*sin(2*pi*x)" 0 4*pi

Write the plotf.py program with as short code as possible (we leave it to Ex-
ercise 5.44 to test for valid input).

Hint Make x coordinates from the second and third command-line arguments
and then use eval (or StringFunction from scitools.std, see Sects. 4.3.3
and 5.5.1) on the first argument.
Filename: plotf.

Exercise 5.44: Improve command-line input
Equip the program from Exercise 5.43 with tests on valid input on the command
line. Also allow an optional fourth command-line argument for the number of points
along the function curve. Set this number to 501 if it is not given.
Filename: plotf2.

Exercise 5.45: Demonstrate energy concepts from physics
The vertical position y.t/ of a ball thrown upward is given by y.t/ D v0t � 1

2
gt2,

where g is the acceleration of gravity and v0 is the velocity at t D 0. Two important
physical quantities in this context are the potential energy, obtained by doing work
against gravity, and the kinetic energy, arising from motion. The potential energy is
defined as P D mgy, where m is the mass of the ball. The kinetic energy is defined
as K D 1

2
mv2, where v is the velocity of the ball, related to y by v.t/ D y0.t/.

Make a program that can plot P.t/ and K.t/ in the same plot, along with their
sum P C K. Let t 2 Œ0; 2v0=g�. Read m and v0 from the command line. Run
the program with various choices of m and v0 and observe that P C K is always
constant in this motion. (In fact, it turns out that P CK is constant for a large class
of motions, and this is a very important result in physics.)
Filename: energy_physics.

Exercise 5.46: Plot a w-like function
Define mathematically a function that looks like the “w” character. Plot the func-
tion. Also write a formal test function that verifies the implementation.
Filename: plot_w.
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Fig. 5.22 Visualization of numerical integration rules, with the Midpoint rule to the left and the
Trapezoidal rule to the right. The filled areas illustrate the deviations in the approximation of the
area under the curve

Exercise 5.47: Plot a piecewise constant function
Consider the piecewise constant function defined in Exercise 3.32. Make a Python
function plot_piecewise(data, xmax) that draws a graph of the function,
where data is the nested list explained in mentioned exercise and xmax is the
maximum x coordinate. Use ideas from Sect. 5.4.1.
Filename: plot_piecewise_constant.

Exercise 5.48: Vectorize a piecewise constant function
Consider the piecewise constant function defined in Exercise 3.32. Make a vec-
torized implementation piecewise_constant_vec(x, data, xmax) of such
a function, where x is an array.

Hint You can use ideas from the Nv1 function in Sect. 5.5.3. However, since the
number of intervals is not known, it is necessary to store the various intervals and
conditions in lists.
Filename: piecewise_constant_vec.

Remarks Plotting the array returned from piecewise_constant_vec faces the
same problems as encountered in Sect. 5.4.1. It is better to make a custom plotting
function that simply draws straight horizontal lines in each interval (Exercise 5.47).

Exercise 5.49: Visualize approximations in the Midpoint integration rule
Consider the midpoint rule for integration from Exercise 3.12. Use Matplotlib to
make an illustration of the midpoint rule as shown to the left in Fig. 5.22.

The f .x/ function used in Fig. 5.22 is

f .x/ D x.12� x/C sin.�x/; x 2 Œ0; 10� :

Hint Look up the documentation of the Matplotlib function fill_between and
use this function to create the filled areas between f .x/ and the approximating
rectangles.

Note that the fill_between requires the two curves to have the same number
of points. For accurate visualization of f .x/ you need quite many x coordinates,
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and the rectangular approximation to f .x/ must be drawn using the same set of x

coordinates.
Filename: viz_midpoint.

Exercise 5.50: Visualize approximations in the Trapezoidal integration rule
Redo Exercise 5.49 for the Trapezoidal rule from Exercise 3.11 to produce the graph
shown to the right in Fig. 5.22.
Filename: viz_trapezoidal.

Exercise 5.51: Experience overflow in a function
We are give the mathematical function

v.x/ D 1 � ex=	

1 � e1=	
;

where 	 is a parameter.

a) Make a Python function v(x, mu=1E-6, exp=math.exp) for calculating the
formula for v.x/ using exp as a possibly user-given exponential function. Let
the v function return the nominator and denominator in the formula as well as
the fraction.

b) Call the v function for various x values between 0 and 1 in a for loop, let mu be
1E-3, and have an inner for loop over two different exp functions: math.exp
and numpy.exp. The output will demonstrate how the denominator is subject to
overflow and how difficult it is to calculate this function on a computer.

c) Plot v.x/ for 	 D 1; 0:01; 0:001 on Œ0; 1� using 10,000 points to see what the
function looks like.

d) Convert x and eps to a higher precision representation of real numbers, with the
aid of the NumPy type float96, before calling v:

import numpy

x = numpy.float96(x); mu = numpy.float96(e)

Repeat point b) with these type of variables and observe how much better re-
sults we get with float96 compared with the standard float value, which is
float64 (the number reflects the number of bits in the machine’s representation
of a real number).

e) Call the v function with x and mu as float32 variables and report how the
function now behaves.

Filename: boundary_layer_func1.

Remarks When an object (ball, car, airplane) moves through the air, there is a very,
very thin layer of air close to the object’s surface where the air velocity varies dra-
matically, from the same value as the velocity of the object at the object’s surface
to zero a few centimeters away. This layer is called a boundary layer. The physics
in the boundary layer is important for air resistance and cooling/heating of objects.
The change in velocity in the boundary layer is quite abrupt and can be modeled by



5.14 Exercises 331

the functiion v.x/, where x D 1 is the object’s surface, and x D 0 is some distance
away where one cannot notice any wind velocity v because of the passing object
(v D 0). The wind velocity coincides with the velocity of the object at x D 1,
here set to v D 1. The parameter 	 is very small and related to the viscosity of air.
With a small value of 	, it becomes difficult to calculate v.x/ on a computer. The
exercise demonstrates the difficulties and provides a remedy.

Exercise 5.52: Apply a function to a rank 2 array
Let A be the two-dimensional array

2
64

0 2 �1

�1 �1 0

0 5 0

3
75

Apply the function f from Exercise 5.5 to each element in A. Then calculate the
result of the array expression A**3 + A*exp(A) + 1, and demonstrate that the
end result of the two methods are the same.
Filename: apply_arrayfunc.

Exercise 5.53: Explain why array computations fail
The following loop computes the array y from x:

>>> import numpy as np

>>> x = np.linspace(0, 1, 3)

>>> y = np.zeros(len(x))

>>> for i in range(len(x)):

... y[i] = x[i] + 4

However, the alternative loop

>>> for xi, yi in zip(x, y):

... yi = xi + 5

leaves y unchanged. Why? Explain in detail what happens in each pass of this loop
and write down the contents of xi, yi, x, and y as the loop progresses.
Filename: find_errors_arraycomp.

Exercise 5.54: Verify linear algebra results
When we want to verify that a mathematical result is true, we often generate ma-
trices or vectors with random elements and show that the result holds for these
“arbitrary” mathematical objects. As an example, consider testing that A C B D
B C A for matrices A and B :

def test_addition():

n = 4 # matrix size

A = matrix(random.rand(n, n))

B = matrix(random.rand(n, n))
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tol = 1E-14

result1 = A + B

result2 = B + A

assert abs(result1 - result2).max() < tol

Use this technique to write test functions for the following mathematical results:

1. .AC B/C D AC C BC

2. .AB/C D A.BC /

3. rankA D rankAT

4. det.AB/ D detA detB
5. The eigenvalues if A equals the eigenvalues of AT when A is square.

Filename: verify_linalg.
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This default sort will sort with respect to the first character in the name strings. We
want a sort according to the last part of the name. A tailored sort function can then
be written (see Exercise 3.39 for an introduction to tailored sort functions). In this
function we extract the last word in the names and compare them:

def sort_names(name1, name2):

last_name1 = name1.split()[-1]

last_name2 = name2.split()[-1]

if last_name1 < last_name2:

return -1

elif last_name1 > last_name2:

return 1

else:

return 0

We can now pass on sort_names to the sorted function to get a sequence that is
sorted with respect to the last word in the students’ names:

for name in sorted(data, sort_names):

print ’%s: %s’ % (name, average_grade(data, name))

6.8 Exercises

Exercise 6.1: Make a dictionary from a table
The file src/dictstring/constants.txt8 contains a table of the values and the
dimensions of some fundamental constants from physics. We want to load this table
into a dictionary constants, where the keys are the names of the constants. For
example, constants[’gravitational constant’] holds the value of the grav-
itational constant (6:67259 �10�11) in Newton’s law of gravitation. Make a function
that reads and interprets the text in the file, and finally returns the dictionary.
Filename: fundamental_constants.

Exercise 6.2: Explore syntax differences: lists vs. dicts
Consider this code:

t1 = {}

t1[0] = -5

t1[1] = 10.5

Explain why the lines above work fine while the ones below do not:

t2 = []

t2[0] = -5

t2[1] = 10.5

What must be done in the last code snippet to make it work properly?
Filename: list_vs_dict.

8 http://tinyurl.com/pwyasaa/dictstring/constants.txt

http://tinyurl.com/pwyasaa/dictstring/constants.txt
http://tinyurl.com/pwyasaa/dictstring/constants.txt
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Exercise 6.3: Use string operations to improve a program
Consider the program density.py from Sect. 6.1.5. One problem with this pro-
gram is that the name of the substance can contain only one or two words, while
more comprehensive tables may have substances with names consisting of several
words. The purpose of this exercise is to use string operations to shorten the code
and make it more general and elegant.

a) Make a Python function that lets the name substance consist of all the words
that line is split into, but not the last (which is the value of the corresponding
density). Use the joinmethod in string objects to combine the words that make
up the name of the substance.

b) Observe that all the density values in the file densities.dat start in the same
column. Write an alternative function that makes use of substring indexing to
divide line into two parts (substance and density).

Hint Remember to strip the first part such that, e.g., the density of ice is obtained
as densities[’ice’] and not densities[’ice ’].

c) Make a test function that calls the two other functions and tests that they produce
the same result.

Filename: density_improved.

Exercise 6.4: Interpret output from a program
The program src/funcif/lnsum.py produces, among other things, this output:

epsilon: 1e-04, exact error: 8.18e-04, n=55

epsilon: 1e-06, exact error: 9.02e-06, n=97

epsilon: 1e-08, exact error: 8.70e-08, n=142

epsilon: 1e-10, exact error: 9.20e-10, n=187

epsilon: 1e-12, exact error: 9.31e-12, n=233

Redirect the output to a file (by python lnsum.py > file). Write a Python pro-
gram that reads the file and extracts the numbers corresponding to epsilon, exact
error, and n. Store the numbers in three arrays and plot epsilon and the exact
error versus n. Use a logarithmic scale on the y axis.

Hint The function semilogy is an alternative to plot and gives logarithmic scale
on y axis.
Filename: read_error.

Exercise 6.5: Make a dictionary
Based on the stars data in Exercise 3.39, make a dictionary where the keys contain
the names of the stars and the values correspond to the luminosity.
Filename: stars_data_dict1.

http://tinyurl.com/pwyasaa/funcif/lnsum.py
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Exercise 6.6: Make a nested dictionary
Store the data about stars from Exercise 3.39 in a nested dictionary such that we
can look up the distance, the apparent brightness, and the luminosity of a star with
name N by

stars[N][’distance’]

stars[N][’apparent brightness’]

stars[N][’luminosity’]

Hint Initialize the data by just copying the stars.txt9 text into the program.
Filename: stars_data_dict2.

Exercise 6.7: Make a nested dictionary from a file
The file src/dictstring/human_evolution.txt10 holds information about
various human species and their height, weight, and brain volume. Make a pro-
gram that reads this file and stores the tabular data in a nested dictionary humans.
The keys in humans correspond to the specie name (e.g., homo erectus), and
the values are dictionaries with keys for height, weight, brain volume,
and when (the latter for when the specie lived). For example, humans[’homo
neanderthalensis’][’mass’] should equal ’55-70’. Let the program write
out the humans dictionary in a nice tabular form similar to that in the file.
Filename: humans.

Exercise 6.8: Make a nested dictionary from a file
The viscosity 	 of gases depends on the temperature. For some gases the following
formula is relevant:

	.T / D 	0

T0 � C

T C C

�
T

T0

�1:5

;

where the values of the constants C , T0, and 	0 are found in the file src/
dictstring/viscosity_of_gases.dat11. The temperature is measured in
Kelvin.

a) Load the file into a nested dictionary mu_data such that we can look up C , T0,
and 	0 for a gas with name name by mu_data[name][X], where X is ’C’ for
C , ’T_0’ for T0, and ’mu_0’ for 	0.

b) Make a function mu(T, gas, mu_data) for computing 	.T / for a gas with
name gas (according to the file) and information about constants C , T0, and 	0

in mu_data.
c) Plot 	.T / for air, carbon dioxide, and hydrogen with T 2 Œ223; 373�.

Filename: viscosity_of_gases.

9 http://tinyurl.com/pwyasaa/funcif/stars.txt
10 http://tinyurl.com/pwyasaa/dictstring/human_evolution.txt
11 http://tinyurl.com/pwyasaa/dictstring/viscosity_of_gases.txt

http://tinyurl.com/pwyasaa/funcif/stars.txt
http://tinyurl.com/pwyasaa/dictstring/human_evolution.txt
http://tinyurl.com/pwyasaa/dictstring/viscosity_of_gases.txt
http://tinyurl.com/pwyasaa/funcif/stars.txt
http://tinyurl.com/pwyasaa/dictstring/human_evolution.txt
http://tinyurl.com/pwyasaa/dictstring/viscosity_of_gases.txt
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Exercise 6.9: Compute the area of a triangle
The purpose of this exercise is to write an area function as in Exercise 3.16, but
now we assume that the vertices of the triangle is stored in a dictionary and not
a list. The keys in the dictionary correspond to the vertex number (1, 2, or 3) while
the values are 2-tuples with the x and y coordinates of the vertex. For example, in
a triangle with vertices .0; 0/, .1; 0/, and .0; 2/ the vertices argument becomes

{1: (0,0), 2: (1,0), 3: (0,2)}

Filename: area_triangle_dict.

Exercise 6.10: Compare data structures for polynomials
Write a code snippet that uses both a list and a dictionary to represent the polyno-
mial � 1

2
C 2x100. Print the list and the dictionary, and use them to evaluate the

polynomial for x D 1:05.

Hint You can apply the eval_poly_dict and eval_poly_list functions from
Sect. 6.1.3).
Filename: poly_repr.

Exercise 6.11: Compute the derivative of a polynomial
A polynomial can be represented by a dictionary as explained in Sect. 6.1.3. Write
a function diff for differentiating such a polynomial. The diff function takes the
polynomial as a dictionary argument and returns the dictionary representation of
the derivative. Here is an example of the use of the function diff:

>>> p = {0: -3, 3: 2, 5: -1} # -3 + 2*x**3 - x**5

>>> diff(p) # should be 6*x**2 - 5*x**4

{2: 6, 4: -5}

Hint Recall the formula for differentiation of polynomials:

d

dx

nX
jD0

cj xj D
nX

jD1

jcj xj�1 : (6.1)

This means that the coefficient of the xj�1 term in the derivative equals j times the
coefficient of xj term of the original polynomial. With p as the polynomial dictio-
nary and dp as the dictionary representing the derivative, we then have dp[j-1] =
j*p[j] for j running over all keys in p, except when j equals 0.
Filename: poly_diff.

Exercise 6.12: Specify functions on the command line
Explain what the following two code snippets do and give an example of how they
can be used.
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Hint Read about the StringFunction tool in Sect. 4.3.3 and about a variable
number of keyword arguments in Sect. H.7.

a)

import sys

from scitools.StringFunction import StringFunction

parameters = {}

for prm in sys.argv[4:]:

key, value = prm.split(’=’)

parameters[key] = eval(value)

f = StringFunction(sys.argv[1], independent_variables=sys.argv[2],

**parameters)

var = float(sys.argv[3])

print f(var)

b)

import sys

from scitools.StringFunction import StringFunction

f = eval(’StringFunction(sys.argv[1], ’ + \

’independent_variables=sys.argv[2], %s)’ % \

(’, ’.join(sys.argv[4:])))

var = float(sys.argv[3])

print f(var)

Filename: cml_functions.

Exercise 6.13: Interpret function specifications
To specify arbitrary functions f .x1; x2; : : : Ip1; p2; : : :/ with independent variables
x1; x2; : : : and a set of parameters p1; p2; : : :, we allow the following syntax on the
command line or in a file:

<expression> is function of <list1> with parameter <list2>

where <expression> denotes the function formula, <list1> is a comma-
separated list of the independent variables, and <list2> is a comma-separated
list of name=value parameters. The part with parameters <list2> is omitted if
there are no parameters. The names of the independent variables and the parameters
can be chosen freely as long as the names can be used as Python variables. Here
are four different examples of what we can specify on the command line using this
syntax:

sin(x) is a function of x

sin(a*y) is a function of y with parameter a=2

sin(a*x-phi) is a function of x with parameter a=3, phi=-pi

exp(-a*x)*cos(w*t) is a function of t with parameter a=1,w=pi,x=2

Create a Python function that takes such function specifications as input and returns
an appropriate StringFunctionobject. This object must be created from the func-
tion expression and the list of independent variables and parameters. For example,
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the last function specification above leads to the following StringFunction cre-
ation:

f = StringFunction(’exp(-a*x)*cos(w*t)’,

independent_variables=[’t’],

a=1, w=pi, x=2)

Write a test function for verifying the implementation (fill sys.argv with ap-
propriate content prior to each individual test).

Hint Use string operations to extract the various parts of the string. For example,
the expression can be split out by calling split(’is a function of’). Typ-
ically, you need to extract <expression>, <list1>, and <list2>, and create
a string like

StringFunction(<expression>, independent_variables=[<list1>],

<list2>)

and sending it to eval to create the object.
Filename: text2func.

Exercise 6.14: Compare average temperatures in cities
The tarfile src/misc/city_temp.tar.gz12 contains a set of files with tempera-
ture data for a large number of cities around the world. The files are in text format
with four columns, containing the month number, the date, the year, and the temper-
ature, respectively. Missing temperature observations are represented by the value
�99. The mapping between the names of the text files and the names of the cities
are defined in an HTML file citylistWorld.htm.

a) Write a function that can read the citylistWorld.htmfile and create a dictio-
nary with mapping between city and filenames.

b) Write a function that takes this dictionary and a city name as input, opens the
corresponding text file, and loads the data into an appropriate data structure
(dictionary of arrays and city name is a suggestion).

c) Write a function that can take a number of data structures and the corresponding
city names to create a plot of the temperatures over a certain time period.

Filename: temperature_data.

Exercise 6.15: Generate an HTML report with figures
The goal of this exercise is to let a program write a report in HTML format con-
taining the solution to Exercise 5.33. First, include the program from that exercise,
with additional explaining text if necessary. Program code can be placed inside
<pre> and </pre> tags. Second, insert three plots of the f .x; t/ function for three
different t values (find suitable t values that illustrate the displacement of the wave
packet). Third, add an animated GIF file with the movie of f .x; t/. Insert headlines
(<h1> tags) wherever appropriate.
Filename: wavepacket_report.

12 http://tinyurl.com/pwyasaa/misc/city_temp.tar.gz

http://tinyurl.com/pwyasaa/misc/city_temp.tar.gz
http://tinyurl.com/pwyasaa/misc/city_temp.tar.gz
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Exercise 6.16: Allow different types for a function argument
Consider the family of find_consensus_v* functions from Sect. 6.5.2. The dif-
ferent versions work on different representations of the frequency matrix. Make
a unified find_consensus function that accepts different data structures for the
frequency_matrix. Test on the type of data structure and perform the necessary
actions.
Filename: find_consensus.

Exercise 6.17: Make a function more robust
Consider the function get_base_counts(dna) from Sect. 6.5.3, which counts
how many times A, C, G, and T appears in the string dna:

def get_base_counts(dna):

counts = {’A’: 0, ’T’: 0, ’G’: 0, ’C’: 0}

for base in dna:

counts[base] += 1

return counts

Unfortunately, this function crashes if other letters appear in dna. Write an en-
hanced function get_base_counts2which solves this problem. Test it on a string
like ’ADLSTTLLD’.
Filename: get_base_counts2.

Exercise 6.18: Find proportion of bases inside/outside exons
Consider the lactase gene as described in Sects. 6.5.4 and 6.5.5. What is the pro-
portion of base A inside and outside exons of the lactase gene?

Hint Write a function get_exons, which returns all the substrings of the exon
regions concatenated. Also write a function get_introns, which returns all
the substrings between the exon regions concatenated. The function get_base_
frequencies from Sect. 6.5.3 can then be used to analyze the frequencies of bases
A, C, G, and T in the two strings.
Filename: prop_A_exons.
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>>> g = 9.81

>>> y_0 = I(0.99, 1.01) # 2% uncertainty

>>> Tm = 0.45 # mean T

>>> T = I(Tm*0.95, Tm*1.05) # 10% uncertainty

>>> print T

[0.4275, 0.4725]

>>> g = 2*y_0*T**(-2)

>>> g

IntervalMath(8.86873, 11.053)

>>> # Compute with mean values

>>> T = float(T)

>>> y = 1

>>> g = 2*y_0*T**(-2)

>>> print ’%.2f’ % g

9.88

Another formula, the volume V D 4
3
�R3 of a sphere, shows great sensitivity to

uncertainties in R:

>>> Rm = 6

>>> R = I(Rm*0.9, Rm*1.1) # 20 % error

>>> V = (4./3)*pi*R**3

>>> V

IntervalMath(659.584, 1204.26)

>>> print V

[659.584, 1204.26]

>>> print float(V)

931.922044761

>>> # Compute with mean values

>>> R = float(R)

>>> V = (4./3)*pi*R**3

>>> print V

904.778684234

Here, a 20% uncertainty in R gives almost 60% uncertainty in V , and the mean of
the V interval is significantly different from computing the volume with the mean
of R.

The complete code of class IntervalMath is found in IntervalMath.py.
Compared to the implementations shown above, the real implementation in the file
employs some ingenious constructions and help methods to save typing and repeat-
ing code in the special methods for arithmetic operations. You can read more about
interval arithmetics on Wikipedia3.

7.8 Exercises

Exercise 7.1: Make a function class
Make a class F that implements the function

f .xI a; w/ D e�ax sin.wx/ :

3 http://en.wikipedia.org/wiki/Interval_arithmetic

http://en.wikipedia.org/wiki/Interval_arithmetic
http://en.wikipedia.org/wiki/Interval_arithmetic
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A value(x)method computes values of f , while a and w are data attributes. Test
the class in an interactive session:

>>> from F import F

>>> f = F(a=1.0, w=0.1)

>>> from math import pi

>>> print f.value(x=pi)

0.013353835137

>>> f.a = 2

>>> print f.value(pi)

0.00057707154012

Filename: F.

Exercise 7.2: Add a data attribute to a class
Add a data attribute transactions to the Account class from Sect. 7.2.1. The
new attribute counts the number of transactions done in the deposit and withdraw
methods. Print the total number of transactions in the dump method. Write a test
function test_Account() for testing that the implementation of the extended class
Account is correct.
Filename: Account2.

Exercise 7.3: Add functionality to a class
In class AccountP from Sect. 7.2.1, introduce a list self._transactions, where
each element holds a dictionary with the amount of a transaction and the point of
time the transaction took place. Remove the _balance attribute and use instead the
_transactions list to compute the balance in the method get_balance. Print out
a nicely formatted table of all transactions, their amounts, and their time in a method
print_transactions.

Hint Use the time or datetimemodule to get the date and local time.
Filename: Account3.

Remarks Observe that the computation of the balance is implemented in a different
way in the present version of class AccountP compared to the version in Sect. 7.2.1,
but the usage of the class, especially the get_balancemethod, remains the same.
This is one of the great advantages of class programming: users are supposed to
use the methods only, and the implementation of data structures and computational
techniques inside methods can be changed without affecting existing programs that
just call the methods.

Exercise 7.4: Make classes for a rectangle and a triangle
The purpose of this exercise is to create classes like class Circle from Sect. 7.2.3
for representing other geometric figures: a rectangle with width W , height H ,
and lower left corner .x0; y0/; and a general triangle specified by its three vertices
.x0; y0/, .x1; y1/, and .x2; y2/ as explained in Exercise 3.16. Provide three meth-
ods: __init__ (to initialize the geometric data), area, and perimeter. Write test
functions test_Rectangle() and test_Triangle() for checking that the results
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produced by area and perimeter coincide with exact values within a small toler-
ance.
Filename: geometric_shapes.

Exercise 7.5: Make a class for quadratic functions
Consider a quadratic function f .xI a; b; c/ D ax2 C bx C c. Make a class
Quadratic for representing f , where a, b, and c are data attributes, and the
methods are

� __init__ for storing the attributes a, b, and c,
� value for computing a value of f at a point x,
� table for writing out a table of x and f values for n x values in the interval

ŒL; R�,
� roots for computing the two roots.

The file with class Quadratic and corresponding demonstrations and/or tests
should be organized as a module such that other programs can do a from
Quadratic import Quadratic to use the class. Also equip the file with a test
function for verifying the implementation of value and roots.
Filename: Quadratic.

Exercise 7.6: Make a class for straight lines
Make a class Linewhose constructor takes two points p1 and p2 (2-tuples or 2-lists)
as input. The line goes through these two points (see function line in Sect. 3.1.11
for the relevant formula of the line). A value(x)method computes a value on the
line at the point x. Also make a function test_Line() for verifying the implemen-
tation. Here is a demo in an interactive session:

>>> from Line import Line, test_Line

>>> line = Line((0,-1), (2,4))

>>> print line.value(0.5), line.value(0), line.value(1)

0.25 -1.0 1.5

>>> test_Line()

Filename: Line.

Exercise 7.7: Flexible handling of function arguments
The constructor in class Line in Exercise 7.6 takes two points as arguments. Now
we want to have more flexibility in the way we specify a straight line: we can give
two points, a point and a slope, or a slope and the line’s interception with the y

axis. Write this extended class and a test function for checking that the increased
flexibility does work.

Hint Let the constructor take two arguments p1 and p2 as before, and test with
isinstancewhether the arguments are float versus tuple or list to determine
what kind of data the user supplies:
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if isinstance(p1, (tuple,list)) and isinstance(p2, (float,int)):

# p1 is a point and p2 is slope

self.a = p2

self.b = p1[1] - p2*p1[0]

elif ...

Filename: Line2.

Exercise 7.8: Wrap functions in a class
The purpose of this exercise is to make a class interface to an already existing set of
functions implementing Lagrange’s interpolation method from Exercise 5.25. We
want to construct a class LagrangeInterpolationwith a typical usage like:

import numpy as np

# Compute some interpolation points along y=sin(x)

xp = np.linspace(0, np.pi, 5)

yp = np.sin(xp)

# Lagrange’s interpolation polynomial

p_L = LagrangeInterpolation(xp, yp)

x = 1.2

print ’p_L(%g)=%g’ % (x, p_L(x)),

print ’sin(%g)=%g’ % (x, np.sin(x))

p_L.plot() # show graph of p_L

The plot method visualizes pL.x/ for x between the first and last interpolation
point (xp[0] and xp[-1]). In addition to writing the class itself, you should write
code to verify the implementation.

Hint The class does not need much code as it can call the functions p_L from
Exercise 5.25 and graph from Exercise 5.26, available in the Lagrange_poly2
module made in the latter exercise.
Filename: Lagrange_poly3.

Exercise 7.9: Flexible handling of function arguments
Instead of manually computing the interpolation points, as demonstrated in Exer-
cise 7.8, we now want the constructor in class LagrangeInterpolation to also
accept some Python function f(x) for computing the interpolation points. Typi-
cally, we would like to write this code:

from numpy import exp, sin, pi

def myfunction(x):

return exp(-x/2.0)*sin(x)

p_L = LagrangeInterpolation(myfunction, x=[0, pi], n=11)

With such a code, n D 11 uniformly distributed x points between 0 and � are
computed, and the corresponding y values are obtained by calling myfunction.
The Lagrange interpolation polynomial is then constructed from these points. Note
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that the previous types of calls, LangrangeInterpolation(xp, yp), must still
be valid.

Hint The constructor in class LagrangeInterpolationmust now accept two dif-
ferent sets of arguments: xp, yp vs. f, x, n. You can use the isinstance(a,
t) function to test if object a is of type t. Declare the constructor with three
arguments arg1, arg2, and arg3=None. Test if arg1 and arg2 are arrays
(isinstance(arg1, numpy.ndarray)), and in that case, set xp=arg1 and
yp=arg2. On the other hand, if arg1 is a function (callable(arg1) is True),
arg2 is a list or tuple (isinstance(arg2, (list,tuple))), and arg3 is an
integer, set f=arg1, x=arg2, and n=arg3.
Filename: Lagrange_poly4.

Exercise 7.10: Deduce a class implementation
Write a class Hello that behaves as illustrated in the following session:

>>> a = Hello()

>>> print a(’students’)

Hello, students!

>>> print a

Hello, World!

Filename: Hello.

Exercise 7.11: Implement special methods in a class
Modify the class from Exercise 7.1 such that the following interactive session can
be run:

>>> from F import F

>>> f = F(a=1.0, w=0.1)

>>> from math import pi

>>> print f(x=pi)

0.013353835137

>>> f.a = 2

>>> print f(pi)

0.00057707154012

>>> print f

exp(-a*x)*sin(w*x)

Filename: F2.

Exercise 7.12: Make a class for summation of series
The task in this exercise is to calculate a sum S.x/ D PN

kDM fk.x/, where fk.x/

is some user-given formula for the terms in the sum. The following snippet demon-
strates the typical use and functionality of a class Sum for computing S.x/ DPN

kD0.�x/k :
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def term(k, x):

return (-x)**k

S = Sum(term, M=0, N=3)

x = 0.5

print S(x)

print S.term(k=4, x=x) # (-0.5)**4

a) Implement class Sum such that the code snippet above works.
b) Implement a test function test_Sum() for verifying the results of the various

methods in class Sum for a specific choice of fk.x/.
c) Apply class Sum to compute the Taylor polynomial approximation to sin x for

x D � and some chosen x and N .

Filename: Sum.

Exercise 7.13: Apply a numerical differentiation class
Isolate class Derivative from Sect. 7.3.2 in a module file. Also isolate class Y
from Sect. 7.1.2 in a module file. Make a program that imports class Derivative
and class Y and applies the former to differentiate the function y.t/ D v0t � 1

2
gt2

represented by class Y. Compare the computed derivative with the exact value for
t D 0; 1

2
v0=g; v0=g.

Filenames: dYdt.py, Derivative.py, Y.py.

Exercise 7.14: Implement an addition operator
An anthropologist was asking a primitive tribesman about arithmetic. When the
anthropologist asked, What does two and two make? the tribesman replied, Five.
Asked to explain, the tribesman said, If I have a rope with two knots, and another
rope with two knots, and I join the ropes together, then I have five knots.

a) Make a class Rope for representing a rope with a given number of knots. Imple-
ment the addition operator in this class such that we can join two ropes together
in the way the tribesman described:

>>> from Rope import Rope

>>> rope1 = Rope(2)

>>> rope2 = Rope(2)

>>> rope3 = rope1 + rope2

>>> print rope3

5

As seen, the class also features a __str__ method for returning the number of
knots on the rope.

b) Equip the module file with a test function for verifying the implementation of
the addition operator.

Filename: Rope.py.
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Exercise 7.15: Implement in-place += and -= operators
As alternatives to the deposit and withdrawmethods in class Account class from
Sect. 7.2.1, we could use the operation += for deposit and -= for withdraw. Im-
plement the += and -= operators, a __str__ method, and preferably a __repr__
method in class Account. Write a test_Account() function to verify the imple-
mentation of all functionality in class Account.

Hint The special methods __iadd__ and __isub__ implement the += and -= op-
erators, respectively. For instance, a -= p implies a call to a.__isub__(p). One
important feature of __iadd__ and __isub__ is that they must return self to work
properly, see the documentation of these methods in Chapter 3 of the Python Lan-
guage Reference4.
Filename: Account4.

Exercise 7.16: Implement a class for numerical differentiation
A widely used formula for numerical differentiation of a function f .x/ takes the
form

f 0.x/ � f .x C h/ � f .x � h/

2h
: (7.8)

This formula usually gives more accurate derivatives than (7.1) because it applies
a centered, rather than a one-sided, difference.

The goal of this exercise is to use the formula (7.8) to automatically differenti-
ate a mathematical function f .x/ implemented as a Python function f(x). More
precisely, the following code should work:

def f(x):

return 0.25*x**4

df = Central(f) # make function-like object df

# df(x) computes the derivative of f(x) approximately

x = 2

print ’df(%g)=%g’ % (x, df(x))

print ’exact:’, x**3

a) Implement class Central and test that the code above works. Include an op-
tional argument h to the constructor in class Central so that h in the approxi-
mation (7.8) can be specified.

b) Write a test function test_Central() to verify the implementation. Utilize the
fact that the formula (7.8) is exact for quadratic polynomials (provided h is not
too small, then rounding errors in (7.8) require use of a (much) larger tolerance
than the expected machine precision).

c) Write a function table(f, x, h=1E-5) that prints a table of errors in the nu-
merical derivative (7.8) applied to a function f at some points x. The argument
f is a sympy expression for a function. This f object can be transformed to
a Python function and fed to the constructor of class Central, and f can be
used to compute the exact derivative symbolically. The argument x is a list or
array of points x, and h is the h in (7.8).

4 http://docs.python.org/2/reference/

http://docs.python.org/2/reference/
http://docs.python.org/2/reference/
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Hint The following session demonstrates how sympy can differentiate a mathemat-
ical expression and turn the result into a Python function:

>>> import sympy

>>> x = sympy.Symbol(’x’)

>>> f_expr = ’x*sin(2*x)’

>>> df_expr = sympy.diff(f_expr)

>>> df_expr

2*x*cos(2*x) + sin(2*x)

>>> df = sympy.lambdify([x], df_expr) # make Python function

>>> df(0)

0.0

d) Organize the file with the class and functions such that it can be used a module.

Filename: Central.

Exercise 7.17: Examine a program
Consider this program file for computing a backward difference approximation to
the derivative of a function f(x):

from math import *

class Backward(object):

def __init__(self, f, h=e-9):

self.f, self.h = f, h

def __call__(self, x):

h, f = self.h, self.f

return (f(x) - f(x-h))/h # finite difference

dsin = Backward(sin)

e = dsin(0) - cos(0); print ’error:’, e

dexp = Backward(exp, h=e-7)

e = dexp(0) - exp(0); print ’error:’, e

The output becomes

error: -1.00023355634

error: 371.570909212

Is the approximation that bad, or are there bugs in the program?
Filename: find_errors_class.

Exercise 7.18: Modify a class for numerical differentiation
Make the two data attributes h and f of class Derivative from Sect. 7.3.2 pro-
tected as explained in Sect. 7.2.1. That is, prefix h and f with an underscore to
tell users that these attributes should not be accessed directly. Add two methods
get_precision() and set_precision(h) for reading and changing h. Make
a separate test function for checking that the new class works as intended.
Filename: Derivative_protected.
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Exercise 7.19: Make a class for the Heaviside function

a) Use a class to implement the discontinuous Heaviside function (3.25) from Ex-
ercise 3.29 and the smoothed continuous version (3.26) from Exercise 3.30 such
that the following code works:

H = Heaviside() # original discontinous Heaviside function

print H(0.1)

H = Heaviside(eps=0.8) # smoothed continuous Heaviside function

print H(0.1)

b) Extend class Heaviside such that array arguments are allowed:

H = Heaviside() # original discontinous Heaviside function

x = numpy.linspace(-1, 1, 11)

print H(x)

H = Heaviside(eps=0.8) # smoothed Heaviside function

print H(x)

Hint Use ideas from Sect. 5.5.2.

c) Extend class Heaviside such that it supports plotting:

H = Heaviside()

x, y = H.plot(xmin=-4, xmax=4) # x in [-4, 4]

from matplotlib.pyplot import plot

plot(x, y)

H = Heaviside(eps=1)

x, y = H.plot(xmin=-4, xmax=4)

plot(x, y)

Hint Techniques from Sect. 5.4.1 must in the first case be used to return arrays
x and y such that the discontinuity is exactly reproduced. In the continuous
(smoothed) case, one needs to compute a sufficiently fine resolution (x) based on
the eps parameter, e.g., 201/� points in the interval Œ��; ��, with a coarser set of
coordinates outside this interval where the smoothed Heaviside function is almost
constant, 0 or 1.

d) Write a test function test_Heaviside() for verifying the result of the various
methods in class Heaviside.

Filename: Heaviside_class.

Exercise 7.20: Make a class for the indicator function
The purpose of this exercise is the make a class implementation of the indicator
function from Exercise 3.31. Let the implementation be based on expressing the
indicator function in terms of Heaviside functions. Allow for an � parameter in the
calls to the Heaviside function, such that we can easily choose between a discontin-
uous and a smoothed, continuous version of the indicator function:
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I = Indicator(a, b) # indicator function on [a,b]

print I(b+0.1), I((a+b)/2.0)

I = Indicator(0, 2, eps=1) # smoothed indicator function on [0,2]

print I(0), I(1), I(1.9)

Note that if you build on the version of class Heaviside in Exercise 7.19b, any
Indicator instance will accept array arguments too.
Filename: Indicator.

Exercise 7.21: Make a class for piecewise constant functions
The purpose of this exercise is to make a class implementation of a piecewise con-
stant function, as defined in Exercise 3.32.

a) Implement the minimum functionality such that the following code works:

f = PiecewiseConstant([(0.4, 1), (0.2, 1.5), (0.1, 3)], xmax=4)

print f(1.5), f(1.75), f(4)

x = np.linspace(0, 4, 21)

print f(x)

b) Add a plot method to class PiecewiseConstant such that we can easily plot
the graph of the function:

x, y = f.plot()

from matplotlib.pyplot import plot

plot(x, y)

Filename: PiecewiseConstant.

Exercise 7.22: Speed up repeated integral calculations
The observant reader may have noticed that our Integral class from Sect. 7.3.3 is
very inefficient if we want to tabulate or plot a function F.x/ D R x

a
f .x/ for several

consecutive values of x: x0 < x1 < � � � < xm. Requesting F.xk/ will recompute
the integral computed for F.xk�1/, and this is of course waste of computer work.
Use the ideas from Sect. A.1.7 to modify the __call__ method such that if x is
an array, assumed to contain coordinates of increasing value: x0 < x1 < � � � <

xm, the method returns an array with F.x0/; F.x1/; : : : ; F .xm/ with the minimum
computational work. Also write a test function to verify that the implementation is
correct.

Hint The n (n) parameter in the constructor of the Integral class can be taken as
the total number of trapezoids (intervals) that are to be used to compute the final
F.xm/ value. The integral over an interval Œxk; xkC1� can then be computed by
the trapezoidal function (or an Integral object) using an appropriate fraction
of the n total trapezoids. This fraction can be .xkC1 � xk/=.xm � a/ (i.e., nk D
n.xkC1 � xk/=.xm � a/) or one may simply use a constant nk D n=m number of
trapezoids for all the integrals over Œxk; xkC1�, k D 0; : : : ; m � 1.
Filename: Integral_eff.
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Exercise 7.23: Apply a class for polynomials
The Taylor polynomial of degree N for the exponential function ex is given by

p.x/ D
NX

kD0

xk

kŠ
:

Make a program that (i) imports class Polynomial from Sect. 7.3.7, (ii) reads x

and a series of N values from the command line, (iii) creates a Polynomial object
for each N value for computing with the given Taylor polynomial, and (iv) prints
the values of p.x/ for all the given N values as well as the exact value ex . Try the
program out with x D 0:5; 3; 10 and N D 2; 5; 10; 15; 25.
Filename: Polynomial_exp.

Exercise 7.24: Find a bug in a class for polynomials
Go through this alternative implementation of class Polynomial from Sect. 7.3.7
and explain each line in detail:

class Polynomial(object):

def __init__(self, coefficients):

self.coeff = coefficients

def __call__(self, x):

return sum([c*x**i for i, c in enumerate(self.coeff)])

def __add__(self, other):

maxlength = max(len(self), len(other))

# Extend both lists with zeros to this maxlength

self.coeff += [0]*(maxlength - len(self.coeff))

other.coeff += [0]*(maxlength - len(other.coeff))

result_coeff = self.coeff

for i in range(maxlength):

result_coeff[i] += other.coeff[i]

return Polynomial(result_coeff)

The enumerate function, used in the __call__method, enables us to iterate over
a list somelist with both list indices and list elements: for index, element
in enumerate(somelist). Write the code above in a file, and demonstrate that
adding two polynomials does not work. Find the bug and correct it.
Filename: Polynomial_error.

Exercise 7.25: Implement subtraction of polynomials
Implement the special method __sub__ in class Polynomial from Sect. 7.3.7. Add
a test for this functionality in function test_Polynomial.

Hint Study the __add__ method in class Polynomial and treat the two cases,
where the lengths of the lists in the polynomials differs, separately.
Filename: Polynomial_sub.

Exercise 7.26: Test the functionality of pretty print of polynomials
Verify the functionality of the __str__ method in class Polynomial from
Sect. 7.3.7 by writing a new test function test_Polynomial_str().
Filename: Polynomial_test_str.
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Exercise 7.27: Vectorize a class for polynomials
Introducing an array instead of a list in class Polynomial does not enhance the
efficiency of the implementation unless the mathematical computations are also
vectorized. That is, all explicit Python loops must be substituted by vectorized
expressions.

a) Go through class Polynomial.py and make sure the coeff attribute is always
a numpy array with float elements.

b) Update the test function test_Polynomial to make use of the fact that
the coeff attribute is always a numpy array with float elements. Run
test_Polynomial to check that the new implementation is correct.

c) Vectorize the __add__ method by adding the common parts of the coefficients
arrays and then appending the rest of the longest array to the result.

Hint Appending an array a to an array b can be done by concatenate(a, b).

d) Vectorize the __call__ method by observing that evaluation of a polynomial,Pn�1
iD0 ci x

i , can be computed as the inner product of two arrays: .c0; : : : ; cn�1/

and .x0; x1; : : : ; xn�1/. The latter array can be computed by x**p, where p is
an array with powers 0; 1; : : : ; n � 1, and x is a scalar.

e) The differentiatemethod can be vectorized by the statements

n = len(self.coeff)

self.coeff[:-1] = linspace(1, n-1, n-1)*self.coeff[1:]

self.coeff = self.coeff[:-1]

Show by hand calculations in a case where n is 3 that the vectorized statements
produce the same result as the original differentiatemethod.

Filename: Polynomial_vec.

Remarks The __mul__method is more challenging to vectorize so you may leave
this unaltered. Check that the vectorized versions of __add__, __call__, and
differentiatework as intended by calling the test_Polynomial function.

Exercise 7.28: Use a dict to hold polynomial coefficients
Use a dictionary (instead of a list) for the coeff attribute in class Polynomial from
Sect. 7.3.7 such that self.coeff[k] holds the coefficient of the xk term. The
advantage with a dictionary is that only the nonzero coefficients in a polynomial
need to be stored.

a) Implement a constructor and the __call__ method for evaluating the polyno-
mial. The following demonstration code should work:

from Polynomial_dict import Polynomial

p1_dict = {4: 1, 2: -2, 0: 3} # polynomial x^4 - 2*x^2 + 3

p1 = Polynomial(p1_dict)

print p1(2) # prints 11 (16-8+3)
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b) Implement the __add__ method. The following demonstration code should
work:

p1 = Polynomial({4: 1, 2: -2, 0: 3}) # x^4 - 2*x^2 + 3

p2 = Polynomial({0: 4, 1: 3} # 4 + 3*x

p3 = p1 + p2 # x^4 - 2*x^2 + 3*x + 7

print p3.coeff # prints {0: 7, 1: 3, 2: -2, 4: 1}

Hint The structure of __add__may be

class Polynomial(object):

...

def __add__(self, other):

"""Return self + other as a Polynomial object."""

result = self.coeff.copy()

for exponent in result:

if exponent in other.coeff:

# add other’s term to result’s term

else:

result[exponent] = other[exponent]

# return Polynomial object based on result dict

c) Implement the __sub__ method. The following demonstration code should
work:

p1 = Polynomial({4: 1, 2: -2, 0: 3}) # x^4 - 2*x^2 + 3

p2 = Polynomial({0: 4, 1: 3} # 4 + 3*x

p3 = p1 - p2 # x^4 - 2*x^2 - 3*x - 1

print p3.coeff # prints {0: -1, 1: -3, 2: -2, 4: 1}

d) Implement the __mul__ method. The following demonstration code should
work:

p1 = Polynomial({0: 1, 3: 1}) # 1 + x^3

p2 = Polynomial({1: -2, 2: 3}) # -2*x + 3*x^2

p3 = p1*p3

print p3.coeff # prints {1: -2, 2: 3, 4: -2, 5: 3}

Hint Study the __mul__ method in class Polynomial based on a list representa-
tion of the data in the polynomial and adapt to a dictionary representation.

e) Write a test function for each of the methods __call__, __add__, and
__mul__.

Filename: Polynomial_dict.

Exercise 7.29: Extend class Vec2D to work with lists/tuples
The Vec2D class from Sect. 7.4 supports addition and subtraction, but only addition
and subtraction of two Vec2D objects. Sometimes we would like to add or subtract
a point that is represented by a list or a tuple:
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u = Vec2D(-2, 4)

v = u + (1,1.5)

w = [-3, 2] - v

That is, a list or a tuple must be allowed in the right or left operand. Implement
such an extension of class Vec2D.

Hint Ideas are found in Sects. 7.5.3 and 7.5.5.
Filename: Vec2D_lists.

Exercise 7.30: Extend class Vec2D to 3D vectors
Extend the implementation of class Vec2D from Sect. 7.4 to a class Vec3D for vec-
tors in three-dimensional space. Add a method cross for computing the cross
product of two 3D vectors.
Filename: Vec3D.

Exercise 7.31: Use NumPy arrays in class Vec2D
The internal code in class Vec2D from Sect. 7.4 can be valid for vectors in any
space dimension if we represent the vector as a NumPy array in the class instead of
separate variables x and y for the vector components. Make a new class Vec where
you apply NumPy functionality in the methods. The constructor should be able to
treat all the following ways of initializing a vector:

a = array([1, -1, 4], float) # numpy array

v = Vec(a)

v = Vec([1, -1, 4]) # list

v = Vec((1, -1, 4)) # tuple

v = Vec(1, -1) # coordinates

Hint In the constructor, use variable number of arguments as described in Sect. H.7.
All arguments are then available as a tuple, and if there is only one element in
the tuple, it should be an array, list, or tuple you can send through asarray to
get a NumPy array. If there are many arguments, these are coordinates, and the
tuple of arguments can be transformed by array to a NumPy array. Assume in
all operations that the involved vectors have equal dimension (typically that other
has the same dimension as self). Recall to return Vec objects from all arithmetic
operations, not NumPy arrays, because the next operation with the vector will then
not take place in Vec but in NumPy. If self.v is the attribute holding the vector as
a NumPy array, the addition operator will typically be implemented as

class Vec(object):

...

def __add__(self, other):

return Vec(selv.v + other.v)

Filename: Vec.
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Exercise 7.32: Impreciseness of interval arithmetics
Consider the function f .x/ D x=.1 C x/ on Œ1; 2�. Find the variation of f over
Œ1; 2�. Use interval arithmetics from Sect. 7.7.2 to compute the variation of f when
x 2 Œ1; 2�.
Filename: interval_arithmetics.

Remarks In this case, interval arithmetics overestimates the variation in f . The
reason is that x occurs more than once in the formula for f (the so-called depen-
dency problem5).

Exercise 7.33: Make classes for students and courses
Use classes to reimplement the summarizing problem in Sect. 6.7.2. More precisely,
introduce a class Student and a class Course. Find appropriate attributes. The
classes should have a __str__method for pretty-printing of the contents.
Filename: Student_Course.

Exercise 7.34: Find local and global extrema of a function
Extreme points of a function f .x/ are normally found by solving f 0.x/ D 0.
A much simpler method is to evaluate f .x/ for a set of discrete points in the in-
terval Œa; b� and look for local minima and maxima among these points. We work
with n C 1 equally spaced points a D x0 < x1 < � � � < xn D b, xi D a C ih,
h D .b � a/=n.

First we find all local extreme points in the interior of the domain. Local minima
are recognized by

f .xi�1/ > f .xi / < f .xiC1/; i D 1; : : : ; n � 1 :

Similarly, at a local maximum point xi we have

f .xi�1/ < f .xi / > f .xiC1/; i D 1; : : : ; n � 1 :

LetPmin be the set of x values for local minima and Fmin the set of the corresponding
f .x/ values at these minima. Two sets Pmax and Fmax are defined correspondingly
for the maxima.

The boundary points x D a and x D b are for algorithmic simplicity also defined
as local extreme points: x D a is a local minimum if f .a/ < f .x1/, and a local
maximum otherwise. Similarly, x D b is a local minimum if f .b/ < f .xn�1/, and
a local maximum otherwise. The end points a and b and the corresponding function
values must be added to the sets Pmin; Pmax; Fmin; Fmax.

The global maximum point is defined as the x value corresponding to the maxi-
mum value in Fmax. The global minimum point is the x value corresponding to the
minimum value in Fmin.

a) Make a class MinMax with the following functionality:
� __init__ takes f .x/, a, b, and n as arguments, and calls a method

_find_extrema to compute the local and global extreme points.

5 http://en.wikipedia.org/wiki/Interval_arithmetic#Dependency_problem

http://en.wikipedia.org/wiki/Interval_arithmetic#Dependency_problem
http://en.wikipedia.org/wiki/Interval_arithmetic#Dependency_problem
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� _find_extrema implements the algorithm above for finding local and global
extreme points, and stores the sets Pmin; Pmax; Fmin; Fmax as list attributes in
the (self) instance.

� get_global_minimum returns the global minimum point as a pair .x; f .x//.
� get_global_maximum returns the global maximum point as a pair .x; f .x//.
� get_all_minima returns a list or array of all .x; f .x// minima.
� get_all_maxima returns a list or array of all .x; f .x// maxima.
� __str__ returns a string where a nicely formatted table of all the min/max

points are listed, plus the global extreme points.
Here is a sample code using class MinMax:

def f(x):

return x**2*exp(-0.2*x)*sin(2*pi*x)

m = MinMax(f, 0, 4, 5001)

print m

The output becomes

All minima: 0.8056, 1.7736, 2.7632, 3.7584, 0

All maxima: 0.3616, 1.284, 2.2672, 3.2608, 4

Global minimum: 3.7584

Global maximum: 3.2608

Make sure that the program also works for functions without local extrema, e.g.,
linear functions f .x/ D ax C b.

b) The algorithm sketched above finds local extreme points xi , but all we know
is that the true extreme point is in the interval .xi�1; xiC1/. A more accu-
rate algorithm may take this interval as a starting point and run a Bisection
method (see Sect. 4.11.2) to find the extreme point Nx such that f 0. Nx/ D 0. Add
a method _refine_extrema in class MinMax, which goes through all the inte-
rior local minima and maxima and solves f 0. Nx/ D 0. Compute f 0.x/ using the
Derivative class (Sect. 7.3.2 with h� xiC1 � xi�1.

Filename: minmaxf.

Exercise 7.35: Find the optimal production for a company
The company PROD produces two different products, P1 and P2, based on three
different raw materials, M1, M2 and M3. The following table shows how much of
each raw material Mi that is required to produce a single unit of each product Pj :

P1 P2

M1 2 1
M2 5 3
M3 0 4

For instance, to produce one unit of P2 one needs 1 unit of M1, 3 units of M2 and
4 units of M3. Furthermore, PROD has available 100, 80 and 150 units of material
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M1, M2 and M3 respectively (for the time period considered). The revenue per
produced unit of product P1 is 150 NOK, and for one unit of P2 it is 175 NOK. On
the other hand the raw materials M1, M2 and M3 cost 10, 17 and 25 NOK per unit,
respectively. The question is: how much should PROD produce of each product?
We here assume that PROD wants to maximize its net revenue (which is revenue
minus costs).

a) Let x and y be the number of units produced of product P1 and P2, respectively.
Explain why the total revenue f .x; y/ is given by

f .x; y/ D 150x � .10 � 2C 17 � 5/x C 175y � .10 � 1C 17 � 3C 25 � 4/y

and simplify this expression. The function f .x; y/ is linear in x and y (make
sure you know what linearity means).

b) Explain why PROD’s problem may be stated mathematically as follows:

maximize f .x; y/

subject to

2x C y � 100

5x C 3y � 80

4y � 150

x 	 0; y 	 0:

(7.9)

This is an example of a linear optimization problem.
c) The production .x; y/ may be considered as a point in the plane. Illustrate

geometrically the set T of all such points that satisfy the constraints in model
(7.9). Every point in this set is called a feasible point.

Hint For every inequality determine first the straight line obtained by replacing the
inequality by equality. Then, find the points satisfying the inequality (a half-plane),
and finally, intersect these half-planes.

d) Make a program for drawing the straight lines defined by the inequalities. Each
line can be written as ax C by D c. Let the program read each line from
the command line as a list of the a, b, and c values. In the present case the
command-line arguments will be

’[2,1,100]’ ’[5,3,80]’ ’[0,4,150]’ ’[1,0,0]’ ’[0,1,0]’

Hint Perform an eval on the elements of sys.argv[1:] to get a, b, and c for
each line as a list in the program.

e) Let ˛ be a positive number and consider the level set of the function f , defined
as the set

L˛ D f.x; y/ 2 T W f .x; y/ D ˛g:
This set consists of all feasible points having the same net revenue ˛. Extend the
program with two new command-line arguments holding p and q for a function
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f .x; y/ D px C qy. Use this information to compute the level set lines y D
˛=q � px=q, and plot the level set lines for some different values of ˛ (use the
˛ value in the legend for each line).

f) Use what you saw in e) to solve the problem (7.9) geometrically. This solution
is called an optimal solution.

Hint How large can you choose ˛ such that L˛ is nonempty?

g) Assume that we have other values on the revenues and costs than the actual
numbers in a). Explain why (7.9), with these new parameter values, still has an
optimal solution lying in a corner point of T . Extend the program to calculate all
the corner points of a region T in the plane determined by the linear inequalities
like those listed above. Moreover, the program shall compute the maximum of
a given linear function f .x; y/ D ax C by over T by calculating the function
values in the corner points and finding the smallest function value.

Filename: optimization.
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Fig. 8.8 Development of an investment with random jumps of the interest rate at random points
of time. Top left: mean value of investment ˙ one standard deviation. Top right: mean value of
the interest rate ˙ one standard deviation. Bottom left: five paths of the investment development.
Bottom right: five paths of the interest rate development

Running the program with the input data

x0 = 1 # initial investment

p0 = 5 # initial interest rate

N = 10*12 # number of months

M = 3 # p changes (on average) every M months

n = 1000 # number of simulations

m = 0.5 # adjustment of p

and initializing the seed of the random generator to 1, we get four plots, which are
shown in Fig. 8.8.

8.9 Exercises

Exercise 8.1: Flip a coin times
Make a program that simulates flipping a coin N times. Print out tail or head for
each flip and let the program count and print the number of heads.

Hint Use r = random.random() and define head as r <= 0.5, or draw an in-
teger among f0; 1g with r = random.randint(0,1) and define head when r is
0.
Filename: flip_coin.
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Exercise 8.2: Compute a probability
What is the probability of getting a number between 0.5 and 0.6 when drawing
uniformly distributed random numbers from the interval Œ0; 1/? To answer this
question empirically, let a program draw N such random numbers using Python’s
standard random module, count how many of them, M , that fall in the interval
Œ0:5; 0:6�, and compute the probability as M=N . Run the program with the four
values N D 10i for i D 1; 2; 3; 6.
Filename: compute_prob.

Exercise 8.3: Choose random colors
Suppose we have eight different colors. Make a program that chooses one of these
colors at random and writes out the color.

Hint Use a list of color names and use the choice function in the randommodule
to pick a list element.
Filename: choose_color.

Exercise 8.4: Draw balls from a hat
Suppose there are 40 balls in a hat, of which 10 are red, 10 are blue, 10 are yellow,
and 10 are purple. What is the probability of getting two blue and two purple balls
when drawing 10 balls at random from the hat?
Filename: draw_10balls.

Exercise 8.5: Computing probabilities of rolling dice
This exercise deals with four questions:

1. You throw a die. What is the probability of getting a 6?
2. You throw a die four times in a row. What is the probability of getting 6 all the

times?
3. Suppose you have thrown the die three times with 6 coming up all times. What

is the probability of getting a 6 in the fourth throw?
4. Suppose you have thrown the die 100 times and experienced a 6 in every throw.

What do you think about the probability of getting a 6 in the next throw?

First try to solve the questions from a theoretical or common sense point of view.
Thereafter, make functions for simulating cases 1, 2, and 3.
Filename: rolling_dice.

Exercise 8.6: Estimate the probability in a dice game
Make a program for estimating the probability of getting at least one die with six
eyes when throwing n dice. Read n and the number of experiments from the com-
mand line.

As a partial verification, compare the Monte Carlo simulation results to the exact
answer 11/36 for n D 2 and observe that the approximate probabilities approach
the exact probability as the number of simulations grow.
Filename: one6_ndice.
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Exercise 8.7: Compute the probability of hands of cards
Use the Deck.py module (see Sect. 8.2.5) and the same_rank and same_suit
functions from the cards module (see Sect. 8.2.4) to compute the following prob-
abilities by Monte Carlo simulation:

� exactly two pairs among five cards,
� four or five cards of the same suit among five cards,
� four-of-a-kind among five cards.

Filename: card_hands.

Exercise 8.8: Decide if a dice game is fair
Somebody suggests the following game. You pay 1 euro and are allowed to throw
four dice. If the sum of the eyes on the dice is less than 9, you get paid r euros back,
otherwise you lose the 1 euro investment. Assume r D 10. Will you then in the
long run win or lose money by playing this game? Answer the question by making
a program that simulates the game. Read r and the number of experiments N from
the command line.
Filename: sum_4dice.

Exercise 8.9: Adjust a game to make it fair
It turns out that the game in Exercise 8.8 is not fair, since you lose money in the
long run. The purpose of this exercise is to adjust the winning award so that the
game becomes fair, i.e., that you neither lose nor win money in the long run.

Make a Python function that computes the probability p of getting a sum less
than s when rolling n dice. Use the reasoning in Sect. 8.3.2 to find the award per
game, r , that makes the game fair. Run the program from Exercise 8.8 with this r

on the command line and verify that the game is now (approximately) fair.
Filename: sum_ndice_fair.

Exercise 8.10: Make a test function for Monte Carlo simulation
We consider the Python function in Exercise 8.9 for computing a probability p that
the sum of the eyes on n dice is less than s. The aim is to write a test function for
verifying the computation of p.

a) Find some combinations of n and s that must result in p D 0 and p D 1 and
make the appropriate code in the test function.

b) Fix the seed of the random number generator and record the first eight random
numbers to 16 digits. Set n D 2, perform four experiments, and compute by
hand what the probability estimate becomes (choose any appropriate s). Write
the necessary code in the test function to compare this manually calculated result
with the what is produced by the function from Exercise 8.9.

Filename: test_sum_ndice.

Exercise 8.11: Generalize a game
Consider the game in Sect. 8.3.2. A generalization is to think as follows: you throw
one die until the number of eyes is less than or equal to the previous throw. Let m

be the number of throws in a game.

http://tinyurl.com/pwyasaa/random/Deck.py
http://tinyurl.com/pwyasaa/random/cards.py
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a) Use Monte Carlo simulation to compute the probability of getting m D
2; 3; 4; : : :.

Hint For m 	 6 the throws must be exactly 1; 2; 3; 4; 5; 6; 6; 6; : : :, and the proba-
bility of each is 1/6, giving the total probability 6�m. Use N D 106 experiments as
this should suffice to estimate the probabilities for m � 5, and beyond that we have
the analytical expression.

b) If you pay 1 euro to play this game, what is the fair amount to get paid when
win? Answer this question for each of the cases m D 2; 3; 4; 5.

Filename: incr_eyes.

Exercise 8.12: Compare two playing strategies
Suggest a player strategy for the game in Sect. 8.4.2. Remove the question in the
player_guess function in the file ndice2.py, and implement the chosen strategy
instead. Let the program play a large number of games, and record the number of
times the computer wins. Which strategy is best in the long run: the computer’s or
yours?
Filename: simulate_strategies1.

Exercise 8.13: Investigate strategies in a game
Extend the program from Exercise 8.12 such that the computer and the player can
use a different number of dice. Let the computer choose a random number of dice
between 2 and 20. Experiment to find out if there is a favorable number of dice for
the player.
Filename: simulate_strategies2.

Exercise 8.14: Investigate the winning chances of some games
An amusement park offers the following game. A hat contains 20 balls: 5 red, 5
yellow, 3 green, and 7 brown. At a cost of 2n euros you can draw 4 � n � 10 balls
at random from the hat (without putting them back). Before you are allowed to look
at the drawn balls, you must choose one of the following options:

1. win 60 euros if you have drawn exactly three red balls
2. win 7C 5

p
n euros if you have drawn at least three brown balls

3. win n3� 26 euros if you have drawn exactly one yellow ball and one brown ball
4. win 23 euros if you have drawn at least one ball of each color

For each of the 4n different types of games you can play, compute the net income
(per play) and the probability of winning. Is there any of the games (i.e., any com-
binations of n and the four options above) where you will win money in the long
run?
Filename: draw_balls.

http://tinyurl.com/pwyasaa/random/ndice2.py
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Exercise 8.15: Compute probabilities of throwing two dice
Throw two dice a large number of times in a program. Record the sum of the
eyes each time and count how many times each of the possibilities for the sum
(2, 3, : : :, 12) appear. Compute the corresponding probabilities and compare them
with the exact values. (To find the exact probabilities, set up all the 6 
 6 possible
outcomes of throwing two dice, and then count how many of them that has a sum s

for s D 2; 3; : : : ; 12.)
Filename: freq_2dice.

Exercise 8.16: Vectorize flipping a coin
Simulate flipping a coin N times and write out the number of tails. The code should
be vectorized, i.e., there must be no loops in Python.

Hint Constructions like numpy.where(r<=0.5, 1, 0) combined with numpy.
sum, or r[r<=0.5].size, are useful, where r is an array of random numbers be-
tween 0 and 1.
Filename: flip_coin_vec.

Exercise 8.17: Vectorize a probablility computation
The purpose of this exercise is to speed up the code in Exercise 8.2 by vectorization.

Hint For an array r of uniformly distributed random numbers on Œ0; 1/, make use of
r1 = r[r>0.5] and r1[r1<0.6]. An alternative is numpy.where combine with
a compound boolean expression with numpy.logical_and(0.5>=r, r<=0.6).
See the discussion of this topic in Sect. 5.5.3.
Filename: compute_prob_vec.

Exercise 8.18: Throw dice and compute a small probability
Use Monte Carlo simulation to compute the probability of getting 6 eyes on all dice
when rolling 7 dice.

Hint You need a large number of experiments in this case because of the small
probability (see the first paragraph of Sect. 8.3), so a vectorized implementation
may be important.
Filename: roll_7dice.

Exercise 8.19: Is democracy reliable as a decision maker?
A democracy takes decisions based on majority votes. We shall investigate if this is
a good idea or if a single person would produce better decisions.

We shall ask about pure facts, not opinions. This means that the question to
be answered by a population has a definite “yes” or “no” answer. For example,
“Can Python lists contain tuples as elements?” The correct answer is “yes”. Asking
a population such a question and relying on the majority of votes, is a reliable
procedure if the competence level in the population is sufficiently high.

a) Assume that the competence level in a population can be modeled by a proba-
bility p such that if you ask N people a question, M D pN of them will give
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the correct answer (as N !1). Here we make the questionable assumption of
a homogeneous population, in the sense that p is the same for every individual.
Make a function homogeneous(p, N) for simulating whether the majority
vote of a population of N individuals arrives at the right answer, if the prob-
ability of answering correctly is p for an individual. Make another function
homogeneous_ex() that runs 10 tests the specific case of N D 5 (as when
relying on the majority of a student group) and 10 tests when asking a whole
city of N D 1; 000; 000 voters. Try p D 0:49, p D 0:51, and p D 0:8. Are the
results as you would expect from intuition?

Hint Asking one individual is like flipping a biased coin that has probability p of
giving head (right answer) and probability 1 � p of giving tail (wrong answer).

b) The problem in a) can be exactly solved, since each question is a Bernoulli trial
with success probability p, and the probability of a correct majority vote is the
same as the probability of getting N=2 or more successes in N trials. For large
N , the probability of M successes in N trials can be well approximated by
a normal (Gaussian) density function:

g.M / D .
p

2�Np.1 � p//�1 exp .�1

2
.M �Np/2=.Np.1 � p/// :

The majority vote is correct when M > N=2, and the probability of this event is
given by 1�˚.N=2/, where ˚ is the cumulative normal distribution with mean
Np and variance Np.1 � p/.
Plot the probability of being right against p.
Say 5 questions are of importance. What competence level p does a king need
to have all 5 right compared to the population having all 5 right.

c) We shall now simulate voting in a heterogeneous population. The probability
that an individual no. i answers correctly is pi , where pi is drawn from a nor-
mal (Gaussian) probability density with mean p and standard deviation s. The
competence level varies between individuals, with s expressing the spreading of
knowledge and p the mean competence level.
Make function heterogeneous(p, N, s) for returning whether the majority
vote is right or wrong in the heterogeneous case. Rerun the examples from a)
with s D 0:2.

d) With a somewhat large variation of the population, i.e., s somewhat large, there
will be some individuals that always provide wrong or right answers according
to this model. To learn about reasonable values s we can investigate unreason-
able large amounts of people who are always right or wrong.
The probability of always being wrong is the probability of pi < 0. This
is given by ˚.�p=s/, where ˚ is the cumulative normal distribution with
mean zero and unit standard deviation. It can be reached in Python as
scipy.stats.norm.cdf. The probability of always being right is the proba-
bility of pi > 1, which can be computed as 1 � ˚..1 � p/=s/. Plot curves of
the probability of always being right and always wrong against s 2 Œ0:1; 0:6�.
Perform this curve plotting in a function extremes(p).

Filename: democracy.
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Exercise 8.20: Difference equation for random numbers
Simple random number generators are based on simulating difference equations.
Here is a typical set of two equations:

xn D .axn�1 C c/ mod m; (8.16)

yn D xn=m; (8.17)

for n D 1; 2; : : :. A seed x0 must be given to start the sequence. The numbers
y1; y2; : : : represent the random numbers and x0; x1; : : : are “help” numbers. Al-
though yn is completely deterministic from (8.16)–(8.17), the sequence yn appears
random. The mathematical expression p mod q is coded as p % q in Python.

Use a D 8121, c D 28411, and m D 134456. Solve the system (8.16)–(8.17) in
a function to generate N random numbers. Make a histogram to examine the dis-
tribution of the numbers (the yn numbers are uniformly distributed if the histogram
is approximately flat).
Filename: diffeq_random.

Exercise 8.21: Make a class for drawing balls from a hat
Consider the example about drawing colored balls from a hat in Sect. 8.3.3. It could
be handy to have an object that acts as a hat:

hat = Hat(red=3, blue=4, green=6)

balls = hat.draw(3)

if balls.count(’red’) == 1 and balls.count(’green’) == 2:

...

a) Write such a class Hat with the shown functionality.

Hint 1 The flexible syntax in the constructor, where the colors of the balls and
the number of balls of each color are freely specified, requires use of a dictionary
(**kwargs) for handling a variable number of keyword arguments, see Sect. H.7.2.

Hint 2 You can borrow useful code from the balls_in_hat.pyprogram and ideas
from Sect. 8.2.5.

b) Apply class Hat to compute the probability of getting 2 brown and 2 blue galls
when drawing 6 balls from a hat with 6 blue, 8 brown, and 3 green balls.

Filename: Hat.

Exercise 8.22: Independent versus dependent random numbers

a) Generate a sequence of N independent random variables with values 0 or
1 and print out this sequence without space between the numbers (i.e., as
001011010110111010).

b) The purpose now is to generate random zeros and ones that are dependent. If
the last generated number was 0, the probability of generating a new 0 is p and
a new 1 is 1 � p. Conversely, if the last generated was 1, the probability of

http://tinyurl.com/pwyasaa/random/balls_in_hat.py
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generating a new 1 is p and a new 0 is 1 � p. Since the new value depends on
the last one, we say the variables are dependent. Implement this algorithm in
a function returning an array of N zeros and ones. Print out this array in the
condense format as described above.

c) Choose N D 80 and try the probabilities p D 0:5, p D 0:8 and p D 0:9.
Can you by visual inspection of the output characterize the differences between
sequences of independent and dependent random variables?

Filename: dependent_random_numbers.

Exercise 8.23: Compute the probability of flipping a coin

a) Simulate flipping a coin N times.

Hint Draw N random integers 0 and 1 using numpy.random.randint.

b) Look at a subset N1 � N of the experiments in a) and compute the probability
of getting a head (M1=N1, where M1 is the number of heads in N1 experiments).
Choose N D 1000 and print out the probability for N1 D 10; 100; 500; 1000.
Generate just N numbers once in the program. How do you think the accuracy
of the computed probability vary with N1? Is the output compatible with this
expectation?

c) Now we want to study the probability of getting a head, p, as a function of N1,
i.e., for N1 D 1; : : : ; N . A first try to compute the probability array for p is

import numpy as np

h = np.where(r <= 0.5, 1, 0)

p = np.zeros(N)

for i in range(N):

p[i] = np.sum(h[:i+1])/float(i+1)

Implement these computations in a function.
d) An array q[i] = np.sum(h([:i])) reflects a cumulative sum and can be effi-

ciently generated by np.cumsum: q = np.cumsum(h). Thereafter we can com-
pute p by q/I, where I[i]=i+1 and I can be computed by np.arange(1,N+1)
or r_[1:N+1] (integers 1, 2, : : :, up to but not including N+1). Use cumsum to
make an alternative vectorized version of the function in c).

e) Write a test function that verifies that the implementations in c) and d) give the
same results.

Hint Use numpy.allclose to compare two arrays.

f) Make a function that applies the timemodule to measure the relative efficiency
of the implementations in c) and d).

g) Plot p against I for the case where N D 10000. Annotate the axis and the plot
with relevant text.

Filename: flip_coin_prob.
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Exercise 8.24: Simulate binomial experiments
Exercise 4.24 describes some problems that can be solved exactly using the formula
(4.8), but we can also simulate these problems and find approximate numbers for
the probabilities. That is the task of this exercise.

Make a general function simulate_binomial(p, n, x) for running n exper-
iments, where each experiment have two outcomes, with probabilities p and 1� p.
The n experiments constitute a success if the outcome with probability p occurs
exactly x times. The simulate_binomial function must repeat the n experiments
N times. If M is the number of successes in the N experiments, the probability
estimate is M=N . Let the function return this probability estimate together with the
error (the exact result is (4.8)). Simulate the three cases in Exercise 4.24 using this
function.
Filename: simulate_binomial.

Exercise 8.25: Simulate a poker game
Make a program for simulating the development of a poker (or simplified poker)
game among n players. Use ideas from Sect. 8.2.4.
Filename: poker.

Exercise 8.26: Estimate growth in a simulation model
The simulation model in Sect. 8.3.5 predicts the number of individuals from gener-
ation to generation. Make a simulation of the one son policy with 10 generations,
a male portion of 0.51 among newborn babies, set the fertility to 0.92, and assume
that a fraction 0.06 of the population will break the law and want 6 children in
a family. These parameters implies a significant growth of the population. See if
you can find a factor r such that the number of individuals in generation n fulfills
the difference equation

xn D .1C r/xn�1 :

Hint Compute r for two consecutive generations xn�1 and xn (r D xn=xn�1 � 1)
and see if r is approximately constant as n increases.
Filename: estimate_growth.

Exercise 8.27: Investigate guessing strategies
In the game from Sect. 8.4.1 it is smart to use the feedback from the program to
track an interval Œp; q� that must contain the secret number. Start with p D 1 and
q D 100. If the user guesses at some number n, update p to nC 1 if n is less than
the secret number (no need to care about numbers smaller than nC 1), or update q

to n � 1 if n is larger than the secret number (no need to care about numbers larger
than n � 1).

Are there any smart strategies to pick a new guess s 2 Œp; q�? To answer this
question, investigate two possible strategies: s as the midpoint in the interval Œp; q�,
or s as a uniformly distributed random integer in Œp; q�. Make a program that imple-
ments both strategies, i.e., the player is not prompted for a guess but the computer
computes the guess based on the chosen strategy. Let the program run a large num-
ber of games and see if one of the strategies can be considered as superior in the
long run.
Filename: strategies4guess.
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Exercise 8.28: Vectorize a dice game
Vectorize the simulation program from Exercise 8.8 with the aid of the module
numpy.random and the numpy.sum function.
Filename: sum9_4dice_vec.

Exercise 8.29: Compute � by a Monte Carlo method
Use the method in Sect. 8.5.3 to compute � by computing the area of a circle.
Choose G as the circle with its center at the origin and with unit radius, and choose
B as the rectangle Œ�1; 1� 
 Œ�1; 1�. A point .x; y/ lies within G if x2 C y2 < 1.
Compare the approximate � with math.pi.
Filename: MC_pi.

Exercise 8.30: Compute � by a Monte Carlo method
This exercise has the same purpose of computing � as in Exercise 8.29, but this
time you should choose G as a circle with center at .2; 1/ and radius 4. Select an
appropriate rectangle B . A point .x; y/ lies within a circle with center at .xc; yc/

and with radius R if .x � xc/
2 C .y � yc/2 < R2.

Filename: MC_pi2.

Exercise 8.31: Compute � by a random sum

a) Let x0; : : : ; xN be N C 1 uniformly distributed random numbers between 0 and
1. Explain why the random sum SN D .N C 1/�1

PN
iD0 2.1 � x2

i /�1=2 is an
approximation to � .

Hint Interpret the sum as Monte Carlo integration and compute the corresponding
integral by hand or sympy.

b) Compute S0; S1; : : : ; SN (using just one set of N C 1 random numbers). Plot
this sequence versus N . Also plot the horizontal line corresponding to the value
of � . Choose N large, e.g., N D 106.

Filename: MC_pi_plot.

Exercise 8.32: 1D random walk with drift
Modify the walk1D.py program such that the probability of going to the right is r

and the probability of going to the left is 1 � r (draw numbers in Œ0; 1/ rather than
integers in f1; 2g). Compute the average position of np particles after 100 steps,
where np is read from the command line. Mathematically one can show that the
average position approaches rns � .1 � r/ns as np ! 1 (ns is the number of
walks). Write out this exact result together with the computed mean position with
a finite number of particles.
Filename: walk1D_drift.

Exercise 8.33: 1D random walk until a point is hit
Set np=1 in the walk1Dv.py program and modify the program to measure how
many steps it takes for one particle to reach a given point x D xp. Give xp on the
command line. Report results for xp D 5; 50; 5000; 50000.
Filename: walk1Dv_hit_point.

http://tinyurl.com/pwyasaa/random/walk1D.py
http://tinyurl.com/pwyasaa/random/walk1Dv.py
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Exercise 8.34: Simulate making a fortune from gaming
A man plays a game where the probability of winning is p and that of losing is
consequently 1 � p. When winning he earns 1 euro and when losing he loses 1
euro. Let xi be the man’s fortune from playing this game i number of times. The
starting fortune is x0. We assume that the man gets a necessary loan if xi < 0 such
that the gaming can continue. The target is a fortune F , meaning that the playing
stops when x D F is reached.

a) Explain why xi is a 1D random walk.
b) Modify one of the 1D random walk programs to simulate the average number

of games it takes to reach the target fortune x D F . This average must be
computed by running a large number of random walks that start at x0 and reach
F . Use x0 D 10, F D 100, and p D 0:49 as example.

c) Suppose the average number of games to reach x D F is proportional to
.F � x0/

r , where r is some exponent. Try to find r by experimenting with the
program. The r value indicates how difficult it is to make a substantial fortune
by playing this game. Note that the expected earning is negative when p < 0:5,
but there is still a small probability for hitting x D F .

Filename: game_as_walk1D.

Exercise 8.35: Simulate pollen movements as a 2D random walk
The motion of single particles can often be described as random walks. On a water
surface, 1000 grains of pollen are placed in a single point. The movement of the
pollen grains can be modeled by a random walk model, where for each second
each grain will move a random distance, along a two-dimensional vector, whose
two components are independently normally distributed with expectation 0mm and
standard deviation 0.05mm.

a) Make a function that implements this kind of 2D random walk. Return an array
with the position of each grain for each step.

b) Make a movie that shows the position of the pollen grains from 0 to 100 seconds.
c) Make a plot of the mean distance from the origin versus time. What do you see?

Filename: pollen.

Exercise 8.36: Make classes for 2D random walk
The purpose of this exercise is to reimplement the walk2D.py program from
Sect. 8.7.1 with the aid of classes.

a) Make a class Particle with the coordinates .x; y/ and the time step number
of a particle as data attributes. A method move moves the particle in one of the
four directions and updates the .x; y/ coordinates. Another class, Particles,
holds a list of Particle objects and a plotstep parameter (as in walk2D.py).
A method movemoves all the particles one step, a method plot can make a plot
of all particles, while a method moves performs a loop over time steps and calls
move and plot in each step.

http://tinyurl.com/pwyasaa/random/walk2D.py
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b) Equip the Particle and Particles classes with print functionality such that
one can print out all particles in a nice way by saying print p (for a Particles
instance p) or print self (inside a method).

Hint In __str__, apply the pformat function from the pprintmodule to the list
of particles, and make sure that __repr__ just reuse __str__ in both classes so the
output looks nice.

c) Make a test function that compares the first three positions of four particles with
the corresponding results computed by the walk2D.py program. The seed of
the random number generator must of course be fixed identically in the two
programs.

d) Organize the complete code as a module such that the classes Particle and
Particles can be reused in other programs. The test block should read the
number of particles from the command line and perform a simulation.

e) Compare the efficiency of the class version against the vectorized version in
walk2Dv.py, using the techniques in Sect. H.8.1.

f) The program developed above cannot be vectorized as long as we base the im-
plementation on class Particle. However, if we remove that class and focus
on class Particles, the latter can employ arrays for holding the positions of
all particles and vectorized updates of these positions in the moves method.
Use ideas from the walk2Dv.py program to make a new class Particles_vec
which vectorizes Particles.

g) Verify the code against the walk2Dv.py program as explained in c). Automate
the verification in a test function.

h) Write a Python function that measures the computational efficiency the vector-
ized class Particles_vec and the scalar class Particles.

Filename: walk2D_class.

Exercise 8.37: 2D random walk with walls; scalar version
Modify the walk2D.py or walk2Dc.py programs from Exercise 8.36 so that the
walkers cannot walk outside a rectangular area A D ŒxL; xH � 
 ŒyL; yH �. Do not
move the particle if its new position is outside A.
Filename: walk2D_barrier.

Exercise 8.38: 2D random walk with walls; vectorized version
Modify the walk2Dv.py program so that the walkers cannot walk outside a rectan-
gular area A D ŒxL; xH � 
 ŒyL; yH �.

Hint First perform the moves of one direction. Then test if new positions are out-
side A. Such a test returns a boolean array that can be used as index in the position
arrays to pick out the indices of the particles that have moved outside A and move
them back to the relevant boundary of A.
Filename: walk2Dv_barrier.

http://tinyurl.com/pwyasaa/random/walk2Dv.py
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Exercise 8.39: Simulate mixing of gas molecules
Suppose we have a box with a wall dividing the box into two equally sized parts. In
one part we have a gas where the molecules are uniformly distributed in a random
fashion. At t D 0 we remove the wall. The gas molecules will now move around
and eventually fill the whole box.

This physical process can be simulated by a 2D random walk inside a fixed
area A as introduced in Exercises 8.37 and 8.38 (in reality the motion is three-
dimensional, but we only simulate the two-dimensional part of it since we already
have programs for doing this). Use the program from either Exercises 8.37 or 8.38
to simulate the process for A D Œ0; 1� 
 Œ0; 1�. Initially, place 10000 particles at
uniformly distributed random positions in Œ0; 1=2� 
 Œ0; 1�. Then start the random
walk and visualize what happens. Simulate for a long time and make a hardcopy of
the animation (an animated GIF file, for instance). Is the end result what you would
expect?
Filename: disorder1.

Remarks Molecules tend to move randomly because of collisions and forces be-
tween molecules. We do not model collisions between particles in the random
walk, but the nature of this walk, with random movements, simulates the effect
of collisions. Therefore, the random walk can be used to model molecular motion
in many simple cases. In particular, the random walk can be used to investigate how
a quite ordered system, where one gas fills one half of a box, evolves through time
to a more disordered system.

Exercise 8.40: Simulate slow mixing of gas molecules
Solve Exercise 8.39 when the wall dividing the box is not completely removed, but
instead has a small hole.
Filename: disorder2.

Exercise 8.41: Guess beer brands
You are presented n glasses of beer, each containing a different brand. You are
informed that there are m 	 n possible brands in total, and the names of all brands
are given. For each glass, you can pay p euros to taste the beer, and if you guess
the right brand, you get q 	 p euros back. Suppose you have done this before and
experienced that you typically manage to guess the right brand T times out of 100,
so that your probability of guessing the right brand is b D T=100.

Make a function simulate(m, n, p, q, b) for simulating the beer tasting
process. Let the function return the amount of money earned and how many correct
guesses (� n) you made. Call simulate a large number of times and compute the
average earnings and the probability of getting full score in the case m D n D 4,
p D 3, q D 6, and b D 1=m (i.e., four glasses with four brands, completely random
guessing, and a payback of twice as much as the cost). How much more can you
earn from this game if your ability to guess the right brand is better, say b D 1=2?
Filename: simulate_beer_tasting.
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Exercise 8.42: Simulate stock prices
A common mathematical model for the evolution of stock prices can be formulated
as a difference equation

xn D xn�1 C�t	xn�1 C xn�1

p
�trn�1; (8.18)

where xn is the stock price at time tn, �t is the time interval between two time
levels (�t D tn � tn�1), 	 is the growth rate of the stock price,  is the volatility
of the stock price, and r0; : : : ; rn�1 are normally distributed random numbers with
mean zero and unit standard deviation. An initial stock price x0 must be prescribed
together with the input data 	,  , and �t .

We can make a remark that (8.18) is a Forward Euler discretization of a stochastic
differential equation for a continuous price function x.t/:

dx

dt
D 	x C N.t/;

where N.t/ is a so-called white noise random time series signal. Such equations
play a central role in modeling of stock prices.

Make R realizations of (8.18) for n D 0; : : : ; N for N D 5000 steps over a time
period of T D 180 days with a step size �t D T=N .
Filename: stock_prices.

Exercise 8.43: Compute with option prices in finance
In this exercise we are going to consider the pricing of so-called Asian options.
An Asian option is a financial contract where the owner earns money when certain
market conditions are satisfied.

The contract is specified by a strike price K and a maturity time T . It is written
on the average price of the underlying stock, and if this average is bigger than the
strike K, the owner of the option will earn the difference. If, on the other hand,
the average becomes less, the owner receives nothing, and the option matures in the
value zero. The average is calculated from the last trading price of the stock for
each day.

From the theory of options in finance, the price of the Asian option will be the
expected present value of the payoff. We assume the stock price dynamics given as,

S.t C 1/ D .1C r/S.t/C S.t/�.t/; (8.19)

where r is the interest-rate, and  is the volatility of the stock price. The time t

is supposed to be measured in days, t D 0; 1; 2; : : :, while �.t/ are independent
identically distributed normal random variables with mean zero and unit standard
deviation. To find the option price, we must calculate the expectation

p D .1C r/�TE

"
max

 
1

T

TX
tD1

S.t/ �K; 0

!#
: (8.20)

The price is thus given as the expected discounted payoff. We will use Monte Carlo
simulations to estimate the expectation. Typically, r and  can be set to r D 0:0002

and  D 0:015. Assume further S.0/ D 100.
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a) Make a function that simulates a path of S.t/, that is, the function computes
S.t/ for t D 1; : : : ; T for a given T based on the recursive definition in (8.19).
The function should return the path as an array.

b) Create a function that finds the average of S.t/ from t D 1 to t D T . Make an-
other function that calculates the price of the Asian option based on N simulated
averages. You may choose T D 100 days and K D 102.

c) Plot the price p as a function of N . You may start with N D 1000.
d) Plot the error in the price estimation as a function N (assume that the p value

corresponding to the largest N value is the “right” price). Try to fit a curve of
the form c=

p
N for some c to this error plot. The purpose is to show that the

error is reduced as 1=
p

N .

Filename: option_price.

Remarks If you wonder where the values for r and  come from, you will find
the explanation in the following. A reasonable level for the yearly interest-rate
is around 5 percent, which corresponds to a daily rate 0:05=250 D 0:0002. The
number 250 is chosen because a stock exchange is on average open this amount of
days for trading. The value for  is calculated as the volatility of the stock price,
corresponding to the standard deviation of the daily returns of the stock defined as
.S.t C 1/ � S.t//=S.t/. “Normally”, the volatility is around 1.5 percent a day.
Finally, there are theoretical reasons why we assume that the stock price dynamics
is driven by r , meaning that we consider the risk-neutral dynamics of the stock price
when pricing options. There is an exciting theory explaining the appearance of r

in the dynamics of the stock price. If we want to simulate a stock price dynamics
mimicing what we see in the market, r in (8.19) must be substituted with 	, the
expected return of the stock. Usually, 	 is higher than r .

Exercise 8.44: Differentiate noise measurements
In a laboratory experiment waves are generated through the impact of a model slide
into a wave tank. (The intention of the experiment is to model a future tsunami event
in a fjord, generated by loose rocks that fall into the fjord.) At a certain location,
the elevation of the surface, denoted by �, is measured at discrete points in time
using an ultra-sound wave gauge. The result is a time series of vertical positions of
the water surface elevations in meter: �.t0/; �.t1/; �.t2/; : : : ; �.tn/. There are 300
observations per second, meaning that the time difference between two neighboring
measurement values �.ti / and �.tiC1/ is h D 1=300 second.

a) Read the � values in the file gauge.dat4 into an array eta. Read h from the
command line.

b) Plot eta versus the time values.
c) Compute the velocity v of the surface by the formula

vi � .�iC1 � �i�1/=.2h/; i D 1; : : : ; n � 1 :

Plot v versus time values in a separate plot.

4 http://tinyurl.com/pwyasaa/random/gauge.dat

http://tinyurl.com/pwyasaa/random/gauge.dat
http://tinyurl.com/pwyasaa/random/gauge.dat


564 8 Random Numbers and Simple Games

d) Compute the acceleration a of the surface by the formula

ai � .�iC1 � 2�i C �i�1/=h2; i D 1; : : : ; n � 1:

Plot a versus the time values in a separate plot.
e) If we have a noisy signal �i , where i D 0; : : : ; n counts time levels, the noise can

be reduced by computing a new signal where the value at a point is a weighted
average of the values at that point and the neighboring points at each side. More
precisely, given the signal �i , i D 0; : : : ; n, we compute a filtered (averaged)
signal with values �

.1/
i by the formula

�
.1/
i D

1

4
.�iC1 C 2�i C �i�1/; i D 1; : : : ; n � 1; �

.1/
0 D �0; �.1/

n D �n :

(8.21)
Make a function filter that takes the �i values in an array eta as input and
returns the filtered �

.1/
i values in an array.

f) Let �
.k/
i be the signal arising by applying the filtered function k times to

the same signal. Make a plot with curves �i and the filtered �
.k/
i values for

k D 1; 10; 100. Make similar plots for the velocity and acceleration where
these are made from both the original, measured � data and the filtered data.
Discuss the results.

Filename: labstunami.

Exercise 8.45: Differentiate noisy signals
The purpose of this exercise is to look into numerical differentiation of time se-
ries signals that contain measurement errors. This insight might be helpful when
analyzing the noise in real data from a laboratory experiment in Exercise 8.44.

a) Compute a signal

N�i D A sin.
2�

T
ti /; ti D i

T

40
; i D 0; : : : ; 200 :

Display N�i versus time ti in a plot. Choose A D 1 and T D 2� . Store the N�
values in an array etabar.

b) Compute a signal with random noise Ei ,

�i D N�i CEi ;

Ei is drawn from the normal distribution with mean zero and standard deviation
 D 0:04A. Plot this �i signal as circles in the same plot as N�i . Store the Ei in
an array E for later use.

c) Compute the first derivative of N�i by the formula

N�iC1 � N�i�1

2h
; i D 1; : : : ; n � 1;

and store the values in an array detabar. Display the graph.
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d) Compute the first derivative of the error term by the formula

EiC1 � Ei�1

2h
; i D 1; : : : ; n � 1;

and store the values in an array dE. Calculate the mean and the standard devia-
tion of dE.

e) Plot detabar and detabar + dE. Use the result of the standard deviation cal-
culations to explain the qualitative features of the graphs.

f) The second derivative of a time signal �i can be computed by

�iC1 � 2�i C �i�1

h2
; i D 1; : : : ; n � 1 :

Use this formula on the etabar data and save the result in d2etabar. Also
apply the formula to the E data and save the result in d2E. Plot d2etabar and
d2etabar + d2E. Compute the standard deviation of d2E and compare with
the standard deviation of dE and E. Discuss the plot in light of these standard
deviations.

Filename: sine_noise.

Exercise 8.46: Model noise in a time signal
We assume that the measured data can be modeled as a smooth time signal N�.t/ plus
a random variation E.t/. Computing the velocity of � D N�CE results in a smooth
velocity from the N� term and a noisy signal from the E term.

a) We can estimate the level of noise in the first derivative of E as follows. The
random numbers E.ti / are assumed to be independent and normally distributed
with mean zero and standard deviation  . It can then be shown that

EiC1 � Ei�1

2h

produces numbers that come from a normal distribution with mean zero and
standard deviation 2�1=2h�1 . How much is the original noise, reflected by  ,
magnified when we use this numerical approximation of the velocity?

b) The fraction
EiC1 � 2Ei CEi�1

h2

will also generate numbers from a normal distribution with mean zero, but this
time with standard deviation 2h�2 . Find out how much the noise is magnified
in the computed acceleration signal.

c) The numbers in the gauge.dat file in Exercise 8.44 are given with 5 digits.
This is no certain indication of the accuracy of the measurements, but as a test
we may assume  is of the order 10�4. Check if the visual results for the velocity
and acceleration are consistent with the standard deviation of the noise in these
signals as modeled above.
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Exercise 8.47: Speed up Markov chain mutation
The functions transition and mutate_via_markov_chain from Sect. 8.3.4
were made for being easy to read and understand. Upon closer inspection, we
realize that the transition function constructs the interval_limits every time
a random transition is to be computed, and we want to run a large number of
transitions. By merging the two functions, pre-computing interval limits for each
from_base, and adding a loop over N mutations, one can reduce the computation
of interval limits to a minimum. Perform such an efficiency enhancement. Mea-
sure the CPU time of this new function versus the mutate_via_markov_chain
function for 1 million mutations.
Filename: markov_chain_mutation2.



9.7 Exercises 635

Finally, we can run the program with a GUI,

Terminal

demo_ReadInput.py GUI
{’a’: -1, ’b’: 10, ’filename’: ’tmp.dat’,
’formula’: ’x+1’, ’n’: 2}

The GUI is shown in Fig. 9.13.
Fortunately, it is now quite obvious how to apply the ReadInput hierarchy of

classes in your own programs to simplify input. Especially in applications with
a large number of parameters one can initially define these in a dictionary and then
automatically create quite comprehensive user interfaces where the user can specify
only some subset of the parameters (if the default values for the rest of the parame-
ters are suitable).

9.7 Exercises

Exercise 9.1: Demonstrate the magic of inheritance
Consider class Line from Sect. 9.1.1 and a subclass Parabola0 defined as

class Parabola0(Line):

pass

That is, class Parabola0 does not have any own code, but it inherits from class
Line. Demonstrate in a program or interactive session, using dir and looking at
the __dict__ object, (see Sect. 7.5.6) that an instance of class Parabola0 contains
everything (i.e., all attributes) that an instance of class Line contains.
Filename: dir_subclass.

Exercise 9.2: Make polynomial subclasses of parabolas
The task in this exercise is to make a class Cubic for cubic functions

c3x
3 C c2x2 C c1x C c0

with a call operator and a table method as in classes Line and Parabola from
Sect. 9.1. Implement class Cubic by inheriting from class Parabola, and call
up functionality in class Parabola in the same way as class Parabola calls up
functionality in class Line.

Make a similar class Poly4 for 4-th degree polynomials

c4x4 C c3x3 C c2x2 C c1x C c0

by inheriting from class Cubic. Insert print statements in all the __call__meth-
ods such that you can easily watch the program flow and see when __call__ in the
different classes is called.

Evaluate cubic and a 4-th degree polynomial at a point, and observe the printouts
from all the superclasses.
Filename: Cubic_Poly4.
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Remarks This exercise follows the idea from Sect. 9.1 where more complex poly-
nomials are subclasses of simpler ones. Conceptually, a cubic polynomial is not
a parabola, so many programmers will not accept class Cubic as a subclass of
Parabola; it should be the other way around, and Exercise 9.2 follows that ap-
proach. Nevertheless, one can use inheritance solely for sharing code and not for
expressing that a subclass is a kind of the superclass. For code sharing it is natural
to start with the simplest polynomial as superclass and add terms to the inherited
data structure as we make subclasses for higher degree polynomials.

Exercise 9.3: Implement a class for a function as a subclass
Implement a class for the function f .x/ D A sin.wx/C ax2 C bx C c. The class
should have a call operator for evaluating the function for some argument x, and
a constructor that takes the function parameters A, w, a, b, and c as arguments. Also
a table method as in classes Line and Parabola should be present. Implement
the class by deriving it from class Parabola and call up functionality already im-
plemented in class Parabola whenever possible.
Filename: sin_plus_quadratic.

Exercise 9.4: Create an alternative class hierarchy for polynomials
Let class Polynomial from Sect. 7.3.7 be a superclass and implement class
Parabola as a subclass. The constructor in class Parabola should take the
three coefficients in the parabola as separate arguments. Try to reuse as much code
as possible from the superclass in the subclass. Implement class Line as a subclass
specialization of class Parabola.

Which class design do you prefer, class Line as a subclass of Parabola and
Polynomial, or Line as a superclass with extensions in subclasses? (See also
remark in Exercise 9.2.)
Filename: Polynomial_hier.

Exercise 9.5: Make circle a subclass of an ellipse
Section 7.2.3 presents class Circle. Make a similar class Ellipse for representing
an ellipse. Then create a new class Circle that is a subclass of Ellipse.
Filename: Ellipse_Circle.

Exercise 9.6: Make super- and subclass for a point
A point .x; y/ in the plane can be represented by a class:

class Point(object):

def __init__(self, x, y):

self.x, self.y = x, y

def __str__(self):

return ’(%g, %g)’ % (self.x, self.y)

We can extend the Point class to also contain the representation of the point in
polar coordinates. To this end, create a subclass PolarPoint whose constructor
takes the polar representation of a point, .r; �/, as arguments. Store r and � as
data attributes and call the superclass constructor with the corresponding x and y
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values (recall the relations x D r cos � and y D r sin � between Cartesian and
polar coordinates). Add a __str__ method in class PolarPoint which prints out
r , � , x, and y. Write a test function that creates two PolarPoint instances and
compares the four data attributes x, y, r, and theta with the expected values.
Filename: PolarPoint.

Exercise 9.7: Modify a function class by subclassing
Consider a class F implementing the function f .t I a; b/ D e�at sin.bt/:

class F(object):

def __init__(self, a, b):

self.a, self.b = a, b

def __call__(self, t):

return exp(-self.a*t)*sin(self.b*t)

We now want to study how the function f .t I a; b/ varies with the parameter b,
given t and a. Mathematically, this means that we want to compute g.bI t; a/ D
f .t I a; b/. Write a subclass Fb of F with a new __call__ method for evaluating
g.bI t; a/. Do not reimplement the formula, but call the __call__ method in the
superclass to evaluate f .t I a; b/. The Fs should work as follows:

f = Fs(t=2, a=4.5)

print f(3) # b=3

Hint Before calling __call__ in the superclass, the data attribute b in the super-
class must be set to the right value.
Filename: Fb.

Exercise 9.8: Explore the accuracy of difference formulas
The purpose of this exercise is to investigate the accuracy of the Backward1,
Forward1, Forward3, Central2, Central4, Central6methods for the function

v.x/ D 1 � ex=	

1 � e1=	
:

Compute the errors in the approximations for x D 0; 0:9 and 	 D 1; 0:01. Illustrate
in a plot how the v.x/ function looks like for these two 	 values.

Hint Modify the src/oo/Diff2_examples.pyprogramwhich produces tables of
errors of difference approximations as discussed at the end of Sect. 9.2.4.
Filename: boundary_layer_derivative.

Exercise 9.9: Implement a subclass
Make a subclass Sine1 of class FuncWithDerivatives from Sect. 9.1.6 for the
sin x function. Implement the function only, and rely on the inherited df and ddf
methods for computing the derivatives. Make another subclass Sine2 for sin x

where you also implement the df and ddfmethods using analytical expressions for
the derivatives. Compare Sine1 and Sine2 for computing the first- and second-
order derivatives of sin x at two x points.
Filename: Sine12.

http://tinyurl.com/pwyasaa/oo/Diff2_examples.py
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Exercise 9.10: Make classes for numerical differentiation
Carry out Exercise 7.16. Find the common code in the classes Derivative,
Backward, and Central. Move this code to a superclass, and let the three men-
tioned classes be subclasses of this superclass. Compare the resulting code with the
hierarchy shown in Sect. 9.2.1.
Filename: numdiff_classes.

Exercise 9.11: Implement a new subclass for differentiation
A one-sided, three-point, second-order accurate formula for differentiating a func-
tion f .x/ has the form

f 0.x/ � f .x � 2h/ � 4f .x � h/C 3f .x/

2h
: (9.17)

Implement this formula in a subclass Backward2 of class Diff from Sect. 9.2.
Compare Backward2 with Backward1 for g.t/ D e�t for t D 0 and h D 2�k for
k D 0; 1; : : : ; 14 (write out the errors in g0.t/).
Filename: Backward2.

Exercise 9.12: Understand if a class can be used recursively
Suppose you want to compute f 00.x/ of some mathematical function f .x/, and that
you apply some class from Sect. 9.2 twice, e.g.,

ddf = Central2(Central2(f))

Will this work?

Hint Follow the program flow, and find out what the resulting formula will be.
Then see if this formula coincides with a formula you know for approximating
f 00.x/ (actually, to recover the well-known formula with an h parameter, you would
use h=2 in the nested calls to Central2).

Exercise 9.13: Represent people by a class hierarchy
Classes are often used to model objects in the real world. We may represent the
data about a person in a program by a class Person, containing the person’s name,
address, phone number, date of birth, and nationality. A method __str__may print
the person’s data. Implement such a class Person.

A worker is a person with a job. In a program, a worker is naturally represented
as class Worker derived from class Person, because a worker is a person, i.e.,
we have an is-a relationship. Class Worker extends class Person with additional
data, say name of company, company address, and job phone number. The print
functionality must be modified accordingly. Implement this Worker class.

A scientist is a special kind of a worker. Class Scientist may therefore be
derived from class Worker. Add data about the scientific discipline (physics, chem-
istry, mathematics, computer science, . . . ). One may also add the type of scientist:
theoretical, experimental, or computational. The value of such a type attribute
should not be restricted to just one category, since a scientist may be classified
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as, e.g., both experimental and computational (i.e., you can represent the value as
a list or tuple). Implement class Scientist.

Researcher, postdoc, and professor are special cases of a scientist. One can either
create classes for these job positions, or one may add an attribute (position) for
this information in class Scientist. We adopt the former strategy. When, e.g.,
a researcher is represented by a class Researcher, no extra data or methods are
needed. In Python we can create such an empty class by writing pass (the empty
statement) as the class body:

class Researcher(Scientist):

pass

Finally, make a demo program where you create and print instances of classes
Person, Worker, Scientist, Researcher, Postdoc, and Professor. Print out
the attribute contents of each instance (use the dir function).

Remark An alternative design is to introduce a class Teacher as a special case of
Worker and let Professor be both a Teacher and Scientist, which is natural.
This implies that class Professor has two superclasses, Teacher and Scientist,
or equivalently, class Professor inherits from two superclasses. This is known as
multiple inheritance and technically achieved as follows in Python:

class Professor(Teacher, Scientist):

pass

It is a continuous debate in computer science whether multiple inheritance is a good
idea or not. One obvious problem in the present example is that class Professor
inherits two names, one via Teacher and one via Scientist (both these classes
inherit from Person).
Filename: Person.

Exercise 9.14: Add a new class in a class hierarchy

a) Add the Monte Carlo integration method from Sect. 8.5.2 as a subclass MCint
in the Integrator hierarchy explained in Sect. 9.3. Import the superclass
Integrator from the integrate module in the file with the new integration
class.

b) Make a test function for class MCint where you fix the seed of the random
number generator, use three function evaluations only, and compare the result
of this Monte Carlo integration with results calculated by hand using the same
three random numbers.

c) Run the Monte Carlo integration class in a case with known analytical solution
and see how the error in the integral changes with n D 10k function evaluations,
k D 3; 4; 5; 6.

Filename: MCint_class.
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Exercise 9.15: Compute convergence rates of numerical integration methods
Numerical integration methods can compute “any” integral

R b

a
f .x/dx, but the re-

sult is not exact. The methods have a parameter n, closely related to the number
of evaluations of the function f , that can be increased to achieve more accurate
results. In this exercise we want to explore the relation between the error E in the
numerical approximation to the integral and n. Different numerical methods have
different relations.

The relations are of the form

E D C nr;

where and C and r < 0 are constants to be determined. That is, r is the most
important of these parameters, because if Simpson’s method has a more negative
r than the Trapezoidal method, it means that increasing n in Simpson’s method
reduces the error more effectively than increasing n in the Trapezoidal method.

One can estimate r from numerical experiments. For a chosen f .x/, where the
exact value of

R b

a
f .x/dx is available, one computes the numerical approximation

for N C 1 values of n: n0 < n1 < � � � < nN and finds the corresponding errors
E0; E1; : : : ; EN (the difference between the exact value and the value produced by
the numerical method).

One way to estimate r goes as follows. For two successive experiments we have

Ei D C nr
i :

and
EiC1 D C nr

iC1

Divide the first equation by the second to eliminate C , and then take the logarithm
to solve for r :

r D ln.Ei =EiC1/

ln.ni=niC1/
:

We can compute r for all pairs of two successive experiments. Say ri is the r value
found from experiment i and i C 1,

ri D ln.Ei =EiC1/

ln.ni=niC1/
; i D 0; 1; : : : ; N � 1 :

Usually, the last value, rN�1, is the best approximation to the true r value. Knowing
r , we can compute C as Ei n

�r
i for any i .

Use the method above to estimate r and C for the Midpoint method, the Trape-
zoidal method, and Simpson’s method. Make your own choice of integral problem:
f .x/, a, and b. Let the parameter n be the number of function evaluations in
each method, and run the experiments with n D 2k C 1 for k D 2; : : : ; 11. The
Integrator hierarchy from Sect. 9.3 has all the requested methods implemented.
Filename: integrators_convergence.
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Exercise 9.16: Add common functionality in a class hierarchy
Suppose you want to use classes in the Integrator hierarchy from Sect. 9.3. to
calculate integrals of the form

F.x/ D
xZ

a

f .t/dt :

Such functionsF.x/ can be efficiently computed by the method from Exercise 7.22.
Implement this computation of F.x/ in an additional method in the superclass
Integrator. Test that the implementation is correct for f .x/ D 2x � 3 for all the
implemented integration methods (the Midpoint, Trapezoidal and Gauss-Legendre
methods, as well as Simpson’s rule, integrate a linear function exactly).
Filename: integrate_efficient.

Exercise 9.17: Make a class hierarchy for root finding
Given a general nonlinear equation f .x/ D 0, we want to implement classes for
solving such an equation, and organize the classes in a class hierarchy. Make classes
for three methods: Newton’s method (in Sect. A.1.10), the Bisection method (in
Sect. 4.11.2), and the Secant method (in Exercise A.10).

It is not obvious how such a hierarchy should be organized. One idea is to let the
superclass store the f .x/ function and its derivative f 0.x/ (if provided – if not, use
a finite difference approximation for f 0.x/). A method

def solve(start_values=[0], max_iter=100, tolerance=1E-6):

...

in the superclass can implement a general iteration loop. The start_values argu-
ment is a list of starting values for the algorithm in question: one point for Newton,
two for Secant, and an interval Œa; b� containing a root for Bisection. Let solve
define a list self.x holding all the computed approximations. The initial value of
self.x is simply start_values. For the Bisection method, one can use the con-
vention a; b; c = self.x[-3:], where Œa; b� represents the most recently computed
interval and c is its midpoint. The solvemethod can return an approximate root x,
the corresponding f .x/ value, a boolean indicator that is True if jf .x/j is less than
the tolerance parameter, and a list of all the approximations and their f values
(i.e., a list of .x; f .x// tuples).

Do Exercise A.11 using the new class hierarchy.
Filename: Rootfinders.

Exercise 9.18: Make a calculus calculator class
Given a function f .x/ defined on a domain Œa; b�, the purpose of many mathemat-
ical exercises is to sketch the function curve y D f .x/, compute the derivative
f 0.x/, find local and global extreme points, and compute the integral

R b

a
f .x/dx.

Make a class CalculusCalculator which can perform all these actions for any
function f .x/ using numerical differentiation and integration, and the method ex-
plained in Exercise 7.34. for finding extrema.
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Here is an interactive session with the class where we analyze f .x/ D
x2e�0:2x sin.2�x/ on Œ0; 6� with a grid (set of x coordinates) of 700 points:

>>> from CalculusCalculator import *

>>> def f(x):

... return x**2*exp(-0.2*x)*sin(2*pi*x)

...

>>> c = CalculusCalculator(f, 0, 6, resolution=700)

>>> c.plot() # plot f

>>> c.plot_derivative() # plot f’

>>> c.extreme_points()

All minima: 0.8052, 1.7736, 2.7636, 3.7584, 4.7556, 5.754, 0

All maxima: 0.3624, 1.284, 2.2668, 3.2604, 4.2564, 5.2548, 6

Global minimum: 5.754

Global maximum: 5.2548

>>> c.integral

-1.7353776102348935

>>> c.df(2.51) # c.df(x) is the derivative of f

-24.056988888465636

>>> c.set_differentiation_method(Central4)

>>> c.df(2.51)

-24.056988832723189

>>> c.set_integration_method(Simpson) # more accurate integration

>>> c.integral

-1.7353857856973565

Design the class such that the above session can be carried out.

Hint Use classes from the Diff and Integrator hierarchies (Sects. 9.2 and 9.3)
for numerical differentiation and integration (with, e.g., Central2 and
Trapezoidal as default methods for differentiation and integration). The method
set_differentiation_method takes a subclass name in the Diff hierarchy as
argument, and makes a data attribute df that holds a subclass instance for com-
puting derivatives. With set_integration_method we can similarly set the
integration method as a subclass name in the Integrator hierarchy, and then
compute the integral

R b

a
f .x/dx and store the value in the attribute integral. The

extreme_pointsmethod performs a print on a MinMax instance, which is stored
as an attribute in the calculator class.
Filename: CalculusCalculator.

Exercise 9.19: Compute inverse functions
Extend class CalculusCalculator from Exercise 9.18 to offer computations of
inverse functions.

Hint A numerical way of computing inverse functions is explained in Sect. A.1.11.
Other, perhaps more attractive methods are described in Exercises E.17–E.20.
Filename: CalculusCalculator2.
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Exercise 9.20: Make line drawing of a person; program
A very simple sketch of a human being can be made of a circle for the head, two
lines for the arms, one vertical line, a triangle, or a rectangle for the torso, and two
lines for the legs. Make such a drawing in a program, utilizing appropriate classes
in the Shape hierarchy.
Filename: draw_person.

Exercise 9.21: Make line drawing of a person; class
Use the code from Exercise 9.20 to make a subclass of Shape that draws a person.
Supply the following arguments to the constructor: the center point of the head and
the radius R of the head. Let the arms and the torso be of length 4R, and the legs
of length 6R. The angle between the legs can be fixed (say 30 degrees), while the
angle of the arms relative to the torso can be an argument to the constructor with
a suitable default value.
Filename: Person.

Exercise 9.22: Animate a person with waving hands
Make a subclass of the class from Exercise 9.21 where the constructor can take an
argument describing the angle between the arms and the torso. Use this new class
to animate a person who waves her/his hands.
Filename: waving_person.
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The next step, as a reader who have understood the problem and the implemen-
tation above, is to run the program for two cases: the oscillations sequence with
N D 40 and the logistic sequence with N D 100. By altering the q parameter to
lower values, you get other sounds, typically quite boring sounds for non-oscillating
logistic growth (q < 1). You can also experiment with other transformations of the
form (A.46), e.g., increasing the frequency variation from 200 to 400.

A.3 Exercises

Exercise A.1: Determine the limit of a sequence

a) Write a Python function for computing and returning the sequence

an D 7C 1=.nC 1/

3 � 1=.nC 1/2
; n D 0; 2; : : : ; N :

Write out the sequence for N D 100. Find the exact limit as N ! 1 and
compare with aN .

b) Write a Python function for computing and returning the sequence

Dn D sin.2�n/

2�n
; n D 0; : : : ; N :

Determine the limit of this sequence for large N .
c) Given the sequence

Dn D f .x C h/ � f .x/

h
; h D 2�n; (A.47)

make a function D(f, x, N) that takes a function f .x/, a value x, and the
number N of terms in the sequence as arguments, and returns the sequence Dn

for n D 0; 1; : : : ; N . Make a call to the D function with f .x/ D sin x, x D 0,
and N D 80. Plot the evolution of the computed Dn values, using small circles
for the data points.

d) Make another call to D where x D � and plot this sequence in a separate figure.
What would be your expected limit?

e) Explain why the computations for x D � go wrong for large N .

Hint Print out the numerator and denominator in Dn.
Filename: sequence_limits.
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Exercise A.2: Compute � via sequences
The following sequences all converge to � :

.an/1nD1; an D 4

nX
kD1

.�1/kC1

2k � 1
;

.bn/1nD1; bn D
 

6

nX
kD1

k�2

!1=2

;

.cn/1nD1; cn D
 

90

nX
kD1

k�4

!1=4

;

.dn/1nD1; dn D 6p
3

nX
kD0

.�1/k

3k.2k C 1/
;

.en/1nD1; en D 16

nX
kD0

.�1/k

52kC1.2k C 1/
� 4

nX
kD0

.�1/k

2392kC1.2k C 1/
:

Make a function for each sequence that returns an array with the elements in the
sequence. Plot all the sequences, and find the one that converges fastest toward the
limit � .
Filename: pi_sequences.

Exercise A.3: Reduce memory usage of difference equations
Consider the program growth_years.py from Sect. A.1.1. Since xn depends on
xn�1 only, we do not need to store all the N C 1 xn values. We actually only need
to store xn and its previous value xn�1. Modify the program to use two variables
and not an array for the entire sequence. Also avoid the index_set list and use an
integer counter for n and a while loop instead. Write the sequence to file such that
it can be visualized later.
Filename: growth_years_efficient.

Exercise A.4: Compute the development of a loan
Solve (A.16)–(A.17) in a Python function.
Filename: loan.

Exercise A.5: Solve a system of difference equations
Solve (A.32)–(A.33) in a Python function and plot the xn sequence.
Filename: fortune_and_inflation1.

Exercise A.6: Modify a model for fortune development
In the model (A.32)–(A.33) the new fortune is the old one, plus the interest, minus
the consumption. During year n, xn is normally also reduced with t percent tax on
the earnings xn�1 � xn�2 in year n � 1.

a) Extend the model with an appropriate tax term, implement the model, and
demonstrate in a plot the effect of tax (t D 27) versus no tax (t D 0).
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b) Suppose you expect to live for N years and can accept that the fortune xn van-
ishes after N years. Choose some appropriate values for p, q, I , and t , and
experiment with the program to find how large the initial c0 can be in this case.

Filename: fortune_and_inflation2.

Exercise A.7: Change index in a difference equation
A mathematically equivalent equation to (A.5) is

xiC1 D xi C p

100
xi ; (A.48)

since the name of the index can be chosen arbitrarily. Suppose someone has made
the following program for solving (A.48):

from scitools.std import *

x0 = 100 # initial amount

p = 5 # interest rate

N = 4 # number of years

index_set = range(N+1)

x = zeros(len(index_set))

# Compute solution

x[0] = x0

for i in index_set[1:]:

x[i+1] = x[i] + (p/100.0)*x[i]

print x

plot(index_set, x, ’ro’, xlabel=’years’, ylabel=’amount’)

This program does not work. Make a correct version, but keep the difference equa-
tions in its present form with the indices i+1 and i.
Filename: growth1_index_ip1.

Exercise A.8: Construct time points from dates
A certain quantity p (which may be an interest rate) is piecewise constant and un-
dergoes changes at some specific dates, e.g.,

p changes to

8̂̂
ˆ̂̂̂̂
<̂
ˆ̂̂̂̂
ˆ̂̂:

4:5 on Jan 4, 2019

4:75 on March 21, 2019

6:0 on April 1, 2019

5:0 on June 30, 2019

4:5 on Nov 1, 2019

2:0 on April 1, 2020

(A.49)

Given a start date d1 and an end date d2, fill an array pwith the right p values, where
the array index counts days. Use the datetimemodule to compute the number of
days between dates.
Filename: dates2days.
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Exercise A.9: Visualize the convergence of Newton’s method
Let x0; x1; : : : ; xN be the sequence of roots generated by Newton’s method applied
to a nonlinear algebraic equation f .x/ D 0 (see Sect. A.1.10). In this exercise,
the purpose is to plot the sequences .xn/N

nD0 and .jf .xn/j/N
nD0 such that we can

understand how Newton’s method converges or diverges.

a) Make a general function

Newton_plot(f, x, dfdx, xmin, xmax, epsilon=1E-7)

for this purpose. The arguments f and dfdx are Python functions represent-
ing the f .x/ function in the equation and its derivative f 0.x/, respectively.
Newton’s method is run until jf .xN /j � �, and the � value is available as
the epsilon argument. The Newton_plot function should make three sepa-
rate plots of f .x/, .xn/N

nD0, and .jf .xn/j/N
nD0 on the screen and also save these

plots to PNG files. The relevant x interval for plotting of f .x/ is given by the
arguments xmin and xmax. Because of the potentially wide scale of values that
jf .xn/j may exhibit, it may be wise to use a logarithmic scale on the y axis.

Hint You can save quite some coding by calling the improved Newton function
from Sect. A.1.10, which is available in the module file Newton.py.

b) Demonstrate the function on the equation x6 sin�x D 0, with � D 10�13. Try
different starting values for Newton’s method: x0 D �2:6;�1:2; 1:5; 1:7; 0:6.
Compare the results with the exact solutions x D : : : ;�2 � 1; 0; 1; 2; : : :.

c) Use the Newton_plot function to explore the impact of the starting point x0

when solving the following nonlinear algebraic equations:

sin x D 0; (A.50)

x D sin x; (A.51)

x5 D sin x; (A.52)

x4 sin x D 0; (A.53)

x4 D 16; (A.54)

x10 D 1; (A.55)

tanhx D 0; (A.56)

tanhx D x10 : (A.57)

Hint Such an experimental investigation is conveniently recorded in an IPython
notebook. See Sect. H.4 for a quick introduction to notebooks.
Filename: Newton2.

Exercise A.10: Implement the secant method
Newton’s method (A.34) for solving f .x/ D 0 requires the derivative of the func-
tion f .x/. Sometimes this is difficult or inconvenient. The derivative can be
approximated using the last two approximations to the root, xn�2 and xn�1:

f 0.xn�1/ � f .xn�1/� f .xn�2/

xn�1 � xn�2

:

http://tinyurl.com/pwyasaa/diffeq/Newton.py


A.3 Exercises 675

Using this approximation in (A.34) leads to the Secant method:

xn D xn�1 � f .xn�1/.xn�1 � xn�2/

f .xn�1/� f .xn�2/
; x0; x1 given : (A.58)

Here n D 2; 3; : : :. Make a program that applies the Secant method to solve x5 D
sin x.
Filename: Secant.

Exercise A.11: Test different methods for root finding
Make a program for solving f .x/ D 0 by Newton’s method (Sect. A.1.10), the
Bisection method (Sect. 4.11.2), and the Secant method (Exercise A.10). For each
method, the sequence of root approximations should be written out (nicely format-
ted) on the screen. Read f .x/, f 0.x/, a, b, x0, and x1 from the command line.
Newton’s method starts with x0, the Bisection method starts with the interval Œa; b�,
whereas the Secant method starts with x0 and x1.

Run the program for each of the equations listed in Exercise A.9d. You should
first plot the f .x/ functions so you know how to choose x0, x1, a, and b in each
case.
Filename: root_finder_examples.

Exercise A.12: Make difference equations for the Midpoint rule
Use the ideas of Sect. A.1.7 to make a similar system of difference equations and
corresponding implementation for the Midpoint integration rule:

bZ
a

f .x/dx � h

n�1X
iD0

f .a � 1

2
hC ih/;

where h D .b� a/=n and n counts the number of function evaluations (i.e., rectan-
gles that approximate the area under the curve).
Filename: diffeq_midpoint.

Exercise A.13: Compute the arc length of a curve
Sometimes one wants to measure the length of a curve y D f .x/ for x 2 Œa; b�. The
arc length from f .a/ to some point f .x/ is denoted by s.x/ and defined through an
integral

s.x/ D
xZ

a

p
1C Œf 0.�/�2d� : (A.59)

We can compute s.x/ via difference equations as explained in Sect. A.1.7.

a) Make a Python function arclength(f, a, b, n) that returns an array s with
s.x/ values for n uniformly spaced coordinates x in Œa; b�. Here f(x) is the
Python implementation of the function that defines the curve we want to com-
pute the arc length of.

b) How can you verify that the arclength function works correctly? Construct
test case(s) and write corresponding test functions for automating the tests.
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Hint Check the implementation for curves with known arc length, e.g., a semi-
circle and a straight line.

c) Apply the function to

f .x/ D
xZ
�2

D 1p
2�

e�4t2

dt; x 2 Œ�2; 2� :

Compute s.x/ and plot it together with f .x/.

Filename: arclength.

Exercise A.14: Find difference equations for computing sinx

The purpose of this exercise is to derive and implement difference equations for
computing a Taylor polynomial approximation to sin x:

sin x � S.xIn/ D
nX

jD0

.�1/j x2jC1

.2j C 1/Š
: (A.60)

To compute S.xIn/ efficiently, write the sum as S.xIn/ D Pn
jD0 aj , and derive

a relation between two consecutive terms in the series:

aj D � x2

.2j C 1/2j
aj�1 : (A.61)

Introduce sj D S.xI j � 1/ and aj as the two sequences to compute. We have
s0 D 0 and a0 D x.

a) Formulate the two difference equations for sj and aj .

Hint Section A.1.8 explains how this task and the associated programming can be
solved for the Taylor polynomial approximation of ex .

b) Implement the system of difference equations in a function sin_Taylor(x, n),
which returns snC1 and janC1j. The latter is the first neglected term in the sum
(since snC1 D

Pn
jD0 aj ) and may act as a rough measure of the size of the error

in the Taylor polynomial approximation.
c) Verify the implementation by computing the difference equations for n D 2

by hand (or in a separate program) and comparing with the output from the
sin_Taylor function. Automate this comparison in a test function.

d) Make a table or plot of sn for various x and n values to illustrate that the accuracy
of a Taylor polynomial (around x D 0) improves as n increases and x decreases.

Hint Be aware of the fact that sin_Taylor(x, n) can give extremely inaccurate
approximations to sin x if x is not sufficiently small and n sufficiently large. In
a plot you must therefore define the axis appropriately.
Filename: sin_Taylor_series_diffeq.
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Exercise A.15: Find difference equations for computing cosx

Solve Exercise A.14 for the Taylor polynomial approximation to cosx. (The rele-
vant expression for the Taylor series is easily found in a mathematics textbook or
by searching on the Internet.)
Filename: cos_Taylor_series_diffeq.

Exercise A.16: Make a guitar-like sound
Given start values x0; x1; : : : ; xp , the following difference equation is known to
create guitar-like sound:

xn D 1

2
.xn�p C xn�p�1/; n D p C 1; : : : ; N : (A.62)

With a sampling rate r , the frequency of this sound is given by r=p. Make a program
with a function solve(x, p) which returns the solution array x of (A.62). To
initialize the array x[0:p+1] we look at two methods, which can be implemented
in two alternative functions:

� x0 D 1, x1 D x2 D � � � D xp D 0

� x0; : : : ; xp are uniformly distributed random numbers in Œ�1; 1�

Import max_amplitude, write, and play from the scitools.sound module.
Choose a sampling rate r and set p D r=440 to create a 440Hz tone (A). Create
an array x1 of zeros with length 3r such that the tone will last for 3 seconds. Ini-
tialize x1 according to method 1 above and solve (A.62). Multiply the x1 array by
max_amplitude. Repeat this process for an array x2 of length 2r , but use method
2 for the initial values and choose p such that the tone is 392Hz (G). Concatenate
x1 and x2, call write and then play to play the sound. As you will experience,
this sound is amazingly similar to the sound of a guitar string, first playing A for 3
seconds and then playing G for 2 seconds.

The method (A.62) is called the Karplus-Strong algorithm and was discovered in
1979 by a researcher, Kevin Karplus, and his student Alexander Strong, at Stanford
University.
Filename: guitar_sound.

Exercise A.17: Damp the bass in a sound file
Given a sequence x0; : : : ; xN�1, the following filter transforms the sequence to
a new sequence y0; : : : ; yN�1:

yn D

8̂<
:̂

xn; n D 0

� 1
4
.xn�1 � 2xn C xnC1/; 1 � n � N � 2

xn; n D N � 1

(A.63)

If xn represents sound, yn is the same sound but with the bass damped. Load some
sound file, e.g.,

x = scitools.sound.Nothing_Else_Matters()

# or

x = scitools.sound.Ja_vi_elsker()
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to get a sound sequence. Apply the filter (A.63) and play the resulting sound. Plot
the first 300 values in the xn and yn signals to see graphically what the filter does
with the signal.
Filename: damp_bass.

Exercise A.18: Damp the treble in a sound file
Solve Exercise A.17 to get some experience with coding a filter and trying it out
on a sound. The purpose of this exercise is to explore some other filters that reduce
the treble instead of the bass. Smoothing the sound signal will in general damp the
treble, and smoothing is typically obtained by letting the values in the new filtered
sound sequence be an average of the neighboring values in the original sequence.

The simplest smoothing filter can apply a standard average of three neighboring
values:

yn D

8̂<
:̂

xn; n D 0
1
3
.xn�1 C xn C xnC1/; 1 � n � N � 2

xn; n D N � 1

(A.64)

Two other filters put less emphasis on the surrounding values:

yn D

8̂<
:̂

xn; n D 0
1
4
.xn�1 C 2xn C xnC1/; 1 � n � N � 2

xn; n D N � 1

(A.65)

yn D

8̂<
:̂

xn; n D 0; 1
1
16

.xn�2 C 4xn�1 C 6xn C 4xnC1C xnC2/; 2 � n � N � 3

xn; n D N � 2; N � 1

(A.66)
Apply all these three filters to a sound file and listen to the result. Plot the first 300
values in the xn and yn signals for each of the three filters to see graphically what
the filter does with the signal.
Filename: damp_treble.

Exercise A.19: Demonstrate oscillatory solutions of the logistic equation

a) Write a program to solve the difference equation (A.13):

yn D yn�1 C qyn�1 .1 � yn�1/ ; n D 0; : : : ; N :

Read the input parameters y0, q, and N from the command line. The variables
and the equation are explained in Sect. A.1.5.

b) Equation (A.13) has the solution yn D 1 as n ! 1. Demonstrate, by running
the program, that this is the case when y0 D 0:3, q D 1, and N D 50.

c) For larger q values, yn does not approach a constant limit, but yn oscillates
instead around the limiting value. Such oscillations are sometimes observed in
wildlife populations. Demonstrate oscillatory solutions when q is changed to 2
and 3.
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d) It could happen that yn stabilizes at a constant level for larger N . Demonstrate
that this is not the case by running the program with N D 1000.

Filename: growth_logistic2.

Exercise A.20: Automate computer experiments
It is tedious to run a program like the one from Exercise A.19 repeatedly for a wide
range of input parameters. A better approach is to let the computer do the manual
work. Modify the program from Exercise A.19 such that the computation of yn and
the plot is made in a function. Let the title in the plot contain the parameters y0 and
q (N is easily visible from the x axis). Also let the name of the plot file reflect the
values of y0, q, and N . Then make loops over y0 and q to perform the following
more comprehensive set of experiments:

� y0 D 0:01; 0:3

� q D 0:1; 1; 1:5; 1:8; 2; 2:5; 3

� N D 50

How does the initial condition (the value y0) seem to influence the solution?

Hint If you do no want to get a lot of plots on the screen, which must be killed,
drop the call to show() in Matplotlib or use show=False as argument to plot in
SciTools.
Filename: growth_logistic3.

Exercise A.21: Generate an HTML report
Extend the program made in Exercise A.20 with a report containing all the plots.
The report can be written in HTML and displayed by a web browser. The plots
must then be generated in PNG format. The source of the HTML file will typically
look as follows:

<html>

<body>

<p><img src="tmp_y0_0.01_q_0.1_N_50.png">

<p><img src="tmp_y0_0.01_q_1_N_50.png">

<p><img src="tmp_y0_0.01_q_1.5_N_50.png">

<p><img src="tmp_y0_0.01_q_1.8_N_50.png">

...

<p><img src="tmp_y0_0.01_q_3_N_1000.png">

</html>

</body>

Let the program write out the HTML text to a file. You may let the function making
the plots return the name of the plot file such that this string can be inserted in the
HTML file.
Filename: growth_logistic4.
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Exercise A.22: Use a class to archive and report experiments
The purpose of this exercise is to make the program from Exercise A.21 more flex-
ible by creating a Python class that runs and archives all the experiments (provided
you know how to program with Python classes). Here is a sketch of the class:

class GrowthLogistic(object):

def __init__(self, show_plot_on_screen=False):

self.experiments = []

self.show_plot_on_screen = show_plot_on_screen

self.remove_plot_files()

def run_one(self, y0, q, N):

"""Run one experiment."""

# Compute y[n] in a loop...

plotfile = ’tmp_y0_%g_q_%g_N_%d.png’ % (y0, q, N)

self.experiments.append({’y0’: y0, ’q’: q, ’N’: N,

’mean’: mean(y[20:]),

’y’: y, ’plotfile’: plotfile})

# Make plot...

def run_many(self, y0_list, q_list, N):

"""Run many experiments."""

for q in q_list:

for y0 in y0_list:

self.run_one(y0, q, N)

def remove_plot_files(self):

"""Remove plot files with names tmp_y0*.png."""

import os, glob

for plotfile in glob.glob(’tmp_y0*.png’):

os.remove(plotfile)

def report(self, filename=’tmp.html’):

"""

Generate an HTML report with plots of all

experiments generated so far.

"""

# Open file and write HTML header...

for e in self.experiments:

html.write(’<p><img src="%s">\n’ % e[’plotfile’])

# Write HTML footer and close file...

Each time the run_onemethod is called, data about the current experiment is stored
in the experiments list. Note that experiments contains a list of dictionaries.
When desired, we can call the reportmethod to collect all the plots made so far in
an HTML report. A typical use of the class goes as follows:

N = 50

g = GrowthLogistic()

g.run_many(y0_list=[0.01, 0.3],

q_list=[0.1, 1, 1.5, 1.8] + [2, 2.5, 3], N=N)

g.run_one(y0=0.01, q=3, N=1000)

g.report()
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Make a complete implementation of class GrowthLogistic and test it with the
small program above. The program file should be constructed as a module.
Filename: growth_logistic5.

Exercise A.23: Explore logistic growth interactively
Class GrowthLogistic from Exercise A.22 is very well suited for interactive ex-
ploration. Here is a possible sample session for illustration:

>>> from growth_logistic5 import GrowthLogistic

>>> g = GrowthLogistic(show_plot_on_screen=True)

>>> q = 3

>>> g.run_one(0.01, q, 100)

>>> y = g.experiments[-1][’y’]

>>> max(y)

1.3326056469620293

>>> min(y)

0.0029091569028512065

Extend this session with an investigation of the oscillations in the solution yn. For
this purpose, make a function for computing the local maximum values yn and the
corresponding indices where these local maximum values occur. We can say that
yi is a local maximum value if

yi�1 < yi > yiC1 :

Plot the sequence of local maximum values in a new plot. If I0; I1; I2; : : : constitute
the set of increasing indices corresponding to the local maximum values, we can
define the periods of the oscillations as I1�I0, I2�I1, and so forth. Plot the length
of the periods in a separate plot. Repeat this investigation for q D 2:5.
Filename: GrowthLogistic_interactive.

Exercise A.24: Simulate the price of wheat
The demand for wheat in year t is given by

Dt D apt C b;

where a < 0, b > 0, and pt is the price of wheat. Let the supply of wheat be

St D Apt�1 C B C ln.1C pt�1/;

where A and B are given constants. We assume that the price pt adjusts such that
all the produced wheat is sold. That is, Dt D St .

a) For A D 1; a D �3; b D 5; B D 0, find from numerical computations, a stable
price such that the production of wheat from year to year is constant. That is,
find p such that apC b D Ap C B C ln.1C p/.

b) Assume that in a very dry year the production of wheat is much less than
planned. Given that price this year, p0, is 4:5 and Dt D St , compute in a pro-
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gram how the prices p1; p2; : : : ; pN develop. This implies solving the difference
equation

apt C b D Apt�1 C B C ln.1C pt�1/ :

From the pt values, compute St and plot the points .pt ; St / for t D 0; 1; 2; : : : ;

N . How do the prices move when N !1?

Filename: wheat.
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Fig. B.5 Plots of exact and approximate second-order derivatives with various mesh resolution n

exact = exact_d2f(xfine)

plot(x, d2f, ’r-’, xfine, exact, ’b-’,

legend=(’Approximate derivative’,

’Correct function’),

title=’Approximate and correct second order ’\

’derivatives, n=%d’ % n,

savefig=’tmp.pdf’)

try:

n = int(sys.argv[1])

except:

print "usage: %s n" % sys.argv[0]; sys.exit(1)

example(n)

In Fig. B.5 we compare the exact and the approximate derivatives for n D
10; 20; 50, and 100. As usual, the error decreases when n becomes larger, but
note here that the error is very large for small values of n.

B.5 Exercises

Exercise B.1: Interpolate a discrete function
In a Python function, represent the mathematical function

f .x/ D exp .�x2/ cos.2�x/
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on a mesh consisting of q C 1 equally spaced points on Œ�1; 1�, and return 1) the
interpolated function value at x D �0:45 and 2) the error in the interpolated value.
Call the function and write out the error for q D 2; 4; 8; 16.
Filename: interpolate_exp_cos.

Exercise B.2: Study a function for different parameter values
Develop a program that creates a plot of the function f .x/ D sin. 1

xC"
/ for x in the

unit interval, where " > 0 is a given input parameter. Use nC 1 nodes in the plot.

a) Test the program using n D 10 and " D 1=5.
b) Refine the program such that it plots the function for two values of n; say n and

nC 10.
c) How large do you have to choose n in order for the difference between these

two functions to be less than 0:1?

Hint Each function gives an array. Create a while loop and use the max function
of the arrays to retrieve the maximum value and compare these.

d) Let " D 1=10 and recalculate.
e) Let " D 1=20 and recalculate.
f) Try to find a formula for how large n needs to be for a given value of " such that

increasing n further does not change the plot so much that it is visible on the
screen. Note that there is no exact answer to this question.

Filename: plot_sin_eps.

Exercise B.3: Study a function and its derivative
Consider the function

f .x/ D sin
�

1

x C "

�

for x ranging from 0 to 1, and the derivative

f 0.x/ D � cos
�

1
xC"

	
.x C "/2

:

Here, " is a given input parameter.

a) Develop a program that creates a plot of the derivative of f D f .x/ based on
a finite difference approximation using n computational nodes. The program
should also graph the exact derivative given by f 0 D f 0.x/ above.

b) Test the program using n D 10 and " D 1=5.
c) How large do you have to choose n in order for the difference between these

two functions to be less than 0:1?

Hint Each function gives an array. Create a while loop and use the max function
of the arrays to retrieve the maximum value and compare these.

d) Let " D 1=10 and recalculate.
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e) Let " D 1=20 and recalculate.
f) Try to determine experimentally how large n needs to be for a given value of

" such that increasing n further does not change the plot so much that you can
view it on the screen. Note, again, that there is no exact solution to this problem.

Filename: sin_deriv.

Exercise B.4: Use the Trapezoidal method
The purpose of this exercise is to test the program trapezoidal.py.

a) Let

a D
1Z

0

e4xdx D 1

4
e4 � 1

4
:

Compute the integral using the program trapezoidal.py and, for a given n,
let a.n/ denote the result. Try to find, experimentally, how large you have to
choose n in order for

ja � a.n/j � "

where " D 1=100.
b) Recalculate with " D 1=1000.
c) Recalculate with " D 1=10;000.
d) Try to figure out, in general, how large n has to be such that

ja � a.n/j � "

for a given value of ".

Filename: trapezoidal_test_exp.

Exercise B.5: Compute a sequence of integrals

a) Let

bk D
1Z

0

xkdx D 1

k C 1
;

and let bk.n/ denote the result of using the program trapezoidal.py to com-
pute

R 1

0
xkdx. For k D 4; 6 and 8, try to figure out, by doing numerical

experiments, how large n needs to be in order for bk.n/ to satisfy

ˇ̌̌
bk � bk.n/

ˇ̌̌
� 0:0001:

Note that n will depend on k.

Hint Run the program for each k, look at the output, and calculate
ˇ̌̌
bk � bk.n/

ˇ̌̌
manually.

http://tinyurl.com/pwyasaa/discalc/trapezoidal.py


712 B Introduction to Discrete Calculus

b) Try to generalize the result in the previous point to arbitrary k 	 2.
c) Generate a plot of xk on the unit interval for k D 2; 4; 6; 8; and 10, and try

to figure out if the results obtained in (a) and (b) are reasonable taking into
account that the program trapezoidal.py was developed using a piecewise
linear approximation of the function.

Filename: trapezoidal_test_power.

Exercise B.6: Use the Trapezoidal method
The purpose of this exercise is to compute an approximation of the integral

I D
1Z
�1

e�x2

dx

using the Trapezoidal method.

a) Plot the function e�x2
for x ranging from �10 to 10 and use the plot to argue

that 1Z
�1

e�x2

dx D 2

1Z
0

e�x2

dx:

b) Let T .n; L/ be the approximation of the integral

2

LZ
0

e�x2

dx

computed by the Trapezoidal method using n subintervals. Develop a program
that computes the value of T for a given n and L.

c) Extend the program to write out values of T .n; L/ in a table with rows cor-
responding to n D 100; 200; : : : ; 500 and columns corresponding to L D
2; 4; 6; 8; 10.

d) Extend the program to also print a table of the errors in T .n; L/ for the same n

and L values as in (c). The exact value of the integral is
p

� .

Filename: integrate_exp.

Remarks Numerical integration of integrals with finite limits requires a choice of
n, while with infinite limits we also need to truncate the domain, i.e., choose L in
the present example. The accuracy depends on both n and L.

Exercise B.7: Compute trigonometric integrals
The purpose of this exercise is to demonstrate a property of trigonometric functions
that you will meet in later courses. In this exercise, you may compute the integrals
using the program trapezoidal.pywith n D 100.
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a) Consider the integrals

Ip;q D 2

1Z
0

sin.p�x/ sin.q�x/dx

and fill in values of the integral Ip;q in a table with rows corresponding to q D
0; 1; : : : ; 4 and columns corresponding to p D 0; 1; : : : ; 4.

b) Repeat the calculations for the integrals

Ip;q D 2

1Z
0

cos.p�x/ cos.q�x/dx:

c) Repeat the calculations for the integrals

Ip;q D 2

1Z
0

cos.p�x/ sin.q�x/dx:

Filename: ortho_trig_funcs.

Exercise B.8: Plot functions and their derivatives

a) Use the program diff_func.py to plot approximations of the derivative for the
following functions defined on the interval ranging from x D 1=1000 to x D 1:

f .x/ D ln
�

x C 1

100

�
;

g.x/ D cos.e10x/;

h.x/ D xx:

b) Extend the program such that both the discrete approximation and the correct
(analytical) derivative can be plotted. The analytical derivative should be evalu-
ated in the same computational points as the numerical approximation. Test the
program by comparing the discrete and analytical derivative of x3.

c) Use the program to compare the analytical and discrete derivatives of the func-
tions f , g, and h. How large do you have to choose n in each case in order for
the plots to become indistinguishable on your screen. Note that the analytical
derivatives are given by:

f 0.x/ D 1

x C 1
100

;

g0.x/ D �10e10x sin
�
e10x

	
h0.x/ D .ln x/ xx C xxx�1

Filename: diff_functions.

http://tinyurl.com/pwyasaa/discalc/diff_func.py
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Exercise B.9: Use the Trapezoidal method
Develop an efficient program that creates a plot of the function

f .x/ D 1

2
C 1p

�

xZ
0

e�t 2

dt

for x 2 Œ0; 10�. The integral should be approximated using the Trapezoidal method
and use as few function evaluations of e�t 2

as possible.
Filename: plot_integral.
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Fig. C.4 Graphs of susceptibles (left) and infectives (right) for an influenza in a British boarding
school in 1978.

C.6 Exercises

Exercise C.1: Solve a nonhomogeneous linear ODE
Solve the ODE problem

u0 D 2u� 1; u.0/ D 2; t 2 Œ0; 6�

using the Forward Euler method. Choose �t D 0:25. Plot the numerical solution
together with the exact solution u.t/ D 1

2
C 3

2
e2t .

Filename: nonhomogeneous_linear_ODE.

Exercise C.2: Solve a nonlinear ODE
Solve the ODE problem

u0 D uq; u.0/ D 1; t 2 Œ0; T �

using the Forward Euler method. The exact solution reads u.t/ D et for q D 1

and u.t/ D .t.1 � q/C 1/1=.1�q/ for q > 1 and t.1 � q/ C 1 > 0. Read q, �t ,
and T from the command line, solve the ODE, and plot the numerical and exact
solution. Run the program for different cases: q D 2 and q D 3, with �t D 0:01

and �t D 0:1. Set T D 6 if q D 1 and T D 1=.q � 1/� 0:1 otherwise.
Filename: nonlinear_ODE.

Exercise C.3: Solve an ODE for y.x/

We have given the following ODE problem:

dy

dx
D 1

2.y � 1/
; y.0/ D 1Cp�; x 2 Œ0; 4�; (C.33)

where � > 0 is a small number. Formulate a Forward Euler method for this ODE
problem and compute the solution for varying step size in x: �x D 1, �x D 0:25,
�x D 0:01. Plot the numerical solutions together with the exact solution y.x/ D
1 C px C �, using 1001 x coordinates for accurate resolution of the latter. Set �

to 10�3. Study the numerical solution with �x D 1, and use that insight to explain
why this problem is hard to solve numerically.
Filename: yx_ODE.
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Exercise C.4: Experience instability of an ODE
Consider the ODE problem

u0 D ˛u; u.0/ D u0;

solved by the Forward Euler method. Show by repeatedly applying the scheme that

uk D .1C ˛�t/ku0 :

We now turn to the case ˛ < 0. Show that the numerical solution will oscillate if
�t > �1=˛. Make a program for computing uk, set ˛ D �1, and demonstrate
oscillatory solutions for �t D 1:1; 1:5; 1:9. Recall that the exact solution, u.t/ D
e˛t , never oscillates.

What happens if �t > �2=˛? Try it out in the program and explain why we do
not experience that uk ! 0 as k !1.
Filename: unstable_ODE.

Exercise C.5: Solve an ODE with time-varying growth
Consider the ODE for exponential growth,

u0 D ˛u; u.0/ D 1; t 2 Œ0; T � :

Now we introduce a time-dependent ˛ such that the growth decreases with time:
˛.t/ D a � bt . Solve the problem for a D 1, b D 0:1, and T D 10. Plot the
solution and compare with the corresponding exponential growth using the mean
value of ˛.t/ as growth factor: e.a�bT=2/t .
Filename: time_dep_growth.
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Fig. D.6 Differences between the curves in Fig. D.5 (right)

thorough investigation of how the error depends on �t would use time integrals of
the error instead of the complete error curves.

Again we mention that the complete problem analyzed in this appendix is chal-
lenging to understand because of its mix of physics, mathematics, and program-
ming. In real life, however, problem solving in science and industry involve multi-
disciplinary projects where people with different competence work together. As
a scientific programmer you must then be able to fully understand what to program
and how to verify the results. This is a requirement in the current summarizing ex-
ample too. You have to accept that your programming problem is buried in a lot of
physical and mathematical details.

Having said this, we expect that most readers of this book also gain a back-
ground in physics and mathematics so that the present summarizing example can
be understood in complete detail, at least at some later stage.

D.4 Exercises

Exercise D.1: Model sudden movements of the plate
Set up a problem with the boxspring_plot.py program where the initial stretch
in the spring is 1 and there is no gravity force. Between t D 20 and t D 30 we
move the plate suddenly from 0 to 2 and back again:

w.t/ D
(

2; 20 < t < 30;

0; otherwise



756 D A Complete Differential Equation Project

Run this problem and view the solution.

Exercise D.2: Write a callback function
Doing Exercise D.1 shows that the Y position increases significantly in magnitude
when the plate jumps upward and back again at t D 20 and t D 30, respectively.
Make a programwhere you import from the boxspringmodule and provide a call-
back function that checks if Y < 9 and then aborts the program.
Filename: boxspring_Ycrit.

Exercise D.3: Improve input to the simulation program
The oscillating system in Sect. D.1 has an equilibrium position S D mg=k, see
(D.22). A natural case is to let the box start at rest in this position and move the
plate to induce oscillations. We must then prescribe S0 D mg=k on the command
line, but the numerical value depends on the values of m and g that we might also
give in the command line. However, it is possible to specify –S0 m*g/k on the
command line if we in the init_prms function first let S0 be a string in the elif
test and then, after the for loop, execute S0 = eval(S0). At that point, m and k
are read from the command line so that eval will work on ’m*g/k’, or any other
expression involving data from the command. Implement this idea.

A first test problem is to start from rest in the equilibrium position S.0/ D mg=k

and give the plate a sudden upward change in position from y D 0 to y D 1. That
is,

w.t/ D
(

0; t � 0;

1; t > 0

You should get oscillations around the displaced equilibrium position Y D w�L�
S0 D �9 � 2g.
Filename: boxspring2.
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Some of the solvers are implemented in Python, while others call up well-known
ODE software in Fortran. Like the ODESolver hierarchy, Odespy offers a unified
interface to the different numerical methods, which means that the user can spec-
ify the ODE problem as a function f(u,t) and send this function to all solvers.
This feature makes it easy to switch between solvers to test a wide collection of
numerical methods for a problem.

Odespy can be downloaded from http://hplgit.github.com/odespy. It is
installed by the usual python setup.py install command.

E.4 Exercises

Exercise E.1: Solve a simple ODE with function-based code
This exercise aims to solve the ODE problem u � 10u0 D 0, u.0/ D 0:2, for
t 2 Œ0; 20�.

a) Identify the mathematical function f .u; t/ in the generic ODE form u0 D
f .u; t/.

b) Implement the f .u; t/ function in a Python function.
c) Use the ForwardEuler function from Sect. E.1.3 to compute a numerical solu-

tion of the ODE problem. Use a time step �t D 5.
d) Plot the numerical solution and the exact solution u.t/ D 0:2e0:1t .
e) Save the numerical solution to file. Decide upon a suitable file format.
f) Perform simulations for smaller �t values and demonstrate visually that the

numerical solution approaches the exact solution.

Filename: simple_ODE_func.

Exercise E.2: Solve a simple ODE with class-based code
Solve the same ODE problem as in Exercise E.1, but use the ForwardEuler class
from Sect. E.1.7. Implement the right-hand side function f as a class too.
Filename: simple_ODE_class.

Exercise E.3: Solve a simple ODE with the ODEsolver hierarchy
Solve the same ODE problem as in Exercise E.1, but use the ForwardEuler class
in the ODESolver hierarchy from Sect. E.3.
Filename: simple_ODE_class_ODESolver.

Exercise E.4: Solve an ODE specified on the command line
We want to make a program odesolver_cml.pywhich accepts an ODE problem
to be specified on the command line. The command-line arguments are f u0 dt T,
where f is the right-hand side f .u; t/ specified as a string formula, u0 is the initial
condition, dt is the time step, and T is the final time of the simulation. A fifth op-
tional argument can be given to specify the name of the numerical solution method
(set any method of your choice as default value). A curve plot of the solution versus
time should be produced and stored in a file plot.png.

http://hplgit.github.com/odespy
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Hint 1 Use StringFunction from scitools.std for convenient conversion of
a formula on the command line to a Python function.

Hint 2 Use the ODESolver hierarchy to solve the ODE and let the fifth command-
line argument be the class name in the ODESolver hierarchy.
Filename: odesolver_cml.

Exercise E.5: Implement a numerical method for ODEs
Implement the numerical method (E.36)–(E.37). How can you verify that the im-
plementation is correct?
Filename: Heuns_method.

Exercise E.6: Solve an ODE for emptying a tank
A cylindrical tank of radius R is filled with water to a height h0. By opening a valve
of radius r at the bottom of the tank, water flows out, and the height of water, h.t/,
decreases with time. We can derive an ODE that governs the height function h.t/.

Mass conservation of water requires that the reduction in height balances the
outflow. In a time interval �t , the height is reduced by �h, which corresponds to
a water volume of �R2�h. The water leaving the tank in the same interval of time
equals �r2v�t , where v is the outflow velocity. It can be shown (from what is
known as Bernoulli’s equation) [15, 26] that

v.t/ D
p

2gh.t/C h0.t/2;

where g is the acceleration of gravity. Note that �h > 0 implies an increase in
h, which means that ��R2�h is the corresponding decrease in volume that must
balance the outflow loss of volume �r2v�t . Elimination of v and taking the limit
�t ! 0 lead to the ODE

dh

dt
D �

� r

R

�2
�

1 �
� r

R

�4
��1=2 p

2gh :

For practical applications r � R so that 1 � .r=R/4 � 1 is a reasonable approx-
imation, since other approximations are done as well: friction is neglected in the
derivation, and we are going to solve the ODE by approximate numerical methods.
The final ODE then becomes

dh

dt
D �

� r

R

�2p
2gh : (E.61)

The initial condition follows from the initial height of water, h0, in the tank: h.0/ D
h0.

Solve (E.61) by a numerical method of your choice in a program. Set r D 1 cm,
R D 20 cm, g D 9:81 m/s2, and h0 D 1 m. Use a time step of 10 seconds. Plot
the solution, and experiment to see what a proper time interval for the simulation
is. Make sure to test for h < 0 so that you do not apply the square root function to
negative numbers. Can you find an analytical solution of the problem to compare
the numerical solution with?
Filename: tank_ODE.
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Exercise E.7: Solve an ODE for the arc length
Given a curve y D f .x/, the length of the curve from x D x0 to some point x is
given by the function s.x/, which solves the problem

ds

dx
D
p

1C Œf 0.x/�2; s.x0/ D 0 : (E.62)

Since s does not enter the right-hand side, (E.62) can immediately be integrated
from x0 to x (see Exercise A.13). However, we shall solve (E.62) as an ODE.
Use the Forward Euler method and compute the length of a straight line (for easy
verification) and a parabola: f .x/ D 1

2
x C 1, x 2 Œ0; 2�; f .x/ D x2, x 2 Œ0; 2�.

Filename: arclength_ODE.

Exercise E.8: Simulate a falling or rising body in a fluid
A body moving vertically through a fluid (liquid or gas) is subject to three different
types of forces:

� the gravity force Fg D �mg, where m is the mass of the body and g is the
acceleration of gravity;

� the drag forceFd D � 1
2
CD%Ajvjv, where CD is a dimensionless drag coefficient

depending on the body’s shape, % is the density of the fluid, A is the cross-
sectional area (produced by a cut plane, perpendicular to the motion, through the
thickest part of the body), and v is the velocity;

� the uplift or buoyancy (“Archimedes”) force Fb D %gV , where V is the volume
of the body.

(Roughly speaking, the Fd formula is suitable for medium to high velocities, while
for very small velocities, or very small bodies, Fd is proportional to the velocity,
not the velocity squared, see [26].)

Newton’s second law applied to the body says that the sum of the listed forces
must equal the mass of the body times its acceleration a:

Fg C Fd C Fb D ma;

which gives

�mg � 1

2
CD%Ajvjv C %gV D ma :

The unknowns here are v and a, i.e., we have two unknowns but only one equation.
From kinematics in physics we know that the acceleration is the time derivative of
the velocity: a D dv=dt . This is our second equation. We can easily eliminate a

and get a single differential equation for v:

�mg � 1

2
CD%Ajvjv C %gV D m

dv

dt
:

A small rewrite of this equation is handy: we express m as %bV , where %b is the
density of the body, and we isolate dv=dt on the left-hand side,

dv

dt
D �g

�
1 � %

%b

�
� 1

2
CD

%A

%bV
jvjv : (E.63)

This differential equation must be accompanied by an initial condition: v.0/ D V0.
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a) Make a program for solving (E.63) numerically, using any numerical method of
your choice.

Hint It is not strictly necessary, but it is an elegant Python solution to implement the
right-hand side of (E.63) in the __call__method of a class where the parameters
g, %, %b, CD , A, and V are data attributes.

b) To verify the program, assume a heavy body in air such that the Fb force can be
neglected, and assume a small velocity such that the air resistance Fd can also
be neglected. Mathematically, setting % D 0 removes both these terms from
the equation. The solution is then v.t/ D y0.t/ D v0 � gt . Observe through
experiments that the linear solution is exactly reproduced by the numerical so-
lution regardless of the value of �t . (Note that if you use the Forward Euler
method, the method can become unstable for large �t , see Sect. E.3.5. and time
steps above the critical limit for stability cannot be used to reproduce the linear
solution.) Write a test function for automatically checking that the numerical
solution is uk D v0 � gk�t in this test case.

c) Make a function for plotting the forces Fg , Fb , and Fd as functions of t . See-
ing the relative importance of the forces as time develops gives an increased
understanding of how the different forces contribute to changing the velocity.

d) Simulate a skydiver in free fall before the parachute opens. We set the density
of the human body as %b D 1003 kg=m3 and the mass as m D 80 kg, implying
V D m=%b D 0:08 m3. We can base the cross-sectional area A the assumption
of a circular cross section of diameter 50 cm, giving A D �R2 D 0:9 m2. The
density of air decreases with height, and we here use the value 0.79 kg/m3 which
is relevant for about 5000m height. The CD coefficient can be set as 0.6. Start
with v0 D 0.

e) A ball with the size of a soccer ball is placed in deep water, and we seek to com-
pute its motion upwards. Contrary to the former example, where the buoyancy
force Fb is very small, Fb is now the driving force, and the gravity force Fg

is small. Set A D �a2 with a D 11 cm. The mass of the ball is 0.43 kg, the
density of water is 1000 kg/m3, and CD can be taken as 0.4. Start with v0 D 0.

Filename: body_in_fluid.

Exercise E.9: Verify the limit of a solution as time grows
The solution of (E.63) often tends to a constant velocity, called the terminal veloc-
ity. This happens when the sum of the forces, i.e., the right-hand side in (E.63),
vanishes.

a) Compute the formula for the terminal velocity by hand.
b) Solve the ODE using class ODESolver and call the solve method with

a terminate function that terminates the computations when a constant veloc-
ity is reached, that is, when jv.tn/� v.tn�1/j � �, where � is a small number.

c) Run a series of�t values and make a graph of the terminal velocity as a function
of �t for the two cases in Exercise E.8 d) and e). Indicate the exact terminal
velocity in the plot by a horizontal line.

Filename: body_in_fluid_termvel.
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Exercise E.10: Scale the logistic equation
Consider the logistic model (E.5):

u0.t/ D ˛u.t/

�
1 � u.t/

R

�
; u.0/ D U0 :

This problem involves three input parameters: U0, R, and ˛. Learning how u varies
with U0, R, and ˛ requires much experimentation where we vary all three param-
eters and observe the solution. A much more effective approach is to scale the
problem. By this technique the solution depends only on one parameter: U0=R.
This exercise tells how the scaling is done.

The idea of scaling is to introduce dimensionless versions of the independent and
dependent variables:

v D u

uc

; � D t

tc
;

where uc and tc are characteristic sizes of u and t , respectively, such that the di-
mensionless variables v and � are of approximately unit size. Since we know that
u! R as t !1, R can be taken as the characteristic size of u.

Insert u D Rv and t D tc� in the governing ODE and choose tc D 1=˛. Show
that the ODE for the new function v.�/ becomes

dv

d�
D v.1 � v/; v.0/ D v0 : (E.64)

We see that the three parameters U0, R, and ˛ have disappeared from the ODE
problem, and only one parameter v0 D U0=R is involved.

Show that if v.�/ is computed, one can recover u.t/ by

u.t/ D Rv.˛t/ : (E.65)

Geometrically, the transformation from v to u is just a stretching of the two axis in
the coordinate system.

Make a program logistic_scaled.py where you compute v.�/, given v0 D
0:05, and then you use (E.65) to plot u.t/ for R D 100; 500; 1000 and ˛ D 1 in
one figure, and u.t/ for ˛ D 1; 5; 10 and R D 1000 in another figure. Note how
effectively you can generate u.t/ without needing to solve an ODE problem, and
also note how varying R and ˛ impacts the graph of u.t/.
Filename: logistic_scaled.

Exercise E.11: Compute logistic growth with time-varying carrying capacity
Use classes Problem2 and AutoSolver from Sect. E.3.6 to study logistic growth
when the carrying capacity of the environment, R, changes periodically with time:
R D 500 for i ts � t < .i C 1/ts and R D 200 for .i C 1/ts � t < .i C 2/ts , with
i D 0; 2; 4; 6; : : :. Use the same data as in Sect. E.3.6, and find some relevant sizes
of the period of variation, ts , to experiment with.
Filename: seasonal_logistic_growth.
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Exercise E.12: Solve an ODE until constant solution
Newton’s law of cooling,

dT

dt
D �h.T � Ts/ (E.66)

can be used to see how the temperature T of an object changes because of heat ex-
change with the surroundings, which have a temperature Ts . The parameter h, with
unit s�1 is an experimental constant (heat transfer coefficient) telling how efficient
the heat exchange with the surroundings is. For example, (E.66) may model the
cooling of a hot pizza taken out of the oven. The problem with applying (E.66) is
that h must be measured. Suppose we have measured T at t D 0 and t1. We can
use a rough Forward Euler approximation of (E.66) with one time step of length t1,

T .t1/ � T .0/

t1
D �h.T .0/ � Ts/;

to make the estimate

h D T .t1/ � T .0/

t1.Ts � T .0//
: (E.67)

a) The temperature of a pizza is 200C at t D 0, when it is taken out of the oven,
and 180C after 50 seconds, in a room with temperature 20C. Find an estimate
of h from the formula above.

b) Solve (E.66) numerically by a method of your choice to find the evolution of the
temperature of the pizza. Plot the solution.

Hint You may solve the ODE the way you like, but the solvemethod in the classes
in the ODESolver hierarchy accepts an optional terminate function that can be
used to terminate the solution process when T is sufficiently close to Ts . Reading
the first part of Sect. E.3.6 may be useful.
Filename: pizza_cooling1.

Exercise E.13: Use a problem class to hold data about an ODE
We address the same physical problem as in Exercise E.12, but we will now provide
a class-based implementation for the user’s code.

a) Make a class Problem containing the parameters h, Ts , T .0/, and �t as data
attributes. Let these parameters be set in the constructor. The right-hand side of
the ODE can be implemented in a __call__ method. If you use a class from
the ODESolver hierarchy to solve the ODE, include the terminate function as
a method in class Problem.
Create a stand-alone function estimate_h(t0, t1, T0, T1) which applies
(E.67) from Exercise E.12 to estimate the h parameter based on the initial tem-
perature and one data point .t1; T .t1//. You can use this function to estimate
a value for h prior to calling the constructor in the Problem class.

Hint You may want to read Sect. E.3.6 to see why and how a class Problem is
constructed.
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b) Implement a test function test_Problem() for testing that class Problem
works. (It is up to you to define how to test the class.)

c) What are the advantages and disadvantages with class Problem compared to
using plain functions (in your view)?

d) We nowwant to run experiments with different values of some parameters: Ts D
15; 22; 30 C and T .0/ D 250; 200 C. For each T .0/, plot T for the three Ts

values. The estimated value of h in Exercise E.12 can be reused here.

Hint The typical elegant Python way to solve such a problem goes as follows.
Write a function solve(problem) that takes a Problem object with name
problem as argument and performs what it takes to solve one case (i.e., solve
must solve the ODE and plot the solution). A dictionary can for each T0 value hold
a list of the cases to be plotted together. Then we loop over the problems in the
dictionary of lists and call solve for each problem:

# Given h and dt

problems = {T_0: [Problem(h, T_s, T_0, dt)

for T_s in 15, 22, 30] for T_0 in 250, 200}

for T_0 in problems:

hold(’off’)

for problem in problems[T_0]:

solve(problem)

hold(’on’)

savefig(’T0_%g’.pdf % T_0)

When you become familiar with such code, and appreciate it, you can call yourself
a professional programmer – with a deep knowledge of how lists, dictionaries, and
classes can play elegantly together to conduct scientific experiments. In the present
case we perform only a few experiments that could also have been done by six
separate calls to the solver functionality, but in large-scale scientific and engineering
investigations with hundreds of parameter combinations, the above code is still the
same, only the generation of the Problem instances becomes more involved.
Filename: pizza_cooling2.

Exercise E.14: Derive and solve a scaled ODE problem
Use the scaling approach outlined in Exercise E.10 to “scale away” the parame-
ters in the ODE in Exercise E.12. That is, introduce a new unknown u D .T �
Ts/=.T .0/ � Ts/ and a new time scale � D th. Find the ODE and the initial con-
dition that governs the u.�/ function. Make a program that computes u.�/ until
juj < 0:001. Store the discrete u and � values in a file u_tau.dat if that file is
not already present (you can use os.path.isfile(f) to test if a file with name
f exists). Create a function T(u, tau, h, T0, Ts) that loads the u and � data
from the u_tau.dat file and returns two arrays with T and t values, corresponding
to the computed arrays for u and � . Plot T versus t . Give the parameters h, Ts ,
and T .0/ on the command line. Note that this program is supposed to solve the
ODE once and then recover any T .t/ solution by a simple scaling of the single u.�/

solution.
Filename: pizza_cooling3.
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Exercise E.15: Clean up a file to make it a module
The ForwardEuler_func.pyfile is not well organized to be used as a module, say
for doing

>>> from ForwardEuler_func import ForwardEuler

>>> u, t = ForwardEuler(lambda u, t: -u**2, U0=1, T=5, n=30)

The reason is that this import statement will execute a main program in the
ForwardEuler_func.py file, involving plotting of the solution in an example.
Also, the verification tests are run, which in more complicated problems could
take considerable time and thus make the import statement hang until the tests are
done.

Go through the file and modify it such that it becomes a module where no code
is executed unless the module file is run as a program.
Filename: ForwardEuler_func2.

Exercise E.16: Simulate radioactive decay
The equation u0 D �au is a relevant model for radioactive decay, where u.t/ is
the fraction of particles that remains in the radioactive substance at time t . The
parameter a is the inverse of the so-called mean lifetime of the substance. The
initial condition is u.0/ D 1.

a) Introduce a class Decay to hold information about the physical problem: the
parameter a and a __call__method for computing the right-hand side �au of
the ODE.

b) Initialize an instance of class Decay with a D ln.2/=5600 1/y. The unit 1/y
means one divided by year, so time is here measured in years, and the particular
value of a corresponds to the Carbon-14 radioactive isotope whose decay is used
extensively in dating organic material that is tens of thousands of years old.

c) Solve u0 D �au with a time step of 500 y, and simulate the radioactive decay for
T D 20; 000 y. Plot the solution. Write out the final u.T / value and compare it
with the exact value e�aT .

Filename: radioactive_decay.

Exercise E.17: Compute inverse functions by solving an ODE
The inverse function g of some function f .x/ takes the value of f .x/ back to x

again: g.f .x// D x. The common technique to compute inverse functions is to set
y D f .x/ and solve with respect to x. The formula on the right-hand side is then
the desired inverse function g.y/. Section A.1.11 makes use of such an approach,
where y � f .x/ D 0 is solved numerically with respect to x for different discrete
values of y.

We can formulate a general procedure for computing inverse functions from an
ODE problem. If we differentiate y D f .x/ with respect to y, we get 1 D f 0.x/dx

dy

by the chain rule. The inverse function we seek is x.y/, but this function then
fulfills the ODE

x0.y/ D 1

f 0.x/
: (E.68)

http://tinyurl.com/pwyasaa/ode2/ForwardEuler_func.py
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That y is the independent coordinate and x a function of y can be a somewhat
confusing notation, so we might introduce u for x and t for y:

u0.t/ D 1

f 0.u/
:

The initial condition is x.0/ D xr where xr solves the equation f .xr / D 0 (x.0/

implies y D 0 and then from y D f .x/ it follows that f .x.0// D 0).
Make a program that can use the described method to compute the inverse func-

tion of f .x/, given xr . Use any numerical method of your choice for solving the
ODE problem. Verify the implementation for f .x/ D 2x. Apply the method for
f .x/ D px and plot f .x/ together with its inverse function.
Filename: inverse_ODE.

Exercise E.18: Make a class for computing inverse functions
The method for computing inverse functions described in Exercise E.17 is very
general. The purpose now is to use this general approach to make a more reusable
utility, here called Inverse, for computing the inverse of some Python function
f(x) on some interval I=[a,b]. The utility can be used as follows to calculate the
inverse of sin x on I D Œ0; �=2�:

def f(x):

return sin(x)

# Compute the inverse of f

inverse = Inverse(f, x0=0, I=[0, pi/2], resolution=100)

x, y = Inverse.compute()

plot(y, x, ’r-’,

x, f(x), ’b-’,

y, asin(y), ’go’)

legend([’computed inverse’, ’f(x)’, ’exact inverse’])

Here, x0 is the value of x at 0, or in general at the left point of the interval: I[0].
The parameter resolution tells how many equally sized intervals �y we use in
the numerical integration of the ODE. A default choice of 1000 can be used if it is
not given by the user.

Write class Inverse and put it in a module. Include a test function test_
Inverse() in the module for verifying that class Inverse reproduces the exact
solution in the test problem f .x/ D 2x.
Filename: Inverse1.

Exercise E.19: Add functionality to a class
Extend the module in Exercise E.18 such that the value of x.0/ (x0 in class
Inverse’s constructor) does not need to be provided by the user.

Hint Class Inverse can compute a value of x.0/ as the root of f .x/ D 0. You may
use the Bisection method from Sect. 4.11.2, Newton’s method from Sect. A.1.10, or
the Secant method from Exercise A.10 to solve f .x/ D 0. Class Inverse should
figure out a suitable initial interval for the Bisection method or start values for the
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Newton or Secant methods. Computing f .x/ for x at many points and examining
these may help in solving f .x/ D 0 without any input from the user.
Filename: Inverse2.

Exercise E.20: Compute inverse functions by interpolation
Instead of solving an ODE for computing the inverse function g.y/ of some func-
tion f .x/, as explained in Exercise E.17, one may use a simpler approach based on
ideas from Sect. E.1.5. Say we compute discrete values of x and f .x/, stored in
the arrays x and y. Doing a plot(x, y) shows y D f .x/ as a function of x, and
doing plot(y, x) shows x as a function of y, i.e., we can trivially plot the inverse
function g.y/ (!).

However, if we want the inverse function of f .x/ as some Python function g(y)
that we can call for any y, we can use the tool wrap2callable from Sect. E.1.5
to turn the discrete inverse function, described by the arrays y (independent coordi-
nate) and x (dependent coordinate), into a continuous function g(y):

from scitools.std import wrap2callable

g = wrap2callable((y, x))

y = 0.5

print g(y)

The g(y) function applies linear interpolation in each interval between the points
in the y array.

Implement this method in a program. Verify the implementation for f .x/ D 2x,
x 2 Œ0; 4�, and apply the method to f .x/ D sin x for x 2 Œ0; �=2�.
Filename: inverse_wrap2callable.

Exercise E.21: Code the 4th-order Runge-Kutta method; function
Use the file ForwardEuler_func.py from Sect. E.1.3 as starting point for imple-
menting the famous and widely used 4th-order Runge-Kutta method (E.41)–(E.45).
Use the test function involving a linear u.t/ for verifying the implementation. Ex-
ercise E.23 suggests an application of the code.
Filename: RK4_func.

Exercise E.22: Code the 4th-order Runge-Kutta method; class
Carry out the steps in Exercise E.21, but base the implementation on the file
ForwardEuler.py from Sect. E.1.7.
Filename: RK4_class.

Exercise E.23: Compare ODE methods
Investigate the accuracy of the 4th-order Runge-Kutta method and the Forward Eu-
ler scheme for solving the (challenging) ODE problem

dy

dx
D 1

2.y � 1/
; y.0/ D 1Cp�; x 2 Œ0; 4�; (E.69)

where � is a small number, say � D 0:001. Start with four steps in Œ0; 4� and reduce
the step size repeatedly by a factor of two until you find the solutions sufficiently

http://tinyurl.com/pwyasaa/ode2/ForwardEuler_func.py
http://tinyurl.com/pwyasaa/ode2/ForwardEuler.py
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accurate. Make a plot of the numerical solutions along with the exact solution
y.x/ D 1Cpx C � for each step size.
Filename: yx_ODE_FE_vs_RK4.

Exercise E.24: Code a test function for systems of ODEs
The ForwardEuler_func.py file from Sect. E.1.3 does not contain any test func-
tion for verifying the implementation. We can use the fact that linear functions of
time will be exactly reproduced by most numerical methods for ODEs. A simple
system of two ODEs with linear solutions v.t/ D 2C 3t and w.t/ D 3C 4t is

v0 D 3C .3C 4t � w/3; (E.70)

w0 D 4C .2C 3t � v/4 (E.71)

Write a test function test_ForwardEuler() for comparing the numerical solution
of this system with the exact solution.
Filename: ForwardEuler_sys_func2.

Exercise E.25: Code Heun’s method for ODE systems; function
Use the file ForwardEuler_sys_func.py from Sect. E.2.3 as starting point for
implementing Heun’s method (E.36)–(E.37) for systems of ODEs. Verify the solu-
tion using the test function suggested in Exercise E.24.
Filename: Heun_sys_func.

Exercise E.26: Code Heun’s method for ODE systems; class
Carry out the steps in Exercise E.25, but make a class implementation based on the
file ForwardEuler_sys.py from Sect. E.2.4.
Filename: Heun_sys_class.

Exercise E.27: Implement and test the Leapfrog method

a) Implement the Leapfrog method specified in formula (E.35) from Sect. E.3.1 in
a subclass of ODESolver. Place the code in a separate module file Leapfrog.py.

b) Make a test function for verifying the implementation.

Hint Use the fact that the method will exactly produce a linear u, see Sect. E.3.4.

c) Make a movie that shows how the Leapfrog method, the Forward Euler method,
and the 4th-order Runge-Kutta method converge to the exact solution as �t is
reduced. Use the model problem u0 D u, u.0/ D 1, t 2 Œ0; 8�, with n D 2k

intervals, k D 1; 2 : : : ; 14. Place the movie generation in a function.
d) Repeat c) for the model problem u0 D �u, u.0/ D 1, t 2 Œ0; 5�, with n D 2k

intervals, k D 1; 2 : : : ; 14. In the movie, start with the finest resolution and
reduce n until n D 2. The lessons learned is that Leapfrog can give completely
wrong, oscillating solutions if the time step is not small enough.

Filename: Leapfrog.

http://tinyurl.com/pwyasaa/ode2/ForwardEuler_func.py
http://tinyurl.com/pwyasaa/ode2/ForwardEuler_sys_func.py
http://tinyurl.com/pwyasaa/ode2/ForwardEuler_sys.py
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Exercise E.28: Implement and test an Adams-Bashforth method
Do Exercise E.27 with the 3rd-order Adams-Bashforth method (E.46).
Filename: AdamBashforth3.

Exercise E.29: Solve two coupled ODEs for radioactive decay
Consider two radioactive substances A and B. The nuclei in substance A decay to
form nuclei of type B with a mean lifetime �A, while substance B decay to form
type A nuclei with a mean lifetime �B . Letting uA and uB be the fractions of the
initial amount of material in substance A and B, respectively, the following system
of ODEs governs the evolution of uA.t/ and uB.t/:

u0A D uB=�B � uA=�A; (E.72)

u0B D uA=�A � uB=�B; (E.73)

with uA.0/ D uB.0/ D 1.

a) Introduce a problem class, which holds the parameters �A and �B and offers
a __call__ method to compute the right-hand side vector of the ODE system,
i.e., .uB=�B � uA=�A; uA=�A � uB=�B/.

b) Solve for uA and uB using a subclass in the ODESolver hierarchy and the pa-
rameter choices �A D 8 minutes, �B D 40 minutes, and �t D 10 seconds.

c) Plot uA and uB against time measured in minutes.
d) From the ODE system it follows that the ratio uA=uB ! �A=�B as t ! 1

(assuming u0A D u0B D 0 in the limit t ! 1). Extend the problem class
with a test method for checking that two given solutions uA and uB fulfill this
requirement. Verify that this is indeed the case with the computed solutions in
b).

Filename: radioactive_decay2.

Exercise E.30: Implement a 2nd-order Runge-Kutta method; function
Implement the 2nd-order Runge-Kutta method specified in formula (E.38). Use
a plain function RungeKutta2 of the type shown in Sect. E.1.2 for the Forward
Euler method. Construct a test problem where you know the analytical solution,
and plot the difference between the numerical and analytical solution. Demonstrate
that the numerical solution approaches the exact solution as �t is reduced.
Filename: RungeKutta2_func.

Exercise E.31: Implement a 2nd-order Runge-Kutta method; class

a) Make a new subclass RungeKutta2 in the ODESolver hierarchy from Sect. E.3
for solving ordinary differential equations with the 2nd-order Runge-Kutta
method specified in formula (E.38).

b) Construct a test problemwhere you can find an exact solution. Run different val-
ues of �t and demonstrate in a plot that the numerical solution approaches the
exact solution as �t is decreased. Put the code that creates the plot in a function.
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c) Make a test function test_RungeKutta2_against_hand_calc()where you
do the computations of u1 and u2 i Python based on the mathematical formulas.
Thereafter, run the RungeKutta2 class for two time steps and check that the two
solutions are equal (within a small tolerance). Use an ODE where the right-hand
side depends on t as well as u such that you can test that RungeKutta2 treats
the t argument in f .u; t/ correctly.

d) Make a module out of the RungeKutta2 class and the associated functions. Call
the functions from a test block in the module file.

Filename: RungeKutta2.

Exercise E.32: Code the iterated midpoint method; function

a) Implement the numerical method (E.47)–(E.48) as a function

iterated_Midpoint_method(f, U0, T, n, N)

where f is a Python implementation of f .u; t/, U0 is the initial condition u.0/ D
U0, T is the final time of the simulation, n is the number of time steps, and N is the
parameter N in the method (E.47). The iterated_Midpoint_method should
return two arrays: u0; : : : ; un and t0; : : : ; tn.

Hint You may want to build the function on the software described in Sect. E.1.3.

b) To verify the implementation, calculate by hand u1 and u2 when N D 2

for the ODE u0 D �2u, u.0/ D 1, with �t D 1=4. Compare your
hand calculations with the results of the program. Make a test function
test_iterated_Midpoint_method() for automatically comparing the hand
calculations with the output of the function in a).

c) Consider the ODE problem u0 D �2.t�4/u, u.0/ D e�16, t 2 Œ0; 8�, with exact
solution u D e�.t�4/2

. Write a function for comparing the numerical and exact
solution in a plot. Enable setting of �t and N from the command line and use
the function to study the behavior of the numerical solution as you vary �t and
N . Start with �t D 0:5 and N D 1. Continue with reducing �t and increasing
N .

Filename: MidpointIter_func.

Exercise E.33: Code the iterated midpoint method; class
The purpose of this exercise is to implement the numerical method (E.47)–(E.48) in
a class MidpointIter, like the ForwardEuler class from Sect. E.1.7. Also make
a test function test_MidpointIter()where you apply the verification technique
from Exercise E.32b.
Filename: MidpointIter_class.
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Exercise E.34: Make a subclass for the iterated midpoint method
Implement the numerical method (E.47)–(E.48) in a subclass in the ODESolver
hierarchy. The code should reside in a separate file where the ODESolver class is
imported. One can either fix N or introduce an � and iterate until the change in
jvq � vq�1j is less than �. Allow the constructor to take both N and � as arguments.
Compute a new vq as long as q � N and jvq�vq�1j > �. Let N D 20 and � D 10�6

by default. Store N as an attribute such that the user’s code can access what N was
in the last computation. Also write a test function for verifying the implementation.
Filename: MidpointIter.

Exercise E.35: Compare the accuracy of various methods for ODEs
We want to see how various numerical methods treat the following ODE problem:

u0 D �2.t � 4/u; u.0/ D e�16; t 2 .0; 10� :

The exact solution is a Gaussian function: u.t/ D e�.t�4/2
. Compare the For-

ward Euler method with other methods of your choice in the same plot. Relevant
methods are the 4th-order Runge-Kutta method (found in the ODESolver.py hier-
archy) and methods from Exercises E.5, E.21, E.22, E.25, E.26, E.27, E.28 E.31,
or E.34. Put the value of �t in the title of the plot. Perform experiments with
�t D 0:3; 0:25; 0:1; 0:05; 0:01; 0:001 and report how the various methods behave.
Filename: methods4gaussian.

Exercise E.36: Animate how various methods for ODEs converge
Make a movie for illustrating how three selected numerical methods converge to the
exact solution for the problem described in Exercise E.35 as �t is reduced. Start
with �t D 1, fix the y axis in Œ�0:1; 1:1�, and reduce �t by a quite small factor,
say 1.5, between each frame in the movie. The movie must last until all methods
have their curves visually on top of the exact solution.
Filename: animate_methods4gaussian.

Exercise E.37: Study convergence of numerical methods for ODEs
The approximation error when solving an ODE numerically is usually of the form
C�tr , where C and r are constants that can be estimated from numerical experi-
ments. The constant r , called the convergence rate, is of particular interest. Halving
�t halves the error if r D 1, but if r D 3, halving �t reduces the error by a factor
of 8.

Exercise 9.15 describes a method for estimating r from two consecutive experi-
ments. Make a function

ODE_convergence(f, U0, u_e, method, dt=[])

that returns a series of estimated r values corresponding to a series of �t values
given as the dt list. The argument f is a Python implementation of f .u; t/ in the
ODE u0 D f .u; t/. The initial condition is u.0/ D U0, where U0 is given as the
U0 argument, u_e is the exact solution ue.t/ of the ODE, and method is the name
of a class in the ODESolver hierarchy. The error between the exact solution ue and
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the computed solution u0; u1; : : : ; un can be defined as

e D
 

�t

nX
iD0

.ue.ti / � ui/
2

!1=2

:

Call the ODE_convergence function for some numerical methods and print the
estimated r values for each method. Make your own choice of the ODE problem
and the collection of numerical methods.
Filename: ODE_convergence.

Exercise E.38: Find a body’s position along with its velocity
In Exercise E.8 we compute the velocity v.t/. The position of the body, y.t/, is
related to the velocity by y0.t/ D v.t/. Extend the program from Exercise E.8 to
solve the system

dy

dt
D v;

dv

dt
D �g

�
1 � %

%b

�
� �1

2
CD

%A

%bV
jvjv :

Filename: body_in_fluid2.

Exercise E.39: Add the effect of air resistance on a ball
The differential equations governing the horizontal and vertical motion of a ball
subject to gravity and air resistance read

d 2x

dt2
D �3

8
CD N%a�1

s�
dx

dt

�2

C
�

dy

dt

�2
dx

dt
; (E.74)

d 2y

dt2
D �g � 3

8
CD N%a�1

s�
dx

dt

�2

C
�

dy

dt

�2
dy

dt
; (E.75)

where .x; y/ is the position of the ball (x is a horizontal measure and y is a vertical
measure), g is the acceleration of gravity, CD D 0:2 is a drag coefficient, N% is the
ratio of the density of air and the ball, and a is the radius of the ball.

Let the initial condition be x D y D 0 (start position in the origin) and

dx=dt D v0 cos �; dy=dt D v0 sin �;

where v0 is the magnitude of the initial velocity and � is the angle the velocity
makes with the horizontal.

a) Express the two second-order equations above as a system of four first-order
equations with four initial conditions.

b) Implement the right-hand side in a problem class where the physical parameters
CD , N%, a, v0, and � are stored along with the initial conditions. You may also
want to add a terminate method in this class for checking when the ball hits
the ground and then terminate the solution process.
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c) Simulate a hard football kick where v0 D 120 km/h and � is 30 degrees. Take
the density of the ball as 0.017 hg=m3 and the radius as 11 cm. Solve the ODE
system for CD D 0 (no air resistance) and CD D 0:2, and plot y as a function of
x in both cases to illustrate the effect of air resistance. Make sure you express
all units in kg, m, s, and radians.

Filename: kick2D.

Exercise E.40: Solve an ODE system for an electric circuit
An electric circuit with a resistor, a capacitor, an inductor, and a voltage source can
be described by the ODE

L
dI

dt
CRI C Q

C
D E.t/; (E.76)

where LdI=dt is the voltage drop across the inductor, I is the current (measured
in amperes, A), L is the inductance (measured in henrys, H), R is the resistance
(measured in ohms, ˝), Q is the charge on the capacitor (measured in coulombs,
C), C is the capacitance (measured in farads, F), E.t/ is the time-variable voltage
source (measured in volts, V), and t is time (measured in seconds, s). There is
a relation between I and Q:

dQ

dt
D I : (E.77)

Equations (E.76)–(E.77) is a system two ODEs. Solve these for L D 1 H, E.t/ D
2 sin!t V, !2 D 3:5 s�2, C D 0:25 C, R D 0:2 ˝, I.0/ D 1 A, and Q.0/ D 1C .
Use the Forward Euler scheme with �t D 2�=.60!/. The solution will, after some
time, oscillate with the same period as E.t/, a period of 2�=!. Simulate 10 periods.
Filename: electric_circuit.

Remarks It turns out that the Forward Euler scheme overestimates the amplitudes
of the oscillations. The more accurate 4th-order Runge-Kutta method is much better
for this type of differential equation model.

Exercise E.41: Simulate the spreading of a disease by a SIR model
We shall in this exercise model epidemiological diseases such as measles or swine
flu. Suppose we have three categories of people: susceptibles (S) who can get the
disease, infected (I) who have developed the disease and who can infect suscepti-
bles, and recovered (R) who have recovered from the disease and become immune.
Let S.t/, I.t/, and R.t/ be the number of people in category S, I, and R, respec-
tively. We have that SCICR D N , where N is the size of the population, assumed
constant here for simplicity.

When people mix in the population there are SI possible pairs of susceptibles
and infected, and a certain fraction ˇSI per time interval meets with the result
that the infected “successfully” infect the susceptible. During a time interval �t ,
ˇSI�t get infected and move from the S to the I category:

S.t C�t/ D S.t/ � ˇSI�t :
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We divide by �t and let �! 0 to get the differential equation

S 0.t/ D �ˇSI : (E.78)

A fraction 
I of the infected will per time unit recover from the disease. In a time
�t , 
I�t recover and move from the I to the R category. The quantity 1=
 typically
reflects the duration of the disease. In the same time interval, ˇSI�t come from
the S to the I category. The accounting for the I category therefore becomes

I.t C�t/ D I.t/C ˇSI�t � 
I�t;

which in the limit �t ! 0 becomes the differential equation

I 0.t/ D ˇSI � 
I : (E.79)

Finally, the R category gets contributions from the I category:

R.t C�t/ D R.t/C 
I�t :

The corresponding ODE for R reads

R0.t/ D 
I : (E.80)

In case the recovered do not become immune, we do not need the recovered cate-
gory, since the recovered go directly out of the I category to the S category again.
This gives a contribution 
I to the equation for S and we end up with the S-I
system (C.31)–(C.32) from Sect. C.5.

The system (E.78)–(E.80) is known as a SIR model in epidemiology (which is
the name of the scientific field studying the spreading of epidemic diseases).

Make a function for solving the differential equations in the SIR model by any
numerical method of your choice. Make a separate function for visualizing S.t/,
I.t/, and R.t/ in the same plot.

Adding the equations shows that S 0 CI 0 CR0 D 0, which means that SCI CR

must be constant. Perform a test at each time level for checking that S C I C R

equals S0 C I0 C R0 within some small tolerance. If a subclass of ODESolver
is used to solve the ODE system, the test can be implemented as a user-specified
terminate function that is called by the solvemethod a every time level (simply
return True for termination if S C I C R is not sufficiently constant).

A specific population has 1500 susceptibles and one infected. We are interested
in how the disease develops. Set S.0/ D 1500, I.0/ D 1, and R.0/ D 0. Choose

 D 0:1, �t D 0:5, and t 2 Œ0; 60�. Time t here counts days. Visualize first how
the disease develops when ˇ D 0:0005. Certain precautions, like staying inside,
will reduce ˇ. Try ˇ D 0:0001 and comment from the plot how a reduction in
ˇ influences S.t/. (Put the comment as a multi-line string in the bottom of the
program file.)
Filename: SIR.
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Exercise E.42: Introduce problem and solver classes in the SIR model
The parameters 
 and ˇ in the SIR model in Exercise E.41 can be constants or
functions of time. Now we shall make an implementation of the f .u; t/ function
specifying the ODE system such that 
 and ˇ can be given as either a constant or
a Python function. Introduce a class for f .u; t/, with the following code sketch:

class ProblemSIR(object):

def __init__(self, nu, beta, S0, I0, R0, T):

"""

nu, beta: parameters in the ODE system

S0, I0, R0: initial values

T: simulation for t in [0,T]

"""

if isinstance(nu, (float,int)): # number?

self.nu = lambda t: nu # wrap as function

elif callable(nu):

self.nu = nu

# same for beta and self.beta

...

# store the other parameters

def __call__(self, u, t):

"""Right-hand side function of the ODE system."""

S, I, R = u

return [-self.beta(t)*S*I, # S equation

..., # I equation

self.nu(t)*I] # R equation

# Example:

problem = ProblemSIR(beta=lambda t: 0.0005 if t <= 12 else 0.0001,

nu=0.1, S0=1500, I0=1, R0=0, T=60)

solver = ODESolver.ForwardEuler(problem)

Write the complete code for class ProblemSIR based on the sketch of ideas above.
The 
 parameter is usually not varying with time as 1=
 is a characteristic size of
the period a person is sick, but introduction of new medicine during the disease
might change the picture such that time dependence becomes relevant.

We can also make a class SolverSIR for solving the problem (see Sect. E.3.6
for similar examples):

class SolverSIR(object):

def __init__(self, problem, dt):

self.problem, self.dt = problem, dt

def solve(self, method=ODESolver.RungeKutta4):

self.solver = method(self.problem)

ic = [self.problem.S0, self.problem.I0, self.problem.R0]

self.solver.set_initial_condition(ic)

n = int(round(self.problem.T/float(self.dt)))

t = np.linspace(0, self.problem.T, n+1)
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u, self.t = self.solver.solve(t)

self.S, self.I, self.R = u[:,0], u[:,1], u[:,2]

def plot(self):

# plot S(t), I(t), and R(t)

After the breakout of a disease, authorities often start campaigns for decreas-
ing the spreading of the disease. Suppose a massive campaign telling people to
wash their hands more frequently is launched, with the effect that ˇ is significantly
reduced after some days. For the specific case simulated in Exercise E.41, let

ˇ.t/ D
(

0:0005; 0 � t � 12;

0:0001; t > 12

Simulate this scenario with the Problem and Solver classes. Report the maximum
number of infected people and compare it to the case where ˇ.t/ D 0:0005.
Filename: SIR_class.

Exercise E.43: Introduce vaccination in a SIR model
We shall now extend the SIR model in Exercise E.41 with a vaccination2 program.
If a fraction p of the susceptibles per time unit is being vaccinated, and we say that
the vaccination is 100 percent effective, pS�t individuals will be removed from the
S category in a time interval �t . We place the vaccinated people in a new category
V. The equations for S and V becomes

S 0 D �ˇSI � pS; (E.81)

V 0 D pS : (E.82)

The equations for I and R are not affected. The initial condition for V can be taken
as V.0/ D 0. The resulting model is named SIRV.

Try the same parameters as in Exercise E.41 in combination with p D 0:1 and
compute the evolution of S.t/, I.t/, R.t/, and V.t/. Comment on the effect of
vaccination on the maximum number of infected.

Hint You can of course edit the code from Exercise E.42, but it is much better
to avoid duplicating code and use object-oriented programming to implement the
extensions in the present exercise as subclasses of the classes from Exercise E.42.
Filename: SIRV.

Exercise E.44: Introduce a vaccination campaign in a SIR model
Let the vaccination campaign in Exercise E.43 start 6 days after the outbreak of the
disease and let it last for 10 days,

p.t/ D
(

0:1; 6 � t � 15;

0; otherwise

2 https://www.youtube.com/watch?v=s_6QW9sNPEY

https://www.youtube.com/watch?v=s_6QW9sNPEY
https://www.youtube.com/watch?v=s_6QW9sNPEY
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Plot the corresponding solutions S.t/, I.t/, R.t/, and V.t/. (It is clearly advan-
tageous to have the SIRV model implemented as an extension to the classes in
Exercise E.42.)
Filename: SIRV_varying_p.

Exercise E.45: Find an optimal vaccination period
Let the vaccination campaign in Exercise E.44 last for VT days:

p.t/ D
(

0:1; 6 � t � 6C VT ;

0; otherwise

Compute the maximum number of infected people, maxt I.t/, as a function of VT 2
Œ0; 31�, by running the model for VT D 0; 1; 2 : : : ; 31. Plot this function. Determine
from the plot the optimal VT , i.e., the smallest vaccination period VT such that
increasing VT has negligible effect on the maximum number of infected people.
Filename: SIRV_optimal_duration.

Exercise E.46: Simulate human-zombie interaction
Suppose the human population is attacked by zombies. This is quite a common hap-
pening in movies, and the “zombification” of humans acts much like the spreading
of a disease. Let us make a differential equation model, inspired by the SIR model
from Exercise E.41, to simulate how humans and zombies interact.

We introduce four categories of individuals:

1. S: susceptible humans who can become zombies.
2. I: infected humans, being bitten by zombies.
3. Z: zombies.
4. R: removed individuals, either conquered zombies or dead humans.

The corresponding functions counting how many individuals we have in each cate-
gory are named S.t/, I.t/, Z.t/, and R.t/, respectively.

The type of zombies considered here is inspired by the standard for modern zom-
bies set by the classic movie The Night of the Living Dead, by George A. Romero
from 1968. Only a small extension of the SIR model is necessary to model the
effect of human-zombie interaction mathematically. A fraction of the human sus-
ceptibles is getting bitten by zombies and moves to the infected category. A fraction
of the infected is then turned into zombies. On the other hand, humans can conquer
zombies.

Now we shall precisely set up all the dynamic features of the human-zombie
populations we aim to model. Changes in the S category are due to three effects:

1. Susceptibles are infected by zombies, modeled by a term ��tˇSZ, similar to
the S-I interaction in the SIR model.

2. Susceptibles die naturally or get killed and therefore enter the removed category.
If the probability that one susceptible dies during a unit time interval is ıS , the
total expected number of deaths in a time interval �t becomes �tıS S .
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3. We also allow new humans to enter the area with zombies, as this effect may be
necessary to successfully run a war on zombies. The number of new individuals
in the S category arriving per time unit is denoted by ˙ , giving an increase in
S.t/ by �t˙ during a time �t .

We could also add newborns to the S category, but we simply skip this effect since
it will not be significant over time scales of a few days.

The balance of the S category is then

S 0 D ˙ � ˇSZ � ıS S;

in the limit �t ! 0.
The infected category gets a contribution �tˇSZ from the S category, but loses

individuals to the Z and R category. That is, some infected are turned into zombies,
while others die. Movies reveal that infected may commit suicide or that others
(susceptibles) may kill them. Let ıI be the probability of being killed in a unit time
interval. During time �t , a total of ıI �tI will die and hence be transferred to the
removed category. The probability that a single infected is turned into a zombie
during a unit time interval is denoted by �, so that a total of �t�I individuals are
lost from the I to the Z category in time �t . The accounting in the I category
becomes

I 0 D ˇSZ � �I � ıI I :

The zombie category gains��t�I individuals from the I category. We disregard
the effect that any removed individual can turn into a zombie again, as we consider
that effect as pure magic beyond reasonable behavior, at least according to what is
observed in the Romero movie tradition. A fundamental feature in zombie movies
is that humans can conquer zombies. Here we consider zombie killing in a “man-to-
man” human-zombie fight. This interaction resembles the nature of zombification
(or the susceptible-infective interaction in the SIR model) and can be modeled by
a loss �˛SZ for some parameter ˛ with an interpretation similar to that of ˇ. The
equation for Z then becomes

Z 0 D �I � ˛SZ :

The accounting in the R category consists of a gain ıS of natural deaths from the
S category, a gain ıI from the I category, and a gain ˛SZ from defeated zombies:

R0 D ıSS C ıI I C ˛SZ :

The complete SIZR model for human-zombie interaction can be summarized as

S 0 D ˙ � ˇSZ � ıS S; (E.83)

I 0 D ˇSZ � �I � ıI I; (E.84)

Z 0 D �I � ˛SZ; (E.85)

R0 D ıS S C ıI I C ˛SZ : (E.86)
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The interpretations of the parameters are as follows:

� ˙ : the number of new humans brought into the zombified area per unit time.
� ˇ: the probability that a theoretically possible human-zombie pair actually meets

physically, during a unit time interval, with the result that the human is infected.
� ıS : the probability that a susceptible human is killed or dies, in a unit time

interval.
� ıI : the probability that an infected human is killed or dies, in a unit time interval.
� �: the probability that an infected human is turned into a zombie, during a unit

time interval.
� ˛: the probability that, during a unit time interval, a theoretically possible

human-zombie pair fights and the human kills the zombie.

Note that probabilities per unit time do not necessarily lie in the interval Œ0; 1�.
The real probability, lying between 0 and 1, arises after multiplication by the time
interval of interest.

Implement the SIZR model with a Problem and Solver class as explained in
Exercise E.42, allowing parameters to vary in time. The time variation is essential
to make a realistic model that can mimic what happens in movies.

Test the implementation with the following data: ˇ D 0:0012, ˛ D 0:0016,
ıI D 0:014, ˙ D 2, � D 1, S.0/ D 10, Z.0/ D 100, I.0/ D 0, R.0/ D 0, and
simulation time T D 24 hours. Other parameters can be set to zero. These values
are estimated from the hysterical phase of the movie The Night of the Living Dead.
The time unit is hours. Plot the S , I , Z, and R quantities.
Filename: SIZR.

Exercise E.47: Simulate a zombie movie
The movie The Night of the Living Dead has three phases:

1. The initial phase, lasting for (say) 4 hours, where two humans meet one zombie
and one of the humans get infected. A rough (and uncertain) estimation of
parameters in this phase, taking into account dynamics not shown in the movie,
yet necessary to establish a more realistic evolution of the S and Z categories
later in the movie, is ˙ D 20, ˇ D 0:03, � D 1, S.0/ D 60, and Z.0/ D 1. All
other parameters are taken as zero when not specified.

2. The hysterical phase, when the zombie treat is evident. This phase lasts for
24 hours, and relevant parameters can be taken as ˇ D 0:0012, ˛ D 0:0016,
ıI D 0:014, ˙ D 2, � D 1.

3. The counter attack by humans, estimated to last for 5 hours, with parameters
˛ D 0:006, ˇ D 0 (humans no longer get infected), ıS D 0:0067, � D 1.

Use the program from Exercise E.46 to simulate all three phases of the movie.

Hint It becomes necessary to work with piecewise constant functions in time.
These can be hardcoded for each special case, our one can employ a ready-made
tool for such functions (actually developed in Exercise 3.32):
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from scitools.std import PiecewiseConstant

# Define f(t) as 1.5 in [0,3], 0.1 in [3,4] and 1 in [4,7]

f = PiecewiseConstant(domain=[0, 7],

data=[(0, 1.5), (3, 0.1), (4, 1)])

Filename: Night_of_the_Living_Dead.

Exercise E.48: Simulate a war on zombies
Awar on zombies can be implemented through large-scale effective attacks. A pos-
sible model is to increase ˛ in the SIZR model from Exercise E.46 by some ad-
ditional amount !.t/, where !.t/ varies in time to model strong attacks at m C 1

distinct points of time T0 < T1 < � � � < Tm. Around these t values we want ! to
have a large value, while in between the attacks ! is small. One possible mathe-
matical function with this behavior is a sum of Gaussian functions:

!.t/ D a

mX
iD0

exp

 
�1

2

�
t � Ti



�2
!

; (E.87)

where a measures the strength of the attacks (the maximum value of !.t/) and
 measures the length of the attacks, which should be much less than the time
between the points of attack: typically, 4 measures the length of an attack, and we
must have 4 � Ti � Ti�1 for i D 1; : : : ; m. We should choose a significantly
larger than ˛ to make the attacks in the war on zombies much stronger than the
usual “man-to-man” killing of zombies.

Modify the model and the implementation from Exercise E.46 to include a war
on zombies. We start out with 50 humans and 3 zombies and ˇ D 0:03. This
leads to rapid zombification. Assume that there are some small resistances against
zombies from the humans, ˛ D 0:2ˇ, throughout the simulations. In addition, the
humans implement three strong attacks, a D 50˛, at 5, 10, and 18 hours after the
zombification starts. The attacks last for about 2 hours ( D 0:5). Set ıS D �I D
˙ D 0, ˇ D 0:03, and � D 1, simulate for T D 20 hours, and see if the war on
zombies modeled by the suggested !.t/ is sufficient to save mankind.
Filename: war_on_zombies.

Exercise E.49: Explore predator-prey population interactions
Suppose we have two species in an environment: a predator and a prey. Howwill the
two populations interact and change with time? A system of ordinary differential
equations can give insight into this question. Let x.t/ and y.t/ be the size of the
prey and the predator populations, respectively. In the absence of a predator, the
population of the prey will follow the ODE derived in Sect. C.2:

dx

dt
D rx;

with r > 0, assuming there are enough resources for exponential growth. Similarly,
in the absence of prey, the predator population will just experience a death rate
m > 0:

dy

dt
D �my :
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In the presence of the predator, the prey population will experience a reduction in
the growth proportional to xy. The number of interactions (meetings) between x

and y numbers of animals is xy, and in a certain fraction of these interactions the
predator eats the prey. The predator population will correspondingly experience
a growth in the population because of the xy interactions with the prey population.
The adjusted growth of both populations can now be expressed as

dx

dt
D rx � axy; (E.88)

dy

dt
D �my C bxy; (E.89)

for positive constants r , m, a, and b. Solve this system and plot x.t/ and y.t/ for
r D m D 1, a D 0:3, b D 0:2, x.0/ D 1, and y.0/ D 1, t 2 Œ0; 20�. Try to explain
the dynamics of the population growth you observe. Experiment with other values
of a and b.
Filename: predator_prey.

Exercise E.50: Formulate a 2nd-order ODE as a system
In this and subsequent exercises we shall deal with the following second-order or-
dinary differential equation with two initial conditions:

m RuC f . Pu/C s.u/ D F.t/; t > 0; u.0/ D U0; Pu.0/ D V0 : (E.90)

The notation Pu and Ru means u0.t/ and u00.t/, respectively. Write (E.90) as a system
of two first-order differential equations. Also set up the initial condition for this
system.

Physical applications Equation (E.90) has a wide range of applications throughout
science and engineering. A primary application is damped spring systems in, e.g.,
cars and bicycles: u is the vertical displacement of the spring system attached to
a wheel; Pu is then the corresponding velocity; F.t/ resembles a bumpy road; s.u/

represents the force from the spring; and f . Pu/ models the damping force (friction)
in the spring system. For this particular application f and s will normally be linear
functions of their arguments: f . Pu/ D ˇ Pu and s.u/ D ku, where k is a spring
constant and ˇ some parameter describing viscous damping.

Equation (E.90) can also be used to describe the motions of a moored ship or
oil platform in waves: the moorings act as a nonlinear spring s.u/; F.t/ represents
environmental excitation from waves, wind, and current; f . Pu/ models damping of
the motion; and u is the one-dimensional displacement of the ship or platform.

Oscillations of a pendulum can be described by (E.90): u is the angle the pendu-
lum makes with the vertical; s.u/ D .mg=L/ sin.u/, where L is the length of the
pendulum,m is the mass, and g is the acceleration of gravity; f . Pu/ D ˇj Puj Pu models
air resistance (with ˇ being some suitable constant, see Exercises 1.11 and E.54);
and F.t/ might be some motion of the top point of the pendulum.

Another application is electric circuits with u.t/ as the charge, m D L as the
inductance, f . Pu/ D R Pu as the voltage drop across a resistor R, s.u/ D u=C as the
voltage drop across a capacitor C , and F.t/ as an electromotive force (supplied by
a battery or generator).
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Furthermore, Equation (E.90) can act as a (very) simplified model of many other
oscillating systems: aircraft wings, lasers, loudspeakers, microphones, tuning forks,
guitar strings, ultrasound imaging, voice, tides, the El Ni no phenomenon, climate
changes – to mention some.

We remark that (E.90) is a possibly nonlinear generalization of Equation (D.8)
explained in Sect. D.1.3. The case in Appendix D corresponds to the special choice
of f . Pu/ proportional to the velocity Pu, s.u/ proportional to the displacement u, and
F.t/ as the acceleration Rw of the plate and the action of the gravity force.

Exercise E.51: Solve Ru C u D 0

Make a function

def rhs(u, t):

...

for returning a list with two elements with the two right-hand side expressions in
the first-order differential equation system from Exercise E.50. As usual, the u ar-
gument is an array or list with the two solution components u[0] and u[1] at some
time t. Inside rhs, assume that you have access to three global Python functions
friction(dudt), spring(u), and external(t) for evaluating f . Pu/, s.u/, and
F.t/, respectively.

Test the rhs function in combination with the functions f . Pu/ D 0, F.t/ D
0, s.u/ D u, and the choice m D 1. The differential equation then reads Ru C
u D 0. With initial conditions u.0/ D 1 and Pu.0/ D 0, one can show that the
solution is given by u.t/ D cos.t/. Apply three numerical methods: the 4th-order
Runge-Kutta method and the Forward Euler method from the ODESolver module
developed in Sect. E.3, as well as the 2nd-order Runge-Kutta method developed in
Exercise E.31. Use a time step �t D �=20.

Plot u.t/ and Pu.t/ versus t together with the exact solutions. Also make a plot
of Pu versus u (plot(u[:,0], u[:,1]) if u is the array returned from the solver’s
solve method). In the latter case, the exact plot should be a circle because the
points on the curve are .cos t; sin t/, which all lie on a circle as t is varied. Ob-
serve that the ForwardEuler method results in a spiral and investigate how the spiral
develops as �t is reduced.

The kinetic energy K of the motion is given by 1
2
m Pu2, and the potential en-

ergy P (stored in the spring) is given by the work done by the spring force: P DR u

0
s.v/dv D 1

2
u2. Make a plot with K and P as functions of time for both the

4th-order Runge-Kutta method and the Forward Euler method, for the same physi-
cal problem described above. In this test case, the sum of the kinetic and potential
energy should be constant. Compute this constant analytically and plot it together
with the sum K C P as calculated by the 4th-order Runge-Kutta method and the
Forward Euler method.
Filename: oscillator_v1.

Exercise E.52: Make a tool for analyzing oscillatory solutions
The solution u.t/ of the equation (E.90) often exhibits an oscillatory behavior (for
the test problem in Exercise E.51 we have that u.t/ D cos t). It is then of interest
to find the wavelength of the oscillations. The purpose of this exercise is to find and
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visualize the distance between peaks in a numerical representation of a continuous
function.

Given an array .y0; : : : ; yn�1/ representing a function y.t/ sampled at various
points t0; : : : ; tn�1, a local maximum of y.t/ occurs at t D tk if yk�1 < yk > ykC1.
Similarly, a local minimum of y.t/ occurs at t D tk if yk�1 > yk < ykC1. By
iterating over the y1; : : : ; yn�2 values and making the two tests, one can collect
local maxima and minima as .tk; yk/ pairs. Make a function minmax(t, y) which
returns two lists, minima and maxima, where each list holds pairs (2-tuples) of t and
y values of local minima or maxima. Ensure that the t value increases from one pair
to the next. The arguments t and y in minmax hold the coordinates t0; : : : ; tn�1 and
y0; : : : ; yn�1, respectively.

Make another function wavelength(peaks) which takes a list peaks of
2-tuples with t and y values for local minima or maxima as argument and re-
turns an array of distances between consecutive t values, i.e., the distances
between the peaks. These distances reflect the local wavelength of the com-
puted y function. More precisely, the first element in the returned array is
peaks[1][0]-peaks[0][0], the next element is peaks[2][0]-peaks[1][0],
and so forth.

Test the minmax and wavelength functions on y values generated by y D
et=4 cos.2t/ and y D e�t=4 cos.t2=5/ for t 2 Œ0; 4��. Plot the y.t/ curve in each
case, and mark the local minima and maxima computed by minmax with circles
and boxes, respectively. Make a separate plot with the array returned from the
wavelength function (just plot the array against its indices – the point is to see if
the wavelength varies or not). Plot only the wavelengths corresponding to maxima.

Make a module with the minmax and wavelength function, and let the test block
perform the tests specified above.
Filename: wavelength.

Exercise E.53: Implement problem, solver, and visualizer classes
The user-chosen functions f , s, and F in Exercise E.51 must be coded with par-
ticular names. It is then difficult to have several functions for s.u/ and experiment
with these. A much more flexible code arises if we adopt the ideas of a problem
and a solver class as explained in Sect. E.3.6. Specifically, we shall here make use
of class Problem3 in Sect. E.3.6 to store information about f . Pu/, s.u/, F.t/, u.0/,
Pu.0/, m, T , and the exact solution (if available). The solver class can store param-
eters related to the numerical quality of the solution, i.e., �t and the name of the
solver class in the ODESolver hierarchy. In addition we will make a visualizer class
for producing plots of various kinds.

We want all parameters to be set on the command line, but also have sensible
default values. As in Sect. E.3.6, the argparse module is used to read data from
the command line. Class Problem can be sketched as follows:

class Problem(object):

def define_command_line_arguments(self, parser):

"""Add arguments to parser (argparse.ArgumentParser)."""

parser.add_argument(

’--friction’, type=func_dudt, default=’0’,

help=’friction function f(dudt)’,

metavar=’<function expression>’)
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parser.add_argument(

’--spring’, type=func_u, default=’u’,

help=’spring function s(u)’,

metavar=’<function expression>’)

parser.add_argument(

’--external’, type=func_t, default=’0’,

help=’external force function F(t)’,

metavar=’<function expression>’)

parser.add_argument(

’--u_exact’, type=func_t_vec, default=’0’,

help=’exact solution u(t) (0 or None: now known)’,

metavar=’<function expression>’)

parser.add_argument(

’--m’, type=evalcmlarg, default=1.0, help=’mass’,

type=float, metavar=’mass’)

...

return parser

def set(self, args):

"""Initialize parameters from the command line."""

self.friction = args.friction

self.spring = args.spring

self.m = args.m

...

def __call__(self, u, t):

"""Define the right-hand side in the ODE system."""

m, f, s, F = \

self.m, self.friction, self.spring, self.external

...

Several functions are specified as the type argument to parser.add_argument
for turning strings into proper objects, in particular StringFunction objects with
different independent variables:

def evalcmlarg(text):

return eval(text)

def func_dudt(text):

return StringFunction(text, independent_variable=’dudt’)

def func_u(text):

return StringFunction(text, independent_variable=’u’)

def func_t(text):

return StringFunction(text, independent_variable=’t’)

def func_t_vec(text):

if text == ’None’ or text == ’0’:

return None

else:

f = StringFunction(text, independent_variable=’t’)

f.vectorize(globals())

return f
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The use of evalcmlarg is essential: this function runs the strings from the com-
mand line through eval, which means that we can use mathematical formulas like
–T ’4*pi’.

Class Solver is relatively much shorter than class Problem:

class Solver(object):

def __init__(self, problem):

self.problem = problem

def define_command_line_arguments(self, parser):

"""Add arguments to parser (argparse.ArgumentParser)."""

# add --dt and --method

...

return parser

def set(self, args):

self.dt = args.dt

self.n = int(round(self.problem.T/self.dt))

self.solver = eval(args.method)

def solve(self):

self.solver = self.method(self.problem)

ic = [self.problem.initial_u, self.problem.initial_dudt]

self.solver.set_initial_condition(ic)

time_points = linspace(0, self.problem.T, self.n+1)

self.u, self.t = self.solver.solve(time_points)

The Visualizer class holds references to a Problem and Solver instance and
creates plots. The user can specify plots in an interactive dialog in the terminal
window. Inside a loop, the user is repeatedly asked to specify a plot until the user
responds with quit. The specification of a plot can be one of the words u, dudt,
dudt-u, K, and wavelength which means a plot of u.t/ versus t , Pu.t/ versus t ,
Pu versus u, K (D 1

2
m Pu2, kinetic energy) versus t , and u’s wavelength versus its

indices, respectively. The wavelength can be computed from the local maxima of u

as explained in Exercise E.52.
A sketch of class Visualizer is given next:

class Visualizer(object):

def __init__(self, problem, solver):

self.problem = problem

self.solver = solver

def visualize(self):

t = self.solver.t # short form

u, dudt = self.solver.u[:,0], self.solver.u[:,1]

# Tag all plots with numerical and physical input values

title = ’solver=%s, dt=%g, m=%g’ % \

(self.solver.method, self.solver.dt, self.problem.m)

# Can easily get the formula for friction, spring and force

# if these are string formulas.

if isinstance(self.problem.friction, StringFunction):

title += ’ f=%s’ % str(self.problem.friction)
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if isinstance(self.problem.spring, StringFunction):

title += ’ s=%s’ % str(self.problem.spring)

if isinstance(self.problem.external, StringFunction):

title += ’ F=%s’ % str(self.problem.external)

# Let the user interactively specify what

# to be plotted

plot_type = ’’

while plot_type != ’quit’:

plot_type = raw_input(’Specify a plot: ’)

figure()

if plot_type == ’u’:

# Plot u vs t

if self.problem.u_exact is not None:

hold(’on’)

# Plot self.problem.u_exact vs t

show()

savefig(’tmp_u.pdf’)

elif plot_type == ’dudt’:

...

elif plot_type == ’dudt-u’:

...

elif plot_type == ’K’:

...

elif plot_type == ’wavelength’:

...

Make a complete implementation of the three proposed classes. Also make
a main function that (i) creates a problem, solver, and visualizer, (ii) calls the func-
tions to define command-line arguments in the problem and solver classes, (iii)
reads the command line, (iv) passes on the command-line parser object to the prob-
lem and solver classes, (v) calls the solver, and (vi) calls the visualizer’s visualize
method to create plots. Collect the classes and functions in a module oscillator,
which has a call to main in the test block.

The first task from Exercises E.51 can now be run as

Terminal

oscillator.py --method ForwardEuler --u_exact "cos(t)" \
--dt "pi/20" --T "5*pi"

The other tasks from Exercises E.51 can be tested similarly.
Explore some of the possibilities of specifying several functions on the command

line:

Terminal

oscillator.py --method RungeKutta4 --friction "0.1*dudt" \
--external "sin(0.5*t)" --dt "pi/80" \
--T "40*pi" --m 10

oscillator.py --method RungeKutta4 --friction "0.8*dudt" \
--external "sin(0.5*t)" --dt "pi/80" \
--T "120*pi" --m 50

Filename: oscillator.
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Exercise E.54: Use classes for flexible choices of models
Some typical choices of f . Pu/, s.u/, and F.t/ in (E.90) are listed below:

� Linear friction force (low velocities): f . Pu/ D 6�	R Pu (Stokes drag), where R

is the radius of a spherical approximation to the body’s geometry, and 	 is the
viscosity of the surrounding fluid.

� Quadratic friction force (high velocities): f . Pu/ D 1
2
CD%Aj Puj Pu. See Exer-

cise 1.11 for explanation of the symbols.
� Linear spring force: s.u/ D ku, where k is a spring constant.
� Sinusoidal spring force: s.u/ D k sinu, where k is a constant.
� Cubic spring force: s.u/ D k.u � 1

6
u3/, where k is a spring constant.

� Sinusoidal external force: F.t/ D F0CA sin!t , where F0 is the mean value of
the force, A is the amplitude, and ! is the frequency.

� Bump force: F.t/ D H.t � t1/.1 �H.t � t2//F0, where H.t/ is the Heaviside
function (H D 0 for x < 0 and H D 1 for x 	 0), t1 and t2 are two given time
points, and F0 is the size of the force. This F.t/ is zero for t < t1 and t > t2,
and F0 for t 2 Œt1; t2�.

� Random force 1: F.t/ D F0 C A � U.t IB/, where F0 and A are constants,
and U.t IB/ denotes a function whose value at time t is random and uniformly
distributed in the interval Œ�B; B�.

� Random force 2: F.t/ D F0 C A � N.t I	; /, where F0 and A are constants,
and N.t I	; / denotes a function whose value at time t is random, Gaussian
distributed number with mean 	 and standard deviation  .

Make a module functions where each of the choices above are implemented as
a class with a __call__ special method. Also add a class Zero for a function
whose value is always zero. It is natural that the parameters in a function are set as
arguments to the constructor. The different classes for spring functions can all have
a common base class holding the k parameter as data attribute.
Filename: functions.

Exercise E.55: Apply software for oscillating systems
The purpose of this exercise is to demonstrate the use of the classes from Exer-
cise E.54 to solve problems described by (E.90).

With a lot of models for f . Pu/, s.u/, andF.t/ available as classes in functions.
py, the initialization of self.friction, self.spring, etc., from the command
line does not work, because we assume simple string formulas on the command
line. Now we want to write things like –spring ’LinearSpring(1.0)’.
There is a quite simple remedy: replace all the special conversion functions
to StringFunction objects by evalcmlarg in the type specifications in the
parser.add_argument calls. If a from functions import * is also performed
in the oscillator.py file, a simple eval will turn strings like ’LinearSpring
(1.0)’ into living objects.

However, we shall here follow a simpler approach, namely dropping initializing
parameters on the command line and instead set them directly in the code. Here is
an example:
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problem = Problem()

problem.m = 1.0

k = 1.2

problem.spring = CubicSpring(k)

problem.friction = Zero()

problem.T = 8*pi/sqrt(k)

...

This is the simplest way of making use of the objects in the functionsmodule.
Note that the set method in classes Solver and Visualizer is unaffected

by the new objects from the functions module, so flexible initialization via
command-line arguments works as before for –dt, –method, and plot. One may
also dare to call the set method in the problem object to set parameters like m,
initial_u, etc., or one can choose the safer approach of not calling set but
initialize all data attributes explicitly in the user’s code.

Make a new file say oscillator_test.py where you import class Problem,
Solver, and Visualizer, plus all classes from the functions module. Provide
a main1 function for solving the following problem: m D 1, u.0/ D 1, Pu.0/ D 0,
no friction (use class Zero), no external forcing (class Zero), a linear spring s.u/ D
u, �t D �=20, T D 8� , and exact u.t/ D cos.t/. Use the Forward Euler method.

Then make another function main2 for the case with m D 5, u.0/ D 1, Pu.0/ D
0, linear friction f . Pu/ D 0:1 Pu, s.u/ D u, F.t/ D sin. 1

2
t/, �t D �=80, T D 60� ,

and no knowledge of an exact solution. Use the 4-th order Runge-Kutta method.
Let a test block use the first command-line argument to indicate a call to main1

or main2.
Filename: oscillator_test.

Exercise E.56: Model the economy of fishing
A population of fish is governed by the differential equation

dx
dt
D 1

10
x
�
1 � x

100

	 � h; x.0/ D 500; (E.91)

where x.t/ is the size of the population at time t and h is the harvest.

a) Assume h D 0. Find an exact solution for x.t/. For which value of t is dx
dt

largest? For which value of t is 1
x

dx
dt

largest?
b) Solve the differential equation (E.91) by the Forward Euler method. Plot the

numerical and exact solution in the same plot.
c) Suppose the harvest h depends on the fishers’ efforts, E, in the following way:

h D qxE, with q as a constant. Set q D 0:1 and assume E is constant. Show
the effect of E on x.t/ by plotting several curves, corresponding to different E

values, in the same figure.
d) The fishers’ total revenue is given by � D ph � c

2
E2, where p is a constant.

In the literature about the economy of fisheries, one is often interested in how
a fishery will develop in the case the harvest is not regulated. Then new fishers
will appear as long as there is money to earn (� > 0). It can (for simplicity) be
reasonable to model the dependence of E on � as

dE

dt
D ��; (E.92)
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where � is a constant. Solve the system of differential equations for x.t/ and
E.t/ by the 4th-order Runge-Kutta method, and plot the curve with points
(x.t/; E.t/) in the two cases � D 1=2 and � ! 1. Choose c D 0:3, p D 10,
E.0/ D 0:5, and T D 1.

Filename: fishery.


