
1

Today’s topics:
• Brief intro to ER and UML
• Resource Description Framework (RDF)
• SPARQL: RDF query language

INF1300
Introduction to databases

UNIVERSITETET
I OSLO

© Institutt for informatikk

Intro to Entity–Relationship (ER)
Modeling

• Entity–relationship model (ER model) is a data model for describing a
database in an abstract way

• ER models business domains in terms of entities that have attributes and
participate in relationships

• Very popular data modeling approach for databases
• Originally proposed by Peter Chen in 1976

Based on Ch 8.1 in Halpin, T. & Morgan, T. 2008, Information Modeling and Relational Databases, Second Edition

2

Barker notation
• Building blocks: entities, relationships, and attributes

• Attributes:
– “ # ” indicates that the attribute is, or is a component of, the primary identifier of

the entity type
– “ * ” indicates that the attribute is mandatory
– “ °” indicates the attribute is optional

• Relationships are restricted to binaries
– A solid half-line denotes a mandatory role, and a dotted half-line indicates an

optional role
– Crow’s foot notation is used for cardinality; intuitively indicates “many”, by its

many “toes”; the absence of a crow’s foot intuitively indicates “one”

Based on Ch 8.1 in Halpin, T. & Morgan, T. 2008, Information Modeling and Relational Databases, Second Edition

3

Barker notation (cont’)
• ER diagram (a) and its equivalent to ORM (b)

• Verbalization: Each A (must | may) be R (one and only one B |
one or more B-plural-form)
– Each Employee must be an occupier of one and only

one Room; Each Room may be occupied by one or more
Employees.

Based on Ch 8.1 in Halpin, T. & Morgan, T. 2008, Information Modeling and Relational Databases, Second Edition

4

Equivalent Barker ER and ORM diagrams
Based on Ch 8.2 in Halpin, T. & Morgan, T. 2008, Information Modeling and Relational Databases, Second Edition

5

Composite identification in Barker ER

• A bar “|” across one end of a relationship indicates that
the relationship is a component of the primary identifier
for the entity type at that end.

• Composite identification in (a) Barker ER and (b) ORM

Based on Ch 8.2 in Halpin, T. & Morgan, T. 2008, Information Modeling and Relational Databases, Second Edition

6

Other constraints in Barker ER
• Exclusion constraints are shown as an “exclusive arc” connected to the

roles with a small dot or circle

• Mutually exclusive and disjunctively mandatory constraints uses the
exclusive arc, but each role is shown as mandatory (solid line)

• Subtyping is depicted with a version of Euler diagrams.

Based on Ch 8.2 in Halpin, T. & Morgan, T. 2008, Information Modeling and Relational Databases, Second Edition

7

Barker ER notation – summary
Based on Ch 8.2 in Halpin, T. & Morgan, T. 2008, Information Modeling and Relational Databases, Second Edition

8

Intro to
Unified Modeling Language (UML)

• Mainly used for designing object-oriented program code
• De facto standard in industry for object-oriented software design
• UML notation is a set of languages

• Class diagrams are used for the data schema
– Like ER, UML uses attributes

Based on Ch 9.1 in Halpin, T. & Morgan, T. 2008, Information Modeling and Relational Databases, Second Edition

9

UML Class diagrams
• Class structure – three compartments

• Associations - depicted by a line between the classes; the open arrow is a
navigability setting (issues related to performance, not conceptual issues about the
business domain)

• Class diagrams can be used for conceptual analysis.
– But no identification schemas are provided for the classes
– Nonstandard identification schemas:

“{P}” for preferred reference and “{Un}” for uniqueness (n > 0)

Based on Ch 9.2 in Halpin, T. & Morgan, T. 2008, Information Modeling and Relational Databases, Second Edition

10

Attributes in UML Class diagrams
• In UML, attributes are mandatory and single valued by default
• UML attributes (a) depicted as ORM relationship types (b)

• Multiplicities: Multipl. Abbrev. Meaning Note

0..1 0 or 1 (at most one)

0..* * 0 to many (zero or more)

1..1 1 exactly 1 Assumed
by default

1..* 1 or more (at least 1)

n..* n or more (at leastn) n≥0

n..m at least n and at most m m > n≥0

Multivalued UML sports attribute depicted as
(b) ORM m:n fact type:

Based on Ch 9.3 in Halpin, T. & Morgan, T. 2008, Information Modeling and Relational Databases, Second Edition

11

UML object diagrams
• Object diagrams: Class diagrams in which each object is shown as a

separate instance of a class, with data values supplied for its attributes
– They easily become unwieldy if multiple instances for more complex cases are

displayed
• Populated models in (a) UML and (b) ORM:

Based on Ch 9.3 in Halpin, T. & Morgan, T. 2008, Information Modeling and Relational Databases, Second Edition

12

Associations
• Binary associations are depicted as lines between classes

– Association names are optional, but role names are mandatory
– If two or more roles are played by the same class, the roles must be given different names to distinguish them

• Ternary and higher arity associations in UML are depicted as a diamond connected by lines to the classes

• Multiplicity constraints on associations similar to those on attributes; multiplicities are written next to the relevant
roles

Based on Ch 9.3 in Halpin, T. & Morgan, T. 2008, Information Modeling and Relational Databases, Second Edition

13

Equivalent constraint patterns in UML and ORM
Based on Ch 9.3 in Halpin, T. & Morgan, T. 2008, Information Modeling and Relational Databases, Second Edition

14

n-ary associations, association classes, and
qualified associations in UML

• A multiplicity constraint on a role of an n-ary association constrains the population of the other
roles combined

• Association classes in UML are equivalent to objectified associations in ORM

• Cases where ORM uses an external uniqueness constraint for coreferencing can be modeled in
UML using qualified associations

Based on Ch 9.4 in Halpin, T. & Morgan, T. 2008, Information Modeling and Relational Databases, Second Edition

15

Set-Comparison Constraints in UML

• Subset constraints can be specified between whole associations by attaching the constraint label
“{subset}” next to a dashed arrow between the associations

• Subsets properties are used to indicate that the population of an attribute or association role must
be a subset of the population of another compatible attribute or association role respectively

– However many subset constraint cases in ORM that cannot be represented graphically as a subset
constraint in UML

• UML has no graphic notation for equality constraints
– May be specified as textual constraints in notes

Based on Ch 9.5 in Halpin, T. & Morgan, T. 2008, Information Modeling and Relational Databases, Second Edition

16

Set-Comparison Constraints in UML (cont’)

• Exclusion constraints: not directly supported in UML, but does include an exclusive-or
constraint to indicate that each instance of a class plays exactly one association role
from a specified set of alternatives

• UML has no symbols for exclusion or inclusive-or constraints
– UML has no graphic notation for exclusion between attributes, or between attributes and association roles
– An exclusion constraint in such cases may often be captured as a textual constraint

Based on Ch 9.5 in Halpin, T. & Morgan, T. 2008, Information Modeling and Relational Databases, Second Edition

17

Subtyping constraints in UML
• Single and multiple inheritance is allowed both in UML and ORM

– Subtype inherits all the roles of its supertypes in ORM
– A subclass inherits all the attributes, associations, and

operations/methods of its supertype(s) in UML
• UML and ORM both display subtyping using directed acyclic graphs

Based on Ch 9.5 in Halpin, T. & Morgan, T. 2008, Information Modeling and Relational Databases, Second Edition

18

Other constraints in UML
• Value constraints

– Enumeration types may be modeled as classes, stereotyped as enumerations,
with their values listed as attributes

– Ranges and mixtures may be specified by declaring a textual constraint in braces

• Ring constraints: UML does not provide ring constraints built in
– Can be specified as a textual constraint or as a note

Based on Ch 9.7 in Halpin, T. & Morgan, T. 2008, Information Modeling and Relational Databases, Second Edition

19

Intro to
Resource Description Framework (RDF)

• RDF is a language that enable to describe making statements on resources
– John is father of Ann

• Statement (or triple) as a logical formula P(x, y), where the binary
predicate P relates the object x to the object y

• Triple data model:
<subject, predicate, object>

• Subject: Resource or blank node
• Predicate: Property
• Object: Resource (or collection of resources), literal or blank node

• Example:
<ex:john, ex:father-of, ex:ann>

• RDF offers only binary predicates (properties)

(Most of the examples in the upcoming slides are taken from: http://www.w3.org/TR/rdf-primer/)

20

Resources
• A resource may be:

– Web page (e.g. http://www.w3.org)
– A person (e.g. http://www.w3.org/People/Berners-Lee/)
– A book (e.g. urn:isbn:4-534-34674-4)
– Anything denoted with a URI!

• A URI is an identifier and not a location on the Web

• RDF allows making statements about resources:
– http://www.w3.org has the format text/html
– http://www.w3.org/People/Berners-Lee/ has first name Tim
– urn:isbn:0-345-33971-1 has author John

21

URI, URN, URL
• A Uniform Resource Identifier (URI) is a string of characters used to identify

a name or a resource on the Internet

• A URI can be a URL or a URN
• A Uniform Resource Name (URN) defines an item's identity

– the URN urn:isbn:urn:isbn:4-534-34674-4 is a URI that specifies the identifier system, i.e.
International Standard Book Number (ISBN), as well as the unique reference within that
system and allows one to talk about a book, but doesn't suggest where and how to obtain an
actual copy of it

• A Uniform Resource Locator (URL) provides a method for finding it
– the URL https://www.uio.no/studier/emner/matnat/ifi/INF1300 identifies a resource

(INF1300's home page) and implies that a representation of that resource (such as the home
page's current HTML code, as encoded characters) is obtainable via HTTP from a network
host named https://www.uio.no

22

Literals
• Plain literals

– E.g. ”any text”
– Optional language tag, e.g. ”Hello, how are you?”@en-GB

• Typed literals
– E.g. "hello"^^xsd:string, "1"^^xsd:integer
– Recommended datatypes:

• XML Schema datatypes

• Only as object of a triple, e.g.:
<http://example.org/#john>,

<http://example.org/#hasName>,
”John Smith”ˆˆxsd:string

23

Datatypes
• One pre-defined datatype: rdf:XMLLiteral

– Used for embedding XML in RDF

• Recommended datatypes are XML Schema datatypes, e.g.:
– xsd:string
– xsd:integer
– xsd:float
– xsd:anyURI
– xsd:boolean

24

Blank Nodes I
• Blank nodes are nodes without a URI

– Unnamed resources
– More complex constructs

• Representation of blank nodes is syntax-dependent
– Blank node identifier

• For example:
<#john>, <#hasName>, _:johnsname
_:johnsname, <#firstName>, ”John”ˆˆxsd:string
_:johnsname, <#lastName>, ”Smith”ˆˆxsd:string

25

Blank Nodes II
• Representation of complex data

A blank node can be used to indirectly attach to a resource a
consistent set of properties which together represent a
complex data

• Anonymous classes in OWL
The ontology language OWL uses blank nodes to represent
anonymous classes such as unions or intersections of
classes, or classes called restrictions, defined by a constraint
on a property

26

RDF Containers

“The lecture is attended by John, Mary and Chris” Bag

“[RDF-Concepts] is edited by Graham and Jeremy
(in that order)”

Seq

“The source code for the application may be found at
ftp1.example.org,
ftp2.example.org,
ftp3.example.org”

Alt

• Grouping property values:

27

RDF Containers 2
• Three types of containers:

– rdf:Bag - unordered set of items
– rdf:Seq - ordered set of items
– rdf:Alt - set of alternatives

• Every container has a triple declaring the rdf:type

• Items in the container are denoted with
– rdf:_1, rdf:_2, . . . ,rdf:_n

• Limitations:
– Semantics of the container is up to the

application
– What about closed sets?

• How do we know whether Graham and Jeremy are the only
editors of [RDF-Concepts]?

28

RDF Containers 2
• Three types of containers:

– rdf:Bag - unordered set of items
– rdf:Seq - ordered set of items
– rdf:Alt - set of alternatives

• Every container has a triple declaring the rdf:type

• Items in the container are denoted with
– rdf:_1, rdf:_2, . . . ,rdf:_n

• Limitations:
– Semantics of the container is up to the application
– What about closed sets?

• How do we know whether Graham and Jeremy are the only editors
of [RDF-Concepts]?

29

RDF Triple Graph
Representation

• The triple data model can be represented
as a graph

• Such graph is called in the Artificial
Intelligence community a semantic net

• Labeled, directed graphs
– Nodes: resources, literals
– Labels: properties
– Edges: statements

30

RDF: a Direct Connected Graph
based Model

• Different interconnected triples lead to a more complex graphic model
• Basically a RDF document is a direct connect graph

– http://en.wikipedia.org/wiki/Connectivity_%28graph_theory%29

31

RDF Containers Graph
Representation: Bag

“The lecture is attended by John, Mary and Chris”

32

RDF Containers Graph
Representation: Seq

“[RDF-Concepts] is edited by Graham and Jeremy
(in that order)”

33

RDF Containers Graph
Representation: Alt

“The source code for the application may be found at
ftp1.example.org, ftp2.example.org, ftp3.example.org”

34

RDF Collections

“[RDF-Concepts] is edited by Graham and Jeremy
(in that order) and nobody else”

35

Reification I

• Reification: statements about statements

Mary claims that John’s name is “John Smith”.

<#myStatement>, rdf:type, rdf:Statement
<#myStatement>, rdf:subject, <#john>
<#myStatement>, rdf:predicate, <#hasName>
<#myStatement>, rdf:object, ”John Smith”

This kind of statement can be used to describe belief or trust in other
statements, which is important in some kinds of applications

Necessary because there are only triples in RDF: we cannot add an
identifier directly to a triple (then it would be a quadruple)

36

Reification II

• Reification: statements about statements

Mary claims that John’s name is “John Smith”.

<#myStatement>, rdf:type, rdf:Statement
<#myStatement>, rdf:subject, <#john>
<#myStatement>, rdf:predicate, <#hasName>
<#myStatement>, rdf:object, ”John Smith”

<#john>, <#hasName>, ”John Smith”

In such a way we attached a label to the
statement.

37

Reification III

• Reification: statements about statements

Mary claims that John’s name is “John Smith”.

<#myStatement>, rdf:type, rdf:Statement
<#myStatement>, rdf:subject, <#john>
<#myStatement>, rdf:predicate, <#hasName>
<#myStatement>, rdf:object, ”John Smith”

<#mary>, <#claims>, <#myStatement>

RDF uses only binary properties. This restriction seems quite
serious because often we use predicates with more than two
arguments. Luckily, such predicates can be simulated by a number
of binary predicates.

38

RDF Vocabulary
• RDF defines a number of resources and properties
• We have already seen: rdf:XMLLiteral, rdf:type, . . .
• RDF vocabulary is defined in the namespace:

http://www.w3.org/1999/02/22-rdf-syntax-ns#

• Classes:
– rdf:Property, rdf:Statement, rdf:XMLLiteral

– rdf:Seq, rdf:Bag, rdf:Alt, rdf:List

• Properties:
– rdf:type, rdf:subject, rdf:predicate, rdf:object,
– rdf:first, rdf:rest, rdf:_n
– rdf:value

• Resources:
– rdf:nil 39

RDF Vocabulary
• Typing using rdf:type:

<A, rdf:type, B>

“A belongs to class B”

• All properties belong to class rdf:Property:
<P, rdf:type, rdf:Property>

“P is a property”

<rdf:type, rdf:type, rdf:Property>

“rdf:type is a property”

40

RDF Schema (RDFS)
• Types in RDF:

<#john, rdf:type, #Student>

• What is a “#Student”?

• RFD is not defining a vocabulary about the statements, but
only to express statements

• We know that “#Student” identifies a category (a concept or a
class), but this is only implicitly defined in RDF

41

RDF Schema (RDFS)
• We need a language for defining RDF types:

– Define classes:
• “#Student is a class”

– Relationships between classes:
• “#Student is a sub-class of #Person”

– Properties of classes:
• “#Person has a property hasName”

• RDF Schema is such a language

42

RDF Schema (RDFS)
• Classes:

<#Student, rdf:type, #rdfs:Class>
• Class hierarchies:

<#Student, rdfs:subClassOf, #Person>

• Properties:
<#hasName, rdf:type, rdf:Property>

• Property hierarchies:
<#hasMother, rdfs:subPropertyOf, #hasParent>

• Associating properties with classes (a):
– “The property #hasName only applies to #Person”

<#hasName, rdfs:domain, #Person>

• Associating properties with classes (b):
– “The type of the property #hasName is #xsd:string”

<#hasName, rdfs:range, xsd:string>

43

RDFS Vocabulary

RDFS Classes
– rdfs:Resource
– rdfs:Class
– rdfs:Literal
– rdfs:Datatype
– rdfs:Container
– rdfs:ContainerMembershipProperty

RDFS Properties
– rdfs:domain
– rdfs:range
– rdfs:subPropertyOf
– rdfs:subClassOf
– rdfs:member
– rdfs:seeAlso
– rdfs:isDefinedBy
– rdfs:comment
– rdfs:label

• RDFS Extends the RDF Vocabulary
• RDFS vocabulary is defined in the

namespace:
http://www.w3.org/2000/01/rdf-schema#

44

RDFS Principles
• Resource

– All resources are implicitly instances of rdfs:Resource

• Class
– Describe sets of resources
– Classes are resources themselves - e.g. Webpages, people, document

types
• Class hierarchy can be defined through rdfs:subClassOf
• Every class is a member of rdfs:Class

• Property
– Subset of RDFS Resources that are properties

• Domain: class associated with property: rdfs:domain
• Range: type of the property values: rdfs:range
• Property hierarchy defined through: rdfs:subPropertyOf

45

RDFS Example

ex:Faculty-
Staff

46

RDFS Metadata Properties
• Metadata is “data about data”
• Any meta-data can be attached to a resource, using:

– rdfs:comment
• Human-readable description of the resource, e.g.

– <ex:Person>, rdfs:comment, ”A person is any human being”

– rdfs:label
• Human-readable version of the resource name, e.g.

– <ex:Person>, rdfs:label, ”Human being”

– rdfs:seeAlso
• Indicate additional information about the resource, e.g.

– <ex:Person>, rdfs:seeAlso, <http://xmlns.com/wordnet/1.6/Human>

– rdfs:isDefinedBy
• A special kind of rdfs:seeAlso, e.g.

– <ex:Person>,rdfs:isDefinedBy,<http://xmlns.com/wordnet/1.6/Human>

47

Databases and RDF (cont’)
• Relational database are a well established technology to store

information and provide query support (SQL)
• Relational database have been designed and implemented to store

concepts in a predefined (not frequently alterable) schema.

• How can we store the following RDF data in a relational database?
<rdf:Description rdf:about="12345">

<rdf:type rdf:resource="&uni;lecturer"/>
<uni:name>Joe Doe</uni:name>
<uni:title>University Professor</uni:title>

</rdf:Description>

48

Databases and RDF
• Possible approach: Relational “Traditional” approach

• We can create a table “Lecturer” to store information about the “Lecturer”
RDF Class.

• Query: Find the names of all the lecturers
SELECT NAME FROM LECTURER

• Drawbacks: Every time we need to add new content we have to create a
new table -> Not scalable, not dynamic, not based on the RDF principles
(triples)

Lecturer

id name title

12345 Joe Doe University Professor

49

Databases and RDF
• Another possible approach: Relational “Triple” based approach

• We can create a table to maintain all the triples S P O (and distinguish
between URI objects and literals objects)

• Drawbacks: We are flexible w.r.t. adding new statements dynamically
without any change to the database structure…but what about querying?

– Query: Find the names of all the lecturers
– The query is quite complex: 5 JOINS!
– This require a lot of optimization specific for RDF and

triple data storage, that it is not included in the DB
– For achieving efficiency a layer on top of a database

is required
– SQL is not appropriate to extract RDF fragments

Resources

Id URI

101 21345

102 rdf:type

103 uni:lecturer

104 …

Statement

Subject Predicate ObjectURI ObjectLiteral

101 102 103 null

101 104 201

101 105 202

103 … … null

Literals

Id Value

201 Joe Doe

202 University Professor

203 …

… …

SELECT L.Value FROM Literals AS L
INNER JOIN Statement AS S ON S.ObjectLiteral=L.ID
INNER JOIN Resources AS R ON R.ID=S.Predicate
INNER JOIN Statement AS S1 ON
S1.Predicate=S.Predicate
INNER JOIN Resources AS R1 ON R1.ID=S1.Predicate
INNER JOIN Resources AS R2 ON R2.ID=S1.ObjectURI
WHERE R.URI = “uni:name”
AND R1.URI = “rdf:type”
AND R2.URI = “uni:lecturer”

50

SPARQL: RDF Query language

• SPARQL
– RDF Query language
– Uses SQL-like syntax

• Example:
PREFIX uni: <http://example.org/uni/>

SELECT ?name
FROM <http://example.org/personal>
WHERE { ?s uni:name ?name.
?s rdf:type uni:lecturer }

51

SPARQL Queries
PREFIX uni: <http://example.org/uni/>
SELECT ?name
FROM <http://example.org/personal>
WHERE { ?s uni:name ?name. ?s rdf:type uni:lecturer }

• PREFIX
– Prefix mechanism for abbreviating URIs

• SELECT
– Identifies the variables to be returned in the query answer
– SELECT DISTINCT
– SELECT REDUCED

• FROM
– Name of the graph to be queried
– FROM NAMED

• WHERE
– Query pattern as a list of triple patterns

• LIMIT
• OFFSET
• ORDER BY

52

SPARQL Query keywords
• PREFIX: based on namespaces

• DISTINCT: The DISTINCT solution modifier eliminates duplicate solutions.
Specifically, each solution that binds the same variables to the same RDF
terms as another solution is eliminated from the solution set.

• REDUCED: While the DISTINCT modifier ensures that duplicate solutions
are eliminated from the solution set, REDUCED simply permits them to be
eliminated. The cardinality of any set of variable bindings in an REDUCED
solution set is at least one and not more than the cardinality of the solution
set with no DISTINCT or REDUCED modifier.

• LIMIT: The LIMIT clause puts an upper bound on the number of solutions
returned. If the number of actual solutions is greater than the limit, then at
most the limit number of solutions will be returned.

53

SPARQL Query keywords
• OFFSET: OFFSET causes the solutions generated to start after the

specified number of solutions. An OFFSET of zero has no effect.

• ORDER BY: The ORDER BY clause establishes the order of a
solution sequence.

• Following the ORDER BY clause is a sequence of order
comparators, composed of an expression and an optional order
modifier (either ASC() or DESC()). Each ordering comparator is
either ascending (indicated by the ASC() modifier or by no modifier)
or descending (indicated by the DESC() modifier).

54

Example RDF Graph
<http://example.org/#john> <http://.../vcard-rdf/3.0#FN> "John Smith“

<http://example.org/#john> <http://.../vcard-rdf/3.0#N> :_X1
_:X1 <http://.../vcard-rdf/3.0#Given> "John"
_:X1 <http://.../vcard-rdf/3.0#Family> "Smith“

<http://example.org/#john> <http://example.org/#hasAge> "32“

<http://example.org/#john> <http://example.org/#marriedTo> <#mary>

<http://example.org/#mary> <http://.../vcard-rdf/3.0#FN> "Mary Smith“

<http://example.org/#mary> <http://.../vcard-rdf/3.0#N> :_X2
_:X2 <http://.../vcard-rdf/3.0#Given> "Mary"
_:X2 <http://.../vcard-rdf/3.0#Family> "Smith"

<http://example.org/#mary> <http://example.org/#hasAge> "29"

55

SPARQL Queries: All Full
Names

“Return the full names of all people in the graph”

PREFIX vCard: <http://www.w3.org/2001/vcard-rdf/3.0#>
SELECT ?fullName
WHERE {?x vCard:FN ?fullName}

result:

fullName
=================
"John Smith"
"Mary Smith"

@prefix ex: <http://example.org/#> .
@prefix vcard: <http://www.w3.org/2001/vcard-rdf/3.0#> .
ex:john

vcard:FN "John Smith" ;
vcard:N [

vcard:Given "John" ;
vcard:Family "Smith"] ;

ex:hasAge 32 ;
ex:marriedTo :mary .

ex:mary
vcard:FN "Mary Smith" ;
vcard:N [

vcard:Given "Mary" ;
vcard:Family "Smith"] ;

ex:hasAge 29 .

56

SPARQL Queries: Properties

“Return the relation between John and Mary”

PREFIX ex: <http://example.org/#>
SELECT ?p
WHERE {ex:john ?p ex:mary}

result:

p
=================
<http://example.org/#marriedTo>

@prefix ex: <http://example.org/#> .
@prefix vcard: <http://www.w3.org/2001/vcard-rdf/3.0#> .
ex:john

vcard:FN "John Smith" ;
vcard:N [

vcard:Given "John" ;
vcard:Family "Smith"] ;

ex:hasAge 32 ;
ex:marriedTo :mary .

ex:mary
vcard:FN "Mary Smith" ;
vcard:N [

vcard:Given "Mary" ;
vcard:Family "Smith"] ;

ex:hasAge 29 .

57

SPARQL Queries: Complex
Patterns

“Return the spouse of a person by the name of John Smith”

PREFIX vCard: <http://www.w3.org/2001/vcard-rdf/3.0#>
PREFIX ex: <http://example.org/#>
SELECT ?y
WHERE {?x vCard:FN "John Smith".

?x ex:marriedTo ?y}

result:

y
=================
<http://example.org/#mary>

@prefix ex: <http://example.org/#> .
@prefix vcard: <http://www.w3.org/2001/vcard-rdf/3.0#> .
ex:john

vcard:FN "John Smith" ;
vcard:N [

vcard:Given "John" ;
vcard:Family "Smith"] ;

ex:hasAge 32 ;
ex:marriedTo :mary .

ex:mary
vcard:FN "Mary Smith" ;
vcard:N [

vcard:Given "Mary" ;
vcard:Family "Smith"] ;

ex:hasAge 29 .

58

SPARQL Queries: Complex
Patterns

“Return the spouse of a person by the name of John Smith”

PREFIX vCard: <http://www.w3.org/2001/vcard-rdf/3.0#>
PREFIX ex: <http://example.org/#>
SELECT ?y
WHERE {?x vCard:FN "John Smith".

?x ex:marriedTo ?y}

result:

y
=================
<http://example.org/#mary>

@prefix ex: <http://example.org/#> .
@prefix vcard: <http://www.w3.org/2001/vcard-rdf/3.0#> .
ex:john

vcard:FN "John Smith" ;
vcard:N [

vcard:Given "John" ;
vcard:Family "Smith"] ;

ex:hasAge 32 ;
ex:marriedTo :mary .

ex:mary
vcard:FN "Mary Smith" ;
vcard:N [

vcard:Given "Mary" ;
vcard:Family "Smith"] ;

ex:hasAge 29 .

59

SPARQL Queries: Blank Nodes
“Return the first name of all people in the KB”

PREFIX vCard: <http://www.w3.org/2001/vcard-rdf/3.0#>
SELECT ?name, ?firstName
WHERE {?x vCard:N ?name .

?name vCard:Given ?firstName}

result:

name firstName
=================
_:a "John"
_:b "Mary"

@prefix ex: <http://example.org/#> .
@prefix vcard: <http://www.w3.org/2001/vcard-rdf/3.0#> .
ex:john

vcard:FN "John Smith" ;
vcard:N [

vcard:Given "John" ;
vcard:Family "Smith"] ;

ex:hasAge 32 ;
ex:marriedTo :mary .

ex:mary
vcard:FN "Mary Smith" ;
vcard:N [

vcard:Given "Mary" ;
vcard:Family "Smith"] ;

ex:hasAge 29 .

60

SPARQL Queries: Blank Nodes
“Return the first name of all people in the KB”

PREFIX vCard: <http://www.w3.org/2001/vcard-rdf/3.0#>
SELECT ?name, ?firstName
WHERE {?x vCard:N ?name .

?name vCard:Given ?firstName}

result:

name firstName
=================
_:a "John"
_:b "Mary"

@prefix ex: <http://example.org/#> .
@prefix vcard: <http://www.w3.org/2001/vcard-rdf/3.0#> .
ex:john

vcard:FN "John Smith" ;
vcard:N [

vcard:Given "John" ;
vcard:Family "Smith"] ;

ex:hasAge 32 ;
ex:marriedTo :mary .

ex:mary
vcard:FN "Mary Smith" ;
vcard:N [

vcard:Given "Mary" ;
vcard:Family "Smith"] ;

ex:hasAge 29 .

61

SPARQL Queries: Building RDF
Graph

“Rewrite the naming information in original graph
by using the foaf:name”

PREFIX vCard: <http://www.w3.org/2001/vcard-rdf/3.0#>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>

CONSTRUCT { ?x foaf:name ?name }
WHERE { ?x vCard:FN ?name }

result:
#john foaf:name “John Smith"
#marry foaf:name “Marry Smith"

@prefix ex: <http://example.org/#> .
@prefix vcard: <http://www.w3.org/2001/vcard-rdf/3.0#> .
ex:john

vcard:FN "John Smith" ;
vcard:N [

vcard:Given "John" ;
vcard:Family "Smith"] ;

ex:hasAge 32 ;
ex:marriedTo :mary .

ex:mary
vcard:FN "Mary Smith" ;
vcard:N [

vcard:Given "Mary" ;
vcard:Family "Smith"] ;

ex:hasAge 29 .

62

SPARQL Queries: Building RDF
Graph

“Rewrite the naming information in original graph
by using the foaf:name”

PREFIX vCard: <http://www.w3.org/2001/vcard-rdf/3.0#>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>

CONSTRUCT { ?x foaf:name ?name }
WHERE { ?x vCard:FN ?name }

result:
#john foaf:name “John Smith"
#marry foaf:name “Marry Smith"

@prefix ex: <http://example.org/#> .
@prefix vcard: <http://www.w3.org/2001/vcard-rdf/3.0#> .
ex:john

vcard:FN "John Smith" ;
vcard:N [

vcard:Given "John" ;
vcard:Family "Smith"] ;

ex:hasAge 32 ;
ex:marriedTo :mary .

ex:mary
vcard:FN "Mary Smith" ;
vcard:N [

vcard:Given "Mary" ;
vcard:Family "Smith"] ;

ex:hasAge 29 .

<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-

syntax-ns#"
xmlns:foaf="http://xmlns.com/foaf/0.1/“
xmlns:ex="http://example.org“>

<rdf:Description rdf:about=ex:john>
<foaf:name>John Smith</foaf:name>

</rdf:Description>
<rdf:Description rdf:about=ex:marry>

<foaf:name>Marry Smith</foaf:name>
</rdf:Description>

</rdf:RDF>

63

SPARQL Queries:
Testing if the Solution Exists

“Are there any married persons in the KB?”

PREFIX ex: <http://example.org/#>
ASK { ?person ex:marriedTo ?spouse }

result:

yes
=================

@prefix ex: <http://example.org/#> .
@prefix vcard: <http://www.w3.org/2001/vcard-rdf/3.0#> .
ex:john

vcard:FN "John Smith" ;
vcard:N [

vcard:Given "John" ;
vcard:Family "Smith"] ;

ex:hasAge 32 ;
ex:marriedTo :mary .

ex:mary
vcard:FN "Mary Smith" ;
vcard:N [

vcard:Given "Mary" ;
vcard:Family "Smith"] ;

ex:hasAge 29 .

64

SPARQL Queries: Constraints
(Filters)

“Return all people over 30 in the KB”

PREFIX ex: <http://example.org/#>
SELECT ?x
WHERE {?x hasAge ?age .
FILTER(?age > 30)}

result:

x
=================
<http://example.org/#john>

@prefix ex: <http://example.org/#> .
@prefix vcard: <http://www.w3.org/2001/vcard-rdf/3.0#> .
ex:john
vcard:FN "John Smith" ;
vcard:N [
vcard:Given "John" ;
vcard:Family "Smith"] ;

ex:hasAge 32 ;
ex:marriedTo :mary .

ex:mary
vcard:FN "Mary Smith" ;
vcard:N [
vcard:Given "Mary" ;
vcard:Family "Smith"] ;

ex:hasAge 29 .

65

SPARQL Queries: Optional
Patterns

“Return all people and (optionally) their spouse”

PREFIX ex: <http://example.org/#>
SELECT ?person, ?spouse
WHERE {?person ex:hasAge ?age .
OPTIONAL { ?person ex:marriedTo ?spouse } }

result:

?person ?spouse
=============================
<http://example.org/#mary>
<http://example.org/#john> <http://example.org/#mary>

@prefix ex: <http://example.org/#> .
@prefix vcard: <http://www.w3.org/2001/vcard-rdf/3.0#> .
ex:john
vcard:FN "John Smith" ;
vcard:N [
vcard:Given "John" ;
vcard:Family "Smith"] ;

ex:hasAge 32 ;
ex:marriedTo :mary .

ex:mary
vcard:FN "Mary Smith" ;
vcard:N [
vcard:Given "Mary" ;
vcard:Family "Smith"] ;

ex:hasAge 29 .

66

A RDF Graph Modeling Movies

movie1

movie:Movie

“Edward ScissorHands”

“1990”

rdf:type

movie:title

movie:year

movie:Genre

movie:Romance
movie:Comedy

rdf:type rdf:type

movie:genre

movie:genre

movie:Role

“Edward ScissorHands”

r1

actor1movie:playedBy

movie:characterName

rdf:typemovie:hasPart

[http://www.openrdf.org/conferences/eswc2006/Sesame-tutorial-eswc2006.ppt] 67

Example Query 1

• Select the movies that has a character called
“Edward Scissorhands”

PREFIX movie: <http://example.org/movies/>

SELECT DISTINCT ?x ?t
WHERE {

?x movie:title ?t ;
movie:hasPart ?y .
?y movie:characterName ?z .
FILTER (?z = “Edward Scissorhands”@en)

}

68

Example Query 1
PREFIX movie: <http://example.org/movies/>

SELECT DISTINCT ?x ?t
WHERE {

?x movie:title ?t ;
movie:hasPart ?y .
?y movie:characterName ?z .
FILTER (?z = “Edward Scissorhands”@en)

}

• Note the use of “;” This allows to create triples referring to the
previous triple pattern (extended version would be ?x
movie:hasPart ?y)

• Note as well the use of the language speciation in the filter @en

69

Example Query 2
• Create a graph of actors and relate them to the movies they play in (through a

new ‘playsInMovie’ relation)

PREFIX movie: <http://example.org/movies/>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>

CONSTRUCT {
?x foaf:firstName ?fname.
?x foaf:lastName ?lname.
?x movie:playInMovie ?m
}

WHERE {
?m movie:title ?t ;
movie:hasPart ?y .
?y movie:playedBy ?x .

?x foaf:firstName ?fname.
?x foaf:lastName ?lname.

}

70

Example Query 3

• Find all movies which share at least one genre
with “Gone with the Wind”

PREFIX movie: <http://example.org/movies/>

SELECT DISTINCT ?x2 ?t2
WHERE {

?x1 movie:title ?t1.
?x1 movie:genre ?g1.
?x2 movie:genre ?g2.
?x2 movie:title ?t2.
FILTER (?t1 = “Gone with the Wind”@en &&
?x1!=?x2 && ?g1=?g2)

}

71

