This class teaches two things:

Mathematical maturity

Theory of computation

Mathematical maturity

Is the key to success in your scientific career

In this class we will:

Practice mathematical notation: sets, quantifiers, etc.

Get some exposure to proofs

Theory of computation

 We develop models of computation, and ask: what can and cannot be computed in these models, and how quickly? with how much memory?

Questions fundamental to all of science.

Nature computes!

Theory of computation

Most famous open question:

$$_{ls}P = NP?$$

"Millennium Problem" with prize \$1M

We will learn what this question means in this class

Overview of material in Theory of Computation

Automata Theory

Computability Theory

Complexity Theory

Automata Theory

Finite automata: Computers with no memory
Motivation: Numbers, names, in Prog. Languages
Example: x = -0.0565

Context-free grammars: Memory = stack
Motivation: Syntax, grammar of Prog. Languages
Example: if (...) then (...) else (...)

Computability Theory

Turing Machines: "Compute until the sun dies"

Motivation: What problems can be solved at all?

Example: Given a program, does it have a bug?
We will prove impossible to determine!

Complexity Theory

P, NP: Model your laptop

Motivation: What problems can be solved fast?

• Example: Given a formula with 1000 variables like (X OR Y) AND (X OR NOT Z) AND (Z OR Y) ...

Is it satisfiable or not?

Does it take 1 thousand years or 1 second to know?

Recap

Automata theory: Finite automata, grammars

Computability Theory: Turing Machines

• Complexity Theory: P, NP

Theme: Computation has many guises:
Automata, grammar, Turing Machine, formula ...