
Introduction: Automata, Computability and Complexity

Key question: What are the capabilities and limitations of computers?

We seek mathematically precise answers.

Complexity Theory. Easy problem: sorting. Hard problem: scheduling.

What makes some problems computationally hard and others easy?

Computability Theory. Which problems are solvable by computers and which

are not?

Both Complexity Theory and Computability Theory require a precise definition of

a computer.

Automata Theory deals with definitions and properties of mathematical models

of computation.
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Example: A Controller for Automatic Door

Front
pad

Rear
pad

door

Correct behaviour:� If a person is on the front pad, the door should open.� It should remain open long enough for the person to pass all the way through.� The door should not strike someone standing behind it (i.e. on the rear pad)

as it opens.
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Finite Automata

Theory of Computation begins with “What is a model of computation?”

A computational model may be accurate in some ways, but not in others.

We begin with the simplest model: finite state machines or finite automata.

Finite automata are good models for computers with an extremely limited amount

of memory. They are nonetheless useful for many things!
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Example: A Controller for Automatic Door (cont’d)

State transition table:

NEITHER FRONT REAR BOTH

CLOSED CLOSED OPEN CLOSED CLOSED

OPEN CLOSED OPEN OPEN OPEN

Note: the table can be presented as a (state-transition) graph

OPEN CLOSED

NEITHER

FRONT

REAR

BOTH

FRONT

REAR

BOTH

NEITHER
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Example: A Controller for Automatic Door (cont’d)

Two states: OPEN, CLOSED

Front
pad

Rear
pad

Front
pad

Rear
pad

OPEN CLOSED

Four “input conditions”:� FRONT: someone standing on front pad only� REAR: someone standing on rear pad only� BOTH: people standing on both pads� NEITHER: no one standing on either pad
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Example: a finite automaton
� �

��� ��� �	�
 ��
��


� 


Key Features:� There are only finitely different states a finite automaton can be in.

The states in ��� (= vertices of the graph) are �����	��� and ��� .� We do not care about the internal structure of automaton states. All we care

about is which transitions the automaton can make between states.� A symbol from some finite alphabet � is associated with each transition: we

think of elements of � as input symbols. The alphabet of � � is ������� � .
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The controller is a rudimentary computer that has just a single bit of memory (for

recording state information).

It is an example of a finite automaton (or a finite-state machine).

Other examples: controllers of dishwashers, electronic thermostats, parts of

digital watches and calculators, etc.
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Why designate certain states accepting?

Notation. We write �"! as the set of all strings (or words) over � i.e.

� !$#&%(') ��*+�-,�,�,.*0/21
*43657�8��9;:��<�>=
A language ? is just a set of strings over � i.e. ?�@A�8! .

We use finite automaton to recognize whether or not a string BC5C� ! is in a

particular language (= subset of � ! ).
Given B , we begin in the start state, and traverse the state-transition graph, using

up the symbols in B in the correct order, reading from left to right.

If we can consume all the symbols B in this way and reach an accepting state,

then B is in the language accepted (or recognized) by the particular automaton;

otherwise B is not in the language.
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� � � � � �
 ��
��


� 


� Thus all possible transitions can be specified by a finite directed graph with� -labelled edges.

E.g. At state �D� , ��� can

- input 0 and enter state ��� i.e. ��� EFHG ��� , or

- input 1 and remain in state �I� i.e. ��� �FHG ��� .� There is a distinguished start state. In the graph, the start state is indicated by

an arrow pointing at it from nowhere. The start state of �A� is �J� .� The states are partitioned into accepting states (or final states) and

non-accepting states.

An accepting state is indicated by a (double) circle. The accepting state of� � is � � .
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Definition: Deterministic Finite Automaton (DFA)

A deterministic finite automaton (DFA) is a 5-tuple KMLN���O�	PI�	� E �RQ2S where

(i) L is a finite set called the states

(ii) � is a finite set called the alphabet

(iii) PT14L U7� G L is the transition function

(iv) � E 57L is the start state

(v) Q @�L is the set of accept states (or final states).

We write � VFWG �YX to mean P0KM�4�	*0S ) �YX , which we read as “there is an* -transition from � to � X ”.
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� �
Revisited � � � � � �
 ��
��


� 


What is the language accepted by � � ?
Answer: all binary strings that contain at least one 1, and an even number of 0s

follow the last 1.

When �Z� receives an input string (say) 1101, it processes the string and

produces either a “yes” (meaning: the input is accepted) or “no” result.

Beginning at the start state, ��� receives the symbols from the input string one by

one from left to right; after reading each symbol, �A� moves from one state to

another along the transition labelled by that symbol.

After the last symbol is read, �[� returns “yes” if it is at a final state, and “no”

otherwise.

E.g. In processing 1101, � � goes through the states � � �	� � �	� � �	� � �	� � , and

returns “yes”.
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Definition: Language accepted by
�

, \^] � _
Let � ) KML`���8�	PY�	� E �RQ2S be a DFA. ?aKb�cS , the language recognized (or

accepted) by the DFA � , consists of all strings d ) * � * � ,�,�,.*4e over �
satisfying � E fFWG ! � where � is a final state. Here

� E fFWG ! �
means that there exist states �g����,�,�,h�	� e0i ���	� e ) � (not necessarily all distinct)

such that there are transitions of the form

� E V�jFWG � � VhkFHG ,�,�, VhlFWG ��e ) �
Note� case m ) � : � nFWG ! � X iff � ) � X� case m ) � : � VFWG ! �YX iff � VFHG �YX
A language is called regular if some DFA recognizes it.
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State-transition graph of a DFA

Equivalently we can represent a DFA by its state-transition graph:� the vertices are just the states� � -labelled edges are the transitions.

Notation:� The start state is indicated by an arrow pointing at it from nowhere.� A final state is indicated by a (double) circle; the labelled arrows from one

state to another are called state-transitions.

Note:

Such a state-transition graph represents a DFA, if for all *o57� there is exactly

one outgoing * -labelled edge from each vertex (state).
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More examples: automatic door controller

Is the controller for the automatic door a DFA?

OPEN CLOSED

NEITHER

FRONT

REAR

BOTH

FRONT

REAR

BOTH

NEITHER

So far, the control has no designated start state, or designated accepting states,

but otherwise it is a DFA, with� state set: � OPEN � CLOSED �� input alphabet: � FRONT � REAR � BOTH � NEITHER �� transition function: as determined by the state transition table given earlier
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Example:
� �

Revisited � � � � � �
 ��
��


� 


Formally � � ) KMLN���O�	PI�	� � �RQ2S where� L ) ���J���	���Y�	���p�� � ) �������p�� �J� is the start state; Q ) ���D�q�� P is given by � �
�J� �J� ���
� � � � � �
� � � � � �

?aKM�Z�rS is the set of all binary strings that contain at least one 1, and an even

number of 0s follow the last 1.
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More examples:
� s

� � � �

�

� 


�t� ) Ku�I�J���	���I�>�h�Y�0���J�>�	PI�	�J���h�I�J���JS
where P is given by � �

�J� �J� ���
��� �J� ���

The language recognized by � � is

?aKM� � S ) ��dv5w�I�0���J� ! 1�d ends in a �x�$y7�Yzr�
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More examples:
� {

� � � �

�

� 


�|� ) Ku�I�J���	���I�>�h�Y�0���J�>�	PI�	�J���h�I���I�JS
where P is given by � �

�J� �J� ���
��� �J� ���

The language recognized by � � is

?aKM� � S ) ��dv5w�I�0���J� ! 1�d ends in a �J�
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Designing DFAs over input alphabet }�~p�x�+�
Find � such that ?aKb�cS ) ��d�5��I�0���J� ! 1 every odd position of d is a �J� .
E.g. ?8Kb��S ) �Yz����������������������0�������������������0�����0�����������D�0������������=�=�=��

� � � �

�	�
�



�
��


�
��
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Designing DFAs over input alphabet }�~p�x�+�
Find � such that ?aKb�cS )�� .

���

�
��

no final state!

Find � such that ?aKb�cS ) �Yz��	�x� .
���

� �

�	�

�



�
��


�
�r
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The Product Construction

Theorem Regular languages are closed under union i.e. if �2� and ��� are

regular languages, so is � � y;� � .
Proof. Simulate � � and � � simultaneously !

Let �Z� ) KMLN�D���8�	PJ���	�J���RQ���S recognize ��� , and �|� ) KML��J���8�	P��Y�	���J�RQ���S
recognize � � .
We construct � ) KMLN���O�	PI�	� E �RQ2S to recognize ��� y;��� :� L ) L � U7L � (= �<K�� � �.� � S<1�� � 57L � �.� � 5�L � � )� P0KRK������.�I��S��	*0S ) KbPJ�DK��
���	*0S��	P��gK��Y�J�	*0S.S� � E ) Kb� � �	� � S� Q ) K�Q � U�L � S�y�KML � U�Q � S (= �<K�� � �.� � S<1�� � 5�Q �p� � � 5�Q � � )
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The Regular Operations: Union, Concatenation and Star

Let � and � be languages. Define� Union: ��y�� ) �-�71���5�� or �75��Z�� Concatenation: �[,�� ) �-�+�;1���5�� and �;5��Z�� Star: � ! ) �-� � � � ,�,�,�� / 149^:�� and each � 3 5���� .
Note: z (the empty string) is in � ! (the case of 9 ) � )

Example. Take � ) ���0�J�Y� ��¡�*x�¢� and � ) �p¡��I�W�&�x£¤��¥>� .
�[,�� ) �¦�§�J�J�x¡r�D�H�&�§�J�J�g�x£M��¥u��¡r*x�x¡��I�W��¡r*x�g�x£¤��¥x�
�¨! )�pz��&�0�J�Y� ��¡�*x� �&�§�J�J�g�0�J�Y� �&�§�J�J�x¡r*x�+��¡r*x�g�0�Y�J�+��¡r*x�x¡r*x�+�&�0�J�Y���§�J�J�g�0�J�Y� ��,�,�,r� .
Informally �©! ) � zª�«y � y K��[,��¬S�y K��A,��[,��¨S�y ,�,�, .
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Now since PD� is a function, for any �T57LT�J�	*o5­� , there is a � X s.t. � VFWG � X .
Hence, there are � �E ) ���J�	� �� ��,�,�,h�	� �e 5�L�� s.t.

Kb� �E �	� �E S V�jFWG Kb� �� �	� �� S VrkFWG ,�,�,�,�,�, V�lFWG Kb� �e �	� �e S (4)

are � -transitions. Since KM� �e �	� �e S<5�Q��aU�L���@ZQ , we have d�5�?8Kb��S . ®
Remark. Closure under union can be proved (quite simply) using NFAs.
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We first show ?8Kb��S<@Z?8Kb���rS�y;?8Kb�|�DS :
Take d ) *+�-,�,�,.* e 5�?8Kb��S . By definition, for some� �E ) � � �	� �� ��,�,�,��	� �e 57L � , for some � �E ) � � �	� �� ��,�,�,��	� �e 57L � , we have� -transitions

Kb� �E �	� �E S V�jFWG Kb� �� �	� �� S VrkFWG ,�,�,�,�,�, V�lFWG Kb� �e �	� �e S (1)

where � �e 5�Q � or � �e 5�Q � . Suppose the former. Unpacking (??), we have�Z� -transitions � �E V�jFHG � �� VhkFHG ,�,�,h,�,�, VhlFHG � �e (2)

I.e. � �E K ) � � S fFWG ! � �e 5�Q � . Hence d¯5�?8Kb� � S<@Z?8Kb� � S¦y;?8Kb� � S .
Next we show ?8Kb���rS<@Z?aKb�cS (argument for ?8Kb�«��S<@Z?8Kb��S is similar):

Take d ) *+�-,�,�,.* e 5�?8Kb�Z�rS . By definition, for some� �E ) �J���	� �� ��,�,�,��	� �e 57L°� , with � �e 5�Q�� , we have

� �E V jFHG � �� V kFHG ,�,�,h,�,�, V lFHG � �e (3)
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Motivation: Nondeterministic Finite Automata

Theorem Regular languages are closed under concatenation i.e. if �°� and �¬�
are regular languages, so is �2�±,���� .

Proof attempt:

Let ?aKb�t3²S ) �83 . Aim to construct � that accepts d iff d can be broken intod�� and d"� (so that d ) d¬�Rd"� ) whereby ��� accepts d¬� and �|� accepts da� .
But � does not know where to break d into two!

This motivates the introduction of non-deterministic finite automata.
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NFA versus DFA

� In a DFA, at every state � , for every symbol � , there is a unique � -transition

i.e. there is a unique ��� such that � ���� ��� .
This is not necessarily so in an NFA. At any state, an NFA may have multiple� -transitions, or none.� In a DFA, transition arrows are labelled by symbols from 	 ; in an NFA, they

are labelled by symbols from 	�

����� . I.e. an NFA may have � -transitions.� We may think of the non-determinism as a kind of parallel computation

wherein several processes can be running concurrently.

When the NFA splits to follow several choices, that corresponds to a process

“forking” into several children, each proceeding separately. If at least one of

these accepts, then the entire computation accepts.
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Non-deterministic Finite Automata (NFA)
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Example: ��������� is a multiple of 2 or 3 �
�
�

�
�
�

��

Using � -transitions and non-determinism, a language defined by an NFA can be

easier to understand.
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Example: All strings containing a 1 in third position from the end

NFA: � � � � �!� �
� � �

DFA: "$#%#%# "$#%#$&

"$#$&'#

"(#)&%&

"*&'#%# "*&'#$& "*&%&'#

"*&%&%&
�

�
�

��
�
�

�

� �

�

�
� �

�

�

NFAs are more compact - they generally require fewer states to recognize a

language.
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Some definitions and notations

Fix an NFA + ,.-0/213	41$5�1$�*671)8:9 .; -'+<9 , the language accepted by + , consists of all strings = over 	 satisfying�*6 >,@? � where � is a final state. Here ACB,�? A is defined by:� � D,@? ��� iff �E,F�G� or there is a sequence � D��� AHAHA D��� ��� of one or more� -transitions in + from � to � � .� For =I,J�LKMAHAHA$�ON!P�K where each �RQTSU	 , � >,@? � � iff there are�VKW1$� �K 1HAHAHAX1$�*N PYKW1$� �N!P�K (not necessarily all distinct) such that

� D,�? �VK �WZ��� � � K D,�? �W[ �]\��� � �[ D,�? AHAHA^� �N D,@? �*N!P�K �X_H`OZ��� � �N P�K D,�? � �
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Definition: NFA

A nondeterministic finite automaton (NFA) is a 5-tuple -0/a13	b1)5�1$�c671)8d9 where

(i) / is a finite set of states

(ii) 	 is a finite alphabet

(iii) �*6ESU/ is the start state

(iv) 5:eO/ fg-h	g

���i�V9 � j -0/:9 is the transition function

(v) 8 kl/ is the set of final states.

Note: j -0/:9�monqp, �Mr esr kl/t� is the power set of / . Equivalently 5 can be

presented as a relation, i.e. a subset of -0/ fg-h	u
U���i�V9^9vfU/ .

For �wS�	�

���i� we define � ���� ���xm%nqp, ����S
5y-'�O1$�y9 .
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Equivalence of NFAs and DFAs: The Subset Construction

Observation. Every DFA is an NFA!

Say two automata are equivalent if they accept the same language.

Theorem(Determinization). Every NFA has an equivalent DFA.

Proof. Fix an NFA + ,.-0/{z:13	|z:1$5Wz}1$�Wz{1)8~z�9 , we construct an equivalent

DFA j + ,.-0/�� z 13	�� z 1)5X� z 1$�X� z 1)8Y� z 9 such that
; -�+<9T, ; - j +u9 :� / � z�m%nqp, ����e���k�/}z��� 	 � z monqp, 	|z� � ���� � � in j + iff � � ,���� � eR���:S�����-'� �,�? � � in + ) �� �X� z monqp, �Y�:e � z D,@? ���� 8 � z monqp, �~��S
/ � z�e!8~zt���F�,F���
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Intuitively � >,�? � � means:

“There is a sequence of transitions from � to � � in + in which the

symbols in = occur in the correct order, but with 0 or more � -transitions

before or after each one”.

We shall sometimes write �5�-'�R1^=�9~,���� � SU/.e � >,�? � � � , for =�S�	�� .
Note: In case + is a DFA, for any �dS
/ and =�S�	�� , there is a unique � � such

that � >,@? �G� (thus, by abuse of notation, we write �5�-'�R1^=�9T,F�G� ).
Exercise. Writing =�,F��KMAHAHA)�ON!P�K , we have � >,@? �G� is equivalent to: there

exist � K 1HAHAHA*1$� N such that

� �HZ,@? � K �]\,@? AHAHAHAHAHA � _*`RZ,@? � �
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Proof of “
; -�+<9vk ; - j +u9 ”:

Suppose ��S ; -�+<9 . Then �cz D,�? ��� for some ����S�8~z . Hence ����S
� � z ,

and so, �X� z ,��Y� ��� e!� z D,�? � ��� �{S�8Y� z i.e. ��S ; - j +u9 .
Now take any non-null ��,F� K AHAHA^� N . Suppose �US ; -�+u9 . Then there is a

sequence of + -transitions

�Wz �HZ,�? � K �X\,�? AHAHA*AHAHA �X_,�? � N S�8~z (1)

Since j + is deterministic, feeding ��KW1HAHAHAX1$�ON to it results in the sequence ofj + -transitions � � z � Z��� � K � \��� AHAHA*AHAHA � _��� � N (2)

where � K , �Y����eR���:S
� � z}��-'� � Z,�? �G� in +<9��
��[ , �Y� � eR���:S��YKW��-'� � \,�? � � in +u9��

...
...

By definition of 5 � z , from (1), we have � K S�� K , and so � [ S�� [ , AHAHA , and so
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Example. All words that begin with a string of 0’s followed by a string of 1’s.

NFA + "$# "*&
�

�
�

DFA j +
  "$# � "H&(¡   "H&(¡

  "$#*¡ ¢

� �
�

�
�!� �

� �

Note. State �G�H67� is redundant.
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Closure under regular operations revisited

Using nondeterminism makes some proofs much easier.

Theorem. Regular languages are closed under union.

Take NFAs +wK and +£[ .
¤ & ¤�¥

Define + that accepts
; -�+ K 9�
 ; -�+ [ 9 by

adding a new start state � to the disjoint union

of (the respective state transition graphs of)+¦K and +£[ , and a � -transition from � to each

start state of + K and + [ .
¤ & ¤ ¥

¤
"� �
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�*N§S¨�iN , and hence �iN©S�8Y� z because �*N�S�8 z . Thus (2) shows that�
S ; - j +�9 .
Proof of “

; - j +u9�k ; -�+<9 ”:

Suppose ��S ; - j +<9 . Then � � z�S�8 � z i.e. 8~zª�
�Y�de!�Wz D,�? ���w�,�� , or

equivalently, for some � � S�8 z , � z D,�? � � . Hence ��S ; -�+<9 .
Now suppose some non-null �©,F� K AHAHA)� N S ; - j +<9 . I.e. there is a sequence

of j + -transitions of the form (2) with ��N�S�8Y� z i.e. with �iN containing some� N S
8�z . Now since � N S¨� N , by definition of 5 � z , there is some� N B K SU� N B K with � N B K
�X_V« Z,@? � N in + . Working backwards in this way, we can

build up a sequence of + -transitions like (1), until we deduce that �Vz �WZ,�? � K .
Thus we get a sequence of + -transitions with �WN§S�8 z , and hence ��S ; -�+<9 .¬
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Theorem. Regular languages are closed under star.

First attempt:

Take an NFA +wK­,.-0/aKW13	41$5VKH1$�VKW1)8�K39 that

accepts ® K . Construct + that accepts

® � K ,����]�­
�® K 
§® K ® K 
�AHAHA .
¤ &

Obtain + from + K by making the start state

accepting, and by adding a new � -transition

from each accepting state to the start state.

¤ &¤ �

�
What is wrong with this?
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Theorem. Regular languages are closed under concatenation.

Take NFAs + K and + [ .
¤ & ¤ ¥

An NFA + that accepts
; -�+ K 9�A ; -�+ [ 9 can

be obtained from the disjoint union of +§K and+ [ by making the start state of + K the start

state of + , and by adding an � -transition from

each accepting state of +¯K to the start state

of + [ . The accepting states of + are those

of + [ .

¤ & ¤�¥
¤

�
�
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Proof: Regular languages are closed under star

Second (correct) attempt:

Take an NFA + K ,.-h/ K 13	41$5 K 1$� K 1)8 K 9 that accepts®{K .
¤ &

Define + , -0/aKb
l�Y� 6 � 13	41$5�1$� 6 1)8�K4
°��� 6 �79
where

5�-'�R1$��9u,

±²²²²²²²²³ ²²²²²²²²´

5 K -'�R1$��9 �dSU/ K and �§�S�8 K
5VKG-'�R1$��9 �dS�8�K and �U�,��
5VKG-'�R1$��9�
U�Y�VK�� �dS�8�K and �a,��
�Y�VK�� �E,F� 6 and �a,��
� �E,F�*6 and �U�,��

¤ &
�

¤ �

�

Models of Computation 16

¤ & ��Consider the two-node two-edge NFA +¯K
that accepts �Yµ Q^¶ e7·¹¸lµv�
(namely the language

defined by the regular expression µ � ¶ ).

¤ ��
�

The above construction gives the NFA +

But + accepts -'µ�ºtµ � ¶ 9 � ,.-'µ�º ¶ 9 � �,.-'µ � ¶ 9 � .
E.g. + accepts µ ¶ µ which is not in

; -�+ K 9 �
» � ��

�The NFA ¼ accepts
; -�+wK]9)�
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A notation to describe “finite-automaton” patterns

E.g. Binary strings that “begin with a string of 0’s followed by a string of 1’s”.

Binary strings that “start and end with the same symbol”.

Regular expressions are just such a compact notation to describe these patterns,

which are described respectively as
���������

and�	�
���
�������	�
�����������
���������
���������
.

Regular expressions have many important applications in CS:� Lexical analysis in compiler construction.� Search facilties provided by text editors and databases; utilities such as awk

and grep in Unix.� Programming languages such as Perl and XML.

Models of Computation 2

Regular Expressions
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Notations

�
is sometimes written � or � , and

����� �!�
is sometimes simply written

���!�!�
.

Parentheses may sometimes be omitted. We assume:

(i) The regular expression operators have the following order of precedence (in

decreasing order): star, concatenation, union.

E.g.
���"�

means
�#����� �

, not
���������

;
���$� �

means
���
��� ���

, not
���	�$�����

.

(ii) Union and concatenation associate to the left i.e.
���%�&��'

means�����%�(�)��'
. (Since union and concatenation are associative, the choice of

left or right association does not really matter.)

Examples

(i)
��� � �$�

is formally
�*���+�,��� � �*���$���

.

(ii)
���	�
�������"�-�

is formally
�*�*�������$���)� ���)�,���"� �*�)� ���

.

Models of Computation 4

Regular expressions and their denotations

Fix a . . We define simultaneously regular expression
�

and the language

denoted by
�

, written / ���0�
, by induction over the following rules:� The constants 1 and 2 are regular expressions;/ � 1 �4365879 : 1<; and / � 2 �43�5879 2 .� For =?>@. , = is a regular expression; / � = � 3�5879 : =A; .� If

�
and

�
are regular expressions, then so are

���B�C�(�
,
��� �D�(�

and��� � �
; we have

union / �*���E�F�(�*� 365879 / ���0� �G/ ���(�
concatenation / �*����� �!��� 365879 / ���0�4� / ���(�
star / �*��� � ��� 365879 � / ���0��� �

Models of Computation 3



Equivalence of regular expressions

We say that
�

and
�

are equivalent, written
�IH
�

, just in case/ ���0� 9 / ���(�
.

Note that
H

is an equivalence relation.

Some identities

1. Associativity:
���
�F�(���J'KH
�
�E���L�M'N�

and
���O�(�*'KH
�G���('N�

.

2. Commutativity:
�
�F�PH
�L�Q�

3.
� 2 H 2 .

4. 2 �	H : 1R; .

5.
�
� 2 H$�IH 2 �F�

and
�K� 1 H$�IH 1 �%� .

6. But in general
�
� 1TSH
�

, and
��� 2USH
�

.

For which
�

do the equivalences hold?

Models of Computation 6

Examples: Languages over V#W4X,Y#Z denoted by regular expressions

1.
� � � � �

denotes words that have exactly one 1.

2.
���	�
�����"�����	�
�����

denote words that have at least one 1.

3.
�������$��� � �	�
�����	�$��� � �[�Q�	�$�

denotes words that start and end with

the same symbol.

We shall say that a word \ matches
�

just in case \B>]/ ���^�
.
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Kozen’s Axioms for the Algebra of Regular Expressions

��_ �
�E���$�J'N�`HI���
�F�(���J' ab_ �c���$�J'N�`H
�O�$�F�^'de_ �
�F�PH
�$�F� f�_ ���
�F�(�*'KH
�^'M�Q�('g�_ �
� 2 H
� h�_ 2 �IH
� 2 H 2i _ �
�F�IH$� � ��_ 1 �F�!�^�	H
�^�je_ ���!�(�*'KH
�c���!'N� ����_ 1 �F� � �kH
� �l�_ 1 �IH$� 1 H
�
and two rules: �mde_ �$�F�^'kn$'Ko � � � n$'� g�_ �$�J'+� n$'Ko �N�p�qn$'
Note:

� nC�
means / ���0�[r / ���(�

.

Models of Computation 8

Example: Verify s�t]u vxwmy0z t{y	s�v�t{y"w y
Proof. Observe that / �*� = �J|�� � �

is the set of all strings over : =~} | ; , thus/ � = ����| = �%��� �[r / �*� = ��|���� �
.

Note that any ��>]/ �*� = �J|����%�
can be written uniquely as=,��� | =,�,� |(�%�%� =,���*�,� | =,��� (1)

where = � means = �%�%� =� �-� �� , each ����� �
and �0� �

. ( � is just the number of

occurrences of
|

in � . E.g. in case � is
|
, ��� 9 ��� 9 �

; in case � is 1 , ��� 9 �
.)

Any string in / �*��| = � � � � has the shape
��| =b�,� ���%�%�{��| =,�x� �� �-� �� , where each � � � �

and �0� �
. It follows that any string in / � = �D��| = � ��� � has the shape= �D� | = �,� �%�%�#| = �x� where each ����� �

and �^� �
i.e. of the shape (??). �

Question: Is there a finite set of (equivalence) axioms and rules such that� = ��|����	H = ����| = � ��� (indeed any valid equivalence) is a theorem?
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On proving Kozen’s Theorem

Soundness proof: For an illustration, we prove (13).

Suppose / ���$�J'+�^�[r / ��'T�
. Any \B>]/ ���N� � �

has the form ����� �%�%� � �
where ��� �

, ��>�/ ���(�
and � �`>�/ ���0�

. We prove that \B>]/ ��'N�
by

induction on � .

The base case of � 9 �
follows from / ���(��r / ��'N�

.

For the inductive case, we need to show that �R� � �%�%� � �x  � >]/ ��'N�
. Now��� � �%�%� � � >]/ ���N� � �

; by the IH we have ��� � �%�%� � � >]/ ��'N�
; and so����� �%�%� � � � ��  ��>]/ ��'+�^�

which is contained in / ��'N�
by supposition.

Completeness proof: beyond the scope of this course. �

Models of Computation 10

(Sound and) Complete Axiomatization of Equivalence

Soundness: Each axiom is a valid equivalence between regular expressions, and

each rule is sound (i.e. if the premise is a valid equivalence, so is the conclusion).

E.g. to say that rule (13) is sound is to say that for any
� } � and

'
, if/ ���$�J'+�0�[r / ��'N�

, then / ���N� � �[r / ��'N�
.

Completeness: Further the axiomatization is complete i.e.

Kozen’s Theorem. All valid equivalences between regular expressions can be

derived from Kozen’s axioms and rules, using the laws of (in)equational logic

i.e.

if
� nC�

then
�
¡M'knM�$¡M' } 'M¡Q� n$'C¡F�

and
� � nM� �

where
¡ 9 �

and
�
.
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Equivalence of regular expressions and finite automata

The equivalence of regular expressions and finite automata is a fundamental

result in Automata Theory.

Kleene’s Theorem. Let / r . �
. The following are equivalent:

(i) / is regular i.e. for some finite automaton ¢ , / 9 / � ¢ �
.

(ii) / is denoted by some regular expression
�

i.e. / 9 / ���^�
.

Models of Computation 12

Example: s*t�u v�w y0z t{y	s�v�t{y"w%y revisited

We prove the harder direction “
n

” using Kozen’s system.

Note that 1%}�=~} |	n = ����| = � ��� . [Ex. Prove it using 1 nM�£�
!]

We have = � = � ��| = � � � �`Hk� =[= � �-��| = � � � n = � ��| = � � � by (5) and (10). Similarly|�� = � ��| = � � � �`HI��| = � �-��| = � � � n���| = � � � H 1 ��| = � � � n = � ��| = � � � _
The last two steps follow from (6) and (10). Because of the preceding, by (7), we

have
� = ��|����
� = �J|-�-� = � ��| = � � � �[n = � ��| = � � � , and so, by rule (12) – taking�

and
�

to be
� = �J|��

– we have� = ��|�� � � = �J|-��n = � ��| = � � � _
Since 1 n = � ��| = � � � , by rule (10) we have

� = �Q|-� � n = � ��| = � � � as desired. �
Models of Computation 11



Example: Transforming regular expressions to NFAs

We construct the NFA that accepts
�����Q���D���������

.

¤ ¤
¥ ¥
¥�¦ § ¥ §
¤`¥�¦�¤¤ § § § § ¤¥ §

¨ ¤�©�¤`¥%¦�¤"ª § ¤
¤

§ § § § ¤§
¥ §

¨ ¤�©�¤`¥%¦�¤"ª6¦ § § ¤
¤

§ § § § ¤§§ § ¥ §

¨ ¤�©�¤`¥%¦�¤"ª6¦�¤§ § ¤
¤

§ § § § ¤§ §
§ § ¤§§

¥ §

Models of Computation 14

Proof of Kleene’s Theorem: “(i) « (ii)”

We show that there is a systematic way to transform a regular expression
�

to an

equivalent NFA ¬^­ – so that / ���^� 9 / � ¬^­ � – by recursion on the structure of�
.

Base cases: For each of the three cases, namely
� 9 1�}®2 and = where =?>¯. ,

there is an NFA ¬ ­ that accepts / ���^�
.

Inductive cases: Take regular expressions
�

and
�

. Suppose ¬ ­ and ¬0° are

NFAs that accept / ���0�
and / ���(�

respectively. We have proved that regular

languages are closed under union, concatenation and star by constructing NFAs

that accept / � ¬^­ � �G/ � ¬ ° � }�/ � ¬0­ �4� / � ¬ ° � and
� / � ¬0­ �*��� respectively.

By definition, these NFAs are equivalent to
�
�F� } ���%�

and
�£�

respectively. �
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We prove the Lemma by induction on the size of ± .

Basis: ± 9 2 . Let =~� } �%�%� }�=�² be all the symbols in .³� : 1R; such that´�µ >�¶ � ´ }�=,� � . For ´ S9 ´�µ , take

�0·¸º¹»¸�¼ 365879 ½¾À¿ = � �$�%�%��� = ² if ÁG� �
2 if Á 9 �

and for ´ 9 ´ µ , take

� ·¸º¹»¸�¼ 365879 ½¾ ¿ =#� �$�%�%��� =�² � 1 if ÁG� �
1 if Á 9 �

Models of Computation 16

Proof of Kleene’s Theorem: “(ii) « (i)”

Given an NFA ¢ 9 ��Â }Ã.�}�¶�} ´ � } �(�
, for ± rLÂ

and ´ } ´ µ > Â
, we construct,

by induction on the size of ± , a regular expression�OÄ¸º¹Å¸ ¼
whose denotation is the set of all strings \ such that

there is a path from ´ to ´�µ in ¢ labelled by \ (i.e. ´ Æ9 o ´�µ ) such that

all intermediate states along that path lie in ± .

It suffices to prove:

Lemma. For any ± r Â
, for any ´ } ´ µ > Â

, there is a regular expression� Ä¸º¹Å¸ ¼ satisfying / ��� Ä¸º¹»¸ ¼ � 9
: \P>@. �+Ç ´ Æ9 o ´ µ in ¢ with all intermediate states of seq. in ± ;
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Example: Transforming NFAs to regular expressions

Consider the NFA ¢ 9 � : =~} | }�È{;�} : � } � ;�}�¶�}�=~} : =A; � where ¶ is given by� � 1= 2 : | ; 2| : | ; : ÈÉ; 2È : | ; : =A; 2 Ê
Ë

Ì
¥ ¥

¥
¤

¤

We pick
|

as the separating state: the required reg. exp. is�pÍbÎ ¹ÅÏ*¹»Ð�ÑÎ ¹ Î 9 �pÍbÎ ¹»Ð�ÑÎ ¹ Î �F� ÍeÎ ¹ÅÐxÑÎ ¹ÒÏ ����� ÍbÎ ¹ÅÐxÑÏÓ¹ÅÏ � � �%� ÍeÎ ¹»Ð,ÑÏ*¹ Î _
By inspection

� ÍeÎ ¹ÅÐ�ÑÎ ¹ Î 9 1 , � ÍeÎ ¹ÅÐxÑÎ ¹ÅÏ 9 �
and

� ÍbÎ ¹»Ð�ÑÏÓ¹ Î 9 ���
.

Models of Computation 18

Inductive step: For a nonempty ± , choose an element �0>�± - call it the

separating state. Now any path from ´ to ´ µ with all intermediate states in ± ,

either

(1) never visits � , or

(2) visits � for the first time, followed by a finite number of loops from � back to

itself without visiting � in between but staying in ± , and finally followed by a

path from � to ´ µ .
Thus we take�!Ä¸º¹»¸�¼ 365879 � ÄqÔ�Í ��Ñ¸º¹»¸ ¼� �-� �Õ ��Ö

�¯�OÄqÔ�Í ��Ñ¸º¹»� �����OÄqÔ�Í �#Ñ��¹×� � � �%� Ä�Ô�Í ��Ñ�*¹Å¸ ¼� �-� �ÕÙØ Ö
Finally the expression ÚEÛ�Ü ° �(Ý¸ � ¹ Û has denotation / � ¢ �

. �
Hueristic: it is best to choose a separating state � that disconnects the

automaton as much as possible.
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Question

Is there a procedure (algorithm) that, given a string � and a regular expression�
, will decide whether or not � matches

�
?

Models of Computation 20

Ê
Ë

Ì
¥ ¥

¥
¤

¤

Picking È as the separaring state, we have� ÍbÎ ¹»Ð�ÑÏÓ¹ÒÏ 9 � ÍbÎ ÑÏÓ¹ÒÏ �Q� ÍbÎ ÑÏÓ¹ÅÐ �����^ÍeÎ ÑÐ�¹ÅÐ � � �%� ÍbÎ ÑÐ�¹ÒÏ
where

� ÍeÎ ÑÏ*¹ÅÏ 9 �	� 1 , � ÍbÎ ÑÏÓ¹»Ð 9 �
,

� ÍbÎ ÑÐ�¹»Ð 9 1 and
� ÍeÎ ÑÐ�¹ÅÏ 9 ���$�x�

.

Hence putting it all together we have�^ÍeÎ ¹ÒÏÓ¹»Ð�ÑÎ ¹ Î 9 1 �$�,����� 1 �
� 1 � ���	�$�����*� � ����H 1 �$�Þ�����$�m�	�$�������*� � ���
I.e. / � ¢ � 9 / � 1 �$�Þ���	�
� ���$������� � �����

.
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Claim:
� � �������	��

��� ���

is not regular

Informal argument.

If there were a DFA that recognizes � , it would need to remember the number of

0’s read from the input string. This would require a way to store an arbitrarily large

number, but any DFA has only a finite amount of memory (given by the fixed

number of states). �
But need to be careful: both

��� � �������
has an equal number of 0s and 1s �� � � �������
has an equal no. of occurrences of 01 and 10 as substrings �

seem to require infinite memory to recognize. Now
� �

is not regular but

Exercise(Moderately hard). Prove that
�!�

is regular.

Models of Computation 2

The Pumping Lemma

The Pumping Lemma is a powerful technique for proving that certain languages

are not regular.
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“But if, upon the other hand, " stays within its
�

,

Then either
�

is regular, or else you chose not well.

For
�

is "$#&% , and # cannot be null,

And # must come before ' symbols have been read in full.”

“As mathematical postscript, an addendum to the wise:

The basic proof we outlined here does certainly generalize.

So there is a pumping lemma for all languages context-free,

Although we do not have the same for those that are r.e.”

By Martin Cohn and Harry Mairson

Models of Computation 4

The Pumping Lemma, in poetic form

“Any regular language
�

has a magic number p

And any long-enough word in
�

has the following property:

Amongst its first ' symbols is a segment you can find

Whose repetition or omission leaves " amongst its kind.”

“So if you find a language
�

which fails this acid test,

And some long word you pump becomes distinct from all the rest,

By contradiction you have shown that language
�

is not

A regular guy, resiliant to the damage you have wrought.”

Models of Computation 3



Proof of the Pumping Lemma

Let ( ��)+*-,/.0,213,24658765:9/,<;>=
be a DFA that accepts ? , and let ' � @:*A@

.

Suppose B �DC ��EFEFE CHGJIK�0) ( =
where LNMO' . We have

46PRQFSTVU 4 � QXWTVU EFEFE QZYT
U 42[\ ]X^ _[a` �Vbc9edf9hgib
EFEFE6EFEFE Q6jTVU 46GkIl;

where
4 P �m4658765:9

. By the Pigeonhole Principle,
4 P , EFEFE ,24 [

cannot all be distinct.

So
4Zn0�D4Zn/o

for some p�qsrutsrHvwqs' . Thus the above transition sequence is

46P xTVUsy 4Zn zT
Usy 4Zn o )��D4Zn{= |TVUsy 46GJIK;
where " �DC ��EFEFE C}n , # �DC}nZ` ��EFEFE C}n o and % �~C}n oHEFEFE C�G

. We have@ "�# @ qO' and
@ # @�� p , and for every ��M�p , "�#&��% IK�0) ( =

as

4 P xT
UOy 4 n zTVUOy 4 n EFEFEDzTVUOy 4 n\ ]X^ _
�

|TVUsy 4 G IK;

�
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The Pumping Lemma

Pumping Lemma. If ? is a regular language, then there is a number ' – the

pumping length – such that if B I ? of length at least ' , then B may be divided

into three pieces, B � "�#!% , satisfying:

(i) for each ��M�p , "�# � % I ?
‘Words “pumped up” from B belong to ? .’

(ii)
@ # @�� p

(iii)
@ "�# @ qO' .

Note: without (ii), the Lemma is vacuous (because � � � � for all ��M�p ).

The Pumping Lemma is a complex statement: it is equivalent to

� ��I
Reg � � 'KM���� � B IK� � � " , # , % I�. y � � ��M�p��2�

where � is
@ B @ MO' U B � "�#�%0� @ "�# @ qO'>� @ # @�� p��A"�# � % IK� �
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A powerful characterization of regular languages

Let " , # I�. y be strings and let
����.

.

We say that " and # are
�

-indistinguishable, written "����u# , if for every

% I�. y , "
% Il� iff #&% IK� .

Fact. ��� is an equivalence relation.

We define the index of
�

to be the number of equivalence classes of
�

.

The index of
�

may be finite or infinite.
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Example:
� � ���$���	�0
¡ ¢� ���

is not regular.

Proof. Suppose, for a contradiction, � is regular. Let the pumping length be ' .

Take B � p [ � [ I � . Since
@ B @H� ' , by the Lemma, there are " , # , % such that

B � "�#�% where
@ "�# @ qN' and

@ # @�� p . Hence " � p Q , # � p	£ where ¤ � p ,

and
C�¥ ¤�qs' .

The Lemma further asserts: for each ��M�p , p Q p £+� p [}¦ Q ¦ £ � [ I � . In

particular (taking � � p ) p Q p [�¦ Q ¦ £§� [ � p [}¦ £X� [ I � , a contradiction. �
Exercise. Convince yourself that the same argument above can be used to show

that
�¨�©���

has equal no. of 0s and 1s � is not regular.

The Pumping Lemma is not always easy to apply: the trick is to identify an

appropriate word to “pump”. It is often useful to “pump down” i.e. take � � p .
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A powerful characterization of regular languages (con’t)

Myhill-Nerode Theorem: A language
�

is regular iff � � has finite index.

Moreover the index is the size (= number of states) of the smallest DFA accept-

ing
�

.

Note: The Pumping Lemma is not a characterization of regular languages: it is

not an if-and-only-if statement.
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Examples

Take
.��©� p , �ª� .

(i)
��«��©�����}�

has even length � .¬ ����­�® iff
@ ¬ @ � @ ® @¯) mod ° = .

Now � � ­ has two equivalence classes:± �³² � ± p�p3² � ± �´p3² � EFEFE �©�����
@µ�-@
even � and± �X² � ± p¶�´p3² � ± ���´p3² � EFEFE �©���R�V@µ�-@

odd � .
(ii)
��·��©�����}�

has equal numbers of 0s and 1s � .
For any � , r¸M�p , if ��¹� r then p � ¹���Hº�p n (because p � � � IK� · but

p n � � ¹IK� · ).
Therefore the index of

� ·
is infinite.
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(ii) Assume that
�

has a finite index. Define a structure ( � )».0,Z*-,24 P ,21{,<;>=
as follows: * � � ± "¼² � " I�. y �4 P � ± �³²1½) ± "�² ,2C½= � ± " C ²; � � ± � ² ����IK� �
We need to verify: (a) ( is a DFA, (b) ( accepts

�
.

For (a),
@:*A@

is the index of
�

which is finite, and
1

is a well-defined function

because "����A# implies " C ���u# C for any
CuI¾.

.

For (b), for any
��I�. y , �©IK�0) ( =

iff
± �f²À¿TVUsy ± � ² IK; iff

��IK�
.

�

Models of Computation 12

Proof of the Myhill-Nerode Theorem

It suffices to prove:

(i) If
�

is accepted by a DFA with Á states, then
�

has index at most Á .

(ii) If
�

has a finite index Á (say), then it is accepted by a DFA with Á states.

(i): Suppose
�

is accepted by a DFA ( ��)+*-,/.0,213,24´PX;>=
. We check thatÂ1½)e4 P , " =�� Â1&)e4 P , # =N�ÄÃ "Å� � #
�

(Recall: for " I�. y , we have
Â1½)e4H, " =��D4 v iff

4 xT
U y 4 v .)
Take " � , EFEFE , "§Æ ` � I�. y , all distinct. Since ( has only Á states, by the

Pigeonhole Principle, for some �ÇqÈ��tsruq�Á ¥ � , we haveÂ1½)e46P�, " � =��
Â1&)e46P�, " n3= , and so, " � ���A" n . It follows that ��� has at most Á

equivalence classes.
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Closure Properties of Regular Languages

Regular languages are closed under the following operations:

1. The regular operations: union, concatenation, star

2. Intersection

3. Complementation

4. Word reversal

5. Homomorphism: Given a function É ��.�� U . y� . Define

É y )eC ��EFEFE CHG�=�� É )eC � = EFEFE É )eCHG�= , and for any language
� �

over
. �

,

define

É )e�Ê��=ÌË³ÍÏÎ� � É y )c��= ���©IK��� ���
If
���

is regular, so is É )h����= .

Models of Computation 14

Example: Ð � ��Ñ�Ñ 

Ñ Ò ���ªÓH���VÔ �
is not regular

Take any distinct � , r¸M�p . We have p��f�Õ¹���Jp n � because p��f�´p}�Ö� IK� but

p n �´p � �Õ¹IK� . Hence ��� has an infinite index. Thus
�

is not regular by

Myhill-Nerode.
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6. Inverse homomorphism: For any
� �

over
. �

. Define

É
¦ � )h� �´=ÌË×ÍÏÎ� ����I�. y� � É )c��=�IK� � ���

If
� �

is regular, so is É ¦ � )h� � = .
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Context-free grammars (CFG): A way of generating words

Ingredients of a CFG:���
variables ��� � terminals ��� � productions (or rules) ��� start symbol �

The start symbol is a special variable.

A CFG generates strings over the alphabet �
	 �
terminals � .

Example. ��	 ����
 ������� ��� ����������� 
 � where � consists of three rules:���� ���

 � ��
 �
 � �
� � �

Models of Computation 2

Context Free Grammars

Regular languages can be specified in terms of finite automata that accept or

reject strings, equivalently, in terms of regular expressions, which strings are to

match.

This section introduces a new, generative means of specifying sets of strings.
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Definition: Context-free Grammar

A context-free grammar is a 4-tuple ��	 �! �"�#���$�"%&� where

(i)
 

is a finite set of variables (or non-terminals)

(ii) � (the alphabet) is a finite set of terminals

(iii) � is a finite set of productions. A production (or rule) is an element of '(�! *) �+�-, , written

.� /

.

(iv) %10  is the start symbol.

We define a binary relation 2 over
���3 4) �5�6� , by: for each7 �98:0 ���3 4) �5�6� , , for each


.� /
in �7 
 8;2 7 / 8

We write 2 , for the reflexive and transitive closure of 2 .

The language of the grammar, written < � �=� , is
�>/ 0�� ,@? %A2 , / � .

Models of Computation 4

How to generate strings using a CFG

1. Set
/

to be the start symbol.

2. Choose an occurrence of a variable B in
/

if any, otherwise STOP.

3. Pick a production whose lhs is B , replace the chosen occurrence of B in
/

by the rhs.

4. GOTO 2.

Example �C	 ���D
 ���E��� �F� ���6��� �F
.� ��
 �HG6�I� � � � ��� 
 � generates�F�KJ � J ?MLON � � . 
 2 ��
 �
2 �P��
 �P�
2 �Q� �R�P�
2 �Q�&� �P�S	 �UT � T

Such sequences are called derivations.
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Regular languages are context-free

A language is context-free just in case it is generated by some CFG.

A CFG is right-linear if every rule is either of the form V � /SW
or of the formV � /

where
/

ranges over strings of terminals, and V and
W

over variables.

Theorem. A language is regular iff it is generated by a right-linear CFG.

Proof idea. Say a CFG is strongly right-linear if each rule has one of the following

forms: V � X�W
, V � W

or V � �
where

X
ranges over terminals, and V andW

over variables.

Fact. Each right-linear CFG is equivalent to a strongly right-linear one.

For each rule V � /#W
with

/ 	 XZY[X]\>^�^�^-X�_ we add ` fresh variables, say \ ��a�a�a  _ , and replace the rule V � /SW
by the rules

V � X�Yb c\ �  c\d� X]\e T � a�a�a  f_I� X�_gW
Models of Computation 6

Examples

Palindromes over
��X �ihF��jk� : generated by

��� %�� W ��� ��X �ihD��j>�����$�"%&� where� consists of eight rules:

% � XOW5X G*h W h G4j W j G WW � % G X Glh G4j G �
Note: Use G to save writing. The above can be simplified: one variable suffices.

Well-balanced parentheses: generated by
�m� %I��� � ( � ) �����$�"%&� where �

consists of % �
( % ) Gl%n% G �

E.g. ( ( ) ( ( ) ) ) ( )

Exercise. Prove that the grammar generates precisely all well-balanced

parentheses. [Hint. Define the “balance index” of a string, and argue by induction

on length.]
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Parse trees

Parse trees: Each derivation determines a parse tree.

Parse trees are ordered trees: the children at each node are ordered.

The parse tree of a derivation abstracts away from the order in which variables

are replaced in the sequence.

derivation parse tree

% 2 XOW5X
2 X % X
2 X h W h X
2 X hojph X

%X W X
%

h W h
j

Models of Computation 8

“ 2 ”: We map DFAs q 	 �sr �"�#��tb��u Y �-vH� to strongly right-linear CFGs�=w 	 �sr �"�#���$��u Y � where

u � X ubxc0y� z{2 t � uZ� X �3	lubx
u � � 0y� z{2 uH0|v

“ z ”: We map strongly right-linear CFGs �}	 �~ �"�#�����"%&� to NFAs�;� 	 �! �"���-tb�"%��-vH� where

V �� � V x � i.e. V x 05t � V;� X �9� z{2 V � X V x 0 �
V �� � V x � i.e. V x 0�t � V�� � �9� z{2 V � V x 0 �

V�0�v z{2 V � � 0 � �

Easy exercise. Give a right-linear CFG that generates
� , � , � , .
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Example: Arithmetic expressions

����� � W �9v���� �3� � ' � � �"�"�9�������$� � � where � consists of 6 rules:

��� �*��W G W W4� W�' v GRv v � �K� � G��
� 2 �*�1W

2 � �1W�' v
2 W1��W ' v
2 W � v ' v
2 v � v ' v
2 v � v ' �
2 , � � � ' �

�
� � W
W W ' v
v v �
� �

Models of Computation 10

Example Parentheses

% �
( % ) Gl%n% G �

derivation parse tree

% 2 % %
2 ( % ) %
2 ( % % ) %
2 T ( ( % ) ( % ) ) %
2�� ( (

�
) ( ( % ) ) ) ( % )

2 T ( (
�

) ( (
�

) ) ) (
�

)

	 ( ( ) ( ( ) ) ) ( )

%
% %

( % ) ( % )

% % �
( % ) ( % )�

( % )�
Models of Computation 9



Example: A small English language

�
SENTENCE � � �

NOUN-PHRASE � � VERB-PHRASE ��
NOUN-PHRASE � � �

CMPLX-NOUN � G �
CMPLX-NOUN � � PREP-PHRASE ��

VERB-PHRASE � � �
CMPLX-VERB � G �

CMPLX-VERB � � PREP-PHRASE ��
PREP-PHRASE � � �

PREP � � CMPLX-NOUN ��
CMPLX-NOUN � � �

ARTICLE � � NOUN ��
CMPLX-VERB � � �

VERB � G �
VERB � � NOUN-PHRASE ��

ARTICLE � �
a G the�

NOUN � �
boy G girl G flower�

VERB � �
touches G like G see�

PREP � �
with

10 variables, 9 terminals and 18 rules.

Models of Computation 12

includegraphics[bb=-205 24 819 768,scale=.3]3.jpg

��� �*��W G W W4� W�' v GRv v � �K� � G��
� 2 W

2 W ' v
2 v ' v
2 �K� � ' v
2 �K� ��W � ' v
2 �6W �1W � ' v
2 � v �1W � ' v
2 � � ��W � ' v
2 , � � � ��� ' �

�
W

W ' v
v �� � �� � W

W v
v �
�
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Ambiguity

Say that two derivations are essentially different if they determine distinct parse

trees. In some CFGs, the same string may have essentially different derivations.

Call these CFGs ambiguous.

Examples: Ambiguous arithmetic expressions� � �.�1� G � '|� G��
The string � � � ' � has two essentially different derivations:� 2 � '|� � 2 � �1�

2 � �1� '|� 2 � �1�
2 � �1� '|� 2 � �1� '��
2 � � � '�� 2 � � � '|�
2 � � � ' � 2 � � � ' �

Models of Computation 14

�
SENTENCE � 2 �

NOUN-PHRASE � � VERB-PHRASE �
2 �

CMPLX-NOUN � � PREP-PHRASE � � VERB-PHRASE �
2 �

ARTICLE � � NOUN � � PREP-PHRASE � � VERB-PHRASE �
2 a girl

�
PREP � � CMPLX-NOUN � � VERB-PHRASE �

2 a girl with
�
CMPLX-NOUN � � VERB-PHRASE �

2 a girl with
�
ARTICLE � � NOUN � � VERB-PHRASE �

2 a girl with a flower
�
VERB-PHRASE �

2 a girl with a flower
�
CMPLX-VERB �

2 a girl with a flower
�
VERB � � NOUN-PHRASE �

2 a girl with a flower likes
�
CMPLX-NOUN �

2 a girl with a flower likes
�
ARTICLE � � NOUN �

2 a girl with a flower likes the boy
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Leftmost derivations

A leftmost derivation is one in which at every step, the leftmost occurring variable

is the one chosen for replacement.

Example. The two derivations for � � � ' �
Definition. A CFG � is ambiguous just in case there is some word in < � ���
which has two (or more) different leftmost derivations.

Note: Each parse tree of a string identifies a leftmost derivation of it. There is a

1-1 correspondence between parse trees and leftmost derivations.

Exercise. Prove that the 6-rule arithmetic expressions on page 8 is unambiguous.

In general the questions of whether a given CFG is ambiguous, or whether two

CFGs are equivalent, are very difficult to answer. (In fact these are undecidable

decision problems.)
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Example: Ambiguous arithmetic expressions

� � �*�1� G � '|� G��
� 2 � '|�

2 � �1� '|�
2 � ��� '|�
2 � � � '|�
2 � � � ' �

�
� �

� �
� � � ' �

� 2 � ���
2 � �1�
2 � �1� '|�
2 � � � '|�
2 � � � ' �

�
� �

� �
� � � ' �
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Chomsky Normal Forms

A CFG is in Chomsky normal form is every rule has one of the forms:
 � ���
 � X
where

X
is any terminal, and


 ��� and � are any variables, except that � and �
may not be the start variable. In addition we permit % � �

where % is the start

variable.

Theorem. Any CFG is generated by a CFG in Chomsky normal form.

Models of Computation 18

Sometimes the language generated by an ambiguous grammar has an equivalent

unambiguous grammar.

Some languages can only be generated by ambiguous grammars. They are

called inherently ambiguous.

Exercise [Hard ]. Prove that
���MJ �"���U� ?ML 	��@�;��	C�S� is inherently

ambiguous.
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Non-deterministic pushdown automata

(We mostly follow the definitions in Kozen’s Automata and Computability.)

A (non-deterministic) pushdown automaton is like an NFA, except it has a stack

(pushdown store) for recording a potentially unbounded amount of information, in

a last-in-first-out (LIFO) fashion.

input string��� ��� ��� ���
input head

(left to right, read-only)

���	
	
		
	
	

(pushdown)
stack

�� �
� �� �
��
��� stack head

(push/pop)

finite control

�

Models of Computation 2

Non-deterministic pushdown automata

Regular languages are recognized by finite automata,

context free languages are recognized by non-deterministic pushdown automata.
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Example: Balanced strings of parentheses

� � � � � � �
� � � � � � � �
� � � � � � � �

�

� � � � � � � �
� � � � � � � �

�

� � � � � � � �
� � � � � � �

Intuitive description of an NPDA:

1. WHILE <input symbol is “[”>

DO <push “[” onto the stack>.

2. WHILE <input symbol is “]”> and

<top of stack is “[”> DO <pop>.

3. IF <all of input read> and

<top of stack is “ � ”> THEN <accept>.

(“ � ” is initial stack symbol.)

Example: input is “[ [ ] [ ] ]”

Think of an NPDA as (representing) an

algorithm (for a decision problem) with memory

access in the form of a stack.
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The workings of an NPDA

In each step, the NPDA pops the top symbol off the stack; based on (1) this

symbol, (2) the input symbol currently reading, and (3) its current state, it can

1. push a sequence of symbols (possibly � ) onto the stack

2. move its read head one cell to the right, and

3. enter a new state

according to the transition rule � of the machine.

We allow � -transition: an NPDA can pop and push without reading the next input

symbol or moving its read head.

Note: an NPDA can only access the top of stack symbol in each step.
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Configuration

A configuration of � is an element of � �������! "� describing (1) the current

state, (2) the portion of the input yet unread (i.e. under and to the right of the input

head) and (3) the current stack contents.

The start configuration is #%$'&)(+*,(-�/. . I.e. � always starts in the start state with

its input head scanning the leftmost input symbol and the stack containing only � .

The next-configuration relation 0 describes how � moves from one

configuration to another in one step. Formally1 If #%$2(435.�67�8#:9;(=<>(+?/. then for any @A6��B� and CD6E F� ,#:9;(=<�@>(G?BCH.I0 #%$J(+@>(43>CH.
(The input symbol < has been “consumed”; ? was popped and 3 was

pushed, and the new state is $ .)1 If #%$2(435.�67�8#:9;(
�'(G?�. then for any @A6K� � and CD6E � ,#L9M(+@>(G?BCH.N0 #%$2(+@O(43PCH.
(no input symbol has been “consumed”.)
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Definition of an NPDA

A non-deterministic pushdown automaton (NPDA) is a 7-tuple#Q�R(-�S(+ T(=��(=$U&�(-�,(GV,. where �R(-�S(+ �(=� and V are all finite sets, and1 � is the set of states1 � is the input alphabet1  is the stack alphabet1 �,WJ� �X#Y�NZ7[\�^]�.��! _0 `A#Q� �! � . is the transition function1 $U&/6�� is the start state1 �a6E is the initial stack symbol1 V bc� is the set of accept states.

Note: An NPDA is strictly more powerful than a deterministic PDA. We shall not

consider the latter specifically here.
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There is another accepting convention:

� accepts an input d by empty stack if for some $,6�� ,

#%$ & (+de(-�/. �0 #Q$J(
�'(
�
.-f
N.B. V is irrelevant in the definition of acceptance by empty stack.

The two accepting conventions are equivalent.
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gAhGi j
: The language accepted by NPDA

i

We define the reflexive, transitive closure of 0 , written �0 , as follows:k &0 l mRn kpo lkrqts\u0 l mRn vxwcf k q0 w y wz0 l
and define

k �0 l just if
k q0 l for some {I|c} . I.e.

k �0 l iff l follows

from
k

in 0 or more steps of the relation 0 .

Formally we say that � accepts an input d by final state if for some $,6EV and3~6E "� , we have #%$ & (+de(-�/. �0 #%$J(
�'(43M. . Configurations of the form #%$2(
�'(43M.
where $,6EV and 3K6� � are called accepting.

The language of � , written �S#%�z. , is defined to be the set of strings accepted

by � .
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Example: An NPDA accepting ���!���z�P� � ���\�J���O���
Implementation-level description:

#�[�$ u (=$ & (=$���]�(�[�}8('�\]� ��� �� (�[�}8('�)(-�N]� ��� �� (=��(=$ & (
��(�[�$��e]�.
where

�,W

������������� ������������

#%$ & (=}8(-��.  0 [¡#%$ & (=}J�S.O]
#%$U&)('�)(-��.  0 [¡#%$U&)('���S.O]
#%$U&)(
�'(-��.  0 [¡#%$�u�(-��.O]
#%$�u�(=}8(=}J.  0 [¡#%$�u�(
�-.¢]
#%$�u�('�)('��.  0 [¡#%$�u�(
�-.¢]
#%$ u (
�'(-�/.  0 [¡#%$���(
�-.¢]

where � o }8('� .
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Example: An NPDA accepting ���!���z�P� � ���\�J���O���
High-level description:

1. Push the input symbols onto the stack, one at a time.

2. Non-deterministically guess that the middle of the string has been reached at

some point during 1, and then change into popping off the stack for each

symbol read, checking to see if they (i.e. symbols just popped and just read)

are the same.

3. If they are always the same symbols, and the stack empties at the same time

as the input is finished, accept.
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Example: A run accepting the input �\�P�P�P�2�
#%$ & ( }£�)�)�)��}8( �/.

0 #%$ & ( �)�)�)��}8( }��/.
0 #%$ & ( �)�)��}8( �¤}��/.
0 #%$ & ( �)��}8( �)�¤}��/.
0 #%$ u ( �)��}8( �)�¤}��/.
0 #%$�u¤( ��}8( �¤}��/.
0 #%$�u¤( }8( }��/.
0 #%$�u¤( �U( �/.
0 #%$��¥( �U( �-.

¦=§ ¦U� ¦
�¨=©+ªX« ª ¨=© � « ¨
¬ ©­ªX« ¬ ª® ©­ªX« ® ª “push”

¬ © ¬ « ¨® © ® « ¨ “pop”
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Example: An NPDA accepting ���!���z�P� � ���\�J���O���
Transition graph:

¦ § ¦ � ¦ �¨=©+ªN« ª ¨
© � « ¨
¬ ©­ªX« ¬ ª® ©­ªX« ® ª “push”

¬ © ¬ « ¨® © ® « ¨ “pop”

Notation: In the transition graph, we represent the transition#%$�¯%(43M.�67�£#%$2(=<O(-��. by an edge, labelled by “ <O(-�°0 3 ”, that joins node $ to $¥¯ .
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Equivalence between NPDAs and context-free languages

A major result in automata theory is:

Theorem. A language is context-free iff some NPDA accepts it.

Proof overview We are breaking down the proof into the following steps:

A Given a CFG ± , there is an equivalent NPDA ²F³ .

B Given an NPDA ´ , there is an equivalent CFG ±¶µ generating �S#·´_. .
1 Every NPDA can be simulated by an NPDA with one state

2 Every NPDA with one state has an equivalent CFG.
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Example: An NPDA accepting balanced strings of parentheses

Implementation-level description: Transition diagram:

#�[\$J(=$ ¯ ]�(�[ [ ( ] ]�(�[H�,( [ ]�(=��(=$2(-�,(�[�$ ¯ ]�.
where

�
������� ������
#%$2( [ (·�T.  0 [¡#%$2( [ ��.O]
#%$2( [ ( [ .  0 [¡#%$2( [ [ .O]
#%$2( ] ( [ .  0 [¡#%$2()��.O]
#%$2(t�8(·�T.  0 [¡#%$ ¯ (
�
.¢] ¦ ¦U¸¨=© � « ¨

[ © � « [
�

[ © [ « [ [

] © [ « ¨
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NPDA that accepts CFL generated by ¹ º »¼¹¾½¡¹ ¿O½¡¹¾»�¹ ¿>À
Implementation-level description: Transition diagram:

#�[\$ & (=$ u (=$���]�(�[�<O(
ÁM]�(�[H�,(-Â\(=<O(
Á^]�(=��(=$ & (-�,(�[�$��5]¥.
where � is given by

�£#%$U&¥(t�x(·��. o [2#%$�u�(-ÂÃ�/.=]
�£#%$ u (t�x(­Âe. o [2#%$ u (=<8ÂFÁUÂF.-(

#%$ u (
ÁUÂH<£ÂF.-(
#%$�u�(
�
.=]

�£#%$ u (�<;(U<O. o [2#%$ u (
�
.=]
�£#%$ u (¥Á£()Á�. o [2#%$ u (
�
.=]
�£#%$�u'(t�x(·��. o [2#%$ � (
�
.=]

¦=§
¦U�

¦-�
¨=© � « ¨¨=© � « Ä �

¨�©­ÄÅ« � Ä;Æ=Ä¨�©­ÄÅ« Æ=Ä � Ä¨�©­ÄÅ« ¨� © � « ¨Æ2©�Æ�« ¨
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Lemma. Given a CFG ± , there is an equivalent NPDA ² ³ .

Proof idea: The stack alphabet of ²F³ consists of the terminal and variable

symbols and � . We describe the action of ² ³ informally:

1. Place the start variable symbol on the stack.

2. Repeat forever: Pop top-of-stack d . Cases of:

(a) d is a variable ? : Nondeterministically select a rule for ? and replace ?
by the string * (say) on the rhs of the rule (so that the leftmost symbol of* is at the top of stack).

(b) d is a terminal < : Read the next input symbol and compare it with < . If they

do not match, then exit (and reject this branch of the nondeterminism).

(c) d o � : Enter the accept state.

Claim: ²F³ accepts �S#Y±Ç. .
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Simulating NPDAs by CFGs

We do this in two steps:

1. Every NPDA can be simulated by an NPDA with one state

2. Every NPDA with one state has an equivalent CFG.

For 2: Take a one-state NPDA � o #�[�$T]�(-�S(+ �(=��(=$2(-�,(
Èt. that accepts by

empty stack. Define ±ÇÉ o #Ê T(-�S(G²Ë(-�/.
where ² contains a rule ? 0 Ì^ÍÎuÇÏ'Ï'ÏÐÍ/Ñ
for every transition #%$2(=Í,uÇÏ'Ï'ÏÐÍ/Ñ¥.¡67�8#%$2(=Ì�(G?�. where Ì�6K�IZ�[\�^] . Then we

have �S#%�z. o �S#Y± É . .
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Example: A run accepting the input »5½¥»5½
#%$U&t( <xÁÒ<xÁ�( �/.

0 #%$�u¤( <xÁÒ<xÁ�( ÂÃ�/.
0 #%$ u ( <xÁÒ<xÁ�( <8ÂFÁ�ÂÃ�/. (1)

0 #%$ u ( ÁÒ<xÁ�( ÂFÁ�ÂÃ�/.
0 #%$�u¤( ÁÒ<xÁ�( ÁUÂ"<8ÂFÁ�ÂÃ�/. (2)

0 #%$�u¤( <xÁ�( Â"<8ÂFÁ�ÂÃ�/.
0 #%$ u ( <xÁ�( <8ÂFÁ�ÂÃ�/. (3)

0 #%$�u¤( Á�( ÂFÁ�ÂÃ�/.
0 #%$ u ( Á�( Á�ÂÃ�/. (3)

0 #%$ u ( �U( ÂÃ�/.
0 #%$ u ( �U( �/. (3)

0 #%$ � ( �U( �
.

¦ §
¦ �

¦ �
¨=© � « ¨¨
© � « Ä �

(1) ¨J©4ÄÅ« � Ä;Æ=Ä
(2) ¨J©4ÄÅ« Æ=Ä � Ä
(3) ¨J©4ÄÅ« ¨� © � « ¨Æ2©�Æ�« ¨

Leftmost derivation: ÂX0 <8ÂFÁ�ÂN0 <xÁUÂH<£Â"ÁUÂN0 <xÁÒ<8ÂFÁUÂI0 <xÁÒ<xÁ�ÂX0 <xÁÒ<xÁ
Models of Computation 17



Intuitively �Ó¯ simulates � , guessing non-deterministically what state � will be

in at certain future points in the computation, saving those guesses on the stack,

and then verifying later that the guesses were correct.

Lemma. �Ó¯ can scan a string d starting with only ÔÕ9B?~$¥Ö on its stack and end

up with an empty stack, if and only if � can scan d starting in stack 9 with only? on its stack and end up in state $ with an empty stack. I.e. we have

#L9M(+de(+?/. q0 É #%$J(
�'(
�
. mRn #Ø×J(+d5(�ÔÕ9Ë?_$¥Ö+. q0 ÉRÙ #Ø×J(
�U(
�-.
It then follows that �S#%�z. o �S#%�Ó¯Ú. .

Models of Computation 20

Every NPDA can be simulated by a one-state NPDA

Idea: maintain all state information on the stack. W.l.o.g. we assume � is of the

form #Q�R(-�S(+ T(=��(-Û)(-�,(�[MÜ>]¤. , and � can empty its stack after entering final

state Ü .
Set  e¯ o �a�A N�!� (elements are written ÔL9Ë?_$¥Ö ). We construct a new NPDA

� ¯ o #�["×Ã]J(-�S(+ ¯ (=� ¯ (Ò×J(�ÔQÛ���Ü+Ö-(
Èt.
that accepts by empty stack. For each transition

#%$U&)(=Í¶u¶Ï'Ï'ÏÐÍ/Ñ�.¡67�£#L9M(=Ì�(G?�.
where Ì�6K�IZ7[H�Ý] , include in � ¯ the transition

#Ø×J(�Ô·$U&5ÍÎuO$�uÒÖ;Ô·$�u>Í � $ � Ö�Ï'Ï'Ï�Ô·$¤Ñ¤Þeu>Í/Ñ�$¤Ñ¥Ö+.¡67� ¯ #Ø×J(=Ì�(�Ôß9B?~$¤Ñ¥Ö+.
for all possible choices of $ u ('Ï'Ï'Ï�(=$ Ñ .
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Closure Properties of Context-Free Languages

Theorem: Context-free languages are closed under the regular operations:

union, concatenation and star..

Proof idea. Let ±,u o #Ê Ãu�(-�S(­à�u�(-Â�u-. and ± � o #Ê � (-��(­à � (-Â � . be context

free grammars with  Tu\áÅ � o È . Consider the following context free grammars

±�âUãUäæå
ã o #Ê Tu\ZA � Z7[HÂç]�(-�S(­à�u\Zçà � Z7[HÂN0 Â�u�(-ÂN0 Â � ]�(-ÂÃ.
±�èØå
ã�èêé­ë o #Ê Tu\ZA � Z7[HÂç]�(-�S(­à�u\Zçà � Z7[HÂN0 Â�uÝÂ � ]J(-ÂF.
±�ìÚëQé+í o #Ê Tu\Z7[HÂç]J(
��(­à7u\Z�[HÂN0 Â�uÝÂ\(-ÂN0 �Ý]�(-ÂÃ.

where Â is a fresh variable. Then

�S#Y±�âUãUäæå
ã�. o �S#Y±,u�.;ZÅ�S#Y± � .
�S#Y± èØå
ã�èêé­ë . o �S#Y± u .�Ï'�S#Y± � .
�S#Y±�ìÚëQé+í+. o �S#Y±,u�.G�
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Language regular context-free semi-decidable/r.e.

Grammar right-linear context-free unrestricted

rules
��� ���

,
��� � ��� � ��� 	

Machine DFA or NFA NPDA Turing machine

memory finite finite + one stack unrestricted

Other Descr 
 Regular expression

Myhill-Nerode-Thm

�
-calculus� -recursive funct 


Hugs, Oberon, . . .

Example � �����
contains �����

��������� �����! " �#�
� �$�&% �
�����'��� ����" �(�

�)� � � � � �+*,� ����" ���
�)-/. � - halts on .0� HP

Counterexample ��� � � � ���1" ��� ��� � � � � � ����" �#�
� �$� �

�)- � - halts on every .0�
TP

Application Tokenizer

Model checker

Parser General computing

Models of Computation 2

Concluding remarks for Part One
Outlook on Part Two

Regular languages

– Finite automata, regular expressions and right-linear grammars

– Pumping Lemma and Myhill-Nerode Theorem

Contex-free languages

– Non-deterministic push down automata and context-free grammars

– Pumping Lemma for context-free languages

Decidable and recursively enumerable languages

– Turing machines [and unrestricted grammars]

– Halting Problem and other undecidable problems
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Regular Operations and Context-Free Languages

Theorem: Context-free languages are closed under the regular operations:

union, concatenation and star.

Proof idea. Let 243#5 68793 �;:<�>= 3 �;? 3;@ and 2BAC5D687)A �;:E�>= A �;? A�@ be context

free grammars with 7F3)GH7)AI5�J . Consider the following context free grammars

2�K 
MLONP
 5 687F3)QR7SA9Q$� ? � �;:<�>= 3)Q = AFQ$� ?T� ? 3 �;?T� ? AU� �;? @
2EV NP
 VXW>Y 5 687F3)QR7SA9Q$� ? � �;:<�>= 3)Q = AFQ$� ?T� ? 3 ? AU� �;? @
2 
 YZW![ 5 687F3)Q$� ? � �P:E�>= 3)Q\� ?T� ? 3 ?)�;?T� ] � �;? @

where
?

is a fresh variable. Then

^ 6_2�K 
MLONP
 @ 5 ^ 6_243`@aQ ^ 6_2BAb@^ 6_2 V NP
 VXW>Y @ 5 ^ 6_2 3 @�c ^ 6_2 A @^ 6_2 
 YZW![!@ 5 ^ 6_243`@ed
Models of Computation 4

The Pumping Lemma for context-free languages

Pumping Lemma for CFGs. If
^

is a context free language, then there is a

number f – the pumping length – such that if
� g ^

of length at least f , then�
may be divided into five pieces,

� 5ih<.Cjlk�m , satisfying:

(i) for each n " � , ho.'pqjlk+pqm g ^
(ii) rs.'k'rutv�
(iii) rs.oj#k'ruw�f .

This can be used to show that the following languages are not context-free

x � �\�y���yg �z� � �q�{� Idea: use
� 5|�b}l�;}9��}~�P}

x ��� � � � � � ����" ��� Idea: use
� 5|�b}l�;}9��}
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Complementation and context-free languages

Context-free languages are not closed under complementation.

Proof Idea The set
� 5�� �\�y����g �z� � �q��� is not context-free, but its

complement
� 5��z� � �q� d9� � is context-free, as it is generated by the grammar

6�� ?)�e�����R�P� � � ��� � �S� �>=\�;? @
whith rule set

= 5�� ? � �E� r �4� r � r ���
� � �&��� ri� �� � �B��� r�� �� � � r/� �

This grammar generates

all strings of odd length starting with productions
?�� �

or
?�� �

or

strings of the form .'�qj�h��Mm or h��Mm�.'�qj where . � j � h � m g �z� � �q��d , rs.Sr�5 rsjar
and rsh{r�5 rsmar . None of these strings can be of the form

�$�
.

Models of Computation 6

Intersection and context-free languages

1. Context-free languages are not closed under intersection.

2. The intersection of a context-free language with a regular set is context-free.

Proof Idea

1. Both
� 5���� � � � � � �����! " ��� and

� 5y��� � � � � � ���S�! " ���
are context-free. But

� G � 5y�����E���~��� ���1" ��� is not context-free.

2. Let
�

be a regular set accepted by NFA - 5D6Z��3 �;:<��� 3 ��� 3 �e� 3;@ and

let
�

be a context-free language accepted by NPDA� 5D6_�0A �;:<� 7 ��� A ��� A �;�4�e� A�@ .
Define the "product"-automaton� 5D6Z��3o�$��A �;:<� 7 ���z� 6 � 3 ��� A�@ �;�4�e� 3I� � A where

�
is given by

� 6!68� �>� @ �����e� @)5���6!6��q� �>� ��@ ��� @ � ��� g$� 3 68� ��� @ � 6 � � ��� @ g$� A 6 �������e� @��
then

�
is a NPDA that accepts

� G � .
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Turing Machines and Effective Computability
We introduce the most powerful of the automata we will study: Turing machines

(TMs). TMs can compute any function normally considered computable; indeed

we can define computable to mean computable by a TM.
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Informal description of a Turing Machine

A (one-tape deterministic) TM consists of:

• a finite input alphabet Σ, a finite tape alphabet Γ such that Σ ⊆ Γ

• a finite set of states Q

• a semi-infinite tape of cells (infinite to the right)

• a tape head that can move left and right over the tape, reading and writing

symbols onto tape cells

At the start of computation, contents of the tape are

` w1 · · · wn xy xy xy · · ·
where w = w1 · · ·wn is the input string, and ` ∈ Γ is the left endmarker. The

tape head is over `, and the infinitely many cells to the right of the input all

contain a special blank symbol xy ∈ Γ.
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Workings of a Turing Machine

The machine starts in its start state with its head scanning the leftmost cell.

At each step, it reads the symbol under its head, and depending on that symbol

and the current state, it writes a new symbol on that tape cell, then moves its head

either left or right one cell, and enters a new state. The action is determined by a

transition function δ.

It accepts its input by entering the accept state, and rejects by entering the reject

state.

On some input, it may run infinitely without ever accepting or rejecting i.e. it loops

on that input.

Note. Definitions of TMs in the literature differ slightly in nonessential details.

Here we use Kozen’s definition.
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Definition of a Turing Machine

A (one-tape deterministic) Turing machine (TM) is a 9-tuple

(Q, Σ,Γ,`, xy, δ, q0, qacc, qrej)

where

• Q is a finite set (the states)

• Σ is a finite set (the input alphabet)

• Γ is a finite set (the tape alphabet) containing Σ

• ` ∈ Γ− Σ, the left endmarker

• xy ∈ Γ− Σ, the blank symbol

• δ : Q× Γ −→ Q× Γ× {L,R } is a finite function (the transition function)

• q0, qacc, qrej ∈ Q are respectively the start, accept and reject states, with

qacc 6= qrej.
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Some conventions

Intuitively δ(q, a) = (q′, b, L) means “when in state q scanning symbol a, write

b over the tape cell, move the head left by one cell, and enter state q′”.

Restrictions

1. The left endmarker is never overwritten, and the machine never moves left of

the endmarker. I.e. for all p ∈ Q there exists q ∈ Q such that

δ(p,`) = (q,`, R).

2. Once the machine enters qacc it never leaves it, and similarly for qrej. I.e. for

all b ∈ Γ, there exist c, c′ ∈ Γ and D, D′ ∈ {L,R } such that

δ(qacc, b) = (qacc, c,D)

δ(qrej, b) = (qrej, c
′, D′)
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Example: A TM that accepts { anbncn : n ≥ 0 } (not context-free)

Informal high-level description .

At start state, it scans right over the input string, checking that it matches a∗b∗c∗,

and writing nothing (i.e. overwriting with same letter) on the way across. When it

sees the first xy, it overwrites it with a right endmarker a.

Now it scans left, erasing the first c (i.e. overwriting it with xy) it sees, then the first

b it sees, then the first a it sees, until it reaches `.

It then scans right, erasing one a, one b and one c. It continues to scan left and

right, erasing one occurrence of each letter in one pass.

If in some pass, it sees at least one occurrence of one letter and no occurrence of

another, it rejects. Otherwise it eventually erases all letters and makes one pass

between ` and a seeing only blanks, at which point it accepts.
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Implementation-level description . Formally the TM is

({ 1, 2, · · · , 10, q0, qacc, qrej }︸ ︷︷ ︸
Q

, { a, b, c }︸ ︷︷ ︸
Σ

,Σ ∪ {`, xy,a}︸ ︷︷ ︸
Γ

,`, xy, δ, q0, qacc, qrej)

where δ is

` a b c xy a
q0 (q0,`, R) (q0, a, R) (1, b, R) (2, c, R) (3,a, L) −
1 − (qrej,−,−) (1, b, R) (2, c, R) (3,a, L) −
2 − (qrej,−,−) (qrej,−,−) (2, c, R) (3,a, L) −
3 (qacc,−,−) (qrej,−,−) (qrej,−,−) (4, xy, L) (3, xy, L) −
4 (qrej,−,−) (qrej,−,−) (5, xy, L) (4, c, L) (4, xy, L) −
5 (qrej,−,−) (6, xy, L) (5, b, L) − (5, xy, L) −
6 (7,`, R) (6, a, L) − − (6, xy, L) −
7 − (8, xy, R) (r,−,−) (r,−,−) (7, xy, R) (qacc,−,−)
8 − (8, a, R) (9, xy, R) (r,−,−) (8, xy, R) (qrej,−,−)
9 − − (9, b, R) (10, xy, R) (9, xy, R) (qrej,−,−)
10 − − − (10, c, R) (10, xy, R) (3,a, L)
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E.g. Input tape at start is ` a b c xy xy · · ·.
An accepting run:

(ε, q0,` a b c)
(`, q0, a b c)
(` a, q0, b c)
(` a b, 1, c)
(` a b c, 2, xy)
(` a b, 3, c a)
(` a, 4, b xya)
(`, 5, a xy xya)
(ε, 6,` xy xy xya)
(`, 7, xy xy xya)
(` xy, 7, xy xya)
(` xy xy, 7, xya)
(` xy xy xy, 7,a)
(` xy xy xy, qacc,a)
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Configurations

As a TM computes, changes occur in the current state, the current tape contents,

and the current head position. A description of these items is called a

configuration of the TM, often represented as a triple

(u, q, v)

for the configuration where the current state is q, current tape content is u v and

the current head location is over the first symbol of v.

Let C and C ′ be configurations. We define the next-configuration relation→ (we

read C → C as “C yields C ′”, meaning that the TM can legally go from C to C ′

in one step) formally as:

• (ua, q, bv) → (u, q′, acv) if δ(q, b) = (q′, c, L)

• (ua, q, bv) → (uac, q′, v) if δ(q, b) = (q′, c, R)

Models of Computation 10



Special case: If the head is at the right end of the configuration, (ua, q, ε) is

equivalent to (ua, q, xy).

We define
∗→, the reflexive, transitive closure of→, inductively:

• C
0→ C , for all configurations C

• C
n+1→ C ′′ if C

n→ C ′ and C ′ → C ′′

We define C
∗→ C ′ (read “C can yield C ′ in finitely many steps”) to be C

n→ C ′

for some n ≥ 0.
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The language accepted by a TM

The start configuration of TM M on input w is (ε, q0,`w).

An accepting configuration is any configuration with state qacc; a rejecting

configuration is any configuration with state qrej.

Turing machine M is said to accept input w just in case (ε, q0,`w) ∗→ C where

C is some accepting configuration.

The language of M , written L(M), is defined to be the collection of strings that

M accepts.

Call a language recursively enumerable (or simply r.e.), if some TM accepts it.

When we start a TM M on an input, three outcomes are possible: M may

accept, reject or loop (i.e. never terminate). Call M total (or a decider) if it halts

on all inputs i.e. it never loops.

Call a language decidable (or recursive) if some total Turing machine accepts it.
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Example: A TM that accepts {ww : w ∈ { a, b }∗ }

This is a non-context-free but decidable language.

High-level description: Γ = { a, b,`,a, xy, à, b̀, á, b́ }
Two stages:

Stage I: Marking .

On input x, it scans out to the first blank symbol, making sure that x is of even

length, and rejecting immediately if not. It then lays down a right endmarker a,

and repeatedly scans back and forth over the input.

In each pass from right to left, it marks the first unmarked a or b it sees with´
(i.e. overwriting a and b by á and b́ respectively). In each pass from left to right, it

marks the first unmarked a or b it sees with .̀ It continues until all symbols are

marked.

The reason: so that the centre of the string can be identified.
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E.g. initially the tape contents are

` a a b b a a a b b a xy xy xy · · ·
At the end of the marking stage:

` à à b̀ b̀ à á á b́ b́ á a xy xy · · ·

Stage II: Erasing .

Then it repeatedly scans left and right: In each pass from the left, it erases the

first symbol it sees marked with`but remembers that symbol. It then scans

forward until it sees the first symbol marked with ,́ checks that it is the same, and

erases it, otherwise it rejects.

When it has erased all symbols, it accepts.
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Stage II of the example:

` à à b̀ b̀ à á á b́ b́ á a xy xy · · ·
` xy à b̀ b̀ à xy á b́ b́ á a xy xy · · ·
` xy xy b̀ b̀ à xy xy b́ b́ á a xy xy · · ·
` xy xy b̀ b̀ à xy xy b́ b́ á a xy xy · · ·
` xy xy xy b̀ à xy xy xy b́ á a xy xy · · ·
` xy xy xy xy à xy xy xy xy á a xy xy · · ·
` xy xy xy xy xy xy xy xy xy xy a xy xy · · ·
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Non-deterministic Turing Machines (NDTM)

At any point of a computation, a NDTM may proceed in one of several possible

ways, so that the transition function has type

δ : Q× Γ −→ P(Q× Γ× {L,R })

The computation of a NDTM is a tree, whose branches correspond to different

possible runs of the machine.

If any branch leads to the accept state, the machine is said to accept its input.

Lemma . A language is acceptable by some TM iff it is acceptable by some

NDTM.
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Deterministic Multitape TMs

k-tape TMs have k semi-infinite tapes (numbered 1, 2, · · · , k), each with its own

independent read/write tape head. Initially the input occupies the first tape, and

the other tapes are blank. In each step, the machine reads the k symbols under

its heads, and depending on this information and the current state, it writes a

symbol on each tape, moves the heads (they don’t all have to move in the same

direciton). amd enters a new state. Its transition function is of type

δ : Q× Γ3 → Q× Γ3 × {L,R }3

Simulting a 3-tape TM . Given a 3-tape TM M , we build a single-tape TM N with

ΣN = ΣM , and an expanded tape alphabet

ΓN = ΣM ∪ {` } ∪ (ΓM ∪ Γ̂M )3

where Γ̂M = { â : a ∈ ΓM }, allowing us to think of its tape as divided into

three tracks. Each track will contain the contents of one of M ’s tape.
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Each track has only one marked symbol â, indicating the position of the

corresponding tape head. M configuration might be simulated by the following

configuration of N :

On input x = a1 · · · an, N starts with tape contents `a1 · · · anxyxy · · ·. It first

copies the input to its top track, and fills in the bottom two tracks with blanks; it

also shifts everything right one cell so that it can fill in the leftmost cell with the

simulated left end of M .

Each step of M is simulated by several steps of N : N starts at the left of the

tape, then scans out until it sees all three marks, remembering the marked

symbols in its finite control. It then determines what to do according to the

encoded δM : it goes back to all three marks, rewriting the symbols on each track

and moving the marks appropriately. It then returns to the left end of the tape,

ready to simulate the next step of M .
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The definition of Algorithm

Informally an algorithm is a collection of simple instructions for performing some

task. They are sometimes called procedures or recipes.

To have an algorithm for a problem is to know a way of effectively computing or

solving the problem.

There are many examples: long division, “Sieve of Eratosthenes” (for finding

prime numbers), Euclid’s greatest common divisor algorithm, etc.

What are algorithms? We know it when we see one.

But can we define precisely what they are?

Why is it important to have a definition of algorithm?
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A story: Hilbert’s 10th Problem

At the International Congress of Mathematicians, Paris, 1900, David Hilbert

famously identified 23 problems in Mathematics and posed them as a challenge

for the coming century.

Hilbert’s 10th Problem . Devise an algorithma that tests whether a polynomial

has an integral root.

aIn Hilbert’s words: “...a process according to which it can be determined by a finite number of

operations.”

E.g. p(x, y) = 6x3yz2 + 3xy2 − x3 − 10 has four terms over the variables

x, y, z, and has a root at (x, y, z) = (5, 3, 0).

Hilbert apparently assumed that an algorithm must exist - someone need only find

it.
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Effective computability

Various algorithms for computing certain problems effectively were known, but a

general definition of “effectively computable” that could distinguish the computable

and the noncomputable was sought.

Various formalisms have been proposed:

• Turing machines (Alan Turing 1936)

• Post systems (Emil Post)

• µ-recursive functions (Kurt G-odel, Jacques Herbrand)

• λ-calculus (Alonzo Church, Stephen C. Kleene)

• Cominbatory logic (Moses Sch-onfinkel and Haskell B. Curry)
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Church-Turing Thesis

Amazingly

Theorem . All the preceding formalisms are equivalent. I.e. a problem is solv-

able (or decidable) w.r.t. one formalism iff it is solvable by any of the other.

This remarkable coincidence says that there is only one notion of computability.

Church-Turing Thesis. Intuitive notions of algorithms = Turing machines. ¤

The Church-Turing Thesis is not an assertion that can be proved - it is not a

theorem. Rather, it may be regarded as a definition (of algorithm).

The Thesis is widely accepted by mathematicians and computer scientists.
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Hilbert’s 10th Problem: Matijasevich’s breakthrough

We now know:

Theorem. (Matijasevich, 1970) Hilbert’s 10th Problem is algorithmically unsolv-

able. I.e. no algorithm (= Turing machine) exists that solves the Problem.

Without a clear definition of algorithms, it would have been impossible for

mathematicians of Hilbert’s era to come to the same conclusion.

We need to know what algorithms are i.e. have an accepted definition of

algorithm, before we can prove that none exists for solving a given problem.
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Phrasing Hilbert’s 10th Problem in our terminology

Let D = { p : p is a polynomial with an integral root }.

Hilbert’s 10th Problem asks in essence whether the set D is decidable. [Formally

we fix an alphabet Σ and code p as a string over it, to obtain a language

corresponding to D.]

The answer (thanks to Matijasevich) is negative. However D is r.e.

We consider a simpler problem:

D1 = { p : p is a polynomial over x with an integral root }.
We define a TM Ma that accepts D1: On input p (a polynomial over x)

Evaluate p with x set successively to 0, 1,−1, 2,−2, · · ·. If at any point

the polynomial evaluates to 0, accept.

If D1 has an integral root, M1 will eventually find it, and accept. If not, M1 will

run forever. There is a similar TM M that accepts D: here M runs through all
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possible settings of its variables to integral values.
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Both M1 and M are not deciders.

But M1 can be converted to a decider because we can calculate bounds within

which roots of a single-variable polynomial must lie and restrict the search

accordingly. They are [
−k

cmax

c1
, k

cmax

c1

]

where k is the number of terms, cmax is the coefficient with the largest absolute

value and c1 is the coefficient of the highest order term.

E.g. the bounds for 4x3 − 7 are [−2, 2].

Matijasevich’s theorem shows that no such bounds for multivariate polynomials

can be calculated.
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Decidability

We investigate the power of algorithms to solve problems. We demonstrate that

certain problems can be solved algorithmically and others cannot. Our objective is

to explore the limits of algorithmic solvability.
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Coding decision problems as languages

Decision problems are problems that expect a Yes/No answer. E.g.

1. PRIME: Given a number, is it prime?

2. CYCLIC: Given a graph, is it cyclic?

3. DFA ACCEPTANCE: Given a DFA B and an input w, does B accept w?

We represent decision problems as languages .

E.g. the language representing CYCLIC is

{ 〈G 〉 : G is a cyclic graph }
where 〈G 〉 denotes an encoding of G as a string over

Σ = { 0, 1, (, ),# }(say). The graph ({ 1, 2, 3 }, { (1, 2), (2, 3), (3, 1) }) can

be encoded as

(1#10#11)#((1#10)#(10#11)#(11#1)).
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We say that a decision problem is decidable if the corresponding language is

(Turing-machine) decidable.
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DFA Acceptance Problem

DFA Acceptance Problem : Given a DFA B and an input w, does B accept w?

The corresponding language is

ADFA = { 〈B,w 〉 : B is a DFA that accepts input string w }.

Lemma . ADFA is a decidable language.

Proof . We construct a TM M that decides ADFA: On input 〈B,w 〉 where B is

a DFA and w an input

1. Simulate B on input w

2. If the simulation ends in an an accept state, accept. If it ends in a

non-accepting state, reject.

Convince yourself that it follows that ANFA and Aregexp (acceptance problems

for NFA and regular expressions respectively) are also decidable.
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Emptiness Problem for DFA: Given a DFA A, is L(A) empty?

The corresponding language is

EDFA = { 〈A 〉 : A is a DFA such that L(A) = ∅ }

Lemma . EDFA is a decidable language.

Proof . We design a TM T that uses a marking algorithm. On input 〈A 〉 where A

is a DFA:

1. Mark the start state of A.

2. Repeat until no new states get marked:

Mark any state that has a transition coming into it from any marked

state.

3. If no accept state is marked, accept ; otherwise reject.
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Equivalence Problem for DFA: Given two DFAs, are they equivalent?

The corresponding language:

EQDFA = { 〈A, B 〉 : A and B are DFA s.t. L(A) = L(B) }.

Lemma . EQDFA is a decidable language.

Proof . Key idea: For sets P and Q, P ⊆ Q iff P ∩Q = ∅. We use T , the

algorithm for EDFA.

On input 〈A,B 〉, where A and B are DFAs:

1. Construct C = (A ∩B) ∪ (B ∩A). (DFAs are closed under union,

intersection and complementation.)

2. Run T on input 〈C 〉.
3. If T accepts, accept; if T rejects, reject.
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Acceptance problem for CFG

Consider the language:

ACFG = { 〈G,w 〉 : G is a CFG that generates w }

Lemma . ACFG is a decidable language.

We use a fact: If G is in Chomsky normal form, any derivation of w has 2n− 1
steps, where n is the length of w.

Proof . The TM S for ACFG is: On input 〈G, w 〉, where G is a CFG and w is a

string:

1. Convert G to an equivalent Chomsky normal form.

2. List all derivations with 2n− 1 steps, where n is the length of w.

3. If any of these derivations generate w, accept; otherwise, reject.

This is of course extremely inefficient, and will not be used in practice.

Models of Computation 7



Emptiness Problem for CFG: Given a CFG G, is L(G) empty?

Lemma . ECFG is a decidable language.

Proof . The TM R for ECFG is: On input 〈G 〉, where G = (V, Σ, R, S) is a

CFG:

1. Mark all terminal symbols in G.

2. Repeat until no new variables get marked:

Mark any variable A where G contains a rule A → U1 · · ·Uk and

each symbol Ui ∈ Σ ∪ V has already been marked.

3. If the start symbol is not marked, accept; otherwise, reject.
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Equiv. Problem for CFG: Given two CFGs, are they equivalent?

Obvious attempt: Use the strategy for deciding EQDFA.

Unfortunately CFGs are neither closed under intersection nor complementation!

In fact EQDFA is undecidable.
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Universal Turing Machines

Acceptance Problem for TM

ATM = { 〈M,w 〉 : M is a TM that accepts input w }

Theorem . ATM is r.e.

Proof . We define a TM U that accepts ATM: On input 〈M, w 〉 where M is a

TM and w is a string

1. Simulate M on input w.

2. If M ever enters its accept state, accept; if M ever enters its reject state,

reject.

Note that U loops on 〈M, w 〉 if M loops on w. This is why U is not a decider.

If the algorithm had some way to determine that M was not halting on w, it could

reject.
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Universal Turing Machines: Encoding Turing machines

A universal TM is a TM U that can simulate the actions of any Turing machine.

I.e. for any TM M and any input x of M , U accepts (respectively rejects or loops

on) 〈M, x 〉, if and only if, M accepts (respectively rejects or loops on) x.

This is equivalent to an interpreter of C written in in C.

An encoding scheme over { 0, 1 }∗: 〈M, x 〉.
E.g. if the string begins with the prefix

0n 1 0m 1 0k 1 0s 1 0t 1 0r 1 0u 1 0v

this might indicate that the machine has n states (0, 1, · · · , n− 1); it has m

tapes symbols (0, 1, · · · ,m− 1), of which the first k are input symbols; the start,

accept and reject states are s, t and r respectively, and the endmarker and blank

symbols are u and v respectively. The remainder of the string can consist of a

sequence of substrings specifying the transitions in δ.
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E.g. 0p 1 0a 1 0q 1 0b1 0 might indicate that δ contains the transition

((p, a), (q, b, L)).

The exact details are unimportant.

Simulation . The tape of U is partitioned into 3 tracks:

• The top track holds the transition function δM of the input TM M .

• The middle track will be used to hold the simulated contents of M ’s tape.

• The bottom track will hold the current state of M , and the current position of

M ’s tape head.

U simulates M on input x one step at a time, shuttling back and forth between

the three tracks. In each step, it updates M ’s state and simulated tape contents

and head position as dictated by δM . If ever M halts and accepts or halts and

rejects, then U does the same.

Note: M ’s input alphabet and U ’s may be different.
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There are languages that are not r.e.

There are only countably many TMs.

Observe that Σ∗ is countable, for any alphabet Σ. Since 〈M 〉 ∈ Σ∗ for each

TM M , we can enumerate the set of TMs by simply omitting those strings that are

not encodings of TMs.

The set of languages over Σ, P(Σ∗), is uncountable.

Suppose there were an enumeration of P(Σ∗), namely, L1, L2, L3, · · ·. Let

x1, x2, x3, · · · be an enumeration of Σ∗. Define a new language L by: for i ≥ 1

xi ∈ L ⇐⇒ xi 6∈ Li

Now L ∈ P(Σ∗), but L is not equal to any of the Lis.

Thus P(Σ∗) is not in 1-1 correspondence with the set of Turing machines (there

are more languages than TMs). It follows that there is some language that is not

accepted by any TM.
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ATM: Acceptance Problem for TMs

Theorem . ATM is undecidable.

Proof . Suppose, for a contradiction, TM H is a decider for ATM. I.e.

H(〈M,w 〉) =





accept if M accepts w

reject if M does not accept w

We construct a new TM D with H as a subroutine. D: On input 〈M 〉, where M

is a TM

1. Run H on input 〈M, 〈M 〉 〉
2. Output the opposite of H . I.e. if H accepts, reject, and if H rejects, accept.
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Thus

D(〈M 〉) =





reject if M accepts 〈M 〉
accept if M does not accept 〈M 〉

Now we run D on input 〈D 〉. We have

D(〈D 〉) =





reject if D accepts 〈D 〉
accept if D does not accept 〈D 〉

I.e. D accepts 〈D 〉 iff D rejects 〈D 〉, which is a contradiction. Thus neither D

nor H can exist. ¤

To summarize, ATM is (r.e. but) undecidable.
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A language that is not r.e.

We say that L is co-r.e. if L is r.e.

Theorem . A language is decidable iff it is both r.e. and co-r.e.

Proof. Suppose L and L are acceptable by M and M ′ respectively. Define a

TM N : On input x

1. Write x on the input tapes of M and M ′.

2. Run M and M ′ in parallel (e.g. by dovetailing the two computation).

3. If M accepts, accept ; if M ′ accepts, reject.

N is a decider for L because for any input x, either x ∈ L or x ∈ L: if the

former then N must accept because M must halt and accept at some point, if

the latter, then N must reject because M ′ must halt and reject at some point.

Corollary. ATM is not r.e. ¤
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The Halting Problem: “Given M and x, does M halt on x?”

HALTTM = { 〈M, w 〉 : M is a TM and M halts on input w }

Theorem . The Halting Problem, HALTTM, is undecidable.

Proof . Suppose, for a contradiction, H is a decider for HALTTM. We use H to

construct a TM S to decide ATM as follows: On input 〈M, w 〉 where M is a

TM w is an input

1. Run TM H on input 〈M, w 〉
2. If H rejects, reject.

3. If H accepts, run M on w until it halts.

4. If M has accepted, accept ; if M has rejected, reject.

Since ATM is undecidable, H cannot be a decider for HALTTM. ¤
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The Emptiness Problem for TM is undecidable

ETM = { 〈M 〉 : M is a TM and L(M) = ∅ }

Theorem . The Emptiness Problem for TM is undecidable.

Proof . Suppose, for a contradiction, ETM is decidable by a TM E. We shall use

E to construct a TM S that decides ATM.

Definition of S: On input 〈M, x 〉 where M is a TM and x an input

1. Construct a TM Mx defined as: On input y

(a) If y 6= x then reject.

(b) Run M (input is x) and accept if M does.

2. Run E on input 〈Mx 〉. If E accepts, reject, if E rejects, accept.
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Now we have

M accepts x ⇒ L(Mx) = {x } i.e. S accepts 〈M, x 〉
M does not accept x ⇒ L(Mx) = ∅ i.e. S rejects 〈M, x 〉

Thus S decides ATM, which is a contradiction. ¤
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The Equivalence Problem for TM is undecidable

EQTM = { 〈M1,M2 〉 : M1 and M2 are TMs and L(M1) = L(M2) }

Theorem . The Equivalence Problem for TM is undecidable.

Proof . Suppose, for a contradiction, EQTM is decidable by Q. We define a TM

that decides ETM by: On input M

1. Run Q on input 〈M, M1 〉 where M1 is a TM that accepts nothing

i.e. L(M1) = ∅.

2. If Q accepts, accept ; if Q rejects, reject.

This gives a contradiction. ¤
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PCP: Post Correspondence Problem

A puzzle: Given a collection of dominos such as e.g.

P =
{[

b

ca

]
,

[
a

ab

]
,

[
ca

a

]
,

[
abc

c

]}

find a list of dominos from P (repetitions permitted) so that the string we get by

reading off the symbols on the top is the same as the sting of symbols on the

bottom. This list is called a match.

E.g. the following is a match
{[

a

ab

]
,

[
b

ca

]
,

[
ca

a

]
,

[
a

ab

]
,

[
abc

c

]
,

}

(Reading off the top string we get abcaaabc.)
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A formal statement of the PCP

Instance: A collection P of dominos:

P =
{[

t1
b1

]
,

[
t2
b2

]
, · · · ,

[
tk
bk

]}

where k ≥ 1, and each ti and bj are strings over Σ.

Question: Is there a match for P ? I.e. a non-empty sequence i1, · · · , il where

each 1 ≤ ij ≤ k and

ti1 ti2 · · · til
= bi1 bi2 · · · bil

Theorem . PCP is undecidable.
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Examples

1. Let Σ = { 0, 1 }, and

P =
{[

11
111

]
,

[
111
11

]
,

[
100
001

]}
.

Here is a match for P :

P =
{[

11
111

]
,

[
100
001

]
,

[
111
11

]}
.

2. For some collection of dominos, find a match may not be possible. E.g.
{[

abc

ab

]
,

[
ca

a

]
,

[
acc

bc

]}

(because every top string is longer than the bottom string)
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Undecidability of PCP: outline proof

We modify PCP to

MPCP = {P is an instance of PCP with a match

that starts with the first domino}
1. Suppose, for a contradiction, there is a TM R that decides the PCP. We use R

to construct a TM S that decide ATM. Let

M = (Q, Σ,Γ,`, xy, δ, q0, qacc, qrej)

Take an input w for M . We construct an instance P ′ of the MPCP (over the

alphabet Γ ∪ {# }) that simulates M on w i.e.

P ′ ∈ MPCP ⇐⇒ 〈M, w 〉 ∈ ATM.
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Idea. Writing a configuration (ui, qi, vi) as #ui qi vi, a match of P ′ gives a

string; the first part

#q0 `w#u1 q1 v1#u2 q2 v2# · · ·#ui qi vi# · · ·#un qacc vn

corresponds exactly to an accepting configuration; the rest of the string

# · · ·# · · · · · ·#qacc##

consists of progressively shorter segments of the form # · · · that finally ends in

##.

2. We convert P ′ to P , an instance of PCP which still simulates M on w.
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Definition of P ′

Part 1. Put

[
#

#q0`w1 · · ·wn#

]
into P ′ as the first domino

[
t1
b1

]

Part 2. For each a, b ∈ Γ, q, r ∈ Q, if δ(q, a) = (r, b, R), put

[
qa

br

]
into P ′

Part 3. For each a, b ∈ Γ, q, r ∈ Q, if δ(q, a) = (r, b, L), put

[
cqa

rcb

]
into P ′

Part 4. For every a ∈ Γ, put

[
a

a

]
into P ′.

Part 5. Put

[
#
#

]
and

[
#

xy#

]
into P ′.

Part 6. For every a ∈ Γ, put

[
aqacc

qacc

]
and

[
qacca

qacc

]
into P ′.

Part 7. Add

[
qacc##

#

]
to P ′.
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Converting a MPCP instance to a PCP instance

Finally we show how to convert P ′ to an instance of PCP which still simulates M

on w. The idea is to build the requirement of starting with the first domino directly

into the problem.

Notation . Take a string u = u1 · · ·un. Define

? u = ∗u1 ∗ u2 ∗ · · · ∗ un

u ? = u1 ∗ u2 ∗ · · · ∗ un ∗
? u ? = ∗u1 ∗ u2 ∗ · · · ∗ un ∗
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Suppose P ′ is the MPCP instance (over alphabet Θ)
{[

t1
b1

]
,

[
t2
b2

]
,

[
t3
b3

]
, · · · ,

[
tk
bk

]}

Now define P to be the PCP instance (over alphabet Θ ∪ { ∗, ¦ })

{[
? t1

? b1 ?

]
,

[
? t2
b2 ?

]
,

[
? t3
b3 ?

]
, · · · ,

[
? tk
bk ?

]
,

[
? ¦
¦

]}

Note that the only domino that can start a match is the first one, because it is the

only one where both the top and bottom start with the same symbol, namly, ∗.

The original symbols in Θ now occur in even positions of the match.

The domino

[
? ¦
¦

]
is to allow the top to add the extra ∗ at the end of the match.
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