
INF2080
Decidability

Daniel Lupp

Universitetet i Oslo

1st March 2015

Department of
Informatics

University of
Oslo

INF2080 Lecture :: 1st March 1 / 31



Obligatory Assignment

Oblig 1 is corrected, you should have feedback in Devilry
Those who did not pass get a second chance, deadline this Thursday (March 4, 23:59)
Oblig 2 will be put out at the end of this week
due to various occurences in Oblig 1, the policy on plagiarism is as follows: any
plagiarism will immediately count as failed without a second chance and will be
reported to the administration

INF2080 Lecture :: 1st March 2 / 31



Short Recap

We have looked at Turing machines (and various variants) as a computational model
Defined “algorithm” through Turing machines (deciders) as well as discussed the
connection between the intuitive meaning and formal definition of algorithm
(Church-Turing thesis)
Over the next two weeks: What problems are algorithmically solvable/unsolvable by
computers (aka Turing machines)?
Recall: 〈O〉 was notation for a string representation of an object O. This object could be
anything, e.g., a graph, a DFA, a Turing machine, etc. A graph could, for instance, be
represented as a string by first listing all vertex names, followed by a list of edges.

INF2080 Lecture :: 1st March 3 / 31



Decidability

Definition
A language L is decidable if a Turing machine ML exists that decides it, that is, if ML either
accepts or rejects any input w .

This week we will discuss the decidability of various problems related to the classes of
languages we have seen so far: regular, context-free, and Turing-recognizable.
Acceptance problem: Given a DFA/NFA/CFG/PDA/TM/... and an input w , does the
machine/grammar accept w?
Emptiness problem: Given a DFA/NFA/CFG/PDA/TM/..., is its generated language
empty?
Equality problem: Given two DFA/NFA/CFG/PDA/TM/..., are the two generated
languages equal?

INF2080 Lecture :: 1st March 4 / 31



Acceptance problem - DFA

Let ADFA = {〈B,w〉 | B is a DFA that accepts input string w}
Acceptance problem “Given B and w , does B accept w?” ⇔ “〈B,w〉 ∈ ADFA”?

Theorem
ADFA is a decidable language.

Proof idea: We create a Turing machine that simulates B on w :

MDFA = On input 〈B,w〉
1. Simulate B on w .

2. If the simulation ends in an accept state, accept,
if it ends in a nonaccepting state, reject.

INF2080 Lecture :: 1st March 5 / 31



Acceptance problem - DFA

Corollary
The class of regular languages is decidable.

Proof:
Given a regular language L, we can encode its DFA B into a decider for L:

ML = On input w
1. Simulate MDFA on 〈B,w〉.
2. If MDFA accepts, accept,

if it rejects, reject.

INF2080 Lecture :: 1st March 6 / 31



Acceptance problem - NFA/RE

What about NFAs and REs?
We have seen that they have equivalent expressive power to DFAs
So are the languages ANFA and ARE decidable?
We can use the known procedures to convert NFA→DFA and RE→NFA!

ANFA = {〈B,w〉 | B is an NFA that accepts w}

Theorem
The language ANFA is decidable.

Proof:

MNFA = On input 〈B,w〉
1. Convert B to an equivalent DFA C .

2. Simulate MDFA on input 〈B,w〉
if it accepts, accept; if it rejects, reject.

INF2080 Lecture :: 1st March 7 / 31



Acceptance problem - NFA/RE

ARE = {〈R,w〉 | B is a regular expression that generates w}

Theorem
The language ARE is decidable.

Proof: Similar to before, however now we reduce to NFA case:

MRE = On input 〈R,w〉
1. Convert R to an equivalent NFA B.

2. Simulate MNFA on input 〈B,w〉
if it accepts, accept; if it rejects, reject.

INF2080 Lecture :: 1st March 8 / 31



Acceptance problem - Regular languages

So we see that it is does not matter which computational model we use to represent the
regular language; this has no effect on decidabillity
Recall the Church-Turing thesis: intuitive notion of algorithm/procedure ⇔ Turing
machine algorithm
Our “procedures” of converting NFA→DFA, RE→NFA, CFG↔PDA can be formally
described using a decidable TM!

INF2080 Lecture :: 1st March 9 / 31



Emptiness problem - Regular languages

Next “decision problem:” Given a DFA A, is the language generated by A empty?
⇔ 〈A〉 ∈ EDFA = {〈A〉 | A is a DFA and L(A) = ∅}?

When does a DFA accept a string w? When it reaches an accept state!
So all the TM has to do is check whether an accept state is reachable from the start state.
We use the “marking” technique we have previously seen to keep track of the DFA’s states
that have been reached.

INF2080 Lecture :: 1st March 10 / 31



Emptiness problem - Regular languages

Theorem
The language EDFA is decidable.

Proof:

NDFA = On input 〈A〉
1. Mark the start state of A.
2. Repeat 3. until no new states are marked:
3. Mark any state with an incoming transition from a marked state.
4. If no accept state is reached,accept; else, reject.

INF2080 Lecture :: 1st March 11 / 31



Equality problem - Regular languages

What if we have two regular languages, accepted by DFAs A and B , and want to check
whether they are equal?
⇔ 〈A,B〉 ∈ EQDFA = {〈A,B〉 | A and B are DFAs and L(A) = L(B)}?

Now we use the set theoretic notion of symmetric difference to help us!
The symmetric difference of two languages L(A) and L(B) is defined as

(L(A) ∩ L(B)) ∪ (L(A) ∩ L(B))

intuitively: the symmetric difference contains everything that is in precisely one of the two
languages, but not both.
Two sets are equal if and only if their symmetric difference is empty!→ emptiness problem!

INF2080 Lecture :: 1st March 12 / 31



Equality problem - Regular languages

(L(A) ∩ L(B)) ∪ (L(A) ∩ L(B))

Recall closure properties of regular languages:
closed under union, intersection, and complement (among other things)
have seen procedures for constructing the DFA for unions/intersections/complements of
regular languages.
Using these, we can construct a DFA that accepts the symmetric difference of two regular
languages.

INF2080 Lecture :: 1st March 13 / 31



Equality problem - Regular languages

Theorem
The language EQDFA is decidable.

Proof:

SDFA = On input 〈A,B〉
1. Construct C , the DFA of the symmetric difference of L(A) and L(B).
2. Run NDFA on C . (checks whether L(C ) is empty)
3. If NDFA accepts, accept; if NDFA rejects, reject.

INF2080 Lecture :: 1st March 14 / 31



Summary - Regular languages

Regular languages are decidable:
the acceptance problem (does A accept w?) is decidable, independent of the
computational model in which we chose to describe regular languages;
the emptiness problem (is L(A) empty?) is decidable;
the equality problem (are L(A) and L(B) equal?) is decidable.
in each case: we reduced the question to checking membership in a language.

INF2080 Lecture :: 1st March 15 / 31



Decision problems - CFLs

What about the decision problems for context-free languages?
Are the languages

ACFG ={〈G ,w〉 | G is a CFG that generates w}
ECFG ={〈G 〉 | G is a CFG and L(G ) = ∅}

EQCFG ={〈G ,H〉 | G and H are CFGs and L(G ) = L(H)}

decidable?

INF2080 Lecture :: 1st March 16 / 31



Acceptance problem - CFLs

Theorem
The language ACFG is decidable.

Proof:
We cannot do the proof analogously to the DFA case: PDAs do not necessarily always
terminate (they can endlessly loop, writing on to the stack).
Instead, we use the fact that every CFG can be converted to a grammar in Chomsky
Normal Form.
One can show (Problem 2.38 in Sipser) that if a grammar is CNF, then every derivation of
w has length 2n − 1, where n is the length of w .
That way we only need to check all derivations of length 2n− 1 to see if any generates w !

INF2080 Lecture :: 1st March 17 / 31



Acceptance problem - CFLs

Theorem
The language ACFG is decidable.

Proof:

MCFG = On input 〈G ,w〉
1. Convert G to a CFG in Chomsky Normal Form.
2. If n = 0, where n is the length of w , list all derivations with 1 step.

Else, list all derivations with 2n − 1 steps.
3. If any of the derivations generate w accept; otherwise, reject.

INF2080 Lecture :: 1st March 18 / 31



Decidability of CFLs

As in the regular language case, we can use this last result to show:

Corollary
Every context-free language is decidable.

Proof: completely analogous to the DFA/regular case:

ML = On input w
1. Simulate MCFG on 〈B,w〉.
2. If MCFG accepts, accept,

if it rejects, reject.

INF2080 Lecture :: 1st March 19 / 31



Emptiness problem - CFLs

Theorem
The language ECFG = {〈G 〉 | G is a CFG and L(G ) = ∅} is decidable.

Proof idea:
In the DFA case, we checked reachability of accept states from the start state through a
marking procedure.
Can we do the same here?
Yes! but slightly differently.
Consider the grammar consisting of only S → S . If we were to start with S and iteratively
generate all derivations, we would never terminate.
We’re interested in finding out whether a string of terminals can be generated from S . So
why not first mark terminals, then mark a variable A if there is a rule A→ s where s
consists of marked symbols?→ go through derivations “backwards”. If S is marked, then a
string of terminals can be generated.

INF2080 Lecture :: 1st March 20 / 31



Emptiness problem - CFLs

Theorem
The language ECFG = {〈G 〉 | G is a CFG and L(G ) = ∅} is decidable.

Example: Grammar

S → ARB

A→ a

B → b

R → aRb | ε

INF2080 Lecture :: 1st March 21 / 31



Emptiness problem - CFLs

Theorem
The language ECFG = {〈G 〉 | G is a CFG and L(G ) = ∅} is decidable.

Example: Grammar

S → ARB

A→ ȧ

B → ḃ

R → ȧRḃ | ε̇

INF2080 Lecture :: 1st March 22 / 31



Emptiness problem - CFLs

Theorem
The language ECFG = {〈G 〉 | G is a CFG and L(G ) = ∅} is decidable.

Example: Grammar

S → ȦṘḂ

Ȧ→ ȧ

Ḃ → ḃ

Ṙ → ȧṘ ḃ | ε̇

INF2080 Lecture :: 1st March 23 / 31



Emptiness problem - CFLs

Theorem
The language ECFG = {〈G 〉 | G is a CFG and L(G ) = ∅} is decidable.

Example: Grammar

Ṡ → ȦṘḂ

Ȧ→ ȧ

Ḃ → ḃ

Ṙ → ȧṘ ḃ | ε̇

→ S is marked, so language is not empty!

INF2080 Lecture :: 1st March 24 / 31



Emptiness problem - CFLs

Theorem
The language ECFG = {〈G 〉 | G is a CFG and L(G ) = ∅} is decidable.

Proof:

NCFG = On input 〈G 〉
1. Mark all terminal symbols in G .
2. Repeat 3. until no new variables are marked:
3. Mark any variable A where G has a rule A→ U1 . . .Uk

and each symbol Ui has been marked.
4. If the start variable is not marked, accept. otherwise, reject.

INF2080 Lecture :: 1st March 25 / 31



Equality problem - CFLs

So what about EQCFG = {〈G ,H〉 | G and H are CFGs and L(G ) = L(H)}? Is it
decidable?
Before we used the symmetric difference (L(A) ∩ L(B)) ∪ (L(A) ∩ L(B)) to use the
emptiness decider.
But context-free languages are not closed under complementation or intersection!
in fact, EQCFG is not decidable. Next week we’ll see techniques to show this.

INF2080 Lecture :: 1st March 26 / 31



Summary- CFLs

the acceptance and emptiness decision problems are decidable for context-free languages
hence, each context-free language is decidable.
checking equivalence of two grammars (in the sense of languages generated) is not
decidable!

INF2080 Lecture :: 1st March 27 / 31



Acceptance problems - TMs

What about Turing-recognizable languages? Are they also decidable?
If they were, every Turing machine could be converted into an equivalent TM that is
guaranteed to halt on every input!

INF2080 Lecture :: 1st March 28 / 31



Acceptance problem - TMs

First things first...

Theorem
The language ATM = {〈M,w〉 | M is a TM that accepts w} is Turing-recognizable.

Proof:

U = On input 〈M,w〉
1. Simulate M on w .
2. If M ever enters its accept state, accept; if M ever enters its reject state, reject.

U is an example of a universal Turing machine!

INF2080 Lecture :: 1st March 29 / 31



Acceptance problem - TMs

So what about decidability?

Theorem
The language ATM is not decidable.

Proof:
Assume it is decidable. Then there exists a decider H that decides ATM . So
H(〈M,w〉) = accept iff M accepts w and H(〈M,w〉) = reject iff M fails to accept w .
Now we construct a new machine D that takes a Turing machine M as input and uses H
as a subroutine. In particular, it calls H(〈M, 〈M〉〉), i.e., H will tell us whether M accepts
or rejects the string 〈M〉.
The new machine D will then reverse the result, i.e., if H accepts, D rejects and if H
rejects, D accepts.

INF2080 Lecture :: 1st March 30 / 31



Acceptance problem - TMs

Theorem
The language ATM is not decidable.

Proof:

D = On input 〈M〉
1. Simulate H on 〈M, 〈M〉〉.
2. If H accepts, reject; if H rejects, accept.

So what is the result of D(〈D〉)? Remember, H(〈M,w〉) accepts iff M(w) = accept.
If D(〈D〉) = reject, then H(〈D, 〈D〉〉) = accept, i.e., D(〈D〉) = accept. Contradiction!
If D(〈D〉) = accept, then H(〈D, 〈D〉〉) = reject, i.e., D(〈D〉) = reject. Contradiction!
Hence neither D nor H can exist! → ATM is undecidable!

INF2080 Lecture :: 1st March 31 / 31


