INF2080

1. Introduction and Regular Languages

Daniel Lupp

Universitetet i Oslo

19th January 2016

University of Oslo

Details on the Course

- course consists of two parts: computability theory (first half of semester) and complexity theory (second half, held by Lars Kristiansen)
- closely follows Michael Sipser's book "An Introduction to the Theory of Computation" both in course content and exercises
- prerequisites are INF1080 and chapter 0 of the book (very brief and incomplete refresher soon)
- as always: lectures are useful, but doing exercises yourself is the most important! \rightarrow group exercises

Setup for Computability Theory

For the first half of the course:

- Tuesday lecture: new theory and material
- Wednesday lecture: sometimes new theory and material, but mostly reserved for in-depth discussion and examples

So what's it all about?

- Alan Turing (1912-1954)
- "Father" of modern computing
- very interesting (and sad) story
\rightarrow Turing machines

- Noam Chomsky (1928-)
- "Father" of modern linguistics
- classification of formal languages

Chomsky hierarchy

So what's it all about?

- Automata and formal languages (e.g., programming languages: programs considered as "words" in a language)
- What is an "algorithm"?
- Turing machines
- Does a "solver" for a given problem always terminate?
- If yes, how expensive is it? (\rightarrow complexity)

The Basics

- Set: an unordered collection of distinct objects called elements
- $\{a, b\}=\{a, a, b\}=\{b, a\}$
- Set union: $A \cup B=\{x \mid x \in A$ or $x \in B\}$
- Set intersection: $A \cap B=\{x \mid x \in A$ and $x \in B\}$
- Set complement: $\bar{A}=\{x \mid x \notin A\}$
- de Morgan's laws: $\overline{A \cup B}=\bar{A} \cap \bar{B}$ and $\overline{A \cap B}=\bar{A} \cup \bar{B}$
- Power Set: $\mathcal{P}(A)=\{S \mid S \subseteq A\}$, example: $\mathcal{P}(\{0,1\})=\{\emptyset,\{0\},\{1\},\{0,1\}\}$.

The Basics

- Tuple: ordered collection of objects
- $(a, a, b) \neq(a, b)$
- Cartesian product: $A \times B=\{(a, b) \mid a \in A, b \in B\}$
- Function: $f: A \rightarrow B$. Assigns to each element $a \in A$ a unique element $f(a) \in B$.

Finite Automata

- computational model of a computer with finite memory
- Takes an input w and decides whether to accept or reject
- Can be used to answer such questions as "Is w a palindrome?" or "Is w a valid program in a given programming language?"
- usual depicted as a graph for ease of reading:
- nodes represent states in which the automaton can be
- edges between nodes represent the transition between states given a parsed input
- always exactly one start node

- as well as some accept states:

Finite Automata

Example:

Deterministic Finite Automata

Definition

A deterministic finite automaton (DFA) is a 5-tuple $\left(Q, \Sigma, \delta, q_{0}, F\right)$, where
(1) Q is a finite set of states
(2) Σ is a finite set called the alphabet
(3) $\delta: Q \times \Sigma \rightarrow Q$ the transition function
(9) q_{0} the start state
(c) $F \subseteq Q$ the set of accept states.

Deterministic Finite Automata

What does it mean for a DFA to "accept" an input w ?

- the example automaton accepts all inputs, words, that start and end with 0 , with only 1 's in between.
- starting at the start state, for each symbol in the input, follow a corresponding transition edge to the next state;
- the entire input must be parsed;
- the final state must be an accepting state.

Deterministic Finite Automata

Definition

A DFA $\left(Q, \Sigma, \delta, q_{0}, F\right)$ accepts an input $w=w_{1} w_{2} \cdots w_{n}$ if there exists a sequence of states $s_{0} \cdots s_{n}$ such that
(1) s_{0} is the start state q_{0}
(2) $\delta\left(s_{i}, w_{i+1}\right)=s_{i+1}$ (a valid transition is chosen for the currently parsed input symbol)
(3) $s_{n} \in F$, i.e., is an accept state.

Regular Languages

Given an alphabet Σ a language L is a set of words $w=w_{1} \cdots w_{n}$ such that each $w_{i} \in \Sigma$.

Definition

A language L is a regular language if there exists a DFA M that accepts each word in L, i.e., $L=\{w \mid M$ accepts $w\}$.

Since languages are sets, we can apply various operations on them:

- Union: the union of two languages L_{1} and L_{2} is $L_{1} \cup L_{2}=\left\{w \mid w \in L_{1}\right.$ or $\left.w \in L_{2}\right\}$
- Intersection: similarly, $L_{1} \cap L_{2}=\left\{w \mid w \in L_{1}\right.$ and $\left.w \in L_{2}\right\}$.
- Concatanation: $L_{1} L_{2}=\left\{w \mid w=w_{1} w_{2}, w_{1} \in L_{1}, w_{2} \in L_{2}\right\}$
- Kleene star: $L_{1}^{*}=\left\{x_{1} x_{2} \cdots x_{k} \mid k \geq 0\right.$, each $\left.x_{i} \in L_{1}\right\}$

Regular Languages

Theorem

The class of regular languages is closed under union [intersection], i.e., the union [intersection] of two regular languages is regular.

Proof idea: We multitask! Construct "product" automaton that runs both DFA's in parallel: $\left(Q_{1} \times Q_{2}, \Sigma, \delta, F\right)$ where

- $\delta\left(\left(s_{1}, s_{2}\right), w_{i}\right):=\left(\delta_{1}\left(s_{1}, w_{i}\right), \delta_{2}\left(s_{2}, w_{i}\right)\right)$
- $F=\left\{\left(s_{1}, s_{2}\right) \mid s_{1}\right.$ or s_{2} is an accepting state $\}$ for union,
- $F=\left\{\left(s_{1}, s_{2}\right) \mid s_{1}\right.$ and s_{2} is an accepting state $\}$ for intersection

To prove closedness under concatanation and Kleene star we'll want some (seemingly) stronger artillery.
\rightarrow nondeterminism!

Nondeterministic Finite Automata

So far, the transition function δ gave for a given state and input symbol precisely one following state. \rightarrow determinism
Now we allow for multiple possible "next" states. \rightarrow nondeterminism

NFA - An example

Language consists of all 0,1 sequences starting and ending with 0 .

NFA - Another example

Language consists of all 0,1 sequences with a 1 in the third position from the end.

NFA - an example with empty transitions

Nondeterministic Finite Automata

Definition

A nondeterministic finite automaton (NFA) is a 5 -tuple $\left(Q, \Sigma, \delta, q_{0}, F\right)$ where
(1) Q is a finite set of states,
(2) Σ is a finite alphabet,
(3) $\delta: Q \times \Sigma_{\varepsilon} \rightarrow \mathcal{P}(Q)$ is the transition function, and
(4) $F \subseteq Q$ is the set of accepting states.

- First notice that DFA's are special cases of NFA's.
- DFA's accept regular languages, but what languages do NFA's accept?
- As it turns out: regular languages! In other words, in a sense, DFA=NFA.

DFA=NFA

Theorem

Every NFA $N=\left(Q, \Sigma, \delta, q_{0}, F\right)$ has an equivalent DFA $M=\left(Q^{\prime}, \Sigma, \delta^{\prime}, q_{0}^{\prime}, F^{\prime}\right)$.
Proof:

- Each state in the NFA has multiple possible following states. We need to simultaneously keep track of all these possible following states in one state in the DFA.
- Since the "set of possible following states" in the NFA could be any subset of the state set Q, the DFA's state set Q^{\prime} must be $\mathcal{P}(Q)$.
- Let us first assume there are no ε transitions.
- Then $q_{0}^{\prime}=\left\{q_{0}\right\}$.

NFA=DFA

Now what about the transition functoin δ^{\prime} ?

- a state R in the DFA M corresponds to a set of states in the NFA N. So for an input w_{i} at state R, we need to consider all possible following states to the set of possible states R. Or, more formally,

$$
\begin{aligned}
\delta^{\prime}\left(R, w_{i}\right) & =\bigcup_{r \in R} \delta\left(r, w_{i}\right) \\
& =\left\{q \in Q \mid q \in \delta\left(r, w_{i}\right) \text { for some } r \in R\right\}
\end{aligned}
$$

- Since an NFA accepts an input if any of the possible computations ends in an accept state, $F^{\prime}=\{R \subseteq Q \mid R$ contains a state $r \in F\}$.

NFA=DFA

- Almost done! Now we need to adjust what we did in order to take ε transitions into account. To that end, let $E(R)=\{q \mid q$ can be reached from R with 0 or more ε transitions $\}$ for $R \subseteq Q$.
- Then $q_{0}^{\prime}=E\left(\left\{q_{0}\right\}\right)$.
- Transition function δ^{\prime} :

$$
\begin{aligned}
\delta^{\prime}\left(R, w_{i}\right) & =\bigcup_{r \in R} E\left(\delta\left(r, w_{i}\right)\right) \\
& =\left\{q \in Q \mid q \in E\left(\delta\left(r, w_{i}\right)\right) \text { for some } r \in R\right\}
\end{aligned}
$$

NFA=DFA

In other words, we have just proven:

Theorem

A language is regular iff (if and only if) there exists an NFA that accepts it.
So what about the set operations concatanation and Kleene star? \rightarrow think about it! More tomorrow

NFA=DFA

Let's look at this example again:

