
INF2080
Context-Free Langugaes

Daniel Lupp

Universitetet i Oslo

1st February 2016

Department of
Informatics

University of
Oslo

INF2080 Lecture :: 1st February 1 / 23

Repetition

We’ve looked at one of the simpler computational models: finite automata

defined (non)deterministic finite automata (NFAs/DFAs) and the languages they accept:
regular languages
defined regular expressions, useful as a shorthand for describing languages
a language L is regular ↔ there exists a regular expression that describes L
pumping lemma as a useful tool for determining whether a language is nonregular

INF2080 Lecture :: 1st February 2 / 23

Repetition

We’ve looked at one of the simpler computational models: finite automata
defined (non)deterministic finite automata (NFAs/DFAs) and the languages they accept:
regular languages

defined regular expressions, useful as a shorthand for describing languages
a language L is regular ↔ there exists a regular expression that describes L
pumping lemma as a useful tool for determining whether a language is nonregular

INF2080 Lecture :: 1st February 2 / 23

Repetition

We’ve looked at one of the simpler computational models: finite automata
defined (non)deterministic finite automata (NFAs/DFAs) and the languages they accept:
regular languages
defined regular expressions, useful as a shorthand for describing languages

a language L is regular ↔ there exists a regular expression that describes L
pumping lemma as a useful tool for determining whether a language is nonregular

INF2080 Lecture :: 1st February 2 / 23

Repetition

We’ve looked at one of the simpler computational models: finite automata
defined (non)deterministic finite automata (NFAs/DFAs) and the languages they accept:
regular languages
defined regular expressions, useful as a shorthand for describing languages
a language L is regular ↔ there exists a regular expression that describes L

pumping lemma as a useful tool for determining whether a language is nonregular

INF2080 Lecture :: 1st February 2 / 23

Repetition

We’ve looked at one of the simpler computational models: finite automata
defined (non)deterministic finite automata (NFAs/DFAs) and the languages they accept:
regular languages
defined regular expressions, useful as a shorthand for describing languages
a language L is regular ↔ there exists a regular expression that describes L
pumping lemma as a useful tool for determining whether a language is nonregular

INF2080 Lecture :: 1st February 2 / 23

Context-Free Grammars

Today: Context-free grammars and languages

grammars describe the syntax of a language; they try to describe the relationship of all the
parts to one another, such as placement of nouns/verbs in sentences
useful for programming languages, specifically compilers and parsers: if the grammar of a
programming language is available, parsing is very straightforward.

INF2080 Lecture :: 1st February 3 / 23

Context-Free Grammars

Today: Context-free grammars and languages
grammars describe the syntax of a language; they try to describe the relationship of all the
parts to one another, such as placement of nouns/verbs in sentences

useful for programming languages, specifically compilers and parsers: if the grammar of a
programming language is available, parsing is very straightforward.

INF2080 Lecture :: 1st February 3 / 23

Context-Free Grammars

Today: Context-free grammars and languages
grammars describe the syntax of a language; they try to describe the relationship of all the
parts to one another, such as placement of nouns/verbs in sentences
useful for programming languages, specifically compilers and parsers: if the grammar of a
programming language is available, parsing is very straightforward.

INF2080 Lecture :: 1st February 3 / 23

Context-Free Grammars

Recall example from last week:
L = {anbn | n ≥ 0}

We used the pumping lemma to show that this language was not regular.
→ first example of a context-free language

INF2080 Lecture :: 1st February 4 / 23

Context-Free Grammars

Recall example from last week:
L = {anbn | n ≥ 0}

We used the pumping lemma to show that this language was not regular.

→ first example of a context-free language

INF2080 Lecture :: 1st February 4 / 23

Context-Free Grammars

Recall example from last week:
L = {anbn | n ≥ 0}

We used the pumping lemma to show that this language was not regular.
→ first example of a context-free language

INF2080 Lecture :: 1st February 4 / 23

Context-Free Grammars

First example:

S → aSb

S → ε

Every grammar consists of rules, which are a pair consisting of one variable (to the left of
→) and a string of variables and symbols (to the right of →)
Every grammar contains a start variable (above: variable S). Common convention: the
first listed variable is the start variable (if you choose a different start variable, you must
specify!).
Words are generated by starting with the start variable and recursively replacing variables
with the righthand side of a rule.

S aSb aaSbb aaεbb aabb

INF2080 Lecture :: 1st February 5 / 23

Context-Free Grammars

First example:

S → aSb

S → ε

Every grammar consists of rules, which are a pair consisting of one variable (to the left of
→) and a string of variables and symbols (to the right of →)

Every grammar contains a start variable (above: variable S). Common convention: the
first listed variable is the start variable (if you choose a different start variable, you must
specify!).
Words are generated by starting with the start variable and recursively replacing variables
with the righthand side of a rule.

S aSb aaSbb aaεbb aabb

INF2080 Lecture :: 1st February 5 / 23

Context-Free Grammars

First example:

S → aSb

S → ε

Every grammar consists of rules, which are a pair consisting of one variable (to the left of
→) and a string of variables and symbols (to the right of →)
Every grammar contains a start variable (above: variable S). Common convention: the
first listed variable is the start variable (if you choose a different start variable, you must
specify!).

Words are generated by starting with the start variable and recursively replacing variables
with the righthand side of a rule.

S aSb aaSbb aaεbb aabb

INF2080 Lecture :: 1st February 5 / 23

Context-Free Grammars

First example:

S → aSb

S → ε

Every grammar consists of rules, which are a pair consisting of one variable (to the left of
→) and a string of variables and symbols (to the right of →)
Every grammar contains a start variable (above: variable S). Common convention: the
first listed variable is the start variable (if you choose a different start variable, you must
specify!).
Words are generated by starting with the start variable and recursively replacing variables
with the righthand side of a rule.

S aSb aaSbb aaεbb aabb

INF2080 Lecture :: 1st February 5 / 23

Parse Trees

Derivations of the form
S aSb aaSbb aaεbb aabb

can also be encoded as a parse tree:
S

a S

b S

ε

b

b

INF2080 Lecture :: 1st February 6 / 23

Context-Free Grammars

Second example:

S → aSa

S → bSb

S → cSc

S → ε

To simplify notation, you can summarize multiple rules into one line:

S → aSa | bSb | cSc | ε.

The symbol | takes on the meaning of “or.”
→ palindromes of even length over {a, b, c}.

INF2080 Lecture :: 1st February 7 / 23

Context-Free Grammars

Second example:

S → aSa

S → bSb

S → cSc

S → ε

To simplify notation, you can summarize multiple rules into one line:

S → aSa | bSb | cSc | ε.

The symbol | takes on the meaning of “or.”
→ palindromes of even length over {a, b, c}.

INF2080 Lecture :: 1st February 7 / 23

Context-Free Grammars

Second example:

S → aSa

S → bSb

S → cSc

S → ε

To simplify notation, you can summarize multiple rules into one line:

S → aSa | bSb | cSc | ε.

The symbol | takes on the meaning of “or.”

→ palindromes of even length over {a, b, c}.

INF2080 Lecture :: 1st February 7 / 23

Context-Free Grammars

Second example:

S → aSa

S → bSb

S → cSc

S → ε

To simplify notation, you can summarize multiple rules into one line:

S → aSa | bSb | cSc | ε.

The symbol | takes on the meaning of “or.”
→ palindromes of even length over {a, b, c}.

INF2080 Lecture :: 1st February 7 / 23

Context-Free Grammar

Definition (Context-Free Grammar)

A context-free grammar is a 4-tuple (V ,Σ,R, S) where
1 V is a finite set of variables
2 Σ is a finite set disjoint from V of terminals
3 R is a finite set of rules, each consisting of a variable and of a string of variables and

terminals
4 and S is the start variable

We call L(G) the language generated by a context-free grammar. A language is called a
context-free language if it is generated by a context-free grammar.

INF2080 Lecture :: 1st February 8 / 23

Context-Free Grammar

Definition (Context-Free Grammar)

A context-free grammar is a 4-tuple (V ,Σ,R, S) where
1 V is a finite set of variables
2 Σ is a finite set disjoint from V of terminals
3 R is a finite set of rules, each consisting of a variable and of a string of variables and

terminals
4 and S is the start variable

We call L(G) the language generated by a context-free grammar. A language is called a
context-free language if it is generated by a context-free grammar.

INF2080 Lecture :: 1st February 8 / 23

Context-Free Grammar

So what can context-free grammars (CFGs) express?

Regular languages?
Is the class of context-free languages closed under
union/intersection/concatanation/complement/Kleene star?
Regular languages could be modelled by an automaton with finite memory...what about
context-free languages?

Answers to these over the course of this and next lecture (and group sessions)

INF2080 Lecture :: 1st February 9 / 23

Context-Free Grammar

So what can context-free grammars (CFGs) express?
Regular languages?

Is the class of context-free languages closed under
union/intersection/concatanation/complement/Kleene star?
Regular languages could be modelled by an automaton with finite memory...what about
context-free languages?

Answers to these over the course of this and next lecture (and group sessions)

INF2080 Lecture :: 1st February 9 / 23

Context-Free Grammar

So what can context-free grammars (CFGs) express?
Regular languages?
Is the class of context-free languages closed under
union/intersection/concatanation/complement/Kleene star?

Regular languages could be modelled by an automaton with finite memory...what about
context-free languages?

Answers to these over the course of this and next lecture (and group sessions)

INF2080 Lecture :: 1st February 9 / 23

Context-Free Grammar

So what can context-free grammars (CFGs) express?
Regular languages?
Is the class of context-free languages closed under
union/intersection/concatanation/complement/Kleene star?
Regular languages could be modelled by an automaton with finite memory...what about
context-free languages?

Answers to these over the course of this and next lecture (and group sessions)

INF2080 Lecture :: 1st February 9 / 23

Context-Free Grammar

So what can context-free grammars (CFGs) express?
Regular languages?
Is the class of context-free languages closed under
union/intersection/concatanation/complement/Kleene star?
Regular languages could be modelled by an automaton with finite memory...what about
context-free languages?

Answers to these over the course of this and next lecture (and group sessions)

INF2080 Lecture :: 1st February 9 / 23

RLs and CFLs

Can regular languages be described using context-free grammars?

Given a RL L, there exists some DFA (Q,Σ, δ, q0,F) that accepts L
What if we encode traversing the DFA into grammar rules, i.e., for each transition
δ(q1, a) = q2 we create a rule Q1 → aQ2

the variables of our grammar correspond to the states in Q, with Q0 as the start variable.
How do we deal with accept states? for each qi ∈ F , add rule Qi → ε

Theorem
Every regular language is context-free.

INF2080 Lecture :: 1st February 10 / 23

RLs and CFLs

Can regular languages be described using context-free grammars?
Given a RL L, there exists some DFA (Q,Σ, δ, q0,F) that accepts L

What if we encode traversing the DFA into grammar rules, i.e., for each transition
δ(q1, a) = q2 we create a rule Q1 → aQ2

the variables of our grammar correspond to the states in Q, with Q0 as the start variable.
How do we deal with accept states? for each qi ∈ F , add rule Qi → ε

Theorem
Every regular language is context-free.

INF2080 Lecture :: 1st February 10 / 23

RLs and CFLs

Can regular languages be described using context-free grammars?
Given a RL L, there exists some DFA (Q,Σ, δ, q0,F) that accepts L
What if we encode traversing the DFA into grammar rules, i.e., for each transition
δ(q1, a) = q2 we create a rule Q1 → aQ2

the variables of our grammar correspond to the states in Q, with Q0 as the start variable.
How do we deal with accept states? for each qi ∈ F , add rule Qi → ε

Theorem
Every regular language is context-free.

INF2080 Lecture :: 1st February 10 / 23

RLs and CFLs

Can regular languages be described using context-free grammars?
Given a RL L, there exists some DFA (Q,Σ, δ, q0,F) that accepts L
What if we encode traversing the DFA into grammar rules, i.e., for each transition
δ(q1, a) = q2 we create a rule Q1 → aQ2

the variables of our grammar correspond to the states in Q, with Q0 as the start variable.

How do we deal with accept states? for each qi ∈ F , add rule Qi → ε

Theorem
Every regular language is context-free.

INF2080 Lecture :: 1st February 10 / 23

RLs and CFLs

Can regular languages be described using context-free grammars?
Given a RL L, there exists some DFA (Q,Σ, δ, q0,F) that accepts L
What if we encode traversing the DFA into grammar rules, i.e., for each transition
δ(q1, a) = q2 we create a rule Q1 → aQ2

the variables of our grammar correspond to the states in Q, with Q0 as the start variable.
How do we deal with accept states?

 for each qi ∈ F , add rule Qi → ε

Theorem
Every regular language is context-free.

INF2080 Lecture :: 1st February 10 / 23

RLs and CFLs

Can regular languages be described using context-free grammars?
Given a RL L, there exists some DFA (Q,Σ, δ, q0,F) that accepts L
What if we encode traversing the DFA into grammar rules, i.e., for each transition
δ(q1, a) = q2 we create a rule Q1 → aQ2

the variables of our grammar correspond to the states in Q, with Q0 as the start variable.
How do we deal with accept states? for each qi ∈ F , add rule Qi → ε

Theorem
Every regular language is context-free.

INF2080 Lecture :: 1st February 10 / 23

RLs and CFLs

Can regular languages be described using context-free grammars?
Given a RL L, there exists some DFA (Q,Σ, δ, q0,F) that accepts L
What if we encode traversing the DFA into grammar rules, i.e., for each transition
δ(q1, a) = q2 we create a rule Q1 → aQ2

the variables of our grammar correspond to the states in Q, with Q0 as the start variable.
How do we deal with accept states? for each qi ∈ F , add rule Qi → ε

Theorem
Every regular language is context-free.

INF2080 Lecture :: 1st February 10 / 23

Properties of CFLs

Closure under union/concatanation/Kleene star?

 Yes, group sessions!
Closure under complement/intersection?
 No, but we need to know more before we can determine if a language is not context-free.

INF2080 Lecture :: 1st February 11 / 23

Properties of CFLs

Closure under union/concatanation/Kleene star?
 Yes, group sessions!

Closure under complement/intersection?
 No, but we need to know more before we can determine if a language is not context-free.

INF2080 Lecture :: 1st February 11 / 23

Properties of CFLs

Closure under union/concatanation/Kleene star?
 Yes, group sessions!
Closure under complement/intersection?

 No, but we need to know more before we can determine if a language is not context-free.

INF2080 Lecture :: 1st February 11 / 23

Properties of CFLs

Closure under union/concatanation/Kleene star?
 Yes, group sessions!
Closure under complement/intersection?
 No, but we need to know more before we can determine if a language is not context-free.

INF2080 Lecture :: 1st February 11 / 23

Ambiguity

Consider the grammar
E → E + E | E × E | (E) | a

Here: the alphabet is {a,+,×, (,)}.
→ arithmetic expressions over a

What does the parse tree for the string a + a× a look like?

INF2080 Lecture :: 1st February 12 / 23

Ambiguity

Consider the grammar
E → E + E | E × E | (E) | a

Here: the alphabet is {a,+,×, (,)}.

→ arithmetic expressions over a

What does the parse tree for the string a + a× a look like?

INF2080 Lecture :: 1st February 12 / 23

Ambiguity

Consider the grammar
E → E + E | E × E | (E) | a

Here: the alphabet is {a,+,×, (,)}.
→ arithmetic expressions over a

What does the parse tree for the string a + a× a look like?

INF2080 Lecture :: 1st February 12 / 23

Ambiguity

Consider the grammar
E → E + E | E × E | (E) | a

Here: the alphabet is {a,+,×, (,)}.
→ arithmetic expressions over a

What does the parse tree for the string a + a× a look like?

INF2080 Lecture :: 1st February 12 / 23

Ambiguity

E

E

a

+ E

E

a

× E

a

Intuitively corresponds to a + (a× a)

E

E

E

a

+ E

a

× E

a

Intuitively corresponds to (a + a)× a

This is called ambiguity

INF2080 Lecture :: 1st February 13 / 23

Ambiguity

E

E

a

+ E

E

a

× E

a

Intuitively corresponds to a + (a× a)

E

E

E

a

+ E

a

× E

a

Intuitively corresponds to (a + a)× a

This is called ambiguity

INF2080 Lecture :: 1st February 13 / 23

Ambiguity

E

E

a

+ E

E

a

× E

a

Intuitively corresponds to a + (a× a)

E

E

E

a

+ E

a

× E

a

Intuitively corresponds to (a + a)× a

This is called ambiguity

INF2080 Lecture :: 1st February 13 / 23

Ambiguity

E

E

a

+ E

E

a

× E

a

Intuitively corresponds to a + (a× a)

E

E

E

a

+ E

a

× E

a

Intuitively corresponds to (a + a)× a

This is called ambiguity

INF2080 Lecture :: 1st February 13 / 23

Ambiguity

E

E

a

+ E

E

a

× E

a

Intuitively corresponds to a + (a× a)

E

E

E

a

+ E

a

× E

a

Intuitively corresponds to (a + a)× a

This is called ambiguity

INF2080 Lecture :: 1st February 13 / 23

Ambiguity

But just having multiple possible derivations does not mean that a grammar is ambiguous.

Two derivations could look different, yet “structurally” the same: apply the same rules to
the same variables, yet in a different order.
We are interested in structurally different derivations, i.e., two derivations of the same
word that, given a predefined order of derivation, are different

Definition
A leftmost derivation of a string replaces, in each derivation step, the leftmost variable. Then a
string is derived ambiguously over a grammar G if it has two or more leftmost derivations over
G .

If L(G) contains a string that is derived ambiguously, we say that G is ambiguous.

INF2080 Lecture :: 1st February 14 / 23

Ambiguity

But just having multiple possible derivations does not mean that a grammar is ambiguous.
Two derivations could look different, yet “structurally” the same: apply the same rules to
the same variables, yet in a different order.

We are interested in structurally different derivations, i.e., two derivations of the same
word that, given a predefined order of derivation, are different

Definition
A leftmost derivation of a string replaces, in each derivation step, the leftmost variable. Then a
string is derived ambiguously over a grammar G if it has two or more leftmost derivations over
G .

If L(G) contains a string that is derived ambiguously, we say that G is ambiguous.

INF2080 Lecture :: 1st February 14 / 23

Ambiguity

But just having multiple possible derivations does not mean that a grammar is ambiguous.
Two derivations could look different, yet “structurally” the same: apply the same rules to
the same variables, yet in a different order.
We are interested in structurally different derivations, i.e., two derivations of the same
word that, given a predefined order of derivation, are different

Definition
A leftmost derivation of a string replaces, in each derivation step, the leftmost variable. Then a
string is derived ambiguously over a grammar G if it has two or more leftmost derivations over
G .

If L(G) contains a string that is derived ambiguously, we say that G is ambiguous.

INF2080 Lecture :: 1st February 14 / 23

Ambiguity

But just having multiple possible derivations does not mean that a grammar is ambiguous.
Two derivations could look different, yet “structurally” the same: apply the same rules to
the same variables, yet in a different order.
We are interested in structurally different derivations, i.e., two derivations of the same
word that, given a predefined order of derivation, are different

Definition
A leftmost derivation of a string replaces, in each derivation step, the leftmost variable. Then a
string is derived ambiguously over a grammar G if it has two or more leftmost derivations over
G .

If L(G) contains a string that is derived ambiguously, we say that G is ambiguous.

INF2080 Lecture :: 1st February 14 / 23

Ambiguity

But just having multiple possible derivations does not mean that a grammar is ambiguous.
Two derivations could look different, yet “structurally” the same: apply the same rules to
the same variables, yet in a different order.
We are interested in structurally different derivations, i.e., two derivations of the same
word that, given a predefined order of derivation, are different

Definition
A leftmost derivation of a string replaces, in each derivation step, the leftmost variable. Then a
string is derived ambiguously over a grammar G if it has two or more leftmost derivations over
G .

If L(G) contains a string that is derived ambiguously, we say that G is ambiguous.

INF2080 Lecture :: 1st February 14 / 23

Chomsy Normal Form

Context-free languages have a nice property: Every CFL can be described by a CFG in
Chomsky Normal Form:

Definition
A grammar is in Chomsky Normal Form if every rule is of the form:

A→ BC

A→ a

where a is any terminal, A is any variable, B,C are any variables that are not the start variable.
In addition the rule S → ε is permitted.

INF2080 Lecture :: 1st February 15 / 23

Definition
A grammar is in Chomsky Normal Form if every rule is of the form:

A→ BC

A→ a

where a is any terminal, A is any variable, B,C are any variables that are not the start variable.
In addition the rule S → ε is permitted.

Proof sketch: Given an arbitrary grammar G . First, add new start variable S0 and new rule
S0 → S to G .

Then, remove all rules A→ ε, followed by all “unit” rules A→ B . For each such
occurence of A in the righthand side of a rule, add a new rule with ε (resp. B) substituted for
A (see examples on next slide). Finally, split all rules with more than 3 righthandside symbols
into multiple rules containing only 2 symbols.

INF2080 Lecture :: 1st February 16 / 23

Definition
A grammar is in Chomsky Normal Form if every rule is of the form:

A→ BC

A→ a

where a is any terminal, A is any variable, B,C are any variables that are not the start variable.
In addition the rule S → ε is permitted.

Proof sketch: Given an arbitrary grammar G . First, add new start variable S0 and new rule
S0 → S to G .Then, remove all rules A→ ε, followed by all “unit” rules A→ B .

For each such
occurence of A in the righthand side of a rule, add a new rule with ε (resp. B) substituted for
A (see examples on next slide). Finally, split all rules with more than 3 righthandside symbols
into multiple rules containing only 2 symbols.

INF2080 Lecture :: 1st February 16 / 23

Definition
A grammar is in Chomsky Normal Form if every rule is of the form:

A→ BC

A→ a

where a is any terminal, A is any variable, B,C are any variables that are not the start variable.
In addition the rule S → ε is permitted.

Proof sketch: Given an arbitrary grammar G . First, add new start variable S0 and new rule
S0 → S to G .Then, remove all rules A→ ε, followed by all “unit” rules A→ B . For each such
occurence of A in the righthand side of a rule, add a new rule with ε (resp. B) substituted for
A (see examples on next slide).

Finally, split all rules with more than 3 righthandside symbols
into multiple rules containing only 2 symbols.

INF2080 Lecture :: 1st February 16 / 23

Definition
A grammar is in Chomsky Normal Form if every rule is of the form:

A→ BC

A→ a

where a is any terminal, A is any variable, B,C are any variables that are not the start variable.
In addition the rule S → ε is permitted.

Proof sketch: Given an arbitrary grammar G . First, add new start variable S0 and new rule
S0 → S to G .Then, remove all rules A→ ε, followed by all “unit” rules A→ B . For each such
occurence of A in the righthand side of a rule, add a new rule with ε (resp. B) substituted for
A (see examples on next slide). Finally, split all rules with more than 3 righthandside symbols
into multiple rules containing only 2 symbols.

INF2080 Lecture :: 1st February 16 / 23

CNF - Example

Grammar;

S → ASA | aB
A→ B | S
B → b | ε

First, add new start variable:

S0 → S

S → ASA | aB
A→ B | S
B → b | ε

INF2080 Lecture :: 1st February 17 / 23

CNF - Example

Grammar;

S → ASA | aB
A→ B | S
B → b | ε

First, add new start variable:

S0 → S

S → ASA | aB
A→ B | S
B → b | ε

INF2080 Lecture :: 1st February 17 / 23

CNF - Example

S0 → S

S → ASA | aB
A→ B | S
B → b | ε

Then, remove B → ε:

S0 → S

S → ASA | aB | a
A→ B | ε | S
B → b

INF2080 Lecture :: 1st February 18 / 23

CNF - Example

S0 → S

S → ASA | aB
A→ B | S
B → b | ε

Then, remove B → ε:

S0 → S

S → ASA | aB | a
A→ B | ε | S
B → b

INF2080 Lecture :: 1st February 18 / 23

CNF - Example

S0 → S

S → ASA | aB | a
A→ B | ε | S
B → b

Then, remove A→ ε:

S0 → S

S → ASA | SA | AS | S | aB | a
A→ S | B
B → b

INF2080 Lecture :: 1st February 19 / 23

CNF - Example

S0 → S

S → ASA | aB | a
A→ B | ε | S
B → b

Then, remove A→ ε:

S0 → S

S → ASA | SA | AS | S | aB | a
A→ S | B
B → b

INF2080 Lecture :: 1st February 19 / 23

CNF - Example

S0 → S

S → ASA | SA | AS | S | aB | a
A→ B | S
B → b

Then remove S → S :

S0 → S

S → ASA | SA | AS | aB | a
A→ B | S
B → b

INF2080 Lecture :: 1st February 20 / 23

CNF - Example

S0 → S

S → ASA | SA | AS | S | aB | a
A→ B | S
B → b

Then remove S → S :

S0 → S

S → ASA | SA | AS | aB | a
A→ B | S
B → b

INF2080 Lecture :: 1st February 20 / 23

CNF - Example

S0 → S

S → ASA | SA | AS | aB | a
A→ B | S
B → b

Remove unit rule S0 → S :

S0 → ASA | SA | AS | aB | a
S → ASA | SA | AS | aB | a
A→ B | S
B → b

INF2080 Lecture :: 1st February 21 / 23

CNF - Example

S0 → S

S → ASA | SA | AS | aB | a
A→ B | S
B → b

Remove unit rule S0 → S :

S0 → ASA | SA | AS | aB | a
S → ASA | SA | AS | aB | a
A→ B | S
B → b

INF2080 Lecture :: 1st February 21 / 23

CNF - Example

S0 → ASA | SA | AS | aB | a
S → ASA | SA | AS | aB | a
A→ B | S
B → b

and you would continue to remove the unit rules A→ S , etc....

But how to convert, say,
S → ASA into rules with only two symbols on the right? introduce help variables!

S → ASA

 S → AA1,A1 → SA

INF2080 Lecture :: 1st February 22 / 23

CNF - Example

S0 → ASA | SA | AS | aB | a
S → ASA | SA | AS | aB | a
A→ B | S
B → b

and you would continue to remove the unit rules A→ S , etc....But how to convert, say,
S → ASA into rules with only two symbols on the right?

 introduce help variables!

S → ASA

 S → AA1,A1 → SA

INF2080 Lecture :: 1st February 22 / 23

CNF - Example

S0 → ASA | SA | AS | aB | a
S → ASA | SA | AS | aB | a
A→ B | S
B → b

and you would continue to remove the unit rules A→ S , etc....But how to convert, say,
S → ASA into rules with only two symbols on the right? introduce help variables!

S → ASA

 S → AA1,A1 → SA

INF2080 Lecture :: 1st February 22 / 23

CNF

Thus, we see how all CFGs can be converted to CFGs in CNF.
Useful property to have, both for practical purposes and theoretical work: knowing what
the grammar looks like can be very beneficial (we will see an example next week)
Next time: how can finite automata be enriched so as to accept context-free languages?

INF2080 Lecture :: 1st February 23 / 23

