
INF2080
Context-Sensitive Langugaes

Daniel Lupp

Universitetet i Oslo

15th February 2017

Department of
Informatics

University of
Oslo

INF2080 Lecture :: 15th February 1 / 20

Context-Free Grammar

Definition (Context-Free Grammar)

A context-free grammar is a 4-tuple (V ,Σ,R, S) where
1 V is a finite set of variables
2 Σ is a finite set disjoint from V of terminals
3 R is a finite set of rules, each consisting of a variable and of a string of variables and

terminals
4 and S is the start variable

Rules are of the form A→ B1B2B3 . . .Bm, where A ∈ V and each Bi ∈ V ∪ Σ.

INF2080 Lecture :: 15th February 2 / 20

Why Context-Sensitive?

Many building blocks of programming languages are context-free, but not all!

consider the following toy programming language, where you can “declare” and “assign” a
variable a value.

S → declare v ; S | assign v : x ;S

this is context-free...
but what if we only want to allow assignment after declaration and an infinite amount of
variable names? → context-sensitive!

INF2080 Lecture :: 15th February 3 / 20

Why Context-Sensitive?

Many building blocks of programming languages are context-free, but not all!
consider the following toy programming language, where you can “declare” and “assign” a
variable a value.

S → declare v ; S | assign v : x ;S

this is context-free...
but what if we only want to allow assignment after declaration and an infinite amount of
variable names? → context-sensitive!

INF2080 Lecture :: 15th February 3 / 20

Why Context-Sensitive?

Many building blocks of programming languages are context-free, but not all!
consider the following toy programming language, where you can “declare” and “assign” a
variable a value.

S → declare v ; S | assign v : x ;S

this is context-free...

but what if we only want to allow assignment after declaration and an infinite amount of
variable names? → context-sensitive!

INF2080 Lecture :: 15th February 3 / 20

Why Context-Sensitive?

Many building blocks of programming languages are context-free, but not all!
consider the following toy programming language, where you can “declare” and “assign” a
variable a value.

S → declare v ; S | assign v : x ;S

this is context-free...
but what if we only want to allow assignment after declaration and an infinite amount of
variable names? → context-sensitive!

INF2080 Lecture :: 15th February 3 / 20

Context-Sensitive Languages

Some believe natural languages reside in the class of context-sensitive languages, though
this is a controversial topic amongst linguists.

But many characteristics of natural languages (e.g., verb-noun agreement) are
context-sensitive!

INF2080 Lecture :: 15th February 4 / 20

Context-Sensitive Languages

Some believe natural languages reside in the class of context-sensitive languages, though
this is a controversial topic amongst linguists.
But many characteristics of natural languages (e.g., verb-noun agreement) are
context-sensitive!

INF2080 Lecture :: 15th February 4 / 20

Context-Sensitive Grammars

So, instead of allowing for a single variable on the left-hand side of a rule, we allow for a
context:

αBγ → αβγ (1)

with α, β, γ ∈ (V ∪ Σ)∗, but β 6= ε.

Definition (Context-sensitive grammar)

A context-sensitive grammar is a 4-tuple (V ,Σ,R,S) consisting of
a finite set V of variables;
a finite set Σ of terminals, disjoint from V ;
a set R of rules of the form (1);
a start variable S ∈ V . If S does not occur on any righthand side of a rule in S , we also
allow for the rule S → ε in R .

INF2080 Lecture :: 15th February 5 / 20

Context-Sensitive Grammars

So, instead of allowing for a single variable on the left-hand side of a rule, we allow for a
context:

αBγ → αβγ (1)

with α, β, γ ∈ (V ∪ Σ)∗, but β 6= ε.

Definition (Context-sensitive grammar)

A context-sensitive grammar is a 4-tuple (V ,Σ,R,S) consisting of
a finite set V of variables;
a finite set Σ of terminals, disjoint from V ;
a set R of rules of the form (1);
a start variable S ∈ V . If S does not occur on any righthand side of a rule in S , we also
allow for the rule S → ε in R .

INF2080 Lecture :: 15th February 5 / 20

Example

Recall that the language {anbncn | n ≥ 1} was not context-free. (pumping lemma for CFLs)

It is, however, context-sensitive!
A context-sensitive grammar that produces this language:

S → ABC

S → ASB ′C

CB ′ → Z1B
′

Z1B
′ → Z1Z2

Z1Z2 → B ′Z2

B ′Z2 → B ′C

BB ′ → BB

A→ a

B → b

C → c

INF2080 Lecture :: 15th February 6 / 20

Example

Recall that the language {anbncn | n ≥ 1} was not context-free. (pumping lemma for CFLs)
It is, however, context-sensitive!

A context-sensitive grammar that produces this language:

S → ABC

S → ASB ′C

CB ′ → Z1B
′

Z1B
′ → Z1Z2

Z1Z2 → B ′Z2

B ′Z2 → B ′C

BB ′ → BB

A→ a

B → b

C → c

INF2080 Lecture :: 15th February 6 / 20

Example

Recall that the language {anbncn | n ≥ 1} was not context-free. (pumping lemma for CFLs)
It is, however, context-sensitive!
A context-sensitive grammar that produces this language:

S → ABC

S → ASB ′C

CB ′ → Z1B
′

Z1B
′ → Z1Z2

Z1Z2 → B ′Z2

B ′Z2 → B ′C

BB ′ → BB

A→ a

B → b

C → c

INF2080 Lecture :: 15th February 6 / 20

Noncontracting Grammars

So CSGs can be quite cumbersome...

many rules needed to encode, e.g., the swapping rule
cB → Bc .

Definition (Noncontracting Grammars)

A noncontracting grammar is a set of rules α→ β, where α, β ∈ (V ∪ Σ)∗ and |α| ≤ |β|. In
addition, it may contain S → ε if S does not occur on any righthand side of a rule.

Examples:

cC → abABc

ab → de

cB → Bc

Note: none of these rules are context-sensitive!

INF2080 Lecture :: 15th February 7 / 20

Noncontracting Grammars

So CSGs can be quite cumbersome...many rules needed to encode, e.g., the swapping rule
cB → Bc .

Definition (Noncontracting Grammars)

A noncontracting grammar is a set of rules α→ β, where α, β ∈ (V ∪ Σ)∗ and |α| ≤ |β|. In
addition, it may contain S → ε if S does not occur on any righthand side of a rule.

Examples:

cC → abABc

ab → de

cB → Bc

Note: none of these rules are context-sensitive!

INF2080 Lecture :: 15th February 7 / 20

Noncontracting Grammars

So CSGs can be quite cumbersome...many rules needed to encode, e.g., the swapping rule
cB → Bc .

Definition (Noncontracting Grammars)

A noncontracting grammar is a set of rules α→ β, where α, β ∈ (V ∪ Σ)∗ and |α| ≤ |β|. In
addition, it may contain S → ε if S does not occur on any righthand side of a rule.

Examples:

cC → abABc

ab → de

cB → Bc

Note: none of these rules are context-sensitive!

INF2080 Lecture :: 15th February 7 / 20

Noncontracting Grammars

So CSGs can be quite cumbersome...many rules needed to encode, e.g., the swapping rule
cB → Bc .

Definition (Noncontracting Grammars)

A noncontracting grammar is a set of rules α→ β, where α, β ∈ (V ∪ Σ)∗ and |α| ≤ |β|. In
addition, it may contain S → ε if S does not occur on any righthand side of a rule.

Examples:

cC → abABc

ab → de

cB → Bc

Note: none of these rules are context-sensitive!

INF2080 Lecture :: 15th February 7 / 20

Noncontracting Grammars

So CSGs can be quite cumbersome...many rules needed to encode, e.g., the swapping rule
cB → Bc .

Definition (Noncontracting Grammars)

A noncontracting grammar is a set of rules α→ β, where α, β ∈ (V ∪ Σ)∗ and |α| ≤ |β|. In
addition, it may contain S → ε if S does not occur on any righthand side of a rule.

Examples:

cC → abABc

ab → de

cB → Bc

Note: none of these rules are context-sensitive!

INF2080 Lecture :: 15th February 7 / 20

Noncontracting vs. Context-sensitive Grammars

First note: context-sensitive rules αBγ → αβγ are noncontracting, since we required
β 6= ε.

So it would seem that noncontracting grammars are quite a bit more expressive than
context-sensitive grammars. After all, α→ β is far more general...

Theorem
Every noncontracting grammar can be transformed into a context-sensitive grammar that
produces the same language.

So, in the spirit of INF2080’s love of abbreviations: NCG = CSG!

INF2080 Lecture :: 15th February 8 / 20

Noncontracting vs. Context-sensitive Grammars

First note: context-sensitive rules αBγ → αβγ are noncontracting, since we required
β 6= ε.
So it would seem that noncontracting grammars are quite a bit more expressive than
context-sensitive grammars. After all, α→ β is far more general...

Theorem
Every noncontracting grammar can be transformed into a context-sensitive grammar that
produces the same language.

So, in the spirit of INF2080’s love of abbreviations: NCG = CSG!

INF2080 Lecture :: 15th February 8 / 20

Noncontracting vs. Context-sensitive Grammars

First note: context-sensitive rules αBγ → αβγ are noncontracting, since we required
β 6= ε.
So it would seem that noncontracting grammars are quite a bit more expressive than
context-sensitive grammars. After all, α→ β is far more general...

Theorem
Every noncontracting grammar can be transformed into a context-sensitive grammar that
produces the same language.

So, in the spirit of INF2080’s love of abbreviations: NCG = CSG!

INF2080 Lecture :: 15th February 8 / 20

Noncontracting vs. Context-sensitive Grammars

First note: context-sensitive rules αBγ → αβγ are noncontracting, since we required
β 6= ε.
So it would seem that noncontracting grammars are quite a bit more expressive than
context-sensitive grammars. After all, α→ β is far more general...

Theorem
Every noncontracting grammar can be transformed into a context-sensitive grammar that
produces the same language.

So, in the spirit of INF2080’s love of abbreviations: NCG = CSG!

INF2080 Lecture :: 15th February 8 / 20

Example

The language {anbncn | n ≥ 1} described by CSG:

S → ABC

S → ASB ′C

CB ′ → Z1B
′

Z1B
′ → Z1Z2

Z1Z2 → B ′Z2

B ′Z2 → B ′C

BB ′ → BB

A→ a

B → b

C → c

INF2080 Lecture :: 15th February 9 / 20

Example

The language {anbncn | n ≥ 1} described by NCG:

S → abc

S → aSBc

cB → Bc

bB → bb

Due to the equivalence, some people define context-senstive languages using noncontracting
grammars.

INF2080 Lecture :: 15th February 10 / 20

Example

The language {anbncn | n ≥ 1} described by NCG:

S → abc

S → aSBc

cB → Bc

bB → bb

Due to the equivalence, some people define context-senstive languages using noncontracting
grammars.

INF2080 Lecture :: 15th February 10 / 20

Kuroda Normal Form

Similar to CFG’s Chomsky Normal Form, CSG’s have a normal form of their own:

Definition (Kuroda Normal Form)

A noncontracting grammar is in Kuroda normal form if all rules are of the form

AB → CD

A→ BC

A→ B

A→ a

for variables A,B,C ,D and terminals a.

Theorem
For every context-sensitive grammar there exists a noncontracting grammar in Kuroda normal
form that produces the same language.

INF2080 Lecture :: 15th February 11 / 20

Kuroda Normal Form

Similar to CFG’s Chomsky Normal Form, CSG’s have a normal form of their own:

Definition (Kuroda Normal Form)

A noncontracting grammar is in Kuroda normal form if all rules are of the form

AB → CD

A→ BC

A→ B

A→ a

for variables A,B,C ,D and terminals a.

Theorem
For every context-sensitive grammar there exists a noncontracting grammar in Kuroda normal
form that produces the same language.

INF2080 Lecture :: 15th February 11 / 20

Linear Bounded Automata

So what type of computational model accepts precisely the context-sensitive languages?

→ linear bounded automata!
Essentially, LBAs are NFAs with a bounded tape as memory (as opposed to the stack for PDAs)

Definition
A linear bounded automaton (LBA) is a tuple (Q,Σ, Γ, δ, <,>, q0, qa, qr) where
Q,Σ, Γ, δ, q0, qa, qr are defined precisely as in a Turing machine, except that the transition
function can neither move the head to the left of the left marker < nor to the right of the right
marker >.

A LBA initializes in the configuration < q0w1w2 · · ·wn >. So, intuitively, the tape of the
Turing machine is restricted to the length of the input.

INF2080 Lecture :: 15th February 12 / 20

Linear Bounded Automata

So what type of computational model accepts precisely the context-sensitive languages?
→ linear bounded automata!

Essentially, LBAs are NFAs with a bounded tape as memory (as opposed to the stack for PDAs)

Definition
A linear bounded automaton (LBA) is a tuple (Q,Σ, Γ, δ, <,>, q0, qa, qr) where
Q,Σ, Γ, δ, q0, qa, qr are defined precisely as in a Turing machine, except that the transition
function can neither move the head to the left of the left marker < nor to the right of the right
marker >.

A LBA initializes in the configuration < q0w1w2 · · ·wn >. So, intuitively, the tape of the
Turing machine is restricted to the length of the input.

INF2080 Lecture :: 15th February 12 / 20

Linear Bounded Automata

So what type of computational model accepts precisely the context-sensitive languages?
→ linear bounded automata!
Essentially, LBAs are NFAs with a bounded tape as memory (as opposed to the stack for PDAs)

Definition
A linear bounded automaton (LBA) is a tuple (Q,Σ, Γ, δ, <,>, q0, qa, qr) where
Q,Σ, Γ, δ, q0, qa, qr are defined precisely as in a Turing machine, except that the transition
function can neither move the head to the left of the left marker < nor to the right of the right
marker >.

A LBA initializes in the configuration < q0w1w2 · · ·wn >. So, intuitively, the tape of the
Turing machine is restricted to the length of the input.

INF2080 Lecture :: 15th February 12 / 20

Linear Bounded Automata

So what type of computational model accepts precisely the context-sensitive languages?
→ linear bounded automata!
Essentially, LBAs are NFAs with a bounded tape as memory (as opposed to the stack for PDAs)

Definition
A linear bounded automaton (LBA) is a tuple (Q,Σ, Γ, δ, <,>, q0, qa, qr) where
Q,Σ, Γ, δ, q0, qa, qr are defined precisely as in a Turing machine, except that the transition
function can neither move the head to the left of the left marker < nor to the right of the right
marker >.

A LBA initializes in the configuration < q0w1w2 · · ·wn >. So, intuitively, the tape of the
Turing machine is restricted to the length of the input.

INF2080 Lecture :: 15th February 12 / 20

Linear Bounded Automata

So what type of computational model accepts precisely the context-sensitive languages?
→ linear bounded automata!
Essentially, LBAs are NFAs with a bounded tape as memory (as opposed to the stack for PDAs)

Definition
A linear bounded automaton (LBA) is a tuple (Q,Σ, Γ, δ, <,>, q0, qa, qr) where
Q,Σ, Γ, δ, q0, qa, qr are defined precisely as in a Turing machine, except that the transition
function can neither move the head to the left of the left marker < nor to the right of the right
marker >.

A LBA initializes in the configuration < q0w1w2 · · ·wn >. So, intuitively, the tape of the
Turing machine is restricted to the length of the input.

INF2080 Lecture :: 15th February 12 / 20

Myhill-Landweber-Kuroda Theorem

Theorem (Myhill-Landweber-Kuroda Theorem)

A language is context-sensitive iff there exists a linear bounded automaton that recognizes it.

Proof sketch for “⇒”: Construct an automaton with a tape containing the input,
nondeterministically guesses a rule in the languages grammar and applies the rule
“backwards”, i.e., replaces the input’s symbols occuring on the righthand side (RHS) of the
rule with the lefthand side (LHS) of the rule.
Example: Let aabbcc be the input and let the grammar contain the rule bB → bb. Then
applying this rule “backwards” on aabbcc yields the string aabBcc .
If the input can thus be rewritten to the start variable S , the machine accepts. Since the
grammar is noncontracting, i.e. |LHS|≤|RHS|, the string cannot get longer through
backwards application of rules. thus the head of the machine never has to leave the scope
of the input.→ this machine is a LBA.
Proof for “⇐” much more involved.

INF2080 Lecture :: 15th February 13 / 20

Myhill-Landweber-Kuroda Theorem

Theorem (Myhill-Landweber-Kuroda Theorem)

A language is context-sensitive iff there exists a linear bounded automaton that recognizes it.

Proof sketch for “⇒”: Construct an automaton with a tape containing the input,
nondeterministically guesses a rule in the languages grammar and applies the rule
“backwards”, i.e., replaces the input’s symbols occuring on the righthand side (RHS) of the
rule with the lefthand side (LHS) of the rule.

Example: Let aabbcc be the input and let the grammar contain the rule bB → bb. Then
applying this rule “backwards” on aabbcc yields the string aabBcc .
If the input can thus be rewritten to the start variable S , the machine accepts. Since the
grammar is noncontracting, i.e. |LHS|≤|RHS|, the string cannot get longer through
backwards application of rules. thus the head of the machine never has to leave the scope
of the input.→ this machine is a LBA.
Proof for “⇐” much more involved.

INF2080 Lecture :: 15th February 13 / 20

Myhill-Landweber-Kuroda Theorem

Theorem (Myhill-Landweber-Kuroda Theorem)

A language is context-sensitive iff there exists a linear bounded automaton that recognizes it.

Proof sketch for “⇒”: Construct an automaton with a tape containing the input,
nondeterministically guesses a rule in the languages grammar and applies the rule
“backwards”, i.e., replaces the input’s symbols occuring on the righthand side (RHS) of the
rule with the lefthand side (LHS) of the rule.
Example: Let aabbcc be the input and let the grammar contain the rule bB → bb. Then
applying this rule “backwards” on aabbcc yields the string aabBcc .

If the input can thus be rewritten to the start variable S , the machine accepts. Since the
grammar is noncontracting, i.e. |LHS|≤|RHS|, the string cannot get longer through
backwards application of rules. thus the head of the machine never has to leave the scope
of the input.→ this machine is a LBA.
Proof for “⇐” much more involved.

INF2080 Lecture :: 15th February 13 / 20

Myhill-Landweber-Kuroda Theorem

Theorem (Myhill-Landweber-Kuroda Theorem)

A language is context-sensitive iff there exists a linear bounded automaton that recognizes it.

Proof sketch for “⇒”: Construct an automaton with a tape containing the input,
nondeterministically guesses a rule in the languages grammar and applies the rule
“backwards”, i.e., replaces the input’s symbols occuring on the righthand side (RHS) of the
rule with the lefthand side (LHS) of the rule.
Example: Let aabbcc be the input and let the grammar contain the rule bB → bb. Then
applying this rule “backwards” on aabbcc yields the string aabBcc .
If the input can thus be rewritten to the start variable S , the machine accepts.

Since the
grammar is noncontracting, i.e. |LHS|≤|RHS|, the string cannot get longer through
backwards application of rules. thus the head of the machine never has to leave the scope
of the input.→ this machine is a LBA.
Proof for “⇐” much more involved.

INF2080 Lecture :: 15th February 13 / 20

Myhill-Landweber-Kuroda Theorem

Theorem (Myhill-Landweber-Kuroda Theorem)

A language is context-sensitive iff there exists a linear bounded automaton that recognizes it.

Proof sketch for “⇒”: Construct an automaton with a tape containing the input,
nondeterministically guesses a rule in the languages grammar and applies the rule
“backwards”, i.e., replaces the input’s symbols occuring on the righthand side (RHS) of the
rule with the lefthand side (LHS) of the rule.
Example: Let aabbcc be the input and let the grammar contain the rule bB → bb. Then
applying this rule “backwards” on aabbcc yields the string aabBcc .
If the input can thus be rewritten to the start variable S , the machine accepts. Since the
grammar is noncontracting, i.e. |LHS|≤|RHS|, the string cannot get longer through
backwards application of rules. thus the head of the machine never has to leave the scope
of the input.

→ this machine is a LBA.
Proof for “⇐” much more involved.

INF2080 Lecture :: 15th February 13 / 20

Myhill-Landweber-Kuroda Theorem

Theorem (Myhill-Landweber-Kuroda Theorem)

A language is context-sensitive iff there exists a linear bounded automaton that recognizes it.

Proof sketch for “⇒”: Construct an automaton with a tape containing the input,
nondeterministically guesses a rule in the languages grammar and applies the rule
“backwards”, i.e., replaces the input’s symbols occuring on the righthand side (RHS) of the
rule with the lefthand side (LHS) of the rule.
Example: Let aabbcc be the input and let the grammar contain the rule bB → bb. Then
applying this rule “backwards” on aabbcc yields the string aabBcc .
If the input can thus be rewritten to the start variable S , the machine accepts. Since the
grammar is noncontracting, i.e. |LHS|≤|RHS|, the string cannot get longer through
backwards application of rules. thus the head of the machine never has to leave the scope
of the input.→ this machine is a LBA.

Proof for “⇐” much more involved.

INF2080 Lecture :: 15th February 13 / 20

Myhill-Landweber-Kuroda Theorem

Theorem (Myhill-Landweber-Kuroda Theorem)

A language is context-sensitive iff there exists a linear bounded automaton that recognizes it.

Proof sketch for “⇒”: Construct an automaton with a tape containing the input,
nondeterministically guesses a rule in the languages grammar and applies the rule
“backwards”, i.e., replaces the input’s symbols occuring on the righthand side (RHS) of the
rule with the lefthand side (LHS) of the rule.
Example: Let aabbcc be the input and let the grammar contain the rule bB → bb. Then
applying this rule “backwards” on aabbcc yields the string aabBcc .
If the input can thus be rewritten to the start variable S , the machine accepts. Since the
grammar is noncontracting, i.e. |LHS|≤|RHS|, the string cannot get longer through
backwards application of rules. thus the head of the machine never has to leave the scope
of the input.→ this machine is a LBA.
Proof for “⇐” much more involved.

INF2080 Lecture :: 15th February 13 / 20

Closure properties of CSLs

Union L1 ∪ L2

: add new start variable S and rule S → S1|S2.
Concatanation L1L2: add new start variable S and rule S → S1S2.
Kleene star L∗1: add new start variable S and rules S → ε|S1S1

Reversal LR1 = {wR | w ∈ L1}: create grammar that contains a rule γRBαR → γRβRαR

for each rule αBγ → αβγ in the grammar of L1.
Intersection L1 ∩ L2: Use multitape LBAs (equivalent to LBA, without proof). Simulate
the computation for each language on a separate tape; if both accept, the automaton
accepts.
Recall that context-free languages are not closed under intersection and complementation!

INF2080 Lecture :: 15th February 14 / 20

Closure properties of CSLs

Union L1 ∪ L2: add new start variable S and rule S → S1|S2.
Concatanation L1L2

: add new start variable S and rule S → S1S2.
Kleene star L∗1: add new start variable S and rules S → ε|S1S1

Reversal LR1 = {wR | w ∈ L1}: create grammar that contains a rule γRBαR → γRβRαR

for each rule αBγ → αβγ in the grammar of L1.
Intersection L1 ∩ L2: Use multitape LBAs (equivalent to LBA, without proof). Simulate
the computation for each language on a separate tape; if both accept, the automaton
accepts.
Recall that context-free languages are not closed under intersection and complementation!

INF2080 Lecture :: 15th February 14 / 20

Closure properties of CSLs

Union L1 ∪ L2: add new start variable S and rule S → S1|S2.
Concatanation L1L2: add new start variable S and rule S → S1S2.
Kleene star L∗1

: add new start variable S and rules S → ε|S1S1

Reversal LR1 = {wR | w ∈ L1}: create grammar that contains a rule γRBαR → γRβRαR

for each rule αBγ → αβγ in the grammar of L1.
Intersection L1 ∩ L2: Use multitape LBAs (equivalent to LBA, without proof). Simulate
the computation for each language on a separate tape; if both accept, the automaton
accepts.
Recall that context-free languages are not closed under intersection and complementation!

INF2080 Lecture :: 15th February 14 / 20

Closure properties of CSLs

Union L1 ∪ L2: add new start variable S and rule S → S1|S2.
Concatanation L1L2: add new start variable S and rule S → S1S2.
Kleene star L∗1: add new start variable S and rules S → ε|S1S1

Reversal LR1 = {wR | w ∈ L1}

: create grammar that contains a rule γRBαR → γRβRαR

for each rule αBγ → αβγ in the grammar of L1.
Intersection L1 ∩ L2: Use multitape LBAs (equivalent to LBA, without proof). Simulate
the computation for each language on a separate tape; if both accept, the automaton
accepts.
Recall that context-free languages are not closed under intersection and complementation!

INF2080 Lecture :: 15th February 14 / 20

Closure properties of CSLs

Union L1 ∪ L2: add new start variable S and rule S → S1|S2.
Concatanation L1L2: add new start variable S and rule S → S1S2.
Kleene star L∗1: add new start variable S and rules S → ε|S1S1

Reversal LR1 = {wR | w ∈ L1}: create grammar that contains a rule γRBαR → γRβRαR

for each rule αBγ → αβγ in the grammar of L1.
Intersection L1 ∩ L2

: Use multitape LBAs (equivalent to LBA, without proof). Simulate
the computation for each language on a separate tape; if both accept, the automaton
accepts.
Recall that context-free languages are not closed under intersection and complementation!

INF2080 Lecture :: 15th February 14 / 20

Closure properties of CSLs

Union L1 ∪ L2: add new start variable S and rule S → S1|S2.
Concatanation L1L2: add new start variable S and rule S → S1S2.
Kleene star L∗1: add new start variable S and rules S → ε|S1S1

Reversal LR1 = {wR | w ∈ L1}: create grammar that contains a rule γRBαR → γRβRαR

for each rule αBγ → αβγ in the grammar of L1.
Intersection L1 ∩ L2: Use multitape LBAs (equivalent to LBA, without proof). Simulate
the computation for each language on a separate tape; if both accept, the automaton
accepts.
Recall that context-free languages are not closed under intersection and complementation!

INF2080 Lecture :: 15th February 14 / 20

LBA Problems

But what about the complement of a context-sensitive language?

Kuroda phrased two open
problems related to LBAs in the 60’s.

First LBA Problem: Are nondeterministic LBA’s equivalent to deterministic LBA’s?
equivalent complexity theoretic question: is NSPACE(O(n)) = DSPACE(O(n))?
Second LBA Problem: Is the class of languages accepted by LBA’s closed under
complementation?
equivalent complexity theoretic question: is NSPACE(O(n)) = co-NSPACE(O(n))?

The first problem is still an open question, while the second was answered in 1988 by
Immerman and Szelepscényi.

INF2080 Lecture :: 15th February 15 / 20

LBA Problems

But what about the complement of a context-sensitive language? Kuroda phrased two open
problems related to LBAs in the 60’s.

First LBA Problem: Are nondeterministic LBA’s equivalent to deterministic LBA’s?
equivalent complexity theoretic question: is NSPACE(O(n)) = DSPACE(O(n))?
Second LBA Problem: Is the class of languages accepted by LBA’s closed under
complementation?
equivalent complexity theoretic question: is NSPACE(O(n)) = co-NSPACE(O(n))?

The first problem is still an open question, while the second was answered in 1988 by
Immerman and Szelepscényi.

INF2080 Lecture :: 15th February 15 / 20

LBA Problems

But what about the complement of a context-sensitive language? Kuroda phrased two open
problems related to LBAs in the 60’s.

First LBA Problem: Are nondeterministic LBA’s equivalent to deterministic LBA’s?
equivalent complexity theoretic question: is NSPACE(O(n)) = DSPACE(O(n))?

Second LBA Problem: Is the class of languages accepted by LBA’s closed under
complementation?
equivalent complexity theoretic question: is NSPACE(O(n)) = co-NSPACE(O(n))?

The first problem is still an open question, while the second was answered in 1988 by
Immerman and Szelepscényi.

INF2080 Lecture :: 15th February 15 / 20

LBA Problems

But what about the complement of a context-sensitive language? Kuroda phrased two open
problems related to LBAs in the 60’s.

First LBA Problem: Are nondeterministic LBA’s equivalent to deterministic LBA’s?
equivalent complexity theoretic question: is NSPACE(O(n)) = DSPACE(O(n))?
Second LBA Problem: Is the class of languages accepted by LBA’s closed under
complementation?
equivalent complexity theoretic question: is NSPACE(O(n)) = co-NSPACE(O(n))?

The first problem is still an open question, while the second was answered in 1988 by
Immerman and Szelepscényi.

INF2080 Lecture :: 15th February 15 / 20

LBA Problems

But what about the complement of a context-sensitive language? Kuroda phrased two open
problems related to LBAs in the 60’s.

First LBA Problem: Are nondeterministic LBA’s equivalent to deterministic LBA’s?
equivalent complexity theoretic question: is NSPACE(O(n)) = DSPACE(O(n))?
Second LBA Problem: Is the class of languages accepted by LBA’s closed under
complementation?
equivalent complexity theoretic question: is NSPACE(O(n)) = co-NSPACE(O(n))?

The first problem is still an open question, while the second was answered in 1988 by
Immerman and Szelepscényi.

INF2080 Lecture :: 15th February 15 / 20

Complement of CSLs

Theorem (Immerman-Szelepcsényi Theorem)

NSPACE(O(n)) = co-NSPACE(O(n)).

And hence

Theorem
The class of context-sensitive languages is closed under complementation.

INF2080 Lecture :: 15th February 16 / 20

Decidability spoilers for the next weeks

We will soon have a look at some decidability results of the various classes of languages we
have seen:

x ∈ L L = ∅ L = Σ∗ L = K L ∩ K = ∅
regular X X X X X
(DCFL X X X X X)
CFL X X X X X
CSL X X X X X
decidable X X X X X
Turing-rec. X X X X X

INF2080 Lecture :: 15th February 17 / 20

Chomsky Hierarchy

Type-0: recursively enumerable, i.e., Turing-recognizable languages.
Type-1: context-sensitive languages.
Type-2: context-free languages.
Type-3: regular languages.

So we’ve seen/will see:
{Regular Languages} ({CFLs}({CSLs} ({Turing-rec. Languages} and
{Regular Languages} ({CFLs}({Decidable Languages} ({Turing-rec. Languages}.
But what is the relationship between {CSLs} and {Decidable Languages}?

INF2080 Lecture :: 15th February 18 / 20

Chomsky Hierarchy

Type-0: recursively enumerable, i.e., Turing-recognizable languages.
Type-1: context-sensitive languages.
Type-2: context-free languages.
Type-3: regular languages.

So we’ve seen/will see:
{Regular Languages} ({CFLs}({CSLs} ({Turing-rec. Languages} and
{Regular Languages} ({CFLs}({Decidable Languages} ({Turing-rec. Languages}.

But what is the relationship between {CSLs} and {Decidable Languages}?

INF2080 Lecture :: 15th February 18 / 20

Chomsky Hierarchy

Type-0: recursively enumerable, i.e., Turing-recognizable languages.
Type-1: context-sensitive languages.
Type-2: context-free languages.
Type-3: regular languages.

So we’ve seen/will see:
{Regular Languages} ({CFLs}({CSLs} ({Turing-rec. Languages} and
{Regular Languages} ({CFLs}({Decidable Languages} ({Turing-rec. Languages}.
But what is the relationship between {CSLs} and {Decidable Languages}?

INF2080 Lecture :: 15th February 18 / 20

Decidable vs. Context-sensitive

Without proof:

Theorem
The class of context-sensitive languages is decidable.

Hence, {CSLs} ⊆ {Decidable Languages}. However, there exists a decidable language that is
not context-sensitive!
Let L = {w | w is a string representation of a CSG G and w 6∈ L(G)}. First of all:

Theorem
L is decidable.

Proof idea: Given an input w , check if it represents a CSG. Then use the decider from the
previous theorem to check whether w 6∈ L(G).

INF2080 Lecture :: 15th February 19 / 20

Decidable vs. Context-sensitive

Without proof:

Theorem
The class of context-sensitive languages is decidable.

Hence, {CSLs} ⊆ {Decidable Languages}.

However, there exists a decidable language that is
not context-sensitive!
Let L = {w | w is a string representation of a CSG G and w 6∈ L(G)}. First of all:

Theorem
L is decidable.

Proof idea: Given an input w , check if it represents a CSG. Then use the decider from the
previous theorem to check whether w 6∈ L(G).

INF2080 Lecture :: 15th February 19 / 20

Decidable vs. Context-sensitive

Without proof:

Theorem
The class of context-sensitive languages is decidable.

Hence, {CSLs} ⊆ {Decidable Languages}. However, there exists a decidable language that is
not context-sensitive!

Let L = {w | w is a string representation of a CSG G and w 6∈ L(G)}. First of all:

Theorem
L is decidable.

Proof idea: Given an input w , check if it represents a CSG. Then use the decider from the
previous theorem to check whether w 6∈ L(G).

INF2080 Lecture :: 15th February 19 / 20

Decidable vs. Context-sensitive

Without proof:

Theorem
The class of context-sensitive languages is decidable.

Hence, {CSLs} ⊆ {Decidable Languages}. However, there exists a decidable language that is
not context-sensitive!
Let L = {w | w is a string representation of a CSG G and w 6∈ L(G)}.

First of all:

Theorem
L is decidable.

Proof idea: Given an input w , check if it represents a CSG. Then use the decider from the
previous theorem to check whether w 6∈ L(G).

INF2080 Lecture :: 15th February 19 / 20

Decidable vs. Context-sensitive

Without proof:

Theorem
The class of context-sensitive languages is decidable.

Hence, {CSLs} ⊆ {Decidable Languages}. However, there exists a decidable language that is
not context-sensitive!
Let L = {w | w is a string representation of a CSG G and w 6∈ L(G)}. First of all:

Theorem
L is decidable.

Proof idea: Given an input w , check if it represents a CSG. Then use the decider from the
previous theorem to check whether w 6∈ L(G).

INF2080 Lecture :: 15th February 19 / 20

Decidable vs. Context-sensitive

Without proof:

Theorem
The class of context-sensitive languages is decidable.

Hence, {CSLs} ⊆ {Decidable Languages}. However, there exists a decidable language that is
not context-sensitive!
Let L = {w | w is a string representation of a CSG G and w 6∈ L(G)}. First of all:

Theorem
L is decidable.

Proof idea: Given an input w , check if it represents a CSG. Then use the decider from the
previous theorem to check whether w 6∈ L(G).

INF2080 Lecture :: 15th February 19 / 20

A decidable, non-context-sensitive language

Let L = {w | w is a string representation of a CSG G and w 6∈ L(G)}.

Theorem
L is not context-sensitive.

Proof idea: Assume L is context-sensitive. Then let w be a string representation of its CSG
G .

Question: Is w ∈ L(G) = L?

Assume w ∈ L. Then by definition of L, w is not contained in L(G) = L, i.e., w 6∈ L.
Contradiction!
Assume w 6∈ L. Then w represents a CSG and is not a member of of the language it
represents. Hence, w ∈ L(G) = L. Contradiction!

⇒ {CSLs} ({Decidable Languages}!

INF2080 Lecture :: 15th February 20 / 20

A decidable, non-context-sensitive language

Let L = {w | w is a string representation of a CSG G and w 6∈ L(G)}.

Theorem
L is not context-sensitive.

Proof idea: Assume L is context-sensitive. Then let w be a string representation of its CSG
G . Question: Is w ∈ L(G) = L?

Assume w ∈ L. Then by definition of L, w is not contained in L(G) = L, i.e., w 6∈ L.
Contradiction!
Assume w 6∈ L. Then w represents a CSG and is not a member of of the language it
represents. Hence, w ∈ L(G) = L. Contradiction!

⇒ {CSLs} ({Decidable Languages}!

INF2080 Lecture :: 15th February 20 / 20

A decidable, non-context-sensitive language

Let L = {w | w is a string representation of a CSG G and w 6∈ L(G)}.

Theorem
L is not context-sensitive.

Proof idea: Assume L is context-sensitive. Then let w be a string representation of its CSG
G . Question: Is w ∈ L(G) = L?

Assume w ∈ L. Then by definition of L, w is not contained in L(G) = L, i.e., w 6∈ L.
Contradiction!

Assume w 6∈ L. Then w represents a CSG and is not a member of of the language it
represents. Hence, w ∈ L(G) = L. Contradiction!

⇒ {CSLs} ({Decidable Languages}!

INF2080 Lecture :: 15th February 20 / 20

A decidable, non-context-sensitive language

Let L = {w | w is a string representation of a CSG G and w 6∈ L(G)}.

Theorem
L is not context-sensitive.

Proof idea: Assume L is context-sensitive. Then let w be a string representation of its CSG
G . Question: Is w ∈ L(G) = L?

Assume w ∈ L. Then by definition of L, w is not contained in L(G) = L, i.e., w 6∈ L.
Contradiction!
Assume w 6∈ L. Then w represents a CSG and is not a member of of the language it
represents. Hence, w ∈ L(G) = L. Contradiction!

⇒ {CSLs} ({Decidable Languages}!

INF2080 Lecture :: 15th February 20 / 20

A decidable, non-context-sensitive language

Let L = {w | w is a string representation of a CSG G and w 6∈ L(G)}.

Theorem
L is not context-sensitive.

Proof idea: Assume L is context-sensitive. Then let w be a string representation of its CSG
G . Question: Is w ∈ L(G) = L?

Assume w ∈ L. Then by definition of L, w is not contained in L(G) = L, i.e., w 6∈ L.
Contradiction!
Assume w 6∈ L. Then w represents a CSG and is not a member of of the language it
represents. Hence, w ∈ L(G) = L. Contradiction!

⇒ {CSLs} ({Decidable Languages}!

INF2080 Lecture :: 15th February 20 / 20

