
INF2080
1. Introduction and Regular Languages

Daniel Lupp

Universitetet i Oslo

17th January 2017

Department of
Informatics

University of
Oslo

INF2080 Lecture :: 17th January 1 / 26



Details on the Course

course consists of two parts: computability theory (first half of semester) and complexity
theory (second half, held by Lars Kristiansen)

closely follows Michael Sipser’s book “An Introduction to the Theory of Computation” (3rd
International Edition) both in course content and exercises
prerequisites are INF1080 and chapter 0 of the book (very brief and incomplete refresher
soon)
as always: lectures are useful, but doing exercises yourself is the most important! → group
exercises

INF2080 Lecture :: 17th January 2 / 26



Details on the Course

course consists of two parts: computability theory (first half of semester) and complexity
theory (second half, held by Lars Kristiansen)
closely follows Michael Sipser’s book “An Introduction to the Theory of Computation” (3rd
International Edition) both in course content and exercises

prerequisites are INF1080 and chapter 0 of the book (very brief and incomplete refresher
soon)
as always: lectures are useful, but doing exercises yourself is the most important! → group
exercises

INF2080 Lecture :: 17th January 2 / 26



Details on the Course

course consists of two parts: computability theory (first half of semester) and complexity
theory (second half, held by Lars Kristiansen)
closely follows Michael Sipser’s book “An Introduction to the Theory of Computation” (3rd
International Edition) both in course content and exercises
prerequisites are INF1080 and chapter 0 of the book (very brief and incomplete refresher
soon)

as always: lectures are useful, but doing exercises yourself is the most important! → group
exercises

INF2080 Lecture :: 17th January 2 / 26



Details on the Course

course consists of two parts: computability theory (first half of semester) and complexity
theory (second half, held by Lars Kristiansen)
closely follows Michael Sipser’s book “An Introduction to the Theory of Computation” (3rd
International Edition) both in course content and exercises
prerequisites are INF1080 and chapter 0 of the book (very brief and incomplete refresher
soon)
as always: lectures are useful, but doing exercises yourself is the most important! → group
exercises

INF2080 Lecture :: 17th January 2 / 26



Setup for Computability Theory

For the first half of the course:
Tuesday lecture: new theory and material
Wednesday lecture: sometimes new theory and material, but mostly reserved for in-depth
discussion and examples

INF2080 Lecture :: 17th January 3 / 26



So what’s it all about?

Alan Turing
(1912-1954)
“Father” of modern
computing
very interesting (and
sad) story

→ Turing machines

Noam Chomsky
(1928-)
“Father” of modern
linguistics
classification of formal
languages

→ Chomsky hierarchy

INF2080 Lecture :: 17th January 4 / 26



So what’s it all about?

Alan Turing
(1912-1954)

“Father” of modern
computing
very interesting (and
sad) story

→ Turing machines

Noam Chomsky
(1928-)
“Father” of modern
linguistics
classification of formal
languages

→ Chomsky hierarchy

INF2080 Lecture :: 17th January 4 / 26



So what’s it all about?

Alan Turing
(1912-1954)
“Father” of modern
computing
very interesting (and
sad) story

→ Turing machines

Noam Chomsky
(1928-)
“Father” of modern
linguistics
classification of formal
languages

→ Chomsky hierarchy

INF2080 Lecture :: 17th January 4 / 26



So what’s it all about?

Alan Turing
(1912-1954)
“Father” of modern
computing
very interesting (and
sad) story

→ Turing machines

Noam Chomsky
(1928-)
“Father” of modern
linguistics
classification of formal
languages

→ Chomsky hierarchy

INF2080 Lecture :: 17th January 4 / 26



So what’s it all about?

Alan Turing
(1912-1954)
“Father” of modern
computing
very interesting (and
sad) story

→ Turing machines

Noam Chomsky
(1928-)
“Father” of modern
linguistics
classification of formal
languages

→ Chomsky hierarchy

INF2080 Lecture :: 17th January 4 / 26



So what’s it all about?

Alan Turing
(1912-1954)
“Father” of modern
computing
very interesting (and
sad) story

→ Turing machines

Noam Chomsky
(1928-)
“Father” of modern
linguistics

classification of formal
languages

→ Chomsky hierarchy

INF2080 Lecture :: 17th January 4 / 26



So what’s it all about?

Alan Turing
(1912-1954)
“Father” of modern
computing
very interesting (and
sad) story

→ Turing machines

Noam Chomsky
(1928-)
“Father” of modern
linguistics
classification of formal
languages

→ Chomsky hierarchy

INF2080 Lecture :: 17th January 4 / 26



So what’s it all about?

Automata and formal languages (e.g., programming languages: programs considered as
“words” in a language)

What is an “algorithm”?
Turing machines
Does a “solver” for a given problem always terminate?
If yes, how expensive is it? (→ complexity)

INF2080 Lecture :: 17th January 5 / 26



So what’s it all about?

Automata and formal languages (e.g., programming languages: programs considered as
“words” in a language)
What is an “algorithm”?

Turing machines
Does a “solver” for a given problem always terminate?
If yes, how expensive is it? (→ complexity)

INF2080 Lecture :: 17th January 5 / 26



So what’s it all about?

Automata and formal languages (e.g., programming languages: programs considered as
“words” in a language)
What is an “algorithm”?
Turing machines

Does a “solver” for a given problem always terminate?
If yes, how expensive is it? (→ complexity)

INF2080 Lecture :: 17th January 5 / 26



So what’s it all about?

Automata and formal languages (e.g., programming languages: programs considered as
“words” in a language)
What is an “algorithm”?
Turing machines
Does a “solver” for a given problem always terminate?

If yes, how expensive is it? (→ complexity)

INF2080 Lecture :: 17th January 5 / 26



So what’s it all about?

Automata and formal languages (e.g., programming languages: programs considered as
“words” in a language)
What is an “algorithm”?
Turing machines
Does a “solver” for a given problem always terminate?
If yes, how expensive is it? (→ complexity)

INF2080 Lecture :: 17th January 5 / 26



The Basics

Set: an unordered collection of distinct objects called elements
{a, b} = {a, a, b} = {b, a}
Set union: A ∪ B = {x | x ∈ A or x ∈ B}
Set intersection: A ∩ B = {x | x ∈ A and x ∈ B}
Set complement: Ā = {x | x 6∈ A}
de Morgan’s laws: A ∪ B = Ā ∩ B̄ and A ∩ B = Ā ∪ B̄

Power Set: P(A) = {S | S ⊆ A}

, example: P({0, 1}) = {∅, {0}, {1}, {0, 1}}.

INF2080 Lecture :: 17th January 6 / 26



The Basics

Set: an unordered collection of distinct objects called elements
{a, b} = {a, a, b} = {b, a}
Set union: A ∪ B = {x | x ∈ A or x ∈ B}
Set intersection: A ∩ B = {x | x ∈ A and x ∈ B}
Set complement: Ā = {x | x 6∈ A}
de Morgan’s laws: A ∪ B = Ā ∩ B̄ and A ∩ B = Ā ∪ B̄

Power Set: P(A) = {S | S ⊆ A}, example: P({0, 1}) = {∅, {0}, {1}, {0, 1}}.

INF2080 Lecture :: 17th January 6 / 26



The Basics

Tuple: ordered collection of objects
(a, a, b) 6= (a, b)

Cartesian product: A× B = {(a, b) | a ∈ A, b ∈ B}
Function: f : A→ B . Assigns to each element a ∈ A a unique element f (a) ∈ B .

INF2080 Lecture :: 17th January 7 / 26



Finite Automata

computational model of a computer with finite memory

Takes an input w and decides whether to accept or reject
Can be used to answer such questions as “Is w a palindrome?” or “Is w a valid program in
a given programming language?”
usual depicted as a graph for ease of reading:
nodes represent states in which the automaton can be
edges between nodes represent the transition between states given a parsed input

always exactly one start node: start

as well as some accept states:

INF2080 Lecture :: 17th January 8 / 26



Finite Automata

computational model of a computer with finite memory
Takes an input w and decides whether to accept or reject

Can be used to answer such questions as “Is w a palindrome?” or “Is w a valid program in
a given programming language?”
usual depicted as a graph for ease of reading:
nodes represent states in which the automaton can be
edges between nodes represent the transition between states given a parsed input

always exactly one start node: start

as well as some accept states:

INF2080 Lecture :: 17th January 8 / 26



Finite Automata

computational model of a computer with finite memory
Takes an input w and decides whether to accept or reject
Can be used to answer such questions as “Is w a palindrome?” or “Is w a valid program in
a given programming language?”

usual depicted as a graph for ease of reading:
nodes represent states in which the automaton can be
edges between nodes represent the transition between states given a parsed input

always exactly one start node: start

as well as some accept states:

INF2080 Lecture :: 17th January 8 / 26



Finite Automata

computational model of a computer with finite memory
Takes an input w and decides whether to accept or reject
Can be used to answer such questions as “Is w a palindrome?” or “Is w a valid program in
a given programming language?”
usual depicted as a graph for ease of reading:
nodes represent states in which the automaton can be

edges between nodes represent the transition between states given a parsed input

always exactly one start node: start

as well as some accept states:

INF2080 Lecture :: 17th January 8 / 26



Finite Automata

computational model of a computer with finite memory
Takes an input w and decides whether to accept or reject
Can be used to answer such questions as “Is w a palindrome?” or “Is w a valid program in
a given programming language?”
usual depicted as a graph for ease of reading:
nodes represent states in which the automaton can be
edges between nodes represent the transition between states given a parsed input

always exactly one start node: start

as well as some accept states:

INF2080 Lecture :: 17th January 8 / 26



Finite Automata

computational model of a computer with finite memory
Takes an input w and decides whether to accept or reject
Can be used to answer such questions as “Is w a palindrome?” or “Is w a valid program in
a given programming language?”
usual depicted as a graph for ease of reading:
nodes represent states in which the automaton can be
edges between nodes represent the transition between states given a parsed input

always exactly one start node: start

as well as some accept states:

INF2080 Lecture :: 17th January 8 / 26



Finite Automata

computational model of a computer with finite memory
Takes an input w and decides whether to accept or reject
Can be used to answer such questions as “Is w a palindrome?” or “Is w a valid program in
a given programming language?”
usual depicted as a graph for ease of reading:
nodes represent states in which the automaton can be
edges between nodes represent the transition between states given a parsed input

always exactly one start node: start

as well as some accept states:

INF2080 Lecture :: 17th January 8 / 26



Finite Automata

Example:

start

0

1

0

INF2080 Lecture :: 17th January 9 / 26



Finite Automata

What does it mean for a finite automaton to “accept” an input w?

start

0

1

0

starting at the start state, for each symbol in the input,
follow a corresponding transition edge to the next state;
the entire input must be parsed;
the final state must be an accepting state.
the example automaton accepts all inputs, words, that
start and end with 0, with only 1’s in between.

INF2080 Lecture :: 17th January 10 / 26



Finite Automata

What does it mean for a finite automaton to “accept” an input w?

start

0

1

0

starting at the start state, for each symbol in the input,
follow a corresponding transition edge to the next state;

the entire input must be parsed;
the final state must be an accepting state.
the example automaton accepts all inputs, words, that
start and end with 0, with only 1’s in between.

INF2080 Lecture :: 17th January 10 / 26



Finite Automata

What does it mean for a finite automaton to “accept” an input w?

start

0

1

0

starting at the start state, for each symbol in the input,
follow a corresponding transition edge to the next state;
the entire input must be parsed;

the final state must be an accepting state.
the example automaton accepts all inputs, words, that
start and end with 0, with only 1’s in between.

INF2080 Lecture :: 17th January 10 / 26



Finite Automata

What does it mean for a finite automaton to “accept” an input w?

start

0

1

0

starting at the start state, for each symbol in the input,
follow a corresponding transition edge to the next state;
the entire input must be parsed;
the final state must be an accepting state.

the example automaton accepts all inputs, words, that
start and end with 0, with only 1’s in between.

INF2080 Lecture :: 17th January 10 / 26



Finite Automata

What does it mean for a finite automaton to “accept” an input w?

start

0

1

0

starting at the start state, for each symbol in the input,
follow a corresponding transition edge to the next state;
the entire input must be parsed;
the final state must be an accepting state.
the example automaton accepts all inputs, words, that
start and end with 0, with only 1’s in between.

INF2080 Lecture :: 17th January 10 / 26



Deterministic Finite Automata

Definition
A deterministic finite automaton (DFA) is a 5-tuple (Q,Σ, δ, q0,F ), where

1 Q is a finite set of states

2 Σ is a finite set called the alphabet
3 δ : Q × Σ→ Q the transition function
4 q0 the start state
5 F ⊆ Q the set of accept states.

INF2080 Lecture :: 17th January 11 / 26



Deterministic Finite Automata

Definition
A deterministic finite automaton (DFA) is a 5-tuple (Q,Σ, δ, q0,F ), where

1 Q is a finite set of states
2 Σ is a finite set called the alphabet

3 δ : Q × Σ→ Q the transition function
4 q0 the start state
5 F ⊆ Q the set of accept states.

INF2080 Lecture :: 17th January 11 / 26



Deterministic Finite Automata

Definition
A deterministic finite automaton (DFA) is a 5-tuple (Q,Σ, δ, q0,F ), where

1 Q is a finite set of states
2 Σ is a finite set called the alphabet
3 δ : Q × Σ→ Q the transition function

4 q0 the start state
5 F ⊆ Q the set of accept states.

INF2080 Lecture :: 17th January 11 / 26



Deterministic Finite Automata

Definition
A deterministic finite automaton (DFA) is a 5-tuple (Q,Σ, δ, q0,F ), where

1 Q is a finite set of states
2 Σ is a finite set called the alphabet
3 δ : Q × Σ→ Q the transition function
4 q0 the start state

5 F ⊆ Q the set of accept states.

INF2080 Lecture :: 17th January 11 / 26



Deterministic Finite Automata

Definition
A deterministic finite automaton (DFA) is a 5-tuple (Q,Σ, δ, q0,F ), where

1 Q is a finite set of states
2 Σ is a finite set called the alphabet
3 δ : Q × Σ→ Q the transition function
4 q0 the start state
5 F ⊆ Q the set of accept states.

INF2080 Lecture :: 17th January 11 / 26



Finite Automata

What does it mean for a finite automaton to “accept” an input w?

start

0

1

0

starting at the start state, for each symbol in the input,
follow a corresponding transition edge to the next state;
the entire input must be parsed;
the final state must be an accepting state.
the example automaton accepts all inputs, words, that
start and end with 0, with only 1’s in between.

INF2080 Lecture :: 17th January 12 / 26



Deterministic Finite Automata

Definition
A DFA (Q,Σ, δ, q0,F ) accepts an input w = w1w2 · · ·wn if there exists a sequence of states
s0 · · · sn such that

1 s0 is the start state q0

2 δ(si ,wi+1) = si+1 (a valid transition is chosen for the currently parsed input symbol)
3 sn ∈ F , i.e., is an accept state.

INF2080 Lecture :: 17th January 13 / 26



Regular Languages

Given an alphabet Σ a language L is a set of words w = w1 · · ·wn such that each wi ∈ Σ.

Definition
A language L is a regular language if there exists a DFA M that accepts each word in L, i.e.,
L = {w | M accepts w}.

Since languages are sets, we can apply various operations on them:
Union: the union of two languages L1 and L2 is L1 ∪ L2 = {w | w ∈ L1 or w ∈ L2}
Intersection: similarly, L1 ∩ L2 = {w | w ∈ L1 and w ∈ L2}.
Concatanation: L1L2 = {w | w = w1w2,w1 ∈ L1,w2 ∈ L2}
Kleene star: L∗1 = {x1x2 · · · xk | k ≥ 0, each xi ∈ L1}

INF2080 Lecture :: 17th January 14 / 26



Regular Languages

Given an alphabet Σ a language L is a set of words w = w1 · · ·wn such that each wi ∈ Σ.

Definition
A language L is a regular language if there exists a DFA M that accepts each word in L, i.e.,
L = {w | M accepts w}.

Since languages are sets, we can apply various operations on them:
Union: the union of two languages L1 and L2 is L1 ∪ L2 = {w | w ∈ L1 or w ∈ L2}
Intersection: similarly, L1 ∩ L2 = {w | w ∈ L1 and w ∈ L2}.
Concatanation: L1L2 = {w | w = w1w2,w1 ∈ L1,w2 ∈ L2}
Kleene star: L∗1 = {x1x2 · · · xk | k ≥ 0, each xi ∈ L1}

INF2080 Lecture :: 17th January 14 / 26



Regular Languages

Given an alphabet Σ a language L is a set of words w = w1 · · ·wn such that each wi ∈ Σ.

Definition
A language L is a regular language if there exists a DFA M that accepts each word in L, i.e.,
L = {w | M accepts w}.

Since languages are sets, we can apply various operations on them:
Union: the union of two languages L1 and L2 is L1 ∪ L2 = {w | w ∈ L1 or w ∈ L2}

Intersection: similarly, L1 ∩ L2 = {w | w ∈ L1 and w ∈ L2}.
Concatanation: L1L2 = {w | w = w1w2,w1 ∈ L1,w2 ∈ L2}
Kleene star: L∗1 = {x1x2 · · · xk | k ≥ 0, each xi ∈ L1}

INF2080 Lecture :: 17th January 14 / 26



Regular Languages

Given an alphabet Σ a language L is a set of words w = w1 · · ·wn such that each wi ∈ Σ.

Definition
A language L is a regular language if there exists a DFA M that accepts each word in L, i.e.,
L = {w | M accepts w}.

Since languages are sets, we can apply various operations on them:
Union: the union of two languages L1 and L2 is L1 ∪ L2 = {w | w ∈ L1 or w ∈ L2}
Intersection: similarly, L1 ∩ L2 = {w | w ∈ L1 and w ∈ L2}.

Concatanation: L1L2 = {w | w = w1w2,w1 ∈ L1,w2 ∈ L2}
Kleene star: L∗1 = {x1x2 · · · xk | k ≥ 0, each xi ∈ L1}

INF2080 Lecture :: 17th January 14 / 26



Regular Languages

Given an alphabet Σ a language L is a set of words w = w1 · · ·wn such that each wi ∈ Σ.

Definition
A language L is a regular language if there exists a DFA M that accepts each word in L, i.e.,
L = {w | M accepts w}.

Since languages are sets, we can apply various operations on them:
Union: the union of two languages L1 and L2 is L1 ∪ L2 = {w | w ∈ L1 or w ∈ L2}
Intersection: similarly, L1 ∩ L2 = {w | w ∈ L1 and w ∈ L2}.
Concatanation: L1L2 = {w | w = w1w2,w1 ∈ L1,w2 ∈ L2}

Kleene star: L∗1 = {x1x2 · · · xk | k ≥ 0, each xi ∈ L1}

INF2080 Lecture :: 17th January 14 / 26



Regular Languages

Given an alphabet Σ a language L is a set of words w = w1 · · ·wn such that each wi ∈ Σ.

Definition
A language L is a regular language if there exists a DFA M that accepts each word in L, i.e.,
L = {w | M accepts w}.

Since languages are sets, we can apply various operations on them:
Union: the union of two languages L1 and L2 is L1 ∪ L2 = {w | w ∈ L1 or w ∈ L2}
Intersection: similarly, L1 ∩ L2 = {w | w ∈ L1 and w ∈ L2}.
Concatanation: L1L2 = {w | w = w1w2,w1 ∈ L1,w2 ∈ L2}
Kleene star: L∗1 = {x1x2 · · · xk | k ≥ 0, each xi ∈ L1}

INF2080 Lecture :: 17th January 14 / 26



Regular Languages

Theorem
The class of regular languages is closed under union [intersection], i.e., the union [intersection]
of two regular languages is regular.

Proof idea: We multitask! Construct “product” automaton that runs both DFA’s in parallel:
(Q1 × Q2,Σ, δ,F ) where

δ((s1, s2),wi ) := (δ1(s1,wi ), δ2(s2,wi ))

F = {(s1, s2) | s1 or s2 is an accepting state} for union,
F = {(s1, s2) | s1 and s2 is an accepting state} for intersection

To prove closedness under concatanation and Kleene star we’ll want some (seemingly) stronger
artillery.
→ nondeterminism!

INF2080 Lecture :: 17th January 15 / 26



Regular Languages

Theorem
The class of regular languages is closed under union [intersection], i.e., the union [intersection]
of two regular languages is regular.

Proof idea: We multitask! Construct “product” automaton that runs both DFA’s in parallel:
(Q1 × Q2,Σ, δ,F ) where

δ((s1, s2),wi ) := (δ1(s1,wi ), δ2(s2,wi ))

F = {(s1, s2) | s1 or s2 is an accepting state} for union,
F = {(s1, s2) | s1 and s2 is an accepting state} for intersection

To prove closedness under concatanation and Kleene star we’ll want some (seemingly) stronger
artillery.
→ nondeterminism!

INF2080 Lecture :: 17th January 15 / 26



Regular Languages

Theorem
The class of regular languages is closed under union [intersection], i.e., the union [intersection]
of two regular languages is regular.

Proof idea: We multitask! Construct “product” automaton that runs both DFA’s in parallel:
(Q1 × Q2,Σ, δ,F ) where

δ((s1, s2),wi ) := (δ1(s1,wi ), δ2(s2,wi ))

F = {(s1, s2) | s1 or s2 is an accepting state} for union,
F = {(s1, s2) | s1 and s2 is an accepting state} for intersection

To prove closedness under concatanation and Kleene star we’ll want some (seemingly) stronger
artillery.
→ nondeterminism!

INF2080 Lecture :: 17th January 15 / 26



Regular Languages

Theorem
The class of regular languages is closed under union [intersection], i.e., the union [intersection]
of two regular languages is regular.

Proof idea: We multitask! Construct “product” automaton that runs both DFA’s in parallel:
(Q1 × Q2,Σ, δ,F ) where

δ((s1, s2),wi ) := (δ1(s1,wi ), δ2(s2,wi ))

F = {(s1, s2) | s1 or s2 is an accepting state} for union,
F = {(s1, s2) | s1 and s2 is an accepting state} for intersection

To prove closedness under concatanation and Kleene star we’ll want some (seemingly) stronger
artillery.
→ nondeterminism!

INF2080 Lecture :: 17th January 15 / 26



Nondeterministic Finite Automata

So far, the transition function δ gave for a given state and input symbol precisely one following
state. → determinism

Now we allow for multiple possible “next” states.→ nondeterminism

INF2080 Lecture :: 17th January 16 / 26



Nondeterministic Finite Automata

So far, the transition function δ gave for a given state and input symbol precisely one following
state. → determinism
Now we allow for multiple possible “next” states.→ nondeterminism

INF2080 Lecture :: 17th January 16 / 26



NFA - An example

q1

q0start q2

0

0, 1

0

Language consists of all 0,1 sequences starting and ending with 0.

INF2080 Lecture :: 17th January 17 / 26



NFA - An example

q1

q0start q2

0

0, 1

0

Language consists of all 0,1 sequences starting and ending with 0.

INF2080 Lecture :: 17th January 17 / 26



NFA - Another example

q0start q1 q2 q3

0,1

1 0,1 0,1

Language consists of all 0,1 sequences with a 1 in the third position from the end.

INF2080 Lecture :: 17th January 18 / 26



NFA - Another example

q0start q1 q2 q3

0,1

1 0,1 0,1

Language consists of all 0,1 sequences with a 1 in the third position from the end.

INF2080 Lecture :: 17th January 18 / 26



NFA - an example with empty transitions

1start

2 3

ε
a

b
a, b

a

INF2080 Lecture :: 17th January 19 / 26



Nondeterministic Finite Automata

Definition
A nondeterministic finite automaton (NFA) is a 5-tuple (Q,Σ, δ, q0,F ) where

1 Q is a finite set of states,
2 Σ is a finite alphabet,
3 δ : Q × Σε → P(Q) is the transition function, and
4 F ⊆ Q is the set of accepting states.

INF2080 Lecture :: 17th January 20 / 26



NFA

First notice that DFA’s are special cases of NFA’s.

DFA’s accept regular languages, but what languages do NFA’s accept?
As it turns out: regular languages! In other words, in a sense, DFA=NFA.

INF2080 Lecture :: 17th January 21 / 26



NFA

First notice that DFA’s are special cases of NFA’s.
DFA’s accept regular languages, but what languages do NFA’s accept?

As it turns out: regular languages! In other words, in a sense, DFA=NFA.

INF2080 Lecture :: 17th January 21 / 26



NFA

First notice that DFA’s are special cases of NFA’s.
DFA’s accept regular languages, but what languages do NFA’s accept?
As it turns out: regular languages! In other words, in a sense, DFA=NFA.

INF2080 Lecture :: 17th January 21 / 26



DFA=NFA

Theorem
Every NFA N = (Q,Σ, δ, q0,F ) has an equivalent DFA M = (Q ′,Σ, δ′, q′0,F

′).

Proof:
Each state in the NFA has multiple possible following states. We need to simultaneously
keep track of all these possible following states in one state in the DFA.
Since the “set of possible following states” in the NFA could be any subset of the state set
Q, the DFA’s state set Q ′ must be P(Q).
Let us first assume there are no ε transitions.
Then q′0 = {q0}.

INF2080 Lecture :: 17th January 22 / 26



DFA=NFA

Theorem
Every NFA N = (Q,Σ, δ, q0,F ) has an equivalent DFA M = (Q ′,Σ, δ′, q′0,F

′).

Proof:
Each state in the NFA has multiple possible following states. We need to simultaneously
keep track of all these possible following states in one state in the DFA.

Since the “set of possible following states” in the NFA could be any subset of the state set
Q, the DFA’s state set Q ′ must be P(Q).
Let us first assume there are no ε transitions.
Then q′0 = {q0}.

INF2080 Lecture :: 17th January 22 / 26



DFA=NFA

Theorem
Every NFA N = (Q,Σ, δ, q0,F ) has an equivalent DFA M = (Q ′,Σ, δ′, q′0,F

′).

Proof:
Each state in the NFA has multiple possible following states. We need to simultaneously
keep track of all these possible following states in one state in the DFA.
Since the “set of possible following states” in the NFA could be any subset of the state set
Q, the DFA’s state set Q ′ must be P(Q).

Let us first assume there are no ε transitions.
Then q′0 = {q0}.

INF2080 Lecture :: 17th January 22 / 26



DFA=NFA

Theorem
Every NFA N = (Q,Σ, δ, q0,F ) has an equivalent DFA M = (Q ′,Σ, δ′, q′0,F

′).

Proof:
Each state in the NFA has multiple possible following states. We need to simultaneously
keep track of all these possible following states in one state in the DFA.
Since the “set of possible following states” in the NFA could be any subset of the state set
Q, the DFA’s state set Q ′ must be P(Q).
Let us first assume there are no ε transitions.

Then q′0 = {q0}.

INF2080 Lecture :: 17th January 22 / 26



DFA=NFA

Theorem
Every NFA N = (Q,Σ, δ, q0,F ) has an equivalent DFA M = (Q ′,Σ, δ′, q′0,F

′).

Proof:
Each state in the NFA has multiple possible following states. We need to simultaneously
keep track of all these possible following states in one state in the DFA.
Since the “set of possible following states” in the NFA could be any subset of the state set
Q, the DFA’s state set Q ′ must be P(Q).
Let us first assume there are no ε transitions.
Then q′0 = {q0}.

INF2080 Lecture :: 17th January 22 / 26



NFA=DFA

Now what about the transition functoin δ′?

a state R in the DFA M corresponds to a set of states in the NFA N. So for an input wi

at state R , we need to consider all possible following states to the set of possible states R .
Or, more formally,

δ′(R,wi ) =
⋃
r∈R

δ(r ,wi )

= {q ∈ Q | q ∈ δ(r ,wi ) for some r ∈ R}

Since an NFA accepts an input if any of the possible computations ends in an accept
state, F ′ = {R ⊆ Q | R contains a state r ∈ F}.

INF2080 Lecture :: 17th January 23 / 26



NFA=DFA

Now what about the transition functoin δ′?
a state R in the DFA M corresponds to a set of states in the NFA N. So for an input wi

at state R , we need to consider all possible following states to the set of possible states R .

Or, more formally,

δ′(R,wi ) =
⋃
r∈R

δ(r ,wi )

= {q ∈ Q | q ∈ δ(r ,wi ) for some r ∈ R}

Since an NFA accepts an input if any of the possible computations ends in an accept
state, F ′ = {R ⊆ Q | R contains a state r ∈ F}.

INF2080 Lecture :: 17th January 23 / 26



NFA=DFA

Now what about the transition functoin δ′?
a state R in the DFA M corresponds to a set of states in the NFA N. So for an input wi

at state R , we need to consider all possible following states to the set of possible states R .
Or, more formally,

δ′(R,wi ) =
⋃
r∈R

δ(r ,wi )

= {q ∈ Q | q ∈ δ(r ,wi ) for some r ∈ R}

Since an NFA accepts an input if any of the possible computations ends in an accept
state, F ′ = {R ⊆ Q | R contains a state r ∈ F}.

INF2080 Lecture :: 17th January 23 / 26



NFA=DFA

Now what about the transition functoin δ′?
a state R in the DFA M corresponds to a set of states in the NFA N. So for an input wi

at state R , we need to consider all possible following states to the set of possible states R .
Or, more formally,

δ′(R,wi ) =
⋃
r∈R

δ(r ,wi )

= {q ∈ Q | q ∈ δ(r ,wi ) for some r ∈ R}

Since an NFA accepts an input if any of the possible computations ends in an accept
state, F ′ = {R ⊆ Q | R contains a state r ∈ F}.

INF2080 Lecture :: 17th January 23 / 26



NFA=DFA

Almost done! Now we need to adjust what we did in order to take ε transitions into
account. To that end, let
E (R) = {q | q can be reached from R with 0 or more ε transitions} for R ⊆ Q.

Then q′0 = E ({q0}).
Transition function δ′:

δ′(R,wi ) =
⋃
r∈R

E (δ(r ,wi ))

= {q ∈ Q | q ∈ E (δ(r ,wi )) for some r ∈ R}

INF2080 Lecture :: 17th January 24 / 26



NFA=DFA

Almost done! Now we need to adjust what we did in order to take ε transitions into
account. To that end, let
E (R) = {q | q can be reached from R with 0 or more ε transitions} for R ⊆ Q.
Then q′0 = E ({q0}).

Transition function δ′:

δ′(R,wi ) =
⋃
r∈R

E (δ(r ,wi ))

= {q ∈ Q | q ∈ E (δ(r ,wi )) for some r ∈ R}

INF2080 Lecture :: 17th January 24 / 26



NFA=DFA

Almost done! Now we need to adjust what we did in order to take ε transitions into
account. To that end, let
E (R) = {q | q can be reached from R with 0 or more ε transitions} for R ⊆ Q.
Then q′0 = E ({q0}).
Transition function δ′:

δ′(R,wi ) =
⋃
r∈R

E (δ(r ,wi ))

= {q ∈ Q | q ∈ E (δ(r ,wi )) for some r ∈ R}

INF2080 Lecture :: 17th January 24 / 26



NFA=DFA

In other words, we have just proven:

Theorem
A language is regular iff (if and only if) there exists an NFA that accepts it.

So what about the set operations concatanation and Kleene star?→ think about it! More
tomorrow

INF2080 Lecture :: 17th January 25 / 26



NFA=DFA

In other words, we have just proven:

Theorem
A language is regular iff (if and only if) there exists an NFA that accepts it.

So what about the set operations concatanation and Kleene star?

→ think about it! More
tomorrow

INF2080 Lecture :: 17th January 25 / 26



NFA=DFA

In other words, we have just proven:

Theorem
A language is regular iff (if and only if) there exists an NFA that accepts it.

So what about the set operations concatanation and Kleene star?→ think about it! More
tomorrow

INF2080 Lecture :: 17th January 25 / 26



NFA=DFA

Let’s look at this example again:

1start

2 3

ε
a

b
a, b

a

INF2080 Lecture :: 17th January 26 / 26


