INF2080
 Context-Free Langugaes

Daniel Lupp

Universitetet i Oslo

1st February 2018

Repetition

- We've looked at one of the simpler computational models: finite automata

Repetition

- We've looked at one of the simpler computational models: finite automata
- defined (non)deterministic finite automata (NFAs/DFAs) and the languages they accept: regular languages

Repetition

- We've looked at one of the simpler computational models: finite automata
- defined (non)deterministic finite automata (NFAs/DFAs) and the languages they accept: regular languages
- defined regular expressions, useful as a shorthand for describing languages

Repetition

- We've looked at one of the simpler computational models: finite automata
- defined (non)deterministic finite automata (NFAs/DFAs) and the languages they accept: regular languages
- defined regular expressions, useful as a shorthand for describing languages
- a language L is regular \leftrightarrow there exists a regular expression that describes L

Repetition

- We've looked at one of the simpler computational models: finite automata
- defined (non)deterministic finite automata (NFAs/DFAs) and the languages they accept: regular languages
- defined regular expressions, useful as a shorthand for describing languages
- a language L is regular \leftrightarrow there exists a regular expression that describes L
- pumping lemma as a useful tool for determining whether a language is nonregular

Pumping Lemma revisited

Recall example from last week:

$$
L=\left\{a^{n} b^{n} \mid n \geq 0\right\}
$$

Pumping Lemma revisited

Recall example from last week:

$$
L=\left\{a^{n} b^{n} \mid n \geq 0\right\}
$$

We used the pumping lemma to show that this language was not regular.

Pumping Lemma revisited

Recall example from last week:

$$
L=\left\{a^{n} b^{n} \mid n \geq 0\right\}
$$

We used the pumping lemma to show that this language was not regular. What about the following language, for $\Sigma=\{a, b, c\}$:

$$
L=\left\{a b^{n} c^{n} \mid n \geq 0\right\} \cup\left\{a^{k} w \mid k \neq 1, \text { and } w \in \Sigma^{*} \text { doesn't start with } a\right\}
$$

Pumping Lemma revisited

Recall example from last week:

$$
L=\left\{a^{n} b^{n} \mid n \geq 0\right\}
$$

We used the pumping lemma to show that this language was not regular. What about the following language, for $\Sigma=\{a, b, c\}$:

$$
L=\left\{a b^{n} c^{n} \mid n \geq 0\right\} \cup\left\{a^{k} w \mid k \neq 1, \text { and } w \in \Sigma^{*} \text { doesn't start with } a\right\}
$$

- Union of two languages:
- first language: all words of the form $a b^{n} c^{n}$

Pumping Lemma revisited

Recall example from last week:

$$
L=\left\{a^{n} b^{n} \mid n \geq 0\right\}
$$

We used the pumping lemma to show that this language was not regular. What about the following language, for $\Sigma=\{a, b, c\}$:

$$
L=\left\{a b^{n} c^{n} \mid n \geq 0\right\} \cup\left\{a^{k} w \mid k \neq 1, \text { and } w \in \Sigma^{*} \text { doesn't start with } a\right\}
$$

- Union of two languages:
- first language: all words of the form $a b^{n} c^{n}$
- second language: all Σ^{*} words that start with either 0 or 2 or more a's.
$\rightarrow L$ is a disjoint union

Pumping Lemma revisited

Lemma (Pumping Lemma)

If A is a regular language, then there is a number p, called the pumping length, where if w is a word in A of length $\geq p$ then w can be divided into three parts, $w=x y z$, such that
(1) $x y^{i} z \in A$ for every $i \geq 0$,
(2) $|y|>0$,
(3) $|x y| \leq p$.

$$
L=\left\{a b^{n} c^{n} \mid n \geq 0\right\} \cup\left\{a^{k} w \mid k \neq 1, \text { and } w \in \Sigma^{*} \text { doesn't start with } a\right\}
$$

Does L satisfy the pumping lemma?

Pumping Lemma revisited

Lemma (Pumping Lemma, shortened)

If A is a regular, $|w| \geq p$ can be divided into three parts, $w=x y z$, such that
(1) $x y^{i} z \in A$ for every $i \geq 0$,
(2) $|y|>0,|x y| \leq p$.

$$
L=\left\{a b^{n} c^{n} \mid n \geq 0\right\} \cup\left\{a^{k} w \mid k \neq 1, \text { and } w \in \Sigma^{*} \text { doesn't start with } a\right\}
$$

- Let p be the pumping length.

Pumping Lemma revisited

Lemma (Pumping Lemma, shortened)

If A is a regular, $|w| \geq p$ can be divided into three parts, $w=x y z$, such that
(1) $x y^{i} z \in A$ for every $i \geq 0$,
(2) $|y|>0,|x y| \leq p$.

$$
L=\left\{a b^{n} c^{n} \mid n \geq 0\right\} \cup\left\{a^{k} w \mid k \neq 1, \text { and } w \in \Sigma^{*} \text { doesn't start with } a\right\}
$$

- Let p be the pumping length.
- Each $w \in L$ is either of the form $a b^{n} c^{n}$ or $a^{k} w$.

Pumping Lemma revisited

Lemma (Pumping Lemma, shortened)

If A is a regular, $|w| \geq p$ can be divided into three parts, $w=x y z$, such that
(1) $x y^{i} z \in A$ for every $i \geq 0$,
(2) $|y|>0,|x y| \leq p$.

$$
L=\left\{a b^{n} c^{n} \mid n \geq 0\right\} \cup\left\{a^{k} w \mid k \neq 1, \text { and } w \in \Sigma^{*} \text { doesn't start with } a\right\}
$$

- Assume $s=a b^{n} c^{n}$, where n is such that $|s| \geq p$.

Pumping Lemma revisited

Lemma (Pumping Lemma, shortened)

If A is a regular, $|w| \geq p$ can be divided into three parts, $w=x y z$, such that
(1) $x y^{i} z \in A$ for every $i \geq 0$,
(2) $|y|>0,|x y| \leq p$.

$$
L=\left\{a b^{n} c^{n} \mid n \geq 0\right\} \cup\left\{a^{k} w \mid k \neq 1, \text { and } w \in \Sigma^{*} \text { doesn't start with } a\right\}
$$

- Assume $s=a b^{n} c^{n}$, where n is such that $|s| \geq p$.
- choose $x=\varepsilon, y=a, z=b^{n} c^{n}$. Then $|y|>0$ and $|x y| \leq p$.

Pumping Lemma revisited

Lemma (Pumping Lemma, shortened)

If A is a regular, $|w| \geq p$ can be divided into three parts, $w=x y z$, such that
(1) $x y^{i} z \in A$ for every $i \geq 0$,
(2) $|y|>0,|x y| \leq p$.

$$
L=\left\{a b^{n} c^{n} \mid n \geq 0\right\} \cup\left\{a^{k} w \mid k \neq 1, \text { and } w \in \Sigma^{*} \text { doesn't start with } a\right\}
$$

- Assume $s=a b^{n} c^{n}$, where n is such that $|s| \geq p$.
- choose $x=\varepsilon, y=a, z=b^{n} c^{n}$. Then $|y|>0$ and $|x y| \leq p$.
- The string $x z=b^{n} c^{n}=a^{0} b^{n} c^{n}$ is of the form $a^{k} w$ for $k \neq 1$ and $w \in \Sigma^{*}$ not starting with a.

Pumping Lemma revisited

Lemma (Pumping Lemma, shortened)

If A is a regular, $|w| \geq p$ can be divided into three parts, $w=x y z$, such that
(1) $x y^{i} z \in A$ for every $i \geq 0$,
(2) $|y|>0,|x y| \leq p$.

$$
L=\left\{a b^{n} c^{n} \mid n \geq 0\right\} \cup\left\{a^{k} w \mid k \neq 1, \text { and } w \in \Sigma^{*} \text { doesn't start with } a\right\}
$$

- Assume $s=a b^{n} c^{n}$, where n is such that $|s| \geq p$.
- choose $x=\varepsilon, y=a, z=b^{n} c^{n}$. Then $|y|>0$ and $|x y| \leq p$.
- The string $x z=b^{n} c^{n}=a^{0} b^{n} c^{n}$ is of the form $a^{k} w$ for $k \neq 1$ and $w \in \Sigma^{*}$ not starting with $a . \Rightarrow x z \in L$.

Pumping Lemma revisited

Lemma (Pumping Lemma, shortened)

If A is a regular, $|w| \geq p$ can be divided into three parts, $w=x y z$, such that
(1) $x y^{i} z \in A$ for every $i \geq 0$,
(2) $|y|>0$,
(3) $|x y| \leq p$.

$$
L=\left\{a b^{n} c^{n} \mid n \geq 0\right\} \cup\left\{a^{k} w \mid k \neq 1, \text { and } w \in \Sigma^{*} \text { doesn't start with } a\right\}
$$

- Assume $s=a b^{n} c^{n}$, where n is such that $|s| \geq p$.
- choose $x=\varepsilon, y=a, z=b^{n} c^{n}$. Then $|y|>0$ and $|x y| \leq p$.
- The string $x y^{i} z=b^{n} c^{n}=a^{i} b^{n} c^{n}$ for $i \geq 2$ is of the form $a^{k} w$ for $k \neq 1$ and $w \in \Sigma^{*}$ not starting with a.

Pumping Lemma revisited

Lemma (Pumping Lemma, shortened)

If A is a regular, $|w| \geq p$ can be divided into three parts, $w=x y z$, such that
(1) $x y^{i} z \in A$ for every $i \geq 0$,
(2) $|y|>0$,
(3) $|x y| \leq p$.

$$
L=\left\{a b^{n} c^{n} \mid n \geq 0\right\} \cup\left\{a^{k} w \mid k \neq 1, \text { and } w \in \Sigma^{*} \text { doesn't start with } a\right\}
$$

- Assume $s=a b^{n} c^{n}$, where n is such that $|s| \geq p$.
- choose $x=\varepsilon, y=a, z=b^{n} c^{n}$. Then $|y|>0$ and $|x y| \leq p$.
- The string $x y^{i} z=b^{n} c^{n}=a^{i} b^{n} c^{n}$ for $i \geq 2$ is of the form $a^{k} w$ for $k \neq 1$ and $w \in \Sigma^{*}$ not starting with $a . \quad \Rightarrow x y^{i} z \in L$.

Pumping Lemma revisited

$$
L=\left\{a b^{n} c^{n} \mid n \geq 0\right\} \cup\left\{a^{k} w \mid k \neq 1, \text { and } w \in \Sigma^{*} \text { doesn't start with } a\right\}
$$

- Assume $s=a^{k} w_{1} w_{2} \cdots w_{n}$, for $k \neq 1$ and $w \in \Sigma^{*}$ not starting with a, where n, k are such that $|s| \geq p$.

Pumping Lemma revisited

$$
L=\left\{a b^{n} c^{n} \mid n \geq 0\right\} \cup\left\{a^{k} w \mid k \neq 1, \text { and } w \in \Sigma^{*} \text { doesn't start with } a\right\}
$$

- Assume $s=a^{k} w_{1} w_{2} \cdots w_{n}$, for $k \neq 1$ and $w \in \Sigma^{*}$ not starting with a, where n, k are such that $|s| \geq p$.
- if $k=0$, choose $x=\varepsilon, y=w_{1}, z=w_{2} \cdots w_{n}$. Then $|y|>0$ and $|x y| \leq p$.

Pumping Lemma revisited

$$
L=\left\{a b^{n} c^{n} \mid n \geq 0\right\} \cup\left\{a^{k} w \mid k \neq 1, \text { and } w \in \Sigma^{*} \text { doesn't start with } a\right\}
$$

- Assume $s=a^{k} w_{1} w_{2} \cdots w_{n}$, for $k \neq 1$ and $w \in \Sigma^{*}$ not starting with a, where n, k are such that $|s| \geq p$.
- if $k=0$, choose $x=\varepsilon, y=w_{1}, z=w_{2} \cdots w_{n}$. Then $|y|>0$ and $|x y| \leq p$.
- The strings $x z$ and $x y^{i} z$ for $i>2$ are in Σ^{*} and don't start with a

Pumping Lemma revisited

$$
L=\left\{a b^{n} c^{n} \mid n \geq 0\right\} \cup\left\{a^{k} w \mid k \neq 1, \text { and } w \in \Sigma^{*} \text { doesn't start with } a\right\}
$$

- Assume $s=a^{k} w_{1} w_{2} \cdots w_{n}$, for $k \neq 1$ and $w \in \Sigma^{*}$ not starting with a, where n, k are such that $|s| \geq p$.
- if $k=0$, choose $x=\varepsilon, y=w_{1}, z=w_{2} \cdots w_{n}$. Then $|y|>0$ and $|x y| \leq p$.
- The strings $x z$ and $x y^{i} z$ for $i>2$ are in Σ^{*} and don't start with $a \Rightarrow x z, x y^{i} z \in L$.

Pumping Lemma revisited

$$
L=\left\{a b^{n} c^{n} \mid n \geq 0\right\} \cup\left\{a^{k} w \mid k \neq 1, \text { and } w \in \Sigma^{*} \text { doesn't start with } a\right\}
$$

- Assume $s=a^{k} w_{1} w_{2} \cdots w_{n}$, for $k \neq 1$ and $w \in \Sigma^{*}$ not starting with a, where n, k are such that $|s| \geq p$.
- if $k=2$, choose $x=\varepsilon, y=a a, z=w_{1} w_{2} \cdots w_{n}$. Then $|y|>0$ and $|x y| \leq p$.

Pumping Lemma revisited

$$
L=\left\{a b^{n} c^{n} \mid n \geq 0\right\} \cup\left\{a^{k} w \mid k \neq 1, \text { and } w \in \Sigma^{*} \text { doesn't start with } a\right\}
$$

- Assume $s=a^{k} w_{1} w_{2} \cdots w_{n}$, for $k \neq 1$ and $w \in \Sigma^{*}$ not starting with a, where n, k are such that $|s| \geq p$.
- if $k=2$, choose $x=\varepsilon, y=a a, z=w_{1} w_{2} \cdots w_{n}$. Then $|y|>0$ and $|x y| \leq p$.
- The string $x z$ is in Σ^{*} and doesn't start with a.

Pumping Lemma revisited

$$
L=\left\{a b^{n} c^{n} \mid n \geq 0\right\} \cup\left\{a^{k} w \mid k \neq 1, \text { and } w \in \Sigma^{*} \text { doesn't start with } a\right\}
$$

- Assume $s=a^{k} w_{1} w_{2} \cdots w_{n}$, for $k \neq 1$ and $w \in \Sigma^{*}$ not starting with a, where n, k are such that $|s| \geq p$.
- if $k=2$, choose $x=\varepsilon, y=a a, z=w_{1} w_{2} \cdots w_{n}$. Then $|y|>0$ and $|x y| \leq p$.
- The string $x z$ is in Σ^{*} and doesn't start with a. $x z \in L$

Pumping Lemma revisited

$$
L=\left\{a b^{n} c^{n} \mid n \geq 0\right\} \cup\left\{a^{k} w \mid k \neq 1, \text { and } w \in \Sigma^{*} \text { doesn't start with } a\right\}
$$

- Assume $s=a^{k} w_{1} w_{2} \cdots w_{n}$, for $k \neq 1$ and $w \in \Sigma^{*}$ not starting with a, where n, k are such that $|s| \geq p$.
- if $k=2$, choose $x=\varepsilon, y=a a, z=w_{1} w_{2} \cdots w_{n}$. Then $|y|>0$ and $|x y| \leq p$.
- The string $x z$ is in Σ^{*} and doesn't start with a. $x z \in L$
- The string $x y^{i} z$ for $i \geq 1$ starts with 2 or more a's, followed by a word $w \in \Sigma^{*}$ that does not start with an a.

Pumping Lemma revisited

$$
L=\left\{a b^{n} c^{n} \mid n \geq 0\right\} \cup\left\{a^{k} w \mid k \neq 1, \text { and } w \in \Sigma^{*} \text { doesn't start with } a\right\}
$$

- Assume $s=a^{k} w_{1} w_{2} \cdots w_{n}$, for $k \neq 1$ and $w \in \Sigma^{*}$ not starting with a, where n, k are such that $|s| \geq p$.
- if $k=2$, choose $x=\varepsilon, y=a a, z=w_{1} w_{2} \cdots w_{n}$. Then $|y|>0$ and $|x y| \leq p$.
- The string $x z$ is in Σ^{*} and doesn't start with a. $x z \in L$
- The string $x y^{i} z$ for $i \geq 1$ starts with 2 or more a's, followed by a word $w \in \Sigma^{*}$ that does not start with an a. $\Rightarrow x y^{i} z \in L$.

Pumping Lemma revisited

$$
L=\left\{a b^{n} c^{n} \mid n \geq 0\right\} \cup\left\{a^{k} w \mid k \neq 1, \text { and } w \in \Sigma^{*} \text { doesn't start with } a\right\}
$$

- Assume $s=a^{k} w_{1} w_{2} \cdots w_{n}$, for $k \neq 1$ and $w \in \Sigma^{*}$ not starting with a, where n, k are such that $|s| \geq p$.
- if $k \geq 3$, choose $x=\varepsilon, y=a, z=a^{k-1} w_{2} \cdots w_{n}$. Then $|y|>0$ and $|x y| \leq p$.

Pumping Lemma revisited

$$
L=\left\{a b^{n} c^{n} \mid n \geq 0\right\} \cup\left\{a^{k} w \mid k \neq 1, \text { and } w \in \Sigma^{*} \text { doesn't start with } a\right\}
$$

- Assume $s=a^{k} w_{1} w_{2} \cdots w_{n}$, for $k \neq 1$ and $w \in \Sigma^{*}$ not starting with a, where n, k are such that $|s| \geq p$.
- if $k \geq 3$, choose $x=\varepsilon, y=a, z=a^{k-1} w_{2} \cdots w_{n}$. Then $|y|>0$ and $|x y| \leq p$.
- The string $x z$ is of the form $a^{k-1} w$, where $w \in \Sigma^{*}$ and doesn't start with a.

Pumping Lemma revisited

$$
L=\left\{a b^{n} c^{n} \mid n \geq 0\right\} \cup\left\{a^{k} w \mid k \neq 1, \text { and } w \in \Sigma^{*} \text { doesn't start with } a\right\}
$$

- Assume $s=a^{k} w_{1} w_{2} \cdots w_{n}$, for $k \neq 1$ and $w \in \Sigma^{*}$ not starting with a, where n, k are such that $|s| \geq p$.
- if $k \geq 3$, choose $x=\varepsilon, y=a, z=a^{k-1} w_{2} \cdots w_{n}$. Then $|y|>0$ and $|x y| \leq p$.
- The string $x z$ is of the form $a^{k-1} w$, where $w \in \Sigma^{*}$ and doesn't start with $a . \quad x z \in L$

Pumping Lemma revisited

$$
L=\left\{a b^{n} c^{n} \mid n \geq 0\right\} \cup\left\{a^{k} w \mid k \neq 1, \text { and } w \in \Sigma^{*} \text { doesn't start with } a\right\}
$$

- Assume $s=a^{k} w_{1} w_{2} \cdots w_{n}$, for $k \neq 1$ and $w \in \Sigma^{*}$ not starting with a, where n, k are such that $|s| \geq p$.
- if $k \geq 3$, choose $x=\varepsilon, y=a, z=a^{k-1} w_{2} \cdots w_{n}$. Then $|y|>0$ and $|x y| \leq p$.
- The string $x z$ is of the form $a^{k-1} w$, where $w \in \Sigma^{*}$ and doesn't start with $a . \quad x z \in L$
- The string $x y^{i} z$ for $i \geq 1$ is of the form $a^{k+i-1} w$ where $w \in \Sigma^{*}$ that does not start with an a.

Pumping Lemma revisited

$$
L=\left\{a b^{n} c^{n} \mid n \geq 0\right\} \cup\left\{a^{k} w \mid k \neq 1, \text { and } w \in \Sigma^{*} \text { doesn't start with } a\right\}
$$

- Assume $s=a^{k} w_{1} w_{2} \cdots w_{n}$, for $k \neq 1$ and $w \in \Sigma^{*}$ not starting with a, where n, k are such that $|s| \geq p$.
- if $k \geq 3$, choose $x=\varepsilon, y=a, z=a^{k-1} w_{2} \cdots w_{n}$. Then $|y|>0$ and $|x y| \leq p$.
- The string $x z$ is of the form $a^{k-1} w$, where $w \in \Sigma^{*}$ and doesn't start with $a . \quad x z \in L$
- The string $x y^{i} z$ for $i \geq 1$ is of the form $a^{k+i-1} w$ where $w \in \Sigma^{*}$ that does not start with an $a . \Rightarrow x y^{i} z \in L$.

Pumping Lemma revisited

$$
L=\left\{a b^{n} c^{n} \mid n \geq 0\right\} \cup\left\{a^{k} w \mid k \neq 1, \text { and } w \in \Sigma^{*} \text { doesn't start with } a\right\}
$$

can be pumped!! Does that mean L is regular?

Pumping Lemma revisited

$$
L=\left\{a b^{n} c^{n} \mid n \geq 0\right\} \cup\left\{a^{k} w \mid k \neq 1, \text { and } w \in \Sigma^{*} \text { doesn't start with } a\right\}
$$

can be pumped!! Does that mean L is regular?

- If L is regular, then so is $L \cap a b \Sigma^{*}$ (recall: regular languages are closed under intersection).

Pumping Lemma revisited

$$
L=\left\{a b^{n} c^{n} \mid n \geq 0\right\} \cup\left\{a^{k} w \mid k \neq 1, \text { and } w \in \Sigma^{*} \text { doesn't start with } a\right\}
$$

can be pumped!! Does that mean L is regular?

- If L is regular, then so is $L \cap a b \Sigma^{*}$ (recall: regular languages are closed under intersection).
- $L \cap a b \Sigma^{*}=\left\{a b^{n} c^{n} \mid n \geq 1\right\}$

Pumping Lemma revisited

$$
L=\left\{a b^{n} c^{n} \mid n \geq 0\right\} \cup\left\{a^{k} w \mid k \neq 1, \text { and } w \in \Sigma^{*} \text { doesn't start with } a\right\}
$$

can be pumped!! Does that mean L is regular?

- If L is regular, then so is $L \cap a b \Sigma^{*}$ (recall: regular languages are closed under intersection).
- $L \cap a b \Sigma^{*}=\left\{a b^{n} c^{n} \mid n \geq 1\right\}$
- Exercise: show that this language is nonregular! (analogous to proof for $a^{n} b^{n}$)
- So L is nonregular...is this a counter-example to the pumping lemma?

Pumping Lemma revisited

$$
L=\left\{a b^{n} c^{n} \mid n \geq 0\right\} \cup\left\{a^{k} w \mid k \neq 1 \text {, and } w \in \Sigma^{*} \text { doesn't start with } a\right\}
$$

can be pumped!! Does that mean L is regular?

- If L is regular, then so is $L \cap a b \Sigma^{*}$ (recall: regular languages are closed under intersection).
- $L \cap a b \Sigma^{*}=\left\{a b^{n} c^{n} \mid n \geq 1\right\}$
- Exercise: show that this language is nonregular! (analogous to proof for $a^{n} b^{n}$)
- So L is nonregular... is this a counter-example to the pumping lemma? No, pumping lemma is not an if and only if statement!

Context-Free Grammars

Today: Context-free grammars and languages

Context-Free Grammars

Today: Context-free grammars and languages

- grammars describe the syntax of a language; they try to describe the relationship of all the parts to one another, such as placement of nouns/verbs in sentences

Context-Free Grammars

Today: Context-free grammars and languages

- grammars describe the syntax of a language; they try to describe the relationship of all the parts to one another, such as placement of nouns/verbs in sentences
- useful for programming languages, specifically compilers and parsers: if the grammar of a programming language is available, parsing is very straightforward.

Context-Free Grammars

First example:

$$
\begin{aligned}
& S \rightarrow a S b \\
& S \rightarrow \varepsilon
\end{aligned}
$$

Context-Free Grammars

First example:

$$
\begin{aligned}
& S \rightarrow a S b \\
& S \rightarrow \varepsilon
\end{aligned}
$$

- Every grammar consists of rules, which are a pair consisting of one variable (to the left of \rightarrow) and a string of variables and symbols (to the right of \rightarrow)

Context-Free Grammars

First example:

$$
\begin{aligned}
& S \rightarrow a S b \\
& S \rightarrow \varepsilon
\end{aligned}
$$

- Every grammar consists of rules, which are a pair consisting of one variable (to the left of \rightarrow) and a string of variables and symbols (to the right of \rightarrow)
- Every grammar contains a start variable (above: variable S). Common convention: the first listed variable is the start variable (if you choose a different start variable, you must specify!).

Context-Free Grammars

First example:

$$
\begin{aligned}
& S \rightarrow a S b \\
& S \rightarrow \varepsilon
\end{aligned}
$$

- Every grammar consists of rules, which are a pair consisting of one variable (to the left of \rightarrow) and a string of variables and symbols (to the right of \rightarrow)
- Every grammar contains a start variable (above: variable S). Common convention: the first listed variable is the start variable (if you choose a different start variable, you must specify!).
- Words are generated by starting with the start variable and recursively replacing variables with the righthand side of a rule.

$$
S \rightsquigarrow a S b \rightsquigarrow a a S b b \rightsquigarrow a a \varepsilon b b \rightsquigarrow a a b b
$$

Parse Trees

Derivations of the form

$$
S \rightsquigarrow a S b \rightsquigarrow a a S b b \rightsquigarrow a a \varepsilon b b \rightsquigarrow a a b b
$$

can also be encoded as a parse tree:

Context-Free Grammars

Second example:

$$
\begin{aligned}
& S \rightarrow a S a \\
& S \rightarrow b S b \\
& S \rightarrow c S c \\
& S \rightarrow \varepsilon
\end{aligned}
$$

Context-Free Grammars

Second example:

$$
\begin{aligned}
& S \rightarrow a S a \\
& S \rightarrow b S b \\
& S \rightarrow c S c \\
& S \rightarrow \varepsilon
\end{aligned}
$$

To simplify notation, you can summarize multiple rules into one line:

$$
S \rightarrow a S a|b S b| c S c \mid \varepsilon
$$

Context-Free Grammars

Second example:

$$
\begin{aligned}
& S \rightarrow a S a \\
& S \rightarrow b S b \\
& S \rightarrow c S c \\
& S \rightarrow \varepsilon
\end{aligned}
$$

To simplify notation, you can summarize multiple rules into one line:

$$
S \rightarrow a S a|b S b| c S c \mid \varepsilon .
$$

The symbol | takes on the meaning of "or."

Context-Free Grammars

Second example:

$$
\begin{aligned}
& S \rightarrow a S a \\
& S \rightarrow b S b \\
& S \rightarrow c S c \\
& S \rightarrow \varepsilon
\end{aligned}
$$

To simplify notation, you can summarize multiple rules into one line:

$$
S \rightarrow a S a|b S b| c S c \mid \varepsilon .
$$

The symbol | takes on the meaning of "or."
\rightarrow palindromes of even length over $\{a, b, c\}$.

Context-Free Grammar

Definition (Context-Free Grammar)

A context-free grammar is a 4-tuple (V, Σ, R, S) where
(1) V is a finite set of variables
(2) Σ is a finite set disjoint from V of terminals
(3) R is a finite set of rules, each consisting of a variable and of a string of variables and terminals
(9) and S is the start variable

Context-Free Grammar

Definition (Context-Free Grammar)

A context-free grammar is a 4-tuple (V, Σ, R, S) where
(1) V is a finite set of variables
(2) Σ is a finite set disjoint from V of terminals
(3) R is a finite set of rules, each consisting of a variable and of a string of variables and terminals
(9) and S is the start variable

We call $L(G)$ the language generated by a context-free grammar. A language is called a context-free language if it is generated by a context-free grammar.

Context-Free Grammar

So what can context-free grammars (CFGs) express?

Context-Free Grammar

So what can context-free grammars (CFGs) express?

- Regular languages?

Context-Free Grammar

So what can context-free grammars (CFGs) express?

- Regular languages?
- Is the class of context-free languages closed under union/intersection/concatanation/complement/Kleene star?

Context-Free Grammar

So what can context-free grammars (CFGs) express?

- Regular languages?
- Is the class of context-free languages closed under union/intersection/concatanation/complement/Kleene star?
- Regular languages could be modelled by an automaton with finite memory...what about context-free languages?

Context-Free Grammar

So what can context-free grammars (CFGs) express?

- Regular languages?
- Is the class of context-free languages closed under union/intersection/concatanation/complement/Kleene star?
- Regular languages could be modelled by an automaton with finite memory... what about context-free languages?
Answers to these over the course of this and next lecture (and group sessions)

RLs and CFLs

Can regular languages be described using context-free grammars?

RLs and CFLs

Can regular languages be described using context-free grammars?

- Given a RL L, there exists some DFA $\left(Q, \Sigma, \delta, q_{0}, F\right)$ that accepts L

RLs and CFLs

Can regular languages be described using context-free grammars?

- Given a RL L, there exists some DFA $\left(Q, \Sigma, \delta, q_{0}, F\right)$ that accepts L
- What if we encode traversing the DFA into grammar rules, i.e., for each transition $\delta\left(q_{1}, a\right)=q_{2}$ we create a rule $Q_{1} \rightarrow a Q_{2}$

RLs and CFLs

Can regular languages be described using context-free grammars?

- Given a RL L, there exists some DFA $\left(Q, \Sigma, \delta, q_{0}, F\right)$ that accepts L
- What if we encode traversing the DFA into grammar rules, i.e., for each transition $\delta\left(q_{1}, a\right)=q_{2}$ we create a rule $Q_{1} \rightarrow a Q_{2}$
- the variables of our grammar correspond to the states in Q, with Q_{0} as the start variable.

RLs and CFLs

Can regular languages be described using context-free grammars?

- Given a RL L, there exists some DFA $\left(Q, \Sigma, \delta, q_{0}, F\right)$ that accepts L
- What if we encode traversing the DFA into grammar rules, i.e., for each transition $\delta\left(q_{1}, a\right)=q_{2}$ we create a rule $Q_{1} \rightarrow a Q_{2}$
- the variables of our grammar correspond to the states in Q, with Q_{0} as the start variable.
- How do we deal with accept states?

RLs and CFLs

Can regular languages be described using context-free grammars?

- Given a RL L, there exists some DFA $\left(Q, \Sigma, \delta, q_{0}, F\right)$ that accepts L
- What if we encode traversing the DFA into grammar rules, i.e., for each transition $\delta\left(q_{1}, a\right)=q_{2}$ we create a rule $Q_{1} \rightarrow a Q_{2}$
- the variables of our grammar correspond to the states in Q, with Q_{0} as the start variable.
- How do we deal with accept states? \rightsquigarrow for each $q_{i} \in F$, add rule $Q_{i} \rightarrow \varepsilon$

RLs and CFLs

Can regular languages be described using context-free grammars?

- Given a RL L, there exists some DFA $\left(Q, \Sigma, \delta, q_{0}, F\right)$ that accepts L
- What if we encode traversing the DFA into grammar rules, i.e., for each transition $\delta\left(q_{1}, a\right)=q_{2}$ we create a rule $Q_{1} \rightarrow a Q_{2}$
- the variables of our grammar correspond to the states in Q, with Q_{0} as the start variable.
- How do we deal with accept states? \rightsquigarrow for each $q_{i} \in F$, add rule $Q_{i} \rightarrow \varepsilon$

Theorem

Every regular language is context-free.

Properties of CFLs

Closure under union/concatanation/Kleene star?

Properties of CFLs

Closure under union/concatanation/Kleene star? Let $G_{1}=\left(V_{1}, \Sigma_{1}, R_{1}, S_{1}\right)$ and $G_{2}=\left(V_{2}, \Sigma_{2}, R_{2}, S_{2}\right)$ be two grammars that generate L_{1}, L_{2} respectively.

Properties of CFLs

Closure under union/concatanation/Kleene star? Let $G_{1}=\left(V_{1}, \Sigma_{1}, R_{1}, S_{1}\right)$ and $G_{2}=\left(V_{2}, \Sigma_{2}, R_{2}, S_{2}\right)$ be two grammars that generate L_{1}, L_{2} respectively. Union:

- create grammar $G_{L_{1} \cup L_{2}}$ that generates all words $w \in L_{1} \cup L_{2}$.

Properties of CFLs

Closure under union/concatanation/Kleene star? Let $G_{1}=\left(V_{1}, \Sigma_{1}, R_{1}, S_{1}\right)$ and $G_{2}=\left(V_{2}, \Sigma_{2}, R_{2}, S_{2}\right)$ be two grammars that generate L_{1}, L_{2} respectively. Union:

- create grammar $G_{L_{1} \cup L_{2}}$ that generates all words $w \in L_{1} \cup L_{2}$.
- Create new start variable S.
- $G_{L_{1} \cup L_{2}}=(V, \Sigma, R, S)$ where
- $V=V_{1} \cup V_{2} \cup\{S\}$,
- $\Sigma=\Sigma_{1} \cup \Sigma_{2}$, and
- $R=R_{1} \cup R_{2} \cup\left\{S \rightarrow S_{1} \mid S_{2}\right\}$.

CFL Union: Example

$$
S_{1} \rightarrow a S_{1} b\left|\varepsilon \quad \cup \quad S_{2} \rightarrow a S_{2} a\right| b S_{2} b\left|c S_{2} c\right| \varepsilon
$$

CFL Union: Example

$$
\begin{gathered}
S_{1} \rightarrow a S_{1} b\left|\varepsilon \quad \cup \quad S_{2} \rightarrow a S_{2} a\right| b S_{2} b\left|c S_{2} c\right| \varepsilon \\
\\
\\
\\
\\
\\
S_{1} \rightarrow S_{1} \mid S_{2} \\
S_{2} \rightarrow a S_{1} b \mid \varepsilon \\
\end{gathered}
$$

Properties of CFLs: Concatanation

Let $G_{1}=\left(V_{1}, \Sigma_{1}, R_{1}, S_{1}\right)$ and $G_{2}=\left(V_{2}, \Sigma_{2}, R_{2}, S_{2}\right)$ be two grammars that generate L_{1}, L_{2} respectively.
Concatanation:

- create grammar $G_{L_{1} L_{2}}=(V, \Sigma, R, S)$ that accepts all words $w=w_{1} w_{2}$, where $w_{1} \in L_{1}$ and $w_{2} \in L_{2}$.

Properties of CFLs: Concatanation

Let $G_{1}=\left(V_{1}, \Sigma_{1}, R_{1}, S_{1}\right)$ and $G_{2}=\left(V_{2}, \Sigma_{2}, R_{2}, S_{2}\right)$ be two grammars that generate L_{1}, L_{2} respectively.
Concatanation:

- create grammar $G_{L_{1} L_{2}}=(V, \Sigma, R, S)$ that accepts all words $w=w_{1} w_{2}$, where $w_{1} \in L_{1}$ and $w_{2} \in L_{2}$.
- new start variable S
- $V=V_{1} \cup V_{2} \cup\{S\}$,
- $\Sigma=\Sigma_{1} \cup \Sigma_{2}$, and
- $R=R_{1} \cup R_{2} \cup\left\{S \rightarrow S_{1} S_{2}\right\}$.

CFL Concatanation: Example

$$
S_{1} \rightarrow a S_{1} b \mid \varepsilon
$$

$$
S_{2} \rightarrow a S_{2} a\left|b S_{2} b\right| c S_{2} c \mid \varepsilon
$$

CFL Concatanation: Example

$$
\begin{aligned}
& S_{1} \rightarrow a S_{1} b\left|\varepsilon \quad S_{2} \rightarrow a S_{2} a\right| b S_{2} b\left|c S_{2} c\right| \varepsilon \\
& \qquad \\
& S \rightarrow S_{1} S_{2} \\
& S_{1} \rightarrow a S_{1} b \mid \varepsilon \\
& S_{2} \rightarrow a S_{2} a\left|b S_{2} b\right| c S_{2} c \mid \varepsilon
\end{aligned}
$$

Properties of CFLs: Kleene star

Let $G_{1}=\left(V_{1}, \Sigma_{1}, R_{1}, S_{1}\right)$ generate language L_{1}. Kleene star:

- create grammar $G=(V, \Sigma, R, S)$ that generates all words in L_{1}^{*}.

Properties of CFLs: Kleene star

Let $G_{1}=\left(V_{1}, \Sigma_{1}, R_{1}, S_{1}\right)$ generate language L_{1}. Kleene star:

- create grammar $G=(V, \Sigma, R, S)$ that generates all words in L_{1}^{*}.
- $V=V_{1}$,
- $\Sigma=\Sigma_{1}$,
- $R=R_{1} \cup\left\{S_{1} \rightarrow \varepsilon, S_{1} \rightarrow S_{1} S_{1}\right\}$,
- $S=S_{1}$.

Properties of CFLs: Kleene star

Let $G_{1}=\left(V_{1}, \Sigma_{1}, R_{1}, S_{1}\right)$ generate language L_{1}.
Kleene star:

- create grammar $G=(V, \Sigma, R, S)$ that generates all words in L_{1}^{*}.
- $V=V_{1}$,
- $\Sigma=\Sigma_{1}$,
- $R=R_{1} \cup\left\{S_{1} \rightarrow \varepsilon, S_{1} \rightarrow S_{1} S_{1}\right\}$,
- $S=S_{1}$.

Example:

$$
S_{1} \rightarrow a S_{1} b \mid \varepsilon
$$

$$
\begin{aligned}
& S_{1} \rightarrow \varepsilon \mid S_{1} S_{1} \\
& S_{1} \rightarrow a S_{1} b \mid \varepsilon
\end{aligned}
$$

Properties of CFLs

Closure under complement/intersection?

Properties of CFLs

Closure under complement/intersection?
\rightsquigarrow No, but we need to know more before we can determine if a language is not context-free. (next week)

Ambiguity

- Consider the grammar

$$
E \rightarrow E+E|E \times E|(E) \mid a
$$

Ambiguity

- Consider the grammar

$$
E \rightarrow E+E|E \times E|(E) \mid a
$$

- Here: the alphabet is $\{a,+, \times,()$,$\} .$

Ambiguity

- Consider the grammar

$$
E \rightarrow E+E|E \times E|(E) \mid a
$$

- Here: the alphabet is $\{a,+, \times,()$,$\} .$
\rightarrow arithmetic expressions over a

Ambiguity

- Consider the grammar

$$
E \rightarrow E+E|E \times E|(E) \mid a
$$

- Here: the alphabet is $\{a,+, \times,()$,$\} .$
\rightarrow arithmetic expressions over a
What does the parse tree for the string $a+a \times a$ look like?

Ambiguity

Ambiguity

Intuitively corresponds to $a+(a \times a)$

Ambiguity

Intuitively corresponds to $a+(a \times a)$

Ambiguity

Ambiguity

This is called ambiguity

Ambiguity

- But just having multiple possible derivations does not mean that a grammar is ambiguous.

Ambiguity

- But just having multiple possible derivations does not mean that a grammar is ambiguous.
- Two derivations could look different, yet "structurally" the same: apply the same rules to the same variables, yet in a different order.

Ambiguity

- But just having multiple possible derivations does not mean that a grammar is ambiguous.
- Two derivations could look different, yet "structurally" the same: apply the same rules to the same variables, yet in a different order.

$$
\begin{aligned}
& E \rightsquigarrow E+E \rightsquigarrow E+E \times E \rightsquigarrow a+E \times E \rightsquigarrow a+a \times E \rightsquigarrow a+a \times a \\
& E \rightsquigarrow E+E \rightsquigarrow a+E \rightsquigarrow a+E \times E \rightsquigarrow a+a \times E \rightsquigarrow a+a \times a
\end{aligned}
$$

Ambiguity

- But just having multiple possible derivations does not mean that a grammar is ambiguous.
- Two derivations could look different, yet "structurally" the same: apply the same rules to the same variables, yet in a different order.

$$
\begin{aligned}
& E \rightsquigarrow E+E \rightsquigarrow E+E \times E \rightsquigarrow a+E \times E \rightsquigarrow a+a \times E \rightsquigarrow a+a \times a \\
& E \rightsquigarrow E+E \rightsquigarrow a+E \rightsquigarrow a+E \times E \rightsquigarrow a+a \times E \rightsquigarrow a+a \times a
\end{aligned}
$$

Both have the same parse tree!

Ambiguity

- We are interested in structurally different derivations, i.e., two derivations of the same word that, given a predefined order of derivation, are different

Ambiguity

- We are interested in structurally different derivations, i.e., two derivations of the same word that, given a predefined order of derivation, are different

Definition

A leftmost derivation of a string replaces, in each derivation step, the leftmost variable. Then a string is derived ambiguously over a grammar G if it has two or more leftmost derivations over G .

Ambiguity

- We are interested in structurally different derivations, i.e., two derivations of the same word that, given a predefined order of derivation, are different

Definition

A leftmost derivation of a string replaces, in each derivation step, the leftmost variable. Then a string is derived ambiguously over a grammar G if it has two or more leftmost derivations over G.

If $L(G)$ contains a string that is derived ambiguously, we say that G is ambiguous.

Chomsy Normal Form

- Context-free languages have a nice property: Every CFL can be described by a CFG in Chomsky Normal Form:

Definition

A grammar is in Chomsky Normal Form if every rule is of the form:

$$
\begin{aligned}
& A \rightarrow B C \\
& A \rightarrow a
\end{aligned}
$$

where a is any terminal, A is any variable, B, C are any variables that are not the start variable. In addition the rule $S \rightarrow \varepsilon$ is permitted.

Definition

A grammar is in Chomsky Normal Form if every rule is of the form:

$$
\begin{aligned}
& A \rightarrow B C \\
& A \rightarrow a
\end{aligned}
$$

where a is any terminal, A is any variable, B, C are any variables that are not the start variable. In addition the rule $S \rightarrow \varepsilon$ is permitted.

Proof sketch: Given an arbitrary grammar G. First, add new start variable S_{0} and new rule $S_{0} \rightarrow S$ to G.

Definition

A grammar is in Chomsky Normal Form if every rule is of the form:

$$
\begin{aligned}
& A \rightarrow B C \\
& A \rightarrow a
\end{aligned}
$$

where a is any terminal, A is any variable, B, C are any variables that are not the start variable. In addition the rule $S \rightarrow \varepsilon$ is permitted.

Proof sketch: Given an arbitrary grammar G. First, add new start variable S_{0} and new rule $S_{0} \rightarrow S$ to G. Then, remove all rules $A \rightarrow \varepsilon$, followed by all "unit" rules $A \rightarrow B$.

Definition

A grammar is in Chomsky Normal Form if every rule is of the form:

$$
\begin{aligned}
& A \rightarrow B C \\
& A \rightarrow a
\end{aligned}
$$

where a is any terminal, A is any variable, B, C are any variables that are not the start variable. In addition the rule $S \rightarrow \varepsilon$ is permitted.

Proof sketch: Given an arbitrary grammar G. First, add new start variable S_{0} and new rule $S_{0} \rightarrow S$ to G. Then, remove all rules $A \rightarrow \varepsilon$, followed by all "unit" rules $A \rightarrow B$. For each such occurence of A in the righthand side of a rule, add a new rule with ε (resp. B) substituted for A (see examples on next slide).

Definition

A grammar is in Chomsky Normal Form if every rule is of the form:

$$
\begin{aligned}
& A \rightarrow B C \\
& A \rightarrow a
\end{aligned}
$$

where a is any terminal, A is any variable, B, C are any variables that are not the start variable. In addition the rule $S \rightarrow \varepsilon$ is permitted.

Proof sketch: Given an arbitrary grammar G. First, add new start variable S_{0} and new rule $S_{0} \rightarrow S$ to G. Then, remove all rules $A \rightarrow \varepsilon$, followed by all "unit" rules $A \rightarrow B$. For each such occurence of A in the righthand side of a rule, add a new rule with ε (resp. B) substituted for A (see examples on next slide). Finally, split all rules with more than 3 righthandside symbols into multiple rules containing only 2 symbols.

CNF - Example

Grammar;

$$
\begin{aligned}
& S \rightarrow A S A \mid a B \\
& A \rightarrow B \mid S \\
& B \rightarrow b \mid \varepsilon
\end{aligned}
$$

First, add new start variable:

CNF - Example

Grammar;

$$
\begin{aligned}
& S \rightarrow A S A \mid a B \\
& A \rightarrow B \mid S \\
& B \rightarrow b \mid \varepsilon
\end{aligned}
$$

First, add new start variable:

$$
\begin{aligned}
S_{0} & \rightarrow S \\
S & \rightarrow A S A \mid a B \\
A & \rightarrow B \mid S \\
B & \rightarrow b \mid \varepsilon
\end{aligned}
$$

CNF - Example

$$
\begin{aligned}
S_{0} & \rightarrow S \\
S & \rightarrow A S A \mid a B \\
A & \rightarrow B \mid S \\
B & \rightarrow b \mid \varepsilon
\end{aligned}
$$

Then, remove $B \rightarrow \varepsilon$:

CNF - Example

$$
\begin{aligned}
S_{0} & \rightarrow S \\
S & \rightarrow A S A \mid a B \\
A & \rightarrow B \mid S \\
B & \rightarrow b \mid \varepsilon
\end{aligned}
$$

Then, remove $B \rightarrow \varepsilon$:

$$
\begin{aligned}
S_{0} & \rightarrow S \\
S & \rightarrow A S A|a B| a \\
A & \rightarrow B|\varepsilon| S \\
B & \rightarrow b
\end{aligned}
$$

CNF - Example

$$
\begin{aligned}
S_{0} & \rightarrow S \\
S & \rightarrow A S A|a B| a \\
A & \rightarrow B|\varepsilon| S \\
B & \rightarrow b
\end{aligned}
$$

Then, remove $A \rightarrow \varepsilon$:

CNF - Example

$$
\begin{aligned}
S_{0} & \rightarrow S \\
S & \rightarrow A S A|a B| a \\
A & \rightarrow B|\varepsilon| S \\
B & \rightarrow b
\end{aligned}
$$

Then, remove $A \rightarrow \varepsilon$:

$$
\begin{aligned}
S_{0} & \rightarrow S \\
S & \rightarrow A S A|S A| A S|S| a B \mid a \\
A & \rightarrow S \mid B \\
B & \rightarrow b
\end{aligned}
$$

CNF - Example

$$
\begin{aligned}
S_{0} & \rightarrow S \\
S & \rightarrow A S A|S A| A S|S| a B \mid a \\
A & \rightarrow B \mid S \\
B & \rightarrow b
\end{aligned}
$$

Then remove $S \rightarrow S$:

CNF - Example

$$
\begin{aligned}
S_{0} & \rightarrow S \\
S & \rightarrow A S A|S A| A S|S| a B \mid a \\
A & \rightarrow B \mid S \\
B & \rightarrow b
\end{aligned}
$$

Then remove $S \rightarrow S$:

$$
\begin{aligned}
S_{0} & \rightarrow S \\
S & \rightarrow A S A|S A| A S|a B| a \\
A & \rightarrow B \mid S \\
B & \rightarrow b
\end{aligned}
$$

CNF - Example

$$
\begin{aligned}
S_{0} & \rightarrow S \\
S & \rightarrow A S A|S A| A S|a B| a \\
A & \rightarrow B \mid S \\
B & \rightarrow b
\end{aligned}
$$

Remove unit rule $S_{0} \rightarrow S$:

CNF - Example

$$
\begin{aligned}
S_{0} & \rightarrow S \\
S & \rightarrow A S A|S A| A S|a B| a \\
A & \rightarrow B \mid S \\
B & \rightarrow b
\end{aligned}
$$

Remove unit rule $S_{0} \rightarrow S$:

$$
\begin{aligned}
S_{0} & \rightarrow A S A|S A| A S|a B| a \\
S & \rightarrow A S A|S A| A S|a B| a \\
A & \rightarrow B \mid S \\
B & \rightarrow b
\end{aligned}
$$

CNF - Example

$$
\begin{aligned}
S_{0} & \rightarrow A S A|S A| A S|a B| a \\
S & \rightarrow A S A|S A| A S|a B| a \\
A & \rightarrow B \mid S \\
B & \rightarrow b
\end{aligned}
$$

and you would continue to remove the unit rules $A \rightarrow S$, etc....

CNF - Example

$$
\begin{aligned}
S_{0} & \rightarrow A S A|S A| A S|a B| a \\
S & \rightarrow A S A|S A| A S|a B| a \\
A & \rightarrow B \mid S \\
B & \rightarrow b
\end{aligned}
$$

and you would continue to remove the unit rules $A \rightarrow S$, etc.... But how to convert, say, $S \rightarrow$ ASA into rules with only two symbols on the right?

CNF - Example

$$
\begin{aligned}
S_{0} & \rightarrow A S A|S A| A S|a B| a \\
S & \rightarrow A S A|S A| A S|a B| a \\
A & \rightarrow B \mid S \\
B & \rightarrow b
\end{aligned}
$$

and you would continue to remove the unit rules $A \rightarrow S$, etc....But how to convert, say, $S \rightarrow A S A$ into rules with only two symbols on the right? \rightsquigarrow introduce help variables!

$$
\begin{aligned}
& S \rightarrow A S A \\
\rightsquigarrow & S \rightarrow A A_{1}, A_{1} \rightarrow S A
\end{aligned}
$$

CNF

- Thus, we see how all CFGs can be converted to CFGs in CNF.

CNF

- Thus, we see how all CFGs can be converted to CFGs in CNF.
- Useful property to have, both for practical purposes and theoretical work: knowing what the grammar looks like can be very beneficial (we will see an example next week)

CNF

- Thus, we see how all CFGs can be converted to CFGs in CNF.
- Useful property to have, both for practical purposes and theoretical work: knowing what the grammar looks like can be very beneficial (we will see an example next week)
- how can finite automata be enriched so as to accept context-free languages?

CNF

- Thus, we see how all CFGs can be converted to CFGs in CNF.
- Useful property to have, both for practical purposes and theoretical work: knowing what the grammar looks like can be very beneficial (we will see an example next week)
- how can finite automata be enriched so as to accept context-free languages? \rightarrow next week!

