
INF2080
Context-Free Langugaes

Daniel Lupp

Universitetet i Oslo

1st February 2018

Department of
Informatics

University of
Oslo

INF2080 Lecture :: 1st February 1 / 37

Repetition

We’ve looked at one of the simpler computational models: finite automata

defined (non)deterministic finite automata (NFAs/DFAs) and the languages they accept:
regular languages
defined regular expressions, useful as a shorthand for describing languages
a language L is regular ↔ there exists a regular expression that describes L
pumping lemma as a useful tool for determining whether a language is nonregular

INF2080 Lecture :: 1st February 2 / 37

Repetition

We’ve looked at one of the simpler computational models: finite automata
defined (non)deterministic finite automata (NFAs/DFAs) and the languages they accept:
regular languages

defined regular expressions, useful as a shorthand for describing languages
a language L is regular ↔ there exists a regular expression that describes L
pumping lemma as a useful tool for determining whether a language is nonregular

INF2080 Lecture :: 1st February 2 / 37

Repetition

We’ve looked at one of the simpler computational models: finite automata
defined (non)deterministic finite automata (NFAs/DFAs) and the languages they accept:
regular languages
defined regular expressions, useful as a shorthand for describing languages

a language L is regular ↔ there exists a regular expression that describes L
pumping lemma as a useful tool for determining whether a language is nonregular

INF2080 Lecture :: 1st February 2 / 37

Repetition

We’ve looked at one of the simpler computational models: finite automata
defined (non)deterministic finite automata (NFAs/DFAs) and the languages they accept:
regular languages
defined regular expressions, useful as a shorthand for describing languages
a language L is regular ↔ there exists a regular expression that describes L

pumping lemma as a useful tool for determining whether a language is nonregular

INF2080 Lecture :: 1st February 2 / 37

Repetition

We’ve looked at one of the simpler computational models: finite automata
defined (non)deterministic finite automata (NFAs/DFAs) and the languages they accept:
regular languages
defined regular expressions, useful as a shorthand for describing languages
a language L is regular ↔ there exists a regular expression that describes L
pumping lemma as a useful tool for determining whether a language is nonregular

INF2080 Lecture :: 1st February 2 / 37

Pumping Lemma revisited

Recall example from last week:
L = {anbn | n ≥ 0}

We used the pumping lemma to show that this language was not regular.
What about the following language, for Σ = {a, b, c}:

L = {abncn | n ≥ 0} ∪ {akw | k 6= 1, and w ∈ Σ∗ doesn’t start with a}

Union of two languages:
first language: all words of the form abncn

second language: all Σ∗ words that start with either 0 or 2 or more a’s.
→ L is a disjoint union

INF2080 Lecture :: 1st February 3 / 37

Pumping Lemma revisited

Recall example from last week:
L = {anbn | n ≥ 0}

We used the pumping lemma to show that this language was not regular.

What about the following language, for Σ = {a, b, c}:

L = {abncn | n ≥ 0} ∪ {akw | k 6= 1, and w ∈ Σ∗ doesn’t start with a}

Union of two languages:
first language: all words of the form abncn

second language: all Σ∗ words that start with either 0 or 2 or more a’s.
→ L is a disjoint union

INF2080 Lecture :: 1st February 3 / 37

Pumping Lemma revisited

Recall example from last week:
L = {anbn | n ≥ 0}

We used the pumping lemma to show that this language was not regular.
What about the following language, for Σ = {a, b, c}:

L = {abncn | n ≥ 0} ∪ {akw | k 6= 1, and w ∈ Σ∗ doesn’t start with a}

Union of two languages:
first language: all words of the form abncn

second language: all Σ∗ words that start with either 0 or 2 or more a’s.
→ L is a disjoint union

INF2080 Lecture :: 1st February 3 / 37

Pumping Lemma revisited

Recall example from last week:
L = {anbn | n ≥ 0}

We used the pumping lemma to show that this language was not regular.
What about the following language, for Σ = {a, b, c}:

L = {abncn | n ≥ 0} ∪ {akw | k 6= 1, and w ∈ Σ∗ doesn’t start with a}

Union of two languages:
first language: all words of the form abncn

second language: all Σ∗ words that start with either 0 or 2 or more a’s.
→ L is a disjoint union

INF2080 Lecture :: 1st February 3 / 37

Pumping Lemma revisited

Recall example from last week:
L = {anbn | n ≥ 0}

We used the pumping lemma to show that this language was not regular.
What about the following language, for Σ = {a, b, c}:

L = {abncn | n ≥ 0} ∪ {akw | k 6= 1, and w ∈ Σ∗ doesn’t start with a}

Union of two languages:
first language: all words of the form abncn

second language: all Σ∗ words that start with either 0 or 2 or more a’s.
→ L is a disjoint union

INF2080 Lecture :: 1st February 3 / 37

Pumping Lemma revisited

Lemma (Pumping Lemma)

If A is a regular language, then there is a number p, called the pumping length, where if w is a
word in A of length ≥ p then w can be divided into three parts, w = xyz , such that

1 xy iz ∈ A for every i ≥ 0,
2 |y | > 0,
3 |xy | ≤ p.

L = {abncn | n ≥ 0} ∪ {akw | k 6= 1, and w ∈ Σ∗ doesn’t start with a}

Does L satisfy the pumping lemma?

INF2080 Lecture :: 1st February 4 / 37

Pumping Lemma revisited

Lemma (Pumping Lemma, shortened)

If A is a regular, |w | ≥ p can be divided into three parts, w = xyz , such that
1 xy iz ∈ A for every i ≥ 0,
2 |y | > 0, |xy | ≤ p.

L = {abncn | n ≥ 0} ∪ {akw | k 6= 1, and w ∈ Σ∗ doesn’t start with a}

Let p be the pumping length.

Each w ∈ L is either of the form abncn or akw .

INF2080 Lecture :: 1st February 5 / 37

Pumping Lemma revisited

Lemma (Pumping Lemma, shortened)

If A is a regular, |w | ≥ p can be divided into three parts, w = xyz , such that
1 xy iz ∈ A for every i ≥ 0,
2 |y | > 0, |xy | ≤ p.

L = {abncn | n ≥ 0} ∪ {akw | k 6= 1, and w ∈ Σ∗ doesn’t start with a}

Let p be the pumping length.
Each w ∈ L is either of the form abncn or akw .

INF2080 Lecture :: 1st February 5 / 37

Pumping Lemma revisited

Lemma (Pumping Lemma, shortened)

If A is a regular, |w | ≥ p can be divided into three parts, w = xyz , such that
1 xy iz ∈ A for every i ≥ 0,
2 |y | > 0, |xy | ≤ p.

L = {abncn | n ≥ 0} ∪ {akw | k 6= 1, and w ∈ Σ∗ doesn’t start with a}

Assume s = abncn, where n is such that |s| ≥ p.

choose x = ε, y = a, z = bncn. Then |y | > 0 and |xy | ≤ p.
The string xz = bncn = a0bncn is of the form akw for k 6= 1 and w ∈ Σ∗ not starting
with a. ⇒ xz ∈ L.

INF2080 Lecture :: 1st February 6 / 37

Pumping Lemma revisited

Lemma (Pumping Lemma, shortened)

If A is a regular, |w | ≥ p can be divided into three parts, w = xyz , such that
1 xy iz ∈ A for every i ≥ 0,
2 |y | > 0, |xy | ≤ p.

L = {abncn | n ≥ 0} ∪ {akw | k 6= 1, and w ∈ Σ∗ doesn’t start with a}

Assume s = abncn, where n is such that |s| ≥ p.
choose x = ε, y = a, z = bncn. Then |y | > 0 and |xy | ≤ p.

The string xz = bncn = a0bncn is of the form akw for k 6= 1 and w ∈ Σ∗ not starting
with a. ⇒ xz ∈ L.

INF2080 Lecture :: 1st February 6 / 37

Pumping Lemma revisited

Lemma (Pumping Lemma, shortened)

If A is a regular, |w | ≥ p can be divided into three parts, w = xyz , such that
1 xy iz ∈ A for every i ≥ 0,
2 |y | > 0, |xy | ≤ p.

L = {abncn | n ≥ 0} ∪ {akw | k 6= 1, and w ∈ Σ∗ doesn’t start with a}

Assume s = abncn, where n is such that |s| ≥ p.
choose x = ε, y = a, z = bncn. Then |y | > 0 and |xy | ≤ p.
The string xz = bncn = a0bncn is of the form akw for k 6= 1 and w ∈ Σ∗ not starting
with a.

⇒ xz ∈ L.

INF2080 Lecture :: 1st February 6 / 37

Pumping Lemma revisited

Lemma (Pumping Lemma, shortened)

If A is a regular, |w | ≥ p can be divided into three parts, w = xyz , such that
1 xy iz ∈ A for every i ≥ 0,
2 |y | > 0, |xy | ≤ p.

L = {abncn | n ≥ 0} ∪ {akw | k 6= 1, and w ∈ Σ∗ doesn’t start with a}

Assume s = abncn, where n is such that |s| ≥ p.
choose x = ε, y = a, z = bncn. Then |y | > 0 and |xy | ≤ p.
The string xz = bncn = a0bncn is of the form akw for k 6= 1 and w ∈ Σ∗ not starting
with a. ⇒ xz ∈ L.

INF2080 Lecture :: 1st February 6 / 37

Pumping Lemma revisited

Lemma (Pumping Lemma, shortened)

If A is a regular, |w | ≥ p can be divided into three parts, w = xyz , such that
1 xy iz ∈ A for every i ≥ 0,
2 |y | > 0,
3 |xy | ≤ p.

L = {abncn | n ≥ 0} ∪ {akw | k 6= 1, and w ∈ Σ∗ doesn’t start with a}

Assume s = abncn, where n is such that |s| ≥ p.
choose x = ε, y = a, z = bncn. Then |y | > 0 and |xy | ≤ p.
The string xy iz = bncn = aibncn for i ≥ 2 is of the form akw for k 6= 1 and w ∈ Σ∗ not
starting with a.

⇒ xy iz ∈ L.

INF2080 Lecture :: 1st February 7 / 37

Pumping Lemma revisited

Lemma (Pumping Lemma, shortened)

If A is a regular, |w | ≥ p can be divided into three parts, w = xyz , such that
1 xy iz ∈ A for every i ≥ 0,
2 |y | > 0,
3 |xy | ≤ p.

L = {abncn | n ≥ 0} ∪ {akw | k 6= 1, and w ∈ Σ∗ doesn’t start with a}

Assume s = abncn, where n is such that |s| ≥ p.
choose x = ε, y = a, z = bncn. Then |y | > 0 and |xy | ≤ p.
The string xy iz = bncn = aibncn for i ≥ 2 is of the form akw for k 6= 1 and w ∈ Σ∗ not
starting with a. ⇒ xy iz ∈ L.

INF2080 Lecture :: 1st February 7 / 37

Pumping Lemma revisited

L = {abncn | n ≥ 0} ∪ {akw | k 6= 1, and w ∈ Σ∗ doesn’t start with a}

Assume s = akw1w2 · · ·wn, for k 6= 1 and w ∈ Σ∗ not starting with a, where n, k are such
that |s| ≥ p.

if k = 0, choose x = ε, y = w1, z = w2 · · ·wn. Then |y | > 0 and |xy | ≤ p.
The strings xz and xy iz for i > 2 are in Σ∗ and don’t start with a ⇒ xz , xy iz ∈ L.

INF2080 Lecture :: 1st February 8 / 37

Pumping Lemma revisited

L = {abncn | n ≥ 0} ∪ {akw | k 6= 1, and w ∈ Σ∗ doesn’t start with a}

Assume s = akw1w2 · · ·wn, for k 6= 1 and w ∈ Σ∗ not starting with a, where n, k are such
that |s| ≥ p.
if k = 0, choose x = ε, y = w1, z = w2 · · ·wn. Then |y | > 0 and |xy | ≤ p.

The strings xz and xy iz for i > 2 are in Σ∗ and don’t start with a ⇒ xz , xy iz ∈ L.

INF2080 Lecture :: 1st February 8 / 37

Pumping Lemma revisited

L = {abncn | n ≥ 0} ∪ {akw | k 6= 1, and w ∈ Σ∗ doesn’t start with a}

Assume s = akw1w2 · · ·wn, for k 6= 1 and w ∈ Σ∗ not starting with a, where n, k are such
that |s| ≥ p.
if k = 0, choose x = ε, y = w1, z = w2 · · ·wn. Then |y | > 0 and |xy | ≤ p.
The strings xz and xy iz for i > 2 are in Σ∗ and don’t start with a

⇒ xz , xy iz ∈ L.

INF2080 Lecture :: 1st February 8 / 37

Pumping Lemma revisited

L = {abncn | n ≥ 0} ∪ {akw | k 6= 1, and w ∈ Σ∗ doesn’t start with a}

Assume s = akw1w2 · · ·wn, for k 6= 1 and w ∈ Σ∗ not starting with a, where n, k are such
that |s| ≥ p.
if k = 0, choose x = ε, y = w1, z = w2 · · ·wn. Then |y | > 0 and |xy | ≤ p.
The strings xz and xy iz for i > 2 are in Σ∗ and don’t start with a ⇒ xz , xy iz ∈ L.

INF2080 Lecture :: 1st February 8 / 37

Pumping Lemma revisited

L = {abncn | n ≥ 0} ∪ {akw | k 6= 1, and w ∈ Σ∗ doesn’t start with a}

Assume s = akw1w2 · · ·wn, for k 6= 1 and w ∈ Σ∗ not starting with a, where n, k are such
that |s| ≥ p.
if k = 2, choose x = ε, y = aa, z = w1w2 · · ·wn. Then |y | > 0 and |xy | ≤ p.

The string xz is in Σ∗ and doesn’t start with a. xz ∈ L

The string xy iz for i ≥ 1 starts with 2 or more a’s, followed by a word w ∈ Σ∗ that does
not start with an a. ⇒ xy iz ∈ L.

INF2080 Lecture :: 1st February 9 / 37

Pumping Lemma revisited

L = {abncn | n ≥ 0} ∪ {akw | k 6= 1, and w ∈ Σ∗ doesn’t start with a}

Assume s = akw1w2 · · ·wn, for k 6= 1 and w ∈ Σ∗ not starting with a, where n, k are such
that |s| ≥ p.
if k = 2, choose x = ε, y = aa, z = w1w2 · · ·wn. Then |y | > 0 and |xy | ≤ p.
The string xz is in Σ∗ and doesn’t start with a.

xz ∈ L

The string xy iz for i ≥ 1 starts with 2 or more a’s, followed by a word w ∈ Σ∗ that does
not start with an a. ⇒ xy iz ∈ L.

INF2080 Lecture :: 1st February 9 / 37

Pumping Lemma revisited

L = {abncn | n ≥ 0} ∪ {akw | k 6= 1, and w ∈ Σ∗ doesn’t start with a}

Assume s = akw1w2 · · ·wn, for k 6= 1 and w ∈ Σ∗ not starting with a, where n, k are such
that |s| ≥ p.
if k = 2, choose x = ε, y = aa, z = w1w2 · · ·wn. Then |y | > 0 and |xy | ≤ p.
The string xz is in Σ∗ and doesn’t start with a. xz ∈ L

The string xy iz for i ≥ 1 starts with 2 or more a’s, followed by a word w ∈ Σ∗ that does
not start with an a. ⇒ xy iz ∈ L.

INF2080 Lecture :: 1st February 9 / 37

Pumping Lemma revisited

L = {abncn | n ≥ 0} ∪ {akw | k 6= 1, and w ∈ Σ∗ doesn’t start with a}

Assume s = akw1w2 · · ·wn, for k 6= 1 and w ∈ Σ∗ not starting with a, where n, k are such
that |s| ≥ p.
if k = 2, choose x = ε, y = aa, z = w1w2 · · ·wn. Then |y | > 0 and |xy | ≤ p.
The string xz is in Σ∗ and doesn’t start with a. xz ∈ L

The string xy iz for i ≥ 1 starts with 2 or more a’s, followed by a word w ∈ Σ∗ that does
not start with an a.

⇒ xy iz ∈ L.

INF2080 Lecture :: 1st February 9 / 37

Pumping Lemma revisited

L = {abncn | n ≥ 0} ∪ {akw | k 6= 1, and w ∈ Σ∗ doesn’t start with a}

Assume s = akw1w2 · · ·wn, for k 6= 1 and w ∈ Σ∗ not starting with a, where n, k are such
that |s| ≥ p.
if k = 2, choose x = ε, y = aa, z = w1w2 · · ·wn. Then |y | > 0 and |xy | ≤ p.
The string xz is in Σ∗ and doesn’t start with a. xz ∈ L

The string xy iz for i ≥ 1 starts with 2 or more a’s, followed by a word w ∈ Σ∗ that does
not start with an a. ⇒ xy iz ∈ L.

INF2080 Lecture :: 1st February 9 / 37

Pumping Lemma revisited

L = {abncn | n ≥ 0} ∪ {akw | k 6= 1, and w ∈ Σ∗ doesn’t start with a}

Assume s = akw1w2 · · ·wn, for k 6= 1 and w ∈ Σ∗ not starting with a, where n, k are such
that |s| ≥ p.
if k ≥ 3, choose x = ε, y = a, z = ak−1w2 · · ·wn. Then |y | > 0 and |xy | ≤ p.

The string xz is of the form ak−1w , where w ∈ Σ∗ and doesn’t start with a. xz ∈ L

The string xy iz for i ≥ 1 is of the form ak+i−1w where w ∈ Σ∗ that does not start with
an a. ⇒ xy iz ∈ L.

INF2080 Lecture :: 1st February 10 / 37

Pumping Lemma revisited

L = {abncn | n ≥ 0} ∪ {akw | k 6= 1, and w ∈ Σ∗ doesn’t start with a}

Assume s = akw1w2 · · ·wn, for k 6= 1 and w ∈ Σ∗ not starting with a, where n, k are such
that |s| ≥ p.
if k ≥ 3, choose x = ε, y = a, z = ak−1w2 · · ·wn. Then |y | > 0 and |xy | ≤ p.
The string xz is of the form ak−1w , where w ∈ Σ∗ and doesn’t start with a.

xz ∈ L

The string xy iz for i ≥ 1 is of the form ak+i−1w where w ∈ Σ∗ that does not start with
an a. ⇒ xy iz ∈ L.

INF2080 Lecture :: 1st February 10 / 37

Pumping Lemma revisited

L = {abncn | n ≥ 0} ∪ {akw | k 6= 1, and w ∈ Σ∗ doesn’t start with a}

Assume s = akw1w2 · · ·wn, for k 6= 1 and w ∈ Σ∗ not starting with a, where n, k are such
that |s| ≥ p.
if k ≥ 3, choose x = ε, y = a, z = ak−1w2 · · ·wn. Then |y | > 0 and |xy | ≤ p.
The string xz is of the form ak−1w , where w ∈ Σ∗ and doesn’t start with a. xz ∈ L

The string xy iz for i ≥ 1 is of the form ak+i−1w where w ∈ Σ∗ that does not start with
an a. ⇒ xy iz ∈ L.

INF2080 Lecture :: 1st February 10 / 37

Pumping Lemma revisited

L = {abncn | n ≥ 0} ∪ {akw | k 6= 1, and w ∈ Σ∗ doesn’t start with a}

Assume s = akw1w2 · · ·wn, for k 6= 1 and w ∈ Σ∗ not starting with a, where n, k are such
that |s| ≥ p.
if k ≥ 3, choose x = ε, y = a, z = ak−1w2 · · ·wn. Then |y | > 0 and |xy | ≤ p.
The string xz is of the form ak−1w , where w ∈ Σ∗ and doesn’t start with a. xz ∈ L

The string xy iz for i ≥ 1 is of the form ak+i−1w where w ∈ Σ∗ that does not start with
an a.

⇒ xy iz ∈ L.

INF2080 Lecture :: 1st February 10 / 37

Pumping Lemma revisited

L = {abncn | n ≥ 0} ∪ {akw | k 6= 1, and w ∈ Σ∗ doesn’t start with a}

Assume s = akw1w2 · · ·wn, for k 6= 1 and w ∈ Σ∗ not starting with a, where n, k are such
that |s| ≥ p.
if k ≥ 3, choose x = ε, y = a, z = ak−1w2 · · ·wn. Then |y | > 0 and |xy | ≤ p.
The string xz is of the form ak−1w , where w ∈ Σ∗ and doesn’t start with a. xz ∈ L

The string xy iz for i ≥ 1 is of the form ak+i−1w where w ∈ Σ∗ that does not start with
an a. ⇒ xy iz ∈ L.

INF2080 Lecture :: 1st February 10 / 37

Pumping Lemma revisited

L = {abncn | n ≥ 0} ∪ {akw | k 6= 1, and w ∈ Σ∗ doesn’t start with a}

can be pumped!! Does that mean L is regular?

If L is regular, then so is L∩ abΣ∗ (recall: regular languages are closed under intersection).
L ∩ abΣ∗ = {abncn | n ≥ 1}
Exercise: show that this language is nonregular! (analogous to proof for anbn)
So L is nonregular...is this a counter-example to the pumping lemma? No, pumping
lemma is not an if and only if statement!

INF2080 Lecture :: 1st February 11 / 37

Pumping Lemma revisited

L = {abncn | n ≥ 0} ∪ {akw | k 6= 1, and w ∈ Σ∗ doesn’t start with a}

can be pumped!! Does that mean L is regular?
If L is regular, then so is L∩ abΣ∗ (recall: regular languages are closed under intersection).

L ∩ abΣ∗ = {abncn | n ≥ 1}
Exercise: show that this language is nonregular! (analogous to proof for anbn)
So L is nonregular...is this a counter-example to the pumping lemma? No, pumping
lemma is not an if and only if statement!

INF2080 Lecture :: 1st February 11 / 37

Pumping Lemma revisited

L = {abncn | n ≥ 0} ∪ {akw | k 6= 1, and w ∈ Σ∗ doesn’t start with a}

can be pumped!! Does that mean L is regular?
If L is regular, then so is L∩ abΣ∗ (recall: regular languages are closed under intersection).
L ∩ abΣ∗ = {abncn | n ≥ 1}

Exercise: show that this language is nonregular! (analogous to proof for anbn)
So L is nonregular...is this a counter-example to the pumping lemma? No, pumping
lemma is not an if and only if statement!

INF2080 Lecture :: 1st February 11 / 37

Pumping Lemma revisited

L = {abncn | n ≥ 0} ∪ {akw | k 6= 1, and w ∈ Σ∗ doesn’t start with a}

can be pumped!! Does that mean L is regular?
If L is regular, then so is L∩ abΣ∗ (recall: regular languages are closed under intersection).
L ∩ abΣ∗ = {abncn | n ≥ 1}
Exercise: show that this language is nonregular! (analogous to proof for anbn)
So L is nonregular...is this a counter-example to the pumping lemma?

No, pumping
lemma is not an if and only if statement!

INF2080 Lecture :: 1st February 11 / 37

Pumping Lemma revisited

L = {abncn | n ≥ 0} ∪ {akw | k 6= 1, and w ∈ Σ∗ doesn’t start with a}

can be pumped!! Does that mean L is regular?
If L is regular, then so is L∩ abΣ∗ (recall: regular languages are closed under intersection).
L ∩ abΣ∗ = {abncn | n ≥ 1}
Exercise: show that this language is nonregular! (analogous to proof for anbn)
So L is nonregular...is this a counter-example to the pumping lemma? No, pumping
lemma is not an if and only if statement!

INF2080 Lecture :: 1st February 11 / 37

Context-Free Grammars

Today: Context-free grammars and languages

grammars describe the syntax of a language; they try to describe the relationship of all the
parts to one another, such as placement of nouns/verbs in sentences
useful for programming languages, specifically compilers and parsers: if the grammar of a
programming language is available, parsing is very straightforward.

INF2080 Lecture :: 1st February 12 / 37

Context-Free Grammars

Today: Context-free grammars and languages
grammars describe the syntax of a language; they try to describe the relationship of all the
parts to one another, such as placement of nouns/verbs in sentences

useful for programming languages, specifically compilers and parsers: if the grammar of a
programming language is available, parsing is very straightforward.

INF2080 Lecture :: 1st February 12 / 37

Context-Free Grammars

Today: Context-free grammars and languages
grammars describe the syntax of a language; they try to describe the relationship of all the
parts to one another, such as placement of nouns/verbs in sentences
useful for programming languages, specifically compilers and parsers: if the grammar of a
programming language is available, parsing is very straightforward.

INF2080 Lecture :: 1st February 12 / 37

Context-Free Grammars

First example:

S → aSb

S → ε

Every grammar consists of rules, which are a pair consisting of one variable (to the left of
→) and a string of variables and symbols (to the right of →)
Every grammar contains a start variable (above: variable S). Common convention: the
first listed variable is the start variable (if you choose a different start variable, you must
specify!).
Words are generated by starting with the start variable and recursively replacing variables
with the righthand side of a rule.

S aSb aaSbb aaεbb aabb

INF2080 Lecture :: 1st February 13 / 37

Context-Free Grammars

First example:

S → aSb

S → ε

Every grammar consists of rules, which are a pair consisting of one variable (to the left of
→) and a string of variables and symbols (to the right of →)

Every grammar contains a start variable (above: variable S). Common convention: the
first listed variable is the start variable (if you choose a different start variable, you must
specify!).
Words are generated by starting with the start variable and recursively replacing variables
with the righthand side of a rule.

S aSb aaSbb aaεbb aabb

INF2080 Lecture :: 1st February 13 / 37

Context-Free Grammars

First example:

S → aSb

S → ε

Every grammar consists of rules, which are a pair consisting of one variable (to the left of
→) and a string of variables and symbols (to the right of →)
Every grammar contains a start variable (above: variable S). Common convention: the
first listed variable is the start variable (if you choose a different start variable, you must
specify!).

Words are generated by starting with the start variable and recursively replacing variables
with the righthand side of a rule.

S aSb aaSbb aaεbb aabb

INF2080 Lecture :: 1st February 13 / 37

Context-Free Grammars

First example:

S → aSb

S → ε

Every grammar consists of rules, which are a pair consisting of one variable (to the left of
→) and a string of variables and symbols (to the right of →)
Every grammar contains a start variable (above: variable S). Common convention: the
first listed variable is the start variable (if you choose a different start variable, you must
specify!).
Words are generated by starting with the start variable and recursively replacing variables
with the righthand side of a rule.

S aSb aaSbb aaεbb aabb

INF2080 Lecture :: 1st February 13 / 37

Parse Trees

Derivations of the form
S aSb aaSbb aaεbb aabb

can also be encoded as a parse tree:
S

a S

b S

ε

b

b

INF2080 Lecture :: 1st February 14 / 37

Context-Free Grammars

Second example:

S → aSa

S → bSb

S → cSc

S → ε

To simplify notation, you can summarize multiple rules into one line:

S → aSa | bSb | cSc | ε.

The symbol | takes on the meaning of “or.”
→ palindromes of even length over {a, b, c}.

INF2080 Lecture :: 1st February 15 / 37

Context-Free Grammars

Second example:

S → aSa

S → bSb

S → cSc

S → ε

To simplify notation, you can summarize multiple rules into one line:

S → aSa | bSb | cSc | ε.

The symbol | takes on the meaning of “or.”
→ palindromes of even length over {a, b, c}.

INF2080 Lecture :: 1st February 15 / 37

Context-Free Grammars

Second example:

S → aSa

S → bSb

S → cSc

S → ε

To simplify notation, you can summarize multiple rules into one line:

S → aSa | bSb | cSc | ε.

The symbol | takes on the meaning of “or.”

→ palindromes of even length over {a, b, c}.

INF2080 Lecture :: 1st February 15 / 37

Context-Free Grammars

Second example:

S → aSa

S → bSb

S → cSc

S → ε

To simplify notation, you can summarize multiple rules into one line:

S → aSa | bSb | cSc | ε.

The symbol | takes on the meaning of “or.”
→ palindromes of even length over {a, b, c}.

INF2080 Lecture :: 1st February 15 / 37

Context-Free Grammar

Definition (Context-Free Grammar)

A context-free grammar is a 4-tuple (V ,Σ,R, S) where
1 V is a finite set of variables
2 Σ is a finite set disjoint from V of terminals
3 R is a finite set of rules, each consisting of a variable and of a string of variables and

terminals
4 and S is the start variable

We call L(G) the language generated by a context-free grammar. A language is called a
context-free language if it is generated by a context-free grammar.

INF2080 Lecture :: 1st February 16 / 37

Context-Free Grammar

Definition (Context-Free Grammar)

A context-free grammar is a 4-tuple (V ,Σ,R, S) where
1 V is a finite set of variables
2 Σ is a finite set disjoint from V of terminals
3 R is a finite set of rules, each consisting of a variable and of a string of variables and

terminals
4 and S is the start variable

We call L(G) the language generated by a context-free grammar. A language is called a
context-free language if it is generated by a context-free grammar.

INF2080 Lecture :: 1st February 16 / 37

Context-Free Grammar

So what can context-free grammars (CFGs) express?

Regular languages?
Is the class of context-free languages closed under
union/intersection/concatanation/complement/Kleene star?
Regular languages could be modelled by an automaton with finite memory...what about
context-free languages?

Answers to these over the course of this and next lecture (and group sessions)

INF2080 Lecture :: 1st February 17 / 37

Context-Free Grammar

So what can context-free grammars (CFGs) express?
Regular languages?

Is the class of context-free languages closed under
union/intersection/concatanation/complement/Kleene star?
Regular languages could be modelled by an automaton with finite memory...what about
context-free languages?

Answers to these over the course of this and next lecture (and group sessions)

INF2080 Lecture :: 1st February 17 / 37

Context-Free Grammar

So what can context-free grammars (CFGs) express?
Regular languages?
Is the class of context-free languages closed under
union/intersection/concatanation/complement/Kleene star?

Regular languages could be modelled by an automaton with finite memory...what about
context-free languages?

Answers to these over the course of this and next lecture (and group sessions)

INF2080 Lecture :: 1st February 17 / 37

Context-Free Grammar

So what can context-free grammars (CFGs) express?
Regular languages?
Is the class of context-free languages closed under
union/intersection/concatanation/complement/Kleene star?
Regular languages could be modelled by an automaton with finite memory...what about
context-free languages?

Answers to these over the course of this and next lecture (and group sessions)

INF2080 Lecture :: 1st February 17 / 37

Context-Free Grammar

So what can context-free grammars (CFGs) express?
Regular languages?
Is the class of context-free languages closed under
union/intersection/concatanation/complement/Kleene star?
Regular languages could be modelled by an automaton with finite memory...what about
context-free languages?

Answers to these over the course of this and next lecture (and group sessions)

INF2080 Lecture :: 1st February 17 / 37

RLs and CFLs

Can regular languages be described using context-free grammars?

Given a RL L, there exists some DFA (Q,Σ, δ, q0,F) that accepts L
What if we encode traversing the DFA into grammar rules, i.e., for each transition
δ(q1, a) = q2 we create a rule Q1 → aQ2

the variables of our grammar correspond to the states in Q, with Q0 as the start variable.
How do we deal with accept states? for each qi ∈ F , add rule Qi → ε

Theorem
Every regular language is context-free.

INF2080 Lecture :: 1st February 18 / 37

RLs and CFLs

Can regular languages be described using context-free grammars?
Given a RL L, there exists some DFA (Q,Σ, δ, q0,F) that accepts L

What if we encode traversing the DFA into grammar rules, i.e., for each transition
δ(q1, a) = q2 we create a rule Q1 → aQ2

the variables of our grammar correspond to the states in Q, with Q0 as the start variable.
How do we deal with accept states? for each qi ∈ F , add rule Qi → ε

Theorem
Every regular language is context-free.

INF2080 Lecture :: 1st February 18 / 37

RLs and CFLs

Can regular languages be described using context-free grammars?
Given a RL L, there exists some DFA (Q,Σ, δ, q0,F) that accepts L
What if we encode traversing the DFA into grammar rules, i.e., for each transition
δ(q1, a) = q2 we create a rule Q1 → aQ2

the variables of our grammar correspond to the states in Q, with Q0 as the start variable.
How do we deal with accept states? for each qi ∈ F , add rule Qi → ε

Theorem
Every regular language is context-free.

INF2080 Lecture :: 1st February 18 / 37

RLs and CFLs

Can regular languages be described using context-free grammars?
Given a RL L, there exists some DFA (Q,Σ, δ, q0,F) that accepts L
What if we encode traversing the DFA into grammar rules, i.e., for each transition
δ(q1, a) = q2 we create a rule Q1 → aQ2

the variables of our grammar correspond to the states in Q, with Q0 as the start variable.

How do we deal with accept states? for each qi ∈ F , add rule Qi → ε

Theorem
Every regular language is context-free.

INF2080 Lecture :: 1st February 18 / 37

RLs and CFLs

Can regular languages be described using context-free grammars?
Given a RL L, there exists some DFA (Q,Σ, δ, q0,F) that accepts L
What if we encode traversing the DFA into grammar rules, i.e., for each transition
δ(q1, a) = q2 we create a rule Q1 → aQ2

the variables of our grammar correspond to the states in Q, with Q0 as the start variable.
How do we deal with accept states?

 for each qi ∈ F , add rule Qi → ε

Theorem
Every regular language is context-free.

INF2080 Lecture :: 1st February 18 / 37

RLs and CFLs

Can regular languages be described using context-free grammars?
Given a RL L, there exists some DFA (Q,Σ, δ, q0,F) that accepts L
What if we encode traversing the DFA into grammar rules, i.e., for each transition
δ(q1, a) = q2 we create a rule Q1 → aQ2

the variables of our grammar correspond to the states in Q, with Q0 as the start variable.
How do we deal with accept states? for each qi ∈ F , add rule Qi → ε

Theorem
Every regular language is context-free.

INF2080 Lecture :: 1st February 18 / 37

RLs and CFLs

Can regular languages be described using context-free grammars?
Given a RL L, there exists some DFA (Q,Σ, δ, q0,F) that accepts L
What if we encode traversing the DFA into grammar rules, i.e., for each transition
δ(q1, a) = q2 we create a rule Q1 → aQ2

the variables of our grammar correspond to the states in Q, with Q0 as the start variable.
How do we deal with accept states? for each qi ∈ F , add rule Qi → ε

Theorem
Every regular language is context-free.

INF2080 Lecture :: 1st February 18 / 37

Properties of CFLs

Closure under union/concatanation/Kleene star?

Let G1 = (V1,Σ1,R1,S1) and
G2 = (V2,Σ2,R2,S2) be two grammars that generate L1, L2 respectively.
Union:

create grammar GL1∪L2 that generates all words w ∈ L1 ∪ L2.
Create new start variable S .
GL1∪L2 = (V ,Σ,R,S) where
V = V1 ∪ V2 ∪ {S},
Σ = Σ1 ∪ Σ2, and
R = R1 ∪ R2 ∪ {S → S1 | S2}.

INF2080 Lecture :: 1st February 19 / 37

Properties of CFLs

Closure under union/concatanation/Kleene star? Let G1 = (V1,Σ1,R1,S1) and
G2 = (V2,Σ2,R2,S2) be two grammars that generate L1, L2 respectively.

Union:
create grammar GL1∪L2 that generates all words w ∈ L1 ∪ L2.
Create new start variable S .
GL1∪L2 = (V ,Σ,R,S) where
V = V1 ∪ V2 ∪ {S},
Σ = Σ1 ∪ Σ2, and
R = R1 ∪ R2 ∪ {S → S1 | S2}.

INF2080 Lecture :: 1st February 19 / 37

Properties of CFLs

Closure under union/concatanation/Kleene star? Let G1 = (V1,Σ1,R1,S1) and
G2 = (V2,Σ2,R2,S2) be two grammars that generate L1, L2 respectively.
Union:

create grammar GL1∪L2 that generates all words w ∈ L1 ∪ L2.

Create new start variable S .
GL1∪L2 = (V ,Σ,R,S) where
V = V1 ∪ V2 ∪ {S},
Σ = Σ1 ∪ Σ2, and
R = R1 ∪ R2 ∪ {S → S1 | S2}.

INF2080 Lecture :: 1st February 19 / 37

Properties of CFLs

Closure under union/concatanation/Kleene star? Let G1 = (V1,Σ1,R1,S1) and
G2 = (V2,Σ2,R2,S2) be two grammars that generate L1, L2 respectively.
Union:

create grammar GL1∪L2 that generates all words w ∈ L1 ∪ L2.
Create new start variable S .
GL1∪L2 = (V ,Σ,R,S) where
V = V1 ∪ V2 ∪ {S},
Σ = Σ1 ∪ Σ2, and
R = R1 ∪ R2 ∪ {S → S1 | S2}.

INF2080 Lecture :: 1st February 19 / 37

CFL Union: Example

S1 → aS1b | ε ∪ S2 → aS2a | bS2b | cS2c | ε

S → S1 | S2

S1 → aS1b | ε
S2 → aS2a | bS2b | cS2c | ε

INF2080 Lecture :: 1st February 20 / 37

CFL Union: Example

S1 → aS1b | ε ∪ S2 → aS2a | bS2b | cS2c | ε

S → S1 | S2

S1 → aS1b | ε
S2 → aS2a | bS2b | cS2c | ε

INF2080 Lecture :: 1st February 20 / 37

Properties of CFLs: Concatanation

Let G1 = (V1,Σ1,R1, S1) and G2 = (V2,Σ2,R2,S2) be two grammars that generate L1, L2
respectively.
Concatanation:

create grammar GL1L2 = (V ,Σ,R,S) that accepts all words w = w1w2, where w1 ∈ L1
and w2 ∈ L2.

new start variable S

V = V1 ∪ V2 ∪ {S},
Σ = Σ1 ∪ Σ2, and
R = R1 ∪ R2 ∪ {S → S1S2}.

INF2080 Lecture :: 1st February 21 / 37

Properties of CFLs: Concatanation

Let G1 = (V1,Σ1,R1, S1) and G2 = (V2,Σ2,R2,S2) be two grammars that generate L1, L2
respectively.
Concatanation:

create grammar GL1L2 = (V ,Σ,R,S) that accepts all words w = w1w2, where w1 ∈ L1
and w2 ∈ L2.
new start variable S

V = V1 ∪ V2 ∪ {S},
Σ = Σ1 ∪ Σ2, and
R = R1 ∪ R2 ∪ {S → S1S2}.

INF2080 Lecture :: 1st February 21 / 37

CFL Concatanation: Example

S1 → aS1b | ε S2 → aS2a | bS2b | cS2c | ε

S → S1S2

S1 → aS1b | ε
S2 → aS2a | bS2b | cS2c | ε

INF2080 Lecture :: 1st February 22 / 37

CFL Concatanation: Example

S1 → aS1b | ε S2 → aS2a | bS2b | cS2c | ε

S → S1S2

S1 → aS1b | ε
S2 → aS2a | bS2b | cS2c | ε

INF2080 Lecture :: 1st February 22 / 37

Properties of CFLs: Kleene star

Let G1 = (V1,Σ1,R1, S1) generate language L1.
Kleene star:

create grammar G = (V ,Σ,R,S) that generates all words in L∗1.

V = V1,
Σ = Σ1,
R = R1 ∪ {S1 → ε,S1 → S1S1},
S = S1.

Example:

S1 → aS1b | ε
S1 → ε | S1S1

S1 → aS1b | ε

INF2080 Lecture :: 1st February 23 / 37

Properties of CFLs: Kleene star

Let G1 = (V1,Σ1,R1, S1) generate language L1.
Kleene star:

create grammar G = (V ,Σ,R,S) that generates all words in L∗1.
V = V1,
Σ = Σ1,
R = R1 ∪ {S1 → ε,S1 → S1S1},
S = S1.

Example:

S1 → aS1b | ε
S1 → ε | S1S1

S1 → aS1b | ε

INF2080 Lecture :: 1st February 23 / 37

Properties of CFLs: Kleene star

Let G1 = (V1,Σ1,R1, S1) generate language L1.
Kleene star:

create grammar G = (V ,Σ,R,S) that generates all words in L∗1.
V = V1,
Σ = Σ1,
R = R1 ∪ {S1 → ε,S1 → S1S1},
S = S1.

Example:

S1 → aS1b | ε
S1 → ε | S1S1

S1 → aS1b | ε

INF2080 Lecture :: 1st February 23 / 37

Properties of CFLs

Closure under complement/intersection?

 No, but we need to know more before we can determine if a language is not context-free.
(next week)

INF2080 Lecture :: 1st February 24 / 37

Properties of CFLs

Closure under complement/intersection?
 No, but we need to know more before we can determine if a language is not context-free.
(next week)

INF2080 Lecture :: 1st February 24 / 37

Ambiguity

Consider the grammar
E → E + E | E × E | (E) | a

Here: the alphabet is {a,+,×, (,)}.
→ arithmetic expressions over a

What does the parse tree for the string a + a× a look like?

INF2080 Lecture :: 1st February 25 / 37

Ambiguity

Consider the grammar
E → E + E | E × E | (E) | a

Here: the alphabet is {a,+,×, (,)}.

→ arithmetic expressions over a

What does the parse tree for the string a + a× a look like?

INF2080 Lecture :: 1st February 25 / 37

Ambiguity

Consider the grammar
E → E + E | E × E | (E) | a

Here: the alphabet is {a,+,×, (,)}.
→ arithmetic expressions over a

What does the parse tree for the string a + a× a look like?

INF2080 Lecture :: 1st February 25 / 37

Ambiguity

Consider the grammar
E → E + E | E × E | (E) | a

Here: the alphabet is {a,+,×, (,)}.
→ arithmetic expressions over a

What does the parse tree for the string a + a× a look like?

INF2080 Lecture :: 1st February 25 / 37

Ambiguity

E

E

a

+ E

E

a

× E

a

Intuitively corresponds to a + (a× a)

E

E

E

a

+ E

a

× E

a

Intuitively corresponds to (a + a)× a

This is called ambiguity

INF2080 Lecture :: 1st February 26 / 37

Ambiguity

E

E

a

+ E

E

a

× E

a

Intuitively corresponds to a + (a× a)

E

E

E

a

+ E

a

× E

a

Intuitively corresponds to (a + a)× a

This is called ambiguity

INF2080 Lecture :: 1st February 26 / 37

Ambiguity

E

E

a

+ E

E

a

× E

a

Intuitively corresponds to a + (a× a)

E

E

E

a

+ E

a

× E

a

Intuitively corresponds to (a + a)× a

This is called ambiguity

INF2080 Lecture :: 1st February 26 / 37

Ambiguity

E

E

a

+ E

E

a

× E

a

Intuitively corresponds to a + (a× a)

E

E

E

a

+ E

a

× E

a

Intuitively corresponds to (a + a)× a

This is called ambiguity

INF2080 Lecture :: 1st February 26 / 37

Ambiguity

E

E

a

+ E

E

a

× E

a

Intuitively corresponds to a + (a× a)

E

E

E

a

+ E

a

× E

a

Intuitively corresponds to (a + a)× a

This is called ambiguity

INF2080 Lecture :: 1st February 26 / 37

Ambiguity

But just having multiple possible derivations does not mean that a grammar is ambiguous.

Two derivations could look different, yet “structurally” the same: apply the same rules to
the same variables, yet in a different order.

E E + E E + E × E a + E × E a + a× E a + a× a
E E + E a + E a + E × E a + a× E a + a× a

Both have the same parse tree!

E

E

a

+ E

E

a

× E

a

INF2080 Lecture :: 1st February 27 / 37

Ambiguity

But just having multiple possible derivations does not mean that a grammar is ambiguous.
Two derivations could look different, yet “structurally” the same: apply the same rules to
the same variables, yet in a different order.

E E + E E + E × E a + E × E a + a× E a + a× a
E E + E a + E a + E × E a + a× E a + a× a

Both have the same parse tree!

E

E

a

+ E

E

a

× E

a

INF2080 Lecture :: 1st February 27 / 37

Ambiguity

But just having multiple possible derivations does not mean that a grammar is ambiguous.
Two derivations could look different, yet “structurally” the same: apply the same rules to
the same variables, yet in a different order.

E E + E E + E × E a + E × E a + a× E a + a× a
E E + E a + E a + E × E a + a× E a + a× a

Both have the same parse tree!

E

E

a

+ E

E

a

× E

a

INF2080 Lecture :: 1st February 27 / 37

Ambiguity

But just having multiple possible derivations does not mean that a grammar is ambiguous.
Two derivations could look different, yet “structurally” the same: apply the same rules to
the same variables, yet in a different order.

E E + E E + E × E a + E × E a + a× E a + a× a
E E + E a + E a + E × E a + a× E a + a× a

Both have the same parse tree!

E

E

a

+ E

E

a

× E

a

INF2080 Lecture :: 1st February 27 / 37

Ambiguity

We are interested in structurally different derivations, i.e., two derivations of the same
word that, given a predefined order of derivation, are different

Definition
A leftmost derivation of a string replaces, in each derivation step, the leftmost variable. Then a
string is derived ambiguously over a grammar G if it has two or more leftmost derivations over
G .

If L(G) contains a string that is derived ambiguously, we say that G is ambiguous.

INF2080 Lecture :: 1st February 28 / 37

Ambiguity

We are interested in structurally different derivations, i.e., two derivations of the same
word that, given a predefined order of derivation, are different

Definition
A leftmost derivation of a string replaces, in each derivation step, the leftmost variable. Then a
string is derived ambiguously over a grammar G if it has two or more leftmost derivations over
G .

If L(G) contains a string that is derived ambiguously, we say that G is ambiguous.

INF2080 Lecture :: 1st February 28 / 37

Ambiguity

We are interested in structurally different derivations, i.e., two derivations of the same
word that, given a predefined order of derivation, are different

Definition
A leftmost derivation of a string replaces, in each derivation step, the leftmost variable. Then a
string is derived ambiguously over a grammar G if it has two or more leftmost derivations over
G .

If L(G) contains a string that is derived ambiguously, we say that G is ambiguous.

INF2080 Lecture :: 1st February 28 / 37

Chomsy Normal Form

Context-free languages have a nice property: Every CFL can be described by a CFG in
Chomsky Normal Form:

Definition
A grammar is in Chomsky Normal Form if every rule is of the form:

A→ BC

A→ a

where a is any terminal, A is any variable, B,C are any variables that are not the start variable.
In addition the rule S → ε is permitted.

INF2080 Lecture :: 1st February 29 / 37

Definition
A grammar is in Chomsky Normal Form if every rule is of the form:

A→ BC

A→ a

where a is any terminal, A is any variable, B,C are any variables that are not the start variable.
In addition the rule S → ε is permitted.

Proof sketch: Given an arbitrary grammar G . First, add new start variable S0 and new rule
S0 → S to G .

Then, remove all rules A→ ε, followed by all “unit” rules A→ B . For each such
occurence of A in the righthand side of a rule, add a new rule with ε (resp. B) substituted for
A (see examples on next slide). Finally, split all rules with more than 3 righthandside symbols
into multiple rules containing only 2 symbols.

INF2080 Lecture :: 1st February 30 / 37

Definition
A grammar is in Chomsky Normal Form if every rule is of the form:

A→ BC

A→ a

where a is any terminal, A is any variable, B,C are any variables that are not the start variable.
In addition the rule S → ε is permitted.

Proof sketch: Given an arbitrary grammar G . First, add new start variable S0 and new rule
S0 → S to G .Then, remove all rules A→ ε, followed by all “unit” rules A→ B .

For each such
occurence of A in the righthand side of a rule, add a new rule with ε (resp. B) substituted for
A (see examples on next slide). Finally, split all rules with more than 3 righthandside symbols
into multiple rules containing only 2 symbols.

INF2080 Lecture :: 1st February 30 / 37

Definition
A grammar is in Chomsky Normal Form if every rule is of the form:

A→ BC

A→ a

where a is any terminal, A is any variable, B,C are any variables that are not the start variable.
In addition the rule S → ε is permitted.

Proof sketch: Given an arbitrary grammar G . First, add new start variable S0 and new rule
S0 → S to G .Then, remove all rules A→ ε, followed by all “unit” rules A→ B . For each such
occurence of A in the righthand side of a rule, add a new rule with ε (resp. B) substituted for
A (see examples on next slide).

Finally, split all rules with more than 3 righthandside symbols
into multiple rules containing only 2 symbols.

INF2080 Lecture :: 1st February 30 / 37

Definition
A grammar is in Chomsky Normal Form if every rule is of the form:

A→ BC

A→ a

where a is any terminal, A is any variable, B,C are any variables that are not the start variable.
In addition the rule S → ε is permitted.

Proof sketch: Given an arbitrary grammar G . First, add new start variable S0 and new rule
S0 → S to G .Then, remove all rules A→ ε, followed by all “unit” rules A→ B . For each such
occurence of A in the righthand side of a rule, add a new rule with ε (resp. B) substituted for
A (see examples on next slide). Finally, split all rules with more than 3 righthandside symbols
into multiple rules containing only 2 symbols.

INF2080 Lecture :: 1st February 30 / 37

CNF - Example

Grammar;

S → ASA | aB
A→ B | S
B → b | ε

First, add new start variable:

S0 → S

S → ASA | aB
A→ B | S
B → b | ε

INF2080 Lecture :: 1st February 31 / 37

CNF - Example

Grammar;

S → ASA | aB
A→ B | S
B → b | ε

First, add new start variable:

S0 → S

S → ASA | aB
A→ B | S
B → b | ε

INF2080 Lecture :: 1st February 31 / 37

CNF - Example

S0 → S

S → ASA | aB
A→ B | S
B → b | ε

Then, remove B → ε:

S0 → S

S → ASA | aB | a
A→ B | ε | S
B → b

INF2080 Lecture :: 1st February 32 / 37

CNF - Example

S0 → S

S → ASA | aB
A→ B | S
B → b | ε

Then, remove B → ε:

S0 → S

S → ASA | aB | a
A→ B | ε | S
B → b

INF2080 Lecture :: 1st February 32 / 37

CNF - Example

S0 → S

S → ASA | aB | a
A→ B | ε | S
B → b

Then, remove A→ ε:

S0 → S

S → ASA | SA | AS | S | aB | a
A→ S | B
B → b

INF2080 Lecture :: 1st February 33 / 37

CNF - Example

S0 → S

S → ASA | aB | a
A→ B | ε | S
B → b

Then, remove A→ ε:

S0 → S

S → ASA | SA | AS | S | aB | a
A→ S | B
B → b

INF2080 Lecture :: 1st February 33 / 37

CNF - Example

S0 → S

S → ASA | SA | AS | S | aB | a
A→ B | S
B → b

Then remove S → S :

S0 → S

S → ASA | SA | AS | aB | a
A→ B | S
B → b

INF2080 Lecture :: 1st February 34 / 37

CNF - Example

S0 → S

S → ASA | SA | AS | S | aB | a
A→ B | S
B → b

Then remove S → S :

S0 → S

S → ASA | SA | AS | aB | a
A→ B | S
B → b

INF2080 Lecture :: 1st February 34 / 37

CNF - Example

S0 → S

S → ASA | SA | AS | aB | a
A→ B | S
B → b

Remove unit rule S0 → S :

S0 → ASA | SA | AS | aB | a
S → ASA | SA | AS | aB | a
A→ B | S
B → b

INF2080 Lecture :: 1st February 35 / 37

CNF - Example

S0 → S

S → ASA | SA | AS | aB | a
A→ B | S
B → b

Remove unit rule S0 → S :

S0 → ASA | SA | AS | aB | a
S → ASA | SA | AS | aB | a
A→ B | S
B → b

INF2080 Lecture :: 1st February 35 / 37

CNF - Example

S0 → ASA | SA | AS | aB | a
S → ASA | SA | AS | aB | a
A→ B | S
B → b

and you would continue to remove the unit rules A→ S , etc....

But how to convert, say,
S → ASA into rules with only two symbols on the right? introduce help variables!

S → ASA

 S → AA1,A1 → SA

INF2080 Lecture :: 1st February 36 / 37

CNF - Example

S0 → ASA | SA | AS | aB | a
S → ASA | SA | AS | aB | a
A→ B | S
B → b

and you would continue to remove the unit rules A→ S , etc....But how to convert, say,
S → ASA into rules with only two symbols on the right?

 introduce help variables!

S → ASA

 S → AA1,A1 → SA

INF2080 Lecture :: 1st February 36 / 37

CNF - Example

S0 → ASA | SA | AS | aB | a
S → ASA | SA | AS | aB | a
A→ B | S
B → b

and you would continue to remove the unit rules A→ S , etc....But how to convert, say,
S → ASA into rules with only two symbols on the right? introduce help variables!

S → ASA

 S → AA1,A1 → SA

INF2080 Lecture :: 1st February 36 / 37

CNF

Thus, we see how all CFGs can be converted to CFGs in CNF.

Useful property to have, both for practical purposes and theoretical work: knowing what
the grammar looks like can be very beneficial (we will see an example next week)
how can finite automata be enriched so as to accept context-free languages? → next
week!

INF2080 Lecture :: 1st February 37 / 37

CNF

Thus, we see how all CFGs can be converted to CFGs in CNF.
Useful property to have, both for practical purposes and theoretical work: knowing what
the grammar looks like can be very beneficial (we will see an example next week)

how can finite automata be enriched so as to accept context-free languages? → next
week!

INF2080 Lecture :: 1st February 37 / 37

CNF

Thus, we see how all CFGs can be converted to CFGs in CNF.
Useful property to have, both for practical purposes and theoretical work: knowing what
the grammar looks like can be very beneficial (we will see an example next week)
how can finite automata be enriched so as to accept context-free languages?

→ next
week!

INF2080 Lecture :: 1st February 37 / 37

CNF

Thus, we see how all CFGs can be converted to CFGs in CNF.
Useful property to have, both for practical purposes and theoretical work: knowing what
the grammar looks like can be very beneficial (we will see an example next week)
how can finite automata be enriched so as to accept context-free languages? → next
week!

INF2080 Lecture :: 1st February 37 / 37

